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Abstract. We consider multilinear operators T (f1, . . . , fl) given by determinants of matrices

of the form (Xkfj)1≤j,k≤l, where the Xk’s are C∞ vector fields on Rn. We give conditions on

theXk’s so that the corresponding operator T map products of Lebesgue spaces Lp1×· · ·×Lpl
into some anisotropic space H1, when 1

p1
+ · · ·+ 1

pl
= 1.

0. Introduction and statement of results.

A well known Theorem of Coifman, Lions, Meyer, and Semmes [CLMS] states that the
Jacobian J(F ) of a map F = (f1, . . . , fn) from R

n into itself maps the product of Sobolev
spaces Lp11 × · · · × Lpn1 into the Hardy space H1, when 1

p1
+ · · · + 1

pn
= 1. J(F ) is given

by the determinant of the matrix ( ∂
∂xk

fj)1≤j,k≤n, where { ∂
∂xk
}1≤k≤n is the usual basis of

the tangent space of Rn at every point. Replacing the standard basis { ∂
∂xk
} by general

vector fields {Xk}, we form the multilinear operator T ({fj}) = det(Xkfj). We consider the
following question: Under what conditions on the Xk’s do we have that T maps products
of Lebesgue spaces into some Hardy space H1 as before?

The purpose of this paper is to give a satisfactory answer to the question posed above.
If the Xk are taken from the usual basis of the Heisenberg group in R2n+1, Rochberg and
the author [GR] prove that the corresponding T maps into the group space H1.

In this work we show that if the vector fields Xk satisfy Hörmander’s condition, then
the corresponding T maps suitable products of Lebesgue spaces into the local anisotropic
Hardy space H1 with respect to the metric associated with the vector fields defined by
Nagel, Stein, and Wainger [NSW]. Precise statements of results are given in Theorems A
and B.
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Suppose that S = {Y1, Y2, . . . , Yl} is a set of smooth vector fields defined on a bounded
open connected subset Ω of Rn for some n ≥ 2. Assume that S is a Hörmander system.
This means that there exists an integer s such that the vector fields Y1, . . . , Yl together
with their commutators of order at most s span the tangent space of Ω at every point x.

[NSW] define a (quasi)metric ρ on Ω by setting ρ(x, y) = inf{t : ∃ piecewise smooth curve
γ : [0, t] → R, γ(0) = x, γ(t) = y and γ′(s) =

∑l
j=1 βj(s)Yj(γ(s)) with

∑l
j=1

∣∣βj(s)∣∣2 ≤
1 for all s ∈ [0, t]}, for all x, y in Ω. Intuitively, ρ(x, y) is the least time taken to move
from x to y along a path pointing in the directions of the Yj ’s. For x ∈ Ω and δ > 0,
let B(x, δ) = {y ∈ Ω : ρ(x, y) < δ} be the ball centered at x with radius δ with respect
to the metric ρ. [NSW] prove that these balls satisfy a doubling property for Lebesgue
measure. More precisely, they prove that for any compact subset K of Ω, there exist
positive constants CK and δ1(K) such that for all 0 < δ < δ1(K) and all x in K

(0.1) |B(x, 2δ)| ≤ CK |B(x, δ)|,

where | · | denotes Lebesgue measure. As a corollary of (0.1), the local Hardy-Littlewood
maximal function

(Mf)(x) = (Mδ1(K)f)(x) = sup
0<δ<δ1(K)

|B(x, δ)|−1

∫
B(x,δ)

|f(y)| dy

maps Lp(Ω) to Lp(K) for any K compact subset of Ω and 1 < p <∞.
We now define the space H1

loc(Ω). Fix a smooth bump φ in the unit ball of Rn and let
φδ(y) = δ−nφδ(δ−1y). For any x0 in Ω and δ > 0 small enough, the push-forward of φδ by
any of the coordinate maps constructed in [NSW] gives a smooth bump ψx0

