BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS

Loukas Grafakos* and Stephen Montgomery-Smith*
University of Missouri, Columbia

Abstract

We precisely evaluate the operator norm of the uncentered Hardy-Littlewood maximal function on $L^{p}\left(\mathbb{R}^{1}\right)$. Consequently, we compute the operator norm of the "strong" maximal function on $L^{p}\left(\mathbb{R}^{n}\right)$, and we observe that the operator norm of the uncentered Hardy-Littlewood maximal function over balls on $L^{p}\left(\mathbb{R}^{n}\right)$ grows exponentially as $n \rightarrow \infty$.

For a locally integrable function f on \mathbb{R}^{n}, let

$$
\left(\mathcal{M}_{n} f\right)(x)=\sup _{B \ni x} \frac{1}{|B|} \int_{B}|f(y)| d y
$$

where the supremum is taken over all closed balls B that contain the point $x . \mathcal{M}_{n} f$ is called the uncentered Hardy-Littlewood maximal function of f on \mathbb{R}^{n}. In this paper we find the precise value of the operator norm of \mathcal{M}_{1} on $L^{p}\left(\mathbb{R}^{1}\right)$. It turns out that this operator norm is the solution of an equation. Our main result is the following:

Theorem. For $1<p<\infty$, the operator norm of $\mathcal{M}_{1}: L^{p}\left(\mathbb{R}^{1}\right) \rightarrow L^{p}\left(\mathbb{R}^{1}\right)$ is the unique positive solution of the equation

$$
\begin{equation*}
(p-1) x^{p}-p x^{p-1}-1=0 . \tag{1}
\end{equation*}
$$

1991 Mathematics Classification Number 42B25
*Research partially supported by the NSF.

In order to prove our Theorem, we fix a nonnegative f and we introduce the left and right maximal functions:

$$
\left(M_{L} f\right)(x)=\sup _{a<x} \frac{1}{x-a} \int_{a}^{x} f(t) d t \quad \text { and } \quad\left(M_{R} f\right)(x)=\sup _{b>x} \frac{1}{b-x} \int_{x}^{b} f(t) d t
$$

For the proof of the next result, known popularly as the "sunrise lemma", we refer the reader to Lemma (21.75) (i), Ch VI in [2].

Lemma 1. Let $f \geq 0$ be in $L^{1}\left(\mathbb{R}^{1}\right)$. For each $\lambda>0$, let $C_{\lambda}=\left\{x:\left(M_{L} f\right)(x)>\lambda\right\}$ and $D_{\lambda}=\left\{x:\left(M_{R} f\right)(x)>\lambda\right\}$. Then

$$
\begin{equation*}
\lambda\left|C_{\lambda}\right|=\int_{C_{\lambda}} f d t \quad \text { and } \quad \lambda\left|D_{\lambda}\right|=\int_{D_{\lambda}} f d t \tag{2}
\end{equation*}
$$

Now we are ready to prove the main lemma that leads to our Theorem. This next result may be viewed as the "correct" weak type estimate for the maximal function \mathcal{M}_{1}.

Lemma 2. Let $f \geq 0$ be in $L^{1}\left(\mathbb{R}^{1}\right)$. For each $\lambda>0$, let $A_{\lambda}=\left\{x:\left(\mathcal{M}_{1} f\right)(x)>\lambda\right\}$ and $B_{\lambda}=\{x: f(x)>\lambda\}$. Then

$$
\begin{equation*}
\lambda\left(\left|A_{\lambda}\right|+\left|B_{\lambda}\right|\right) \leq \int_{A_{\lambda}} f d t+\int_{B_{\lambda}} f d t \tag{3}
\end{equation*}
$$

To prove (3), first note that

$$
\begin{equation*}
\sup \left(M_{L}, M_{R}\right)=\mathcal{M}_{1} \tag{4}
\end{equation*}
$$

For, clearly $\sup \left(M_{L}, M_{R}\right) \leq \mathcal{M}_{1}$. On the other hand, it is easy to see that for each real number $x,\left(\mathcal{M}_{1} f\right)(x)$ is bounded by a convex combination of $\left(M_{L} f\right)(x)$ and $\left(M_{R} f\right)(x)$.

