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Abstract. We study Lp to Lq mapping properties of nonconvolution singular integral op-

erators on R1, whose kernels are obtained by truncating the Hilbert kernel 1/x in ways that

depend linearly on the input variable. Some of these operators arise as special cases of the

bilinear Hilbert transform and they are shown to map Lp to Lq for q < p.

1. Introduction

It is still unknown whether the bilinear operator with two different rates of translation

H(g, f)(x) = p.v.
∫ ∞
−∞

g(t− ax)f(x− t)
dt

t

maps L∞ × Lp into Lp, for 1 < p < +∞. Taking g to be a characteristic function, gives
rise to a class of operators whose Lp → Lq mapping properties are studied below.

For a, b, d real numbers and f a function on R1, let

(1.1) (Ha,b,df)(x) =

ax+d∫
ax+b

f(x− t)
dt

t
,

where the integral in (1.1) should be interpreted in the principal value sense when
(ax + b)(ax + d) < 0. Note that for a �= 0, Ha,b,d is not a convolution operator. When
a = 1, H1,b,d = H(fχ[−d,−b]) is the Hilbert transform composed with multiplication by the
characteristic function of the interval [−d,−b]. When a = 0, H0,b,d is a well understood
operator. In the sequel, we will concentrate our attention to a �= 0, 1.
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An easy calculation shows that < Ha,b,df, g >=< f,H∗a,b,dg > for f , g test functions,
where

(1.2) H∗a,b,d =

{ −H a
a−1 ,

b
a−1 ,

d
a−1

if a > 1

−H a
a−1 ,

d
a−1 ,

b
a−1

if a < 1.

Therefore, the classes L1 = {±Ha,b,d : 0 �= a < 1} and L2 = {±Ha,b,d : a > 1} are
preserved under the map T −→ T ∗. As we shall see, the operators in L1 and L2 map
Lp into Lq for 1 ≤ q < p ≤ ∞. This is of course naturally impossible for convolution
operators, which must be identically equal to zero if they have such a property. See [StW]
page 33, 4.11.

Let us introduce some notation. Lp will always be Lp(R1). For a function f(x) on R1,
τ ∈ R, and δ > 0, fδ(x) will denote the function f(δx), f̃(x) the function f(−x), and
τf(x) the function f(x + τ). In this paper the upper and lower limits of our integrals are
allowed to be arbitrary real numbers and all integrals are interpreted in the principle value
sense when necessary. Throughout, Ck,l,m will be a generic positive constant depending
on the parameters k, l, and m.

Since for a �= 1 Ha,b,d is not a convolution operator, it doesn’t commute with transla-
tions. Nevertheless, it commutes with dilations in the following sense:

(1.3) Ha,b,d(fδ) = (Ha,δb,δdf)δ.

The main result concerning Ha,b,d is the following:

Theorem 1. Let a, p, q be real numbers satisfying a �= 0, 1 < p ≤ ∞, 1 ≤ q ≤ p, and
q <∞. Then, the operator Ha,b,d maps Lp to Lq with norm ≤ Cp,q,a|b− d| 1q− 1

p .

Next, we consider slightly different truncations of the Hilbert kernel. Let

(1.4) (Ia,b,df)(x) =

a|x|+d∫
a|x|+b

f(x− t)
dt

t
,

where (1.4) should be interpreted in the principal value sense if (a|x| + b)(a|x| + d) < 0.
We have the following:

Theorem 2. Let a, p, and q be as before. Then Ia,b,d maps Lp to Lq with norm ≤
Cp,q,a|b− d| 1q− 1

p .

Finally, for a �= 0, and c �= 0, we define the operators

(1.5) (Ha,b,c,df)(x) =

cx+d∫
ax+b

f(x− t)
dt

t
and (Ia,b,c,df)(x) =

c|x|+d∫
a|x|+b

f(x− t)
dt

t
,

2



where the integrals above are taken in the principal value sense when it is appropriate.
Surprisingly, these two classes of operators behave very differently when a �= c. An example
in section 6 shows that Ha,b,c,d may not map Lp to any Lq. However, we have the following
Theorem regarding Ia,b,c,d:

Theorem 3. When a, c are nonzero, the operator Ia,b,c,d maps Lp to Lp, for 1 < p < +∞.