δ supported in
the ball B(x0, δ). One can check that for any compact subset K of Ω and for all j = 1, . . . , l
and x ∈ K

(0.2) |ψx0
δ (x)| ≤ CK |B(x0, δ)|−1 and |Yj(ψx0

δ )(x)| ≤ CKδ−1|B(x0, δ)|−1

when 0 < δ < δ2(K), where δ2(K) is a small constant depending on K.
For a function f on Ω and δ > 0, let

(0.3) (Mδf)(x0) = sup
0<σ<δ

∣∣∣∣
∫

f(z)ψx0
σ (z) dz

∣∣∣∣.
We call Mδ the “smooth” maximal function of f . We say that f lies in H1

loc(Ω) if for all
compact subsets K of Ω, there exists a δ0(K) > 0 such that Mδ0(K)f is in L1(K). We
define the Hardy-1 space norm of f on K by setting

(0.4) ‖f‖H1(K) = ‖Mδ0(K)f‖L1(K).
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For a C1 map F = (f1, . . . , fl) : Ω→ R
l, define

(0.5) Jac(F ) = Jac{Y1,...,Yl}(F ) = det




Y1f1 Y1f2 . . . Y1fl
Y2f1 Y2f2 . . . Y2fl

...
...

...
Ylf1 Ylf2 . . . Ylfl


 .

Our results are:

Theorem A. For 1 ≤ j ≤ l, let 1 < pj < ∞ be given with 1
p1

+ · · · + 1
pl

= 1. Suppose
that Jac{Y1,...,Yl}(F ) has integral zero for all C∞ compactly supported functions F on Ω.
Then for any compact subset K of Ω, there exists a constant CK > 0 such that for all C1

functions F = (f1, . . . , fl) : Ω→ R
l, we have:

(0.6) ‖Jac{Y1,...,Yl}(F )‖H1(K) ≤ CK

l∏
j=1

[ l∑
k=1

‖Ykfj‖Lpj (Ω)

]
.

The integral zero condition is trivially satisfied by the usual basis ∂
∂xj

of the tangent
bundle of Ω. For other non trivial examples see section 3.

We now turn to the situation where Jac{Y1,...,Yl} does not satisfy the integral zero
condition as in Theorem A. A C∞ vector field X =

∑n
j=1 aj(x) ∂

∂xj
in the tangent space

of Ω at x0 is called divergence-free if

(0.7)
∫

Ω

(Xf)g dx = −
∫

Ω

f(Xg) dx

for all f , g smooth compactly supported functions on Ω. This happens exactly when
div((aj(x)) =

∑n
j=1

∂aj
∂xj

(x) = 0 for all x in Ω.

Assuming divergence-free, we can do away with the integral zero condition of Theorem
A. We have the following:

Theorem B. For 1 ≤ j ≤ l, let 1 < pj <∞ be given with 1
p1

+ · · ·+ 1
pl

= 1. Suppose all
the Yj are divergence free. Then for any compact subset K of Ω, there exists a constant
CK > 0, such that for any C1 map F = (f1, . . . , fl) : Ω→ R

l, we have

(0.8) ‖Jac{Y1,...,Yl}(F )‖H1(K) ≤ CK

l∏
j=1

[ l∑
k=1

‖Ykfj‖Lpj (Ω) +
l∑

k1,k2=1

‖[Yk1 , Yk2 ]fj‖Lpj (Ω)

]
.

Above, [X, Y ] denotes the commutator of the vector fields X and Y .
As a corollary of our results, we obtain improved integrability for positive Jacobians

formed by vector fields satisfying Hörmander’s condition. The corollary below generalizes
the classical result of Müller [M] for Euclidean Jacobians.
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Corollary. Let pj and F be as in Theorem B. Suppose that, Jac(F ) ≥ 0, and that the
right hand-side of (0.8) is finite. Then Jac(F ) lies in (L1 log L)loc(Ω), i.e.

(3.3)
∫
K

Jac(F ) log(2 + Jac(F )) dx < +∞

for all compact subsets of K of Ω.