Now we add the two equalities in (2). Then using the fact that $A_{\lambda}=C_{\lambda} \cup D_{\lambda}$ which follows from (4), we obtain

$$
\begin{equation*}
\lambda\left(\left|A_{\lambda}\right|+\left|C_{\lambda} \cap D_{\lambda}\right|\right)=\int_{A_{\lambda}} f d t+\int_{C_{\lambda} \cap D_{\lambda}} f d t \tag{5}
\end{equation*}
$$

Clearly $B_{\lambda}-\left(C_{\lambda} \cap D_{\lambda}\right)$ is a set of measure zero, and $f \leq \lambda$ on $\left(C_{\lambda} \cap D_{\lambda}\right)-B_{\lambda}$. Therefore

$$
\begin{equation*}
\int_{\left(C_{\lambda} \cap D_{\lambda}\right)-B_{\lambda}} f d t \leq \lambda\left|\left(C_{\lambda} \cap D_{\lambda}\right)-B_{\lambda}\right| \tag{6}
\end{equation*}
$$

Equations (5) and (6) now imply equation (3), as required.

To prove the inequality in our Theorem, we require the following fact.

Lemma 3. Let f and g be nonnegative functions on \mathbb{R}^{1}. Then if $p>1$, we have

$$
\int_{0}^{\infty} \lambda^{p-2} \int_{g(t)>\lambda} f(t) d t d \lambda=\frac{1}{p-1} \int_{\mathbb{R}^{1}} f g^{p-1} d t
$$

and if $p>0$, we have

$$
\int_{0}^{\infty} \lambda^{p-1}|\{g>\lambda\}| d \lambda=\frac{1}{p} \int_{\mathbb{R}^{1}} g^{p} d t .
$$

The first equality is easily proved, since by Fubini's theorem, the left hand side is

$$
\int_{-\infty}^{\infty} f(t) \int_{0}^{g(t)} \lambda^{p-2} d \lambda d t
$$

which is readily seen to equal the right hand side. The second equality is the special case of the first when $f=1$.

We now continue the proof of our Theorem. Multiplying (3) by $\lambda^{(p-2)}$, integrating λ from 0 to ∞, and applying Lemma 3, we obtain

$$
\frac{1}{p}\left\|\mathcal{M}_{1} f\right\|_{p}^{p}+\frac{1}{p}\|f\|_{p}^{p} \leq \frac{1}{p-1}\|f\|_{p}^{p}+\frac{1}{p-1} \int_{\mathbb{R}^{1}} f(x)\left[\left(\mathcal{M}_{1} f\right)(x)\right]^{p-1} d x
$$

that is,

$$
(p-1)\left\|\mathcal{M}_{1} f\right\|_{p}^{p}-\int_{\mathbb{R}^{1}} f(x)\left[\left(\mathcal{M}_{1} f\right)(x)\right]^{p-1} d x-\|f\|_{p}^{p} \leq 0
$$

Applying Hölder's inequality with exponents p and $p /(p-1)$ to the second term, we obtain

$$
\begin{equation*}
(p-1)\left(\frac{\left\|\mathcal{M}_{1} f\right\|_{p}}{\|f\|_{p}}\right)^{p}-p\left(\frac{\left\|\mathcal{M}_{1} f\right\|_{p}}{\|f\|_{p}}\right)^{p-1}-1 \leq 0 \tag{7}
\end{equation*}
$$