In general, the operators Ia,b,c,d do not map Lp to Lq for q �= p, nor Lp → Lp for p = 1
or ∞. Examples are given in section 5. So Theorem 3 is sharp in this sense.

The main tool in the proof of the Theorems above is the following Lemma, which is a
variation of a result of Hardy. Its proof is postponed until section 6 (appendix).

Lemma. For every 1 < p <∞ and every non-zero real α there exists a positive constant
Cp,α such that for all f ∈ Lp(R1) the operator

(Tαf)(x) =

+∞∫
αx

f(t− x)
dt

t

satisfies:
(i) ‖Tαf‖Lp(0,∞) ≤ Cp,α‖f‖Lp if α > 0 and
(ii) ‖Tαf‖Lp(−∞,0) ≤ Cp,α‖f‖Lp if α < 0.

We break the proof of Theorem 1 in the following three cases which are treated in
sections 2, 3, and 4 respectively:

A. 1 < p <∞, 1 ≤ q ≤ p, and 0 < a < 1.
B. p =∞, 1 ≤ q <∞, and a > 0 (a �= 1).
C. 1 < p <∞, 1 ≤ q ≤ p, and a > 1.

Once these three cases have been established, duality, (1.2), and the fact that the map
a −→ a

a−1 is a bijection between (0,1) and (−∞, 0) can be used to show that Theorem 1
also holds for a < 0, (and thus to complete its proof).

2. The case 1 < p <∞, 1 ≤ q ≤ p, and 0 < a < 1.

Fix p, q and a as indicated. We are going to show that there exists a constant Cp,q,a
such that

(2.1) ‖Ha,b,df‖Lq ≤ Cp,q,a|b− d| 1q− 1
p ‖f‖Lp .

(2.1) will follow by interpolation from

(2.2) ‖Ha,b,df‖L1 ≤ Cp,a|b− d|
1
p′ ‖f‖Lp
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and

(2.3) ‖Ha,b,df‖Lp ≤ Cp,a‖f‖Lp .

Without loss of generality, we may assume that d > b. Also, a simple dilation argument
and (1.3) show that it suffices to prove (2.2) and (2.3) with d−b = 1. We therefore assume
that d− b = 1. Changing variables, we write

(2.4) (Ha,b,df)(x) =

(1−a)x−b∫
(1−a)x−d

f(t)
x− t

dt.

We consider the following three cases:

Case 1 : x > − b
a

Case 2 : x < − da
Case 3 : − da ≤ x ≤ − b

a

We start with case 1. Note that if x > − b
a , the quantity x − t in (2.4) is positive. Using

(2.4) we obtain

+∞∫
− ba

|(Ha,b,df)(x)| dx ≤
+∞∫
− ba

(1−a)x−b∫
(1−a)x−d

|f(t)| dt

x− t
dx

=

− ba∫
− ba−1

|f(t)|

t+d
1−a∫
− ba

dx

x− t
dt +

+∞∫
− ba

|f(t)|

t+d
1−a∫

t+b
1−a

dx

x− t
dt by Fubini

=

0∫
−1

∣∣f(t− b
a )

∣∣ ln
∣∣∣ a
1−a

t+ 1
a

t

∣∣∣ dt +

+∞∫
0

∣∣f(t− b
a )

∣∣ ln
∣∣∣ t+ 1

a

t

∣∣∣ dt
= I + II.

We now estimate I and II. For 1 < p <∞, set

Bp = ‖ ln |1 + 1
x | ‖Lp(−∞,+∞) < +∞.