As the reader has observed our results are only local. This is not due to insufficiency
of the methods, but to the lack of global dilation structure associated with the metric
constructed by [NSW]. As a result of this, two key ingredients of the proof, the Poincaré
inequality for vector fields satisfying Hörmander’s condition, and the Lp boundedness of
the (metric ball) maximal function, are only local in this setting.

1. Proof of Theorem A.

Denote by fA the average of a function f over the set A. We will need the following
version of the Poincaré inequality for vector fields satisfying Hörmander’s condition.

Theorem. Let Q be the homogeneous dimension of the graded nilpotent group generated
by the left invariant vector fields corresponding to the lifted vector fields {Ỹj} of the {Yj}
as in [RS]. Let q and r satisfy 1

Q < 1
r < 1 and 1

r − 1
Q < 1

q ≤ 1. Then for any compact
subset K of Ω there exist positive constants CK and δ3(K) such that for every x ∈ K and
δ > 0 with B(x, δ) ⊂ Ω and 0 < δ < δ3(K) and for all C∞ functions f on the closure of
B(x, δ), we have

(1.0)
(∫

B(x,δ)

|f(x)− fB(x,δ)|qdx

) 1
q

≤ Cδ|B(x, δ)| 1q− 1
r

l∑
j=1

(∫
B(x,δ)

|(Yjf)(x)|rdx

) 1
r

.

For a proof of the above and a precise definition of Q see the article of Lu [L1] (Theorem
C). Observe that Q ≥ l. This Theorem was first proved by Jerison [J] when q = r.

Fix a compact subset K of Ω and a point x0 in K. Define ψx0
δ as in the previous section.

Let δ0(K) = min{δ1(K), δ2(K), δ3(K), 1
2dist(K, Ωc)}, where δ3(K) are as in the Theo-

rem above, and δ1(K), δ2(K) are as in (0.1) and (0.2). We will estimate the L1 norm of
the smooth maximal function Mδ0(K)(Jac{Y1,...,Yl})(F ) on K, where F = (f1, f2, . . . , fl)
is a C∞ compactly supported map : Ω → R

l. Once we prove (0.6) for such F , a simple
density argument will give (0.6) for all C1 F : Ω→ R

l. Throughout, CK will be a constant
depending on K.

Since
∑l
j=1

1
pj

= 1, it follows that pj ≤ l for some j. Relabeling indices, we may assume
that p1 ≤ l. Since l ≤ Q as observed, we have that p1 ≤ Q. For any 0 < δ < δ0(K),
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we let c1 = 1
|Bδ|

∫
Bδ

f1 dx, where Bδ = B(x0, δ), and we replace f1 by f1 − c1 in (0.5).
Then Jac(F ) = Jac{Y1,...,Yl}(F ) remains unchanged. By the linearity of the Jacobian (as
a function of f1), we have the identity

(1.1) Jac(F )(x) ψx0
δ (x) = J1(x, x0, δ) + J2(x, x0, δ),

where

J1(·, x0, δ) = − det




(f1 − c1)(Y1ψx0
δ ) Y1f2 . . . Y1fl

(f1 − c1)(Y2ψx0
δ ) Y2f2 . . . Y2fl

...
...

...
(f1 − c1)(Ylψx0

δ ) Ylf2 . . . Ylfl


 , and

J2(·, x0, δ) = + det




Y1((f1 − c1)ψx0
δ ) Y1f2 . . . Y1fl

Y2((f1 − c1)ψx0
δ ) Y2f2 . . . Y2fl

...
...

...
Yl((f1 − c1)ψx0

δ ) Ylf2 . . . Ylfl


 .

We build on the ideas of [CLMS]. We begin by estimating

(1.2) sup
0<δ<δ0(K)

∣∣∣∣
∫

Ω

J1(x, x0, δ) dx

∣∣∣∣.