from which we conclude that $\frac{\left\|\mathcal{M}_{1} f\right\|_{p}}{\|f\|_{p}} \leq c_{p}$, where c_{p} is the unique positive solution of (1).
To show that c_{p} is in fact the operator norm of \mathcal{M}_{1} on $L^{p}\left(\mathbb{R}^{1}\right)$, we give an example.
Note that equality in (3) is satisfied when f is even symmetrically decreasing and equality in (7) is satisfied when $\mathcal{M}_{1} f$ is a multiple of f. We are therefore led to the following example. Let $f_{\varepsilon, N}(t)=|t|^{-\frac{1}{p}} \chi_{\varepsilon, N}(|t|)$, where $\chi_{\varepsilon, N}$ is the characteristic function of the interval $[\varepsilon, N]$. It can be easily seen that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \lim _{N \rightarrow \infty} \frac{\left\|\mathcal{M}_{1} f\right\|_{p}}{\|f\|_{p}}=\mathcal{M}_{1}\left(f_{0}\right)(1) \tag{8}
\end{equation*}
$$

where $f_{0}(t)=|t|^{-\frac{1}{p}} \in L_{\text {loc }}^{1}$. An easy calculation gives that

$$
\begin{equation*}
\mathcal{M}_{1}\left(f_{0}\right)(1)=\frac{p}{p-1} \frac{\gamma^{\frac{1}{p^{\prime}}}+1}{\gamma+1} \tag{9}
\end{equation*}
$$

where γ is the unique positive solution of the equation

$$
\begin{equation*}
\frac{p}{p-1} \frac{\gamma^{\frac{1}{p^{\prime}}}+1}{\gamma+1}=\gamma^{-\frac{1}{p}} \tag{10}
\end{equation*}
$$

Using (9) and (10), it is a matter of simple arithmetic to now show that $\mathcal{M}_{1}\left(f_{0}\right)(1)$ is the unique positive root of equation (1). This completes the proof of our Theorem.

Before we conclude, we would like to make some remarks. Denote by $x=\left(x_{1}, \ldots, x_{n}\right)$ points in \mathbb{R}^{n}. For a locally integrable function f on \mathbb{R}^{n}, define

$$
\left(\mathcal{N}_{n} f\right)(x)=\sup _{\substack{a_{1}<x_{1} \\ b_{1}>x_{1}}} \cdots \sup _{\substack{a_{n}<x_{n} \\ b_{n}>x_{n}}} \frac{1}{\left(b_{1}-a_{1}\right) \cdots\left(b_{n}-a_{n}\right)} \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} f\left(y_{1}, \ldots, y_{n}\right) d y_{n} \cdots d y_{1}
$$

\mathcal{N}_{n} is called the "strong" maximal function on \mathbb{R}^{n}. Clearly $\mathcal{N}_{1}=\mathcal{M}_{1}$. Observe that

$$
\mathcal{N}_{n} \leq \mathcal{M}_{1}^{(1)} \circ \cdots \circ \mathcal{M}_{1}^{(n)}
$$

where $\mathcal{M}_{1}^{(j)}$ denotes the maximal operator \mathcal{M}_{1} applied to the x_{j} coordinate. This shows that the operator norm of \mathcal{N}_{n} on $L^{p}\left(\mathbb{R}^{n}\right)$ is less than or equal to c_{p}^{n}. By considering the function

$$
g(x)=\prod_{j=1}^{n} f_{\epsilon, N}\left(x_{j}\right)
$$

where $f_{\epsilon, N}$ is as above, we obtain the converse inequality. We have therefore proved the following:

Corollary. For $1<p<\infty$, the operator norm of $\mathcal{N}_{n}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is c_{p}^{n}, where c_{p} is the unique positive solution of equation (1).