By Hölder’s inequality we have

(2.5) II ≤ ‖f‖Lp
{∫ ∞

0

∣∣∣∣ln∣∣1 + 1
ta

∣∣∣∣∣∣
p′

dt

} 1
p′

= Bp′ a
− 1
p′ ‖f‖Lp
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and

I ≤ ‖f‖Lp
{∫ 0

−1

∣∣ln∣∣ a
1−a

(
1 + 1

at

)∣∣∣∣p′ dt} 1
p′

= ‖f‖Lp a
− 1
p′

{∫ 0

−a

∣∣ln∣∣ a
1−a

∣∣ + ln
∣∣1 + 1

t

∣∣∣∣p′dt} 1
p′

≤ ‖f‖Lp a
− 1
p′

{
a

1
p′

∣∣ln∣∣ a
1−a

∣∣∣∣ + Bp′
}
.(2.6)

(2.5) and (2.6) now imply

(2.7)

+∞∫
− ba

|(Ha,b,df)(x)| dx ≤ Cp,a ‖f‖Lp .

To obtain the Lp estimate in this case, note that for x > − b
a

|(Ha,b,df)(x)| ≤
ax+d∫

ax+b

|f(x− t)| dt
t
≤

+∞∫
a(x+

b
a )

|f(x− t)| dt
t

=

+∞∫
a(x+

b
a )

|f̃( ba + t− (x + b
a ))| dt

t
= Ta(| b

a
f̃ |)(x + b

a ) = b
a

(
Ta(| b

a
f̃ |)

)
(x),

which maps Lp to Lp(− b
a ,∞) by the Lemma. We conclude that

(2.8)
( +∞∫
− ba

|Ha,b,df |pdx
) 1
p
≤ Cp,a‖f‖Lp .

We proceed with case 2. Note that if x < − da , the quantity x− t in (2.4) is negative. Using
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(2.4) we have

− da∫
−∞

|(Ha,b,df)(x)| dx ≤
− da∫
−∞

(1−a)x−b∫
(1−a)x−d

|f(t)| dt

t− x
dx

=

− da∫
−∞

|f(t)|

t+d
1−a∫
t+b
1−a

dx

t− x
dt +

− da+1∫
− da

|f(t)|
− da∫

t+b
1−a

dx

t− x
dt by Fubini

=

0∫
−∞

|f(t− d
a )| ln

∣∣ t− 1
a

t

∣∣ dt +

1∫
0

|f(t− d
a )| ln

∣∣ a
a−1

t− 1
a

t

∣∣ dt
≤ 2 ‖f‖Lp a−

1
p′Bp′ + ‖f‖Lp

∣∣ ln
∣∣ a
a−1

∣∣∣∣ = Cp,a‖f‖Lp .

Also note that for x < − da

|(Ha,b,df)(x)| ≤
ax+d∫
ax+b

|f(x− t)| dt|t| =

−ax−b∫
−ax−d

|f(x + t)| dt
t
≤

+∞∫
a(−x− da )

|f(x + t)| dt
t

=

+∞∫
a(−x− da )

|f(− da + t− (−x− d
a ))| dt

t
= Ta(|− da f |)(−x−

d
a ) = − da

^
(
Ta(|− da f |)

)
(x),

which maps Lp to Lp(−∞,− da ). We therefore obtain

(2.9)

( − da∫
−∞

|Ha,b,df |pdx
) 1
p

+

− da∫
−∞

|Ha,b,df | dx ≤ Cp,a ‖f‖Lp .

Case 3 is different. For − da ≤ x ≤ − b
a , we write

(2.10) (Ha,b,df)(x) = (Hf)(x)−
ax+b∫
−∞

f(x− t)
dt

t
−

+∞∫
ax+d

f(x− t)
dt

t
.
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Since

(2.11) ‖Hf‖L1[− da ,− ba ] ≤ a
− 1
p′ ‖Hf‖Lp[− da ,− ba ] ≤ a

− 1
p′ Cp‖f‖Lp ,

it suffices to bound