Expand the determinant defining J1 along its first column. We obtain

∣∣∣∣
∫

Ω

J1(x, x0, δ) dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

l∑
j=1

(−1)j+1 (f1 − c1)(Yjψx0
δ )Mj(f2, . . . , fl) dx

∣∣∣∣

≤
l∑

j=1

∣∣∣∣
∫

Ω

(f1 − c1)(Yjψx0
δ )Mj(f2, . . . , fl) dx

∣∣∣∣,(1.3)

where the Mj ’s are the minors. Let us only estimate the first term of the sum in (1.3), since
the remaining terms are similar. The minor M1 is a sum of terms of the form ±

∏l
j=2 Yrjfj

where {r2, . . . , rl} is a permutation of the set {2, . . . , l}. For every such permutation, by
(0.2), we have the pointwise bound for (1.3):

(1.4)
∫

Ω

|f1 − c1| |Y1ψx0
δ |

l∏
j=2

|Yrjfj | dx ≤ Cδ−1|Bδ|−1

∫
Bδ

|f1 − c1|
l∏

j=2

|Yrjfj | dx.
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For any 1 ≤ j ≤ l select 1 < sj < pj such that 1 <
∑l
j=1

1
sj

< 1 + 1
Q and define q by

1
q = 1−

∑l
j=2

1
sj

. One can check that 0 < 1
s1
− 1
Q < 1

q < 1 and that 1
Q < 1

s1
< 1. The latter

follows from the choice of p1 ≤ Q. Therefore the hypotheses of the Poincaré inequality
(1.0) are satisfied. We now apply Hölder’s inequality with exponents 1

q + 1
s2

+ . . . + 1
sl

= 1
to control (1.4) by

(1.5) CKδ−1 |Bδ|−1‖f1 − c1‖Lq(Bδ)
l∏

j=2

‖Yrjfj‖Lsj (Bδ)

for all x0 ∈ K. Applying the Poincaré inequality (1.0) we bound (1.5) by

CKδ−1 |Bδ|−1 δ |Bδ|
1
q− 1

s1

[ l∑
k=1

‖Ykf1‖Ls1 (Bδ)

] l∏
j=1

‖Yrjfj‖Lsj (Bδ)

≤CK |Bδ|
−
Pl
j=1

1
sj

l∏
j=1

[ l∑
k=1

‖Ykfj‖Lsj (Bδ)
]

≤CK

l∏
j=1

[ l∑
k=1

[(
M(|Ykfj |sj )

) 1
sj (x0)

]]
,(1.6)

where the M = Mδ1(K) is the (local) Hardy-Littlewood maximal function with the respect
to the family of the metric balls. (1.6) now controls (1.4). Summing (1.4) over all possible
permutations {r2, . . . , rl} = {2, . . . , l} we get the estimate below for the first term of the
sum in (1.3):

(1.7) CK

l∏
j=1

[ l∑
k=1

[(
M(|Ykfj |sj )

) 1
sj (x0)

]]
.

Similar estimates hold for the other terms of the sum in (1.3). Therefore (1.7) majorizes
(1.3), and since it is independent of δ, it also majorizes (1.2). We now estimate the L1

norm of (1.2) in x0 over K by the L1 norm of (1.7) over K. We apply Hölder’s inequality
with exponents 1

p1
+ . . . + 1

pl
= 1 to (1.7) and since sj < pj and the maximal function

M = Mδ1(K) maps L
pj
sj (Ω) to L

pj
sj (K), we obtain that the L1 norm of (1.2) on K is

bounded above by

(1.8) CK

l∏
j=1

[ l∑
k=1

‖Ykfj‖Lpj (Ω)

]
.
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This concludes the estimate for the term J1. To finish the proof of Theorem A, note that
the zero integrability assumption for the Jacobian gives that J2(·, x0, δ) has integral zero.

By (1.1) we obtain that (1.8) majorizes the L1 norm of sup0<δ<δ0(K)

∣∣∣∣ ∫
Ω

Jac(F )(x)ψx0
δ dx

∣∣∣∣
on K.