One can show that $\frac{p}{p-1}<c_{p}<\frac{2 p}{p-1}$. This implies that the operator norm of \mathcal{N}_{n} on $L^{p}\left(\mathbb{R}^{n}\right)$ grows exponentially with n, as $n \rightarrow \infty$. Next, we observe that the same is true for the uncentered maximal function \mathcal{M}_{n}. There are several ways to see this. One way is by considering the sequence of functions

$$
h_{\epsilon, N}(x)=|x|^{-\frac{n}{p}} \chi_{\epsilon, N}(|x|) .
$$

Let U_{n} be the open unit ball in \mathbb{R}^{n}. For $x \in \mathbb{R}^{n}$, let $B_{x}=\frac{x}{2}+\frac{|x|}{2} \overline{U_{n}}$. Then $x \in B_{x}$ and

$$
\begin{equation*}
\left(\mathcal{M}_{n}\left(h_{\varepsilon, N}\right)\right)(x) \geq \frac{1}{\left|B_{x}\right|} \int_{B_{x}}|y|^{-\frac{n}{p}} \chi_{\varepsilon, N}(|y|) d y=\frac{1}{\left|U_{n}\right|}\left(\frac{2}{|x|}\right)^{n} \int_{B_{x}}|y|^{-\frac{n}{p}} \chi_{\varepsilon, N}(|y|) d y \tag{11}
\end{equation*}
$$

Therefore for $1<p<\infty$ and for all $\varepsilon, N>0$ we have

$$
\begin{align*}
& \frac{\left\|\mathcal{M}_{n}\left(h_{\varepsilon, N}\right)\right\|_{L^{p}}}{\left\|h_{\varepsilon, N}\right\|_{L^{p}}} \geq \frac{2^{n}}{\left\|h_{\varepsilon, N}\right\|_{L^{p}}\left|U_{n}\right|}\left\{\int_{r=0}^{+\infty} \int_{S^{n-1}}\left[\frac{1}{r^{n}} \int_{B_{r \phi}}|y|^{-\frac{n}{p}} \chi_{\epsilon, N}(|y|) d y\right]^{p} d \phi r^{n} \frac{d r}{r}\right\}^{\frac{1}{p}} \\
& =\frac{2^{n}}{\left\|h_{\epsilon, N}\right\|_{L^{p}}\left|U_{n}\right|}\left\{\int_{r=0}^{+\infty} \int_{S^{n-1}}\left[\frac{1}{r^{n}} \int_{t=0}^{r} \int_{S_{\phi}\left(\frac{t}{r}\right)} t^{-\frac{n}{p}} \chi_{\epsilon, N}(t) t^{n} \frac{d t}{t} d \theta\right]^{p} d \phi r^{n} \frac{d r}{r}\right\}^{\frac{1}{p}}, \tag{12}
\end{align*}
$$

where $S_{\phi}(t)=\left\{\theta \in S^{n-1}:\left|t \theta-\frac{\phi}{2}\right| \leq \frac{1}{2}\right\}$. By a change of variables (12) is equal to

$$
\begin{align*}
& \frac{2^{n}}{\left\|h_{\varepsilon, N}\right\|_{L^{p}}\left|U_{n}\right|}\left\{\int_{S^{n-1}} \int_{r=0}^{+\infty}\left[\int_{t=0}^{1} \int_{S_{\phi}(t)} \chi_{\varepsilon, N}(r t) t^{\frac{n}{p^{\prime}}} \frac{d t}{t} d \theta\right]^{p} \frac{d r}{r} d \phi\right\}^{\frac{1}{p}} \\
= & \frac{2^{n}}{\left|U_{n}\right|}\left\{\int_{S^{n-1}}\left[\frac{\int_{r=0}^{\infty}\left|\left(K_{\phi} * \chi_{\varepsilon, N}\right)(r)\right|^{p} \frac{d r}{r}}{\int_{r=0}^{\infty} \chi_{\varepsilon, N}^{p}(r) \frac{d r}{r}}\right] \frac{d \phi}{\omega_{n-1}}\right\}^{\frac{1}{p}}, \tag{13}
\end{align*}
$$