2. Estimates involving commutators and the proof of Theorem B.

In this section we take up the estimates for term J2. We don’t assume that Jac(F ) has
integral zero but we assume that the Yj ’s are divergence-free. We need to control

(2.1) sup
0<δ<δ0(K)

∣∣∣∣
∫

Ω

J2(x, x0, δ)dx

∣∣∣∣.

Expanding the determinant defining J2 along its first column and using (0.7) we obtain

(2.2)
∣∣∣∣
∫

Ω

J2(x, x0, δ) dx

∣∣∣∣ =
∣∣∣∣−

∫
Ω

(f1 − c1) ψx0
δ

l∑
j=1

(−1)j+1Yj [Mj(f2, . . . , fl)] dx

∣∣∣∣,

where Mj is a suitable minor. It can be checked that
∑l
j=1(−1)j+1Yj [Mj(f2, . . . , fl)] =

Σl(f2, . . . , fl) is a sum of terms of the form

(2.3) Πr(f2, . . . , fl) = ±
( ∏

2≤j≤l
j �=m1,m2

Yjfr(j)

)
[Ym1 , Ym2 ]fr(j),

where r(·) is a permutation of the set {2, . . . , l}. In other words, exactly one commu-
tator of order 2 appears in the product and the alternation of the signs in the expan-
sion of the determinant produces all possible commutators of order 2. For instance,
when l = 3, Σ3(f2, f3) = {(Y1f3)([Y2, Y3]f2) − (Y1f2)([Y2, Y3]f3)} + {(Y2f3)([Y3, Y1]f2) −
(Y2f2)([Y3, Y1]f3)}+ {(Y3f3)([Y1, Y2]f2)− (Y3f2)([Y1, Y2]f2)}.

Let us now estimate the integral over Ω of a typical term (f1 − c1)ψx0
δ Πr(f2, . . . , fl) by

∫
Ω

|f1 − c1| |ψx0
δ | |[Ym1 , Ym2 ]fr(j)|

∏
1≤j≤l

j �=m1,m2

|Yjfr(j)| dx

≤CK |Bδ|−1

∫
Bδ

|f1 − c1| |[Ym1 , Ym2 ]fr(j)|
∏

1≤j≤l
j �=m1,m2

|Yjfr(j)| dx.(2.4)
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For any 1 ≤ j ≤ l select 1 < sj < pj and q as before. We apply Hölder’s inequality with
exponents 1

q + 1
s2

+ . . . + 1
sl

= 1 to control (2.4) by

(2.5) CK |Bδ|−1 ‖f1 − c1‖Lq(Bδ)
∏

1≤j≤l
j �=m1,m2

‖Yjfr(j)‖Lsr(j) (Bδ)‖[Ym1 , Ym2 ]fr(j)‖Lsr(j) (Bδ).

Let us denote by {Zk} all commutators of order 2 of the Yk’s. Poincaré’s inequality (1.0)
allows us to deduce that (2.5) is bounded by

CKδ|Bδ|−1+ 1
q− 1

s1

[ l∑
k=1

‖Ykf1‖Ls1 (Bδ)

]

[ ∏
1≤j≤l

j �=m1,m2

‖Yjfr(j)‖Lsr(j) (Bδ)
]
‖[Ym1 , Ym2 ]fr(j)‖Lsr(j) (Bδ)

≤CKδ|Bδ|
−
Pl
j=1

1
sj

l∏
j=1

[ l∑
k=1

(
‖Ykfj‖Lsj (Bδ)

)
+

l(l−1)
2∑

k=1

(
‖Zkfj‖Lsj (Bδ)

)]

≤CKδ0(K)
l∏

j=1

[ l∑
k=1

[(
M(|Ykfj |sj )

) 1
sj (x0)

]
+

l(l−1)
2∑

k=1

[(
M(|Zkfj |sj )

) 1
sj (x0)