where $K_{\phi}(t)=t^{n / p^{\prime}} \chi_{[0,1]}(t) \int_{S_{\phi}(t)}|\theta|_{B}^{-n / p} d \theta, \omega_{n-1}=\left|S^{n-1}\right|=\frac{(n-1) \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)}$, and $*$ denotes convolution on the multiplicative group $G=\left(\mathbb{R}^{+}, \frac{d t}{t}\right)$. If $K \geq 0$ on G, the sequence of functions $\chi_{\epsilon, N}$ gives equality in the convolution inequality $\|g * K\|_{L^{p}(G)} \leq\|K\|_{L^{1}(G)}\|g\|_{L^{p}(G)}$ as $\varepsilon \rightarrow 0$ and $N \rightarrow \infty$. Therefore, the expression inside brackets in (13) converges to $\left\|K_{\phi}\right\|_{L^{1}(G)}^{p}$ as $\epsilon \rightarrow 0$ and $N \rightarrow \infty$, and we obtain the estimate

$$
\begin{align*}
& \lim _{\substack{\epsilon \rightarrow 0 \\
N \rightarrow \infty}} \frac{\left\|\mathcal{M}_{n}\left(h_{\varepsilon, N}\right)\right\|_{L^{p}}}{\left\|h_{\varepsilon, N}\right\|_{L^{p}}} \geq \frac{2^{n}}{\left|U_{n}\right|}\left\{\int_{S^{n-1}}\left[\int_{0}^{1} t^{\frac{n}{p^{\prime}}} \int_{S_{\phi}(t)} d \theta \frac{d t}{t}\right]^{p} \frac{d \phi}{\omega_{n-1}}\right\}^{\frac{1}{p}}=\frac{n 2^{n}}{\omega_{n-1}} \int_{0}^{1} t^{\frac{n}{p^{\prime}}} \int_{\substack{S^{n-1} \\
\theta_{1} \geq t}} d \theta \frac{d t}{t} \\
& \text { (14) } \quad=2^{n} p^{\prime} \frac{\omega_{n-2}}{\omega_{n-1}} \int_{0}^{1} s^{\frac{n}{p^{\prime}}}\left(1-s^{2}\right)^{\frac{n-3}{2}} d s=2^{n-1} p^{\prime} \frac{\omega_{n-2}}{\omega_{n-1}} B\left(\frac{n}{2 p^{\prime}}-\frac{1}{2}, \frac{n-3}{2}\right) . \tag{14}
\end{align*}
$$

Stirling's formula gives that expression (14) is asymptotic to $\left\{4\left(\frac{1}{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}\left(\frac{1}{p^{\prime}}+1\right)^{-\frac{1}{p^{\prime}}-1}\right\}^{\frac{n}{2}}$ as $n \rightarrow \infty$, and since the number inside the braces above is bigger than 1 when $1<p<\infty$, we get that the operator norm of \mathcal{M}_{n} on $L^{p}\left(\mathbb{R}^{n}\right)$ grows exponentially as $n \rightarrow \infty$.

These remarks should be compared to the fact that for $1<p<\infty$, the operator norm of the Hardy-Littlewood maximal function on $L^{p}\left(\mathbb{R}^{n}\right)$ is bounded above by some constant A_{p} independent of the dimension n (see $[\mathbf{3}]$ and $[4]$).

References

1. M. Christ and L. Grafakos, Best constants for two non-convolution inequalities, Proc. Amer. Math. Soc. 123 (1995), 1687-1693.
2. Hewitt and Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, NY, 1965.
3. E.M. Stein, Some results in harmonic analysis in \mathbb{R}^{n}, for $n \rightarrow \infty$, Bull. Amer. Math. Soc. 9 (1983), 71-73.
4. E.M. Stein and J.O. Stromberg, Behavior of maximal functions in \mathbb{R}^{n}, for large n, Ark. Math. 21 (1983), 259-269.
5. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, UK, 1959.

Department of Mathematics, University of Missouri, Columbia, MO 65211
E-mail address: loukas@math.missouri.edu, stephen@math.missouri.edu