]]
,

(2.6)

where we used δ < δ0(K) since we are only interested in a local estimate. Summing over
all possible functions r(·), we obtain the same estimate (with a larger constant) for (2.2).
Since (2.6) controls (2.2), and is independent of δ < δ0(K), it controls (2.1). We have
therefore proved that

sup
0<δ<δ0(K)

∣∣∣∣
∫

Ω

J2(x, x0, δ) dx

∣∣∣∣

≤CK

l∏
j=1

[ l∑
k=1

[(
M(|Ykfj |sj )

) 1
sj (x0)

]
+

l(l−1)
2∑

k=1

[(
M(|Zkfj |sj )

) 1
sj (x0)

]]
.

As before, Hölder’s inequality with exponents 1
p1

+ 1
p2

+ . . . + 1
pl

= 1 gives a bound analo-
gous to (1.8). This completes the estimate for J2. This estimate together with the estimate
for J1 given in the previous section give (0.8).
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3. Remarks, Examples, and Consequences.

A few remarks are in order. First note that in view of the doubling property (0.1), it
would be sufficient for our purposes to use the weaker form of the Poincaré inequality (1.0)
where the ball B(x, δ) on the right hand side of the inequality is replaced by its double
2B(x, δ). The final estimates (1.7) and (2.6) will be the same (only the constant CK will
be slightly larger).

We have proved our results for C1 functions F on Ω. By density the results are true for
all F such that the right hand side of the inequalities (0.6) and (0.8) are finite.

We now explain how are the hypotheses of Theorems A and B related.

Proposition. If all the vector fields Yj are divergence-free and all the commutators of the
Yj’s vanish identically on Ω, then Jac{Y1,...,Yl}(F ) has integral zero for all F compactly
supported smooth functions on Ω.

Indeed, expand the Jacobian (0.5) along the column (Y1f1, Y2f1, . . . , Ylf1), integrate
over Ω, and use (0.7). The result is the integral over Ω of a sum of terms of the form
±f1Πr(f2, . . . , fl), where Πr(f2, . . . , fl) is as in (2.3). By assumption each of these terms
is zero. Thus the Jacobian has integral zero.

The converse of this proposition need not be true. There exist divergence-free smooth
vector fields with nonvanishing commutators such that the associated Jacobian has integral
zero. For instance, let x1, x2, x3 be coordinates in Ω = R

3−{the coordinate axes}. Define

(3.1) Y1 = x3
∂

∂x2
− x2

∂

∂x3
, Y2 = x1

∂

∂x3
− x3

∂

∂x1
, Y3 = x2

∂

∂x1
− x1

∂

∂x2
.

Note that the Yj ’s are divergence-free, they satisfy [Y1, Y2] = Y3, [Y2, Y3] = Y1, [Y3, Y1] =
Y2, and the associated Jacobian Jac{Y1,Y2,Y3}(F ) is identically equal to zero for all F .

Below are examples of sets of vector fields that can be treated by our Theorems:
1. Let Y1, Y2, Y3 be the vector fields in (3.1), and Ω = R

3 − {the coordinate axes}.
If 1

p + 1
q = 1 for some 1 < p, q < ∞ and ‖Y1f‖Lp(Ω) + ‖Y2f‖Lp(Ω) + ‖Y3f‖Lp(Ω) < ∞

and ‖Y1g‖Lq(Ω) + ‖Y2g‖Lq(Ω) + ‖Y3g‖Lq(Ω) <∞, it follows from Theorem B that all 2× 2
determinants Jac{Yj ,Yk}(f, g) lie in the Hardy space H1

loc(Ω). Theorem A doesn’t apply in
this case since the 2× 2 determinants Jac{Yj ,Yk}(f, g) may not have integral zero.

2. On R2 − {the coordinate axes}, let

(3.2) Y1 = 2x1
∂

∂x1
+

1
x2

∂

∂x2
, Y2 = x2

∂

∂x1
+

1
x1

∂

∂x2
.

These vector fields are not divergence-free but the associated Jacobian Jac{Y1,Y2}(F ) has
integral zero for all smooth compactly supported F . This example only falls under the
scope of Theorem A.
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3. On R3, let Y1 and Y2 be the Heisenberg group vector fields

(3.3) Y1 =
∂

∂x1
+ 2x2

∂

∂x3
, Y2 =

∂

∂x2
− 2x1

∂

∂x3
.

The 2× 2 Jacobian Jac{Y1,Y2}(F ) doesn’t satisfy the integral zero condition and only falls
under the scope of Theorem B. In this case [Y1, Y2] = −4 ∂

∂x3
.

In the all examples above, the vector fields satisfy Hörmander’s condition.
We now sketch the proof of the Corollary stated in the introduction, which extends the

classical result of [M].
To prove te corollary, note that if g ≥ 0, the (local) Hardy-Littlewood maximal function

Mg = Mδ0(K)g and Mδ0(K)g are comparable on any compact K ⊂ Ω. (For this to be
true one needs to select ψx0

δ ≥ 0.) Then M(Jac(F )) is in H1
loc(Ω) and Stein’s Theorem

[S1] extended to spaces of homogeneous type, gives the required result. The details are
omitted.

We end by observing that, like the usual Jacobian on R
n, the Jacobians considered

above map into the local Hp spaces for some p below 1. More precisely, let (0.6)′ and
(0.8)′ be (0.6) and (0.8) respectively where H1(K) is replaced by Hp(K). Let 1 < pj <∞
be such that 1

p1
+ · · ·+ 1

pl
= 1

p , where 1 ≥ p > Q
Q+1 . Then under the hypothesis of Theorem

A (0.6)′ holds and under the hypothesis of Theorem B (0.8)′ holds.

The proof is the same. Note that since 1
p1

+· · ·+ 1
pl

< Q+1
Q , we can still select 1 < sj < pj

such that 1
s1

+ · · ·+ 1
sl

< Q+1
Q .

Finally observe that when when the vector fields Yj are free and p = Q
Q+1 , then (0.6)′ and

(0.8)′ hold if Hp(K) is replaced by the weak-Hp(K), that is, the space of all functions on
Ω whose smooth maximal functionMδ(K) lies in weak-Lp(K). Here one uses the Poincaré
inequality for free vector fields that satisfy Hörmander’s condition in the endpoint case
1
q = 1

r − 1
Q due to Lu [L2]. Then one adapts the argument in [G] pages 77-78. This seems

to be a new observation even for the usual Jacobian J(F ) = det( ∂fj∂xk
) on Rn. It is sharp

in the sense that J doesn’t map into Hp(Rn) for p < n
n+1 .

I would like to thank Professors Christ, Helfer, and Iwaniec for discussing some the
material above with me.
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de Hardy, C. R. Acad Sci Paris 309 (1991), 945-949.

10



[CLMS] R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy

spaces, J. Math. Pures Appl. 72 (1993), 247-286.

[CRW] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several

variables, Ann. of Math. 103 (1976), 611-635.

[CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in Analysis, Bull. AMS

83 (1977), 569-645.

[FOS] G. Folland and E. M. Stein, Harmonic Analysis on Homogeneous groups, Mathematical Notes,

Princeton Univ. Press, Princeton NJ (1982).

[G] L. Grafakos, Hardy space estimates for multilinear operators II, Rev. Mat. Iber. 8 (1992),

69–92.

[GR] L. Grafakos and R. Rochberg, Compensated Compactness and the Heisenberg group, Math.

Ann. 301 (1995), 601—611.

[IL] T. Iwaniec and A. Lutoborski, Integral estimates for null Langrangians, Archive for Rat. Mech.

and Anal. 125 (1993), 25-79.

[IS] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses,

Archive for Rat. Mech. and Anal. 119 (1992), 129-143.
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[L1] G. Lu, Weighted Poincaré and Sobolev Inequalities for Vector Fields satisfying Hörmander’s
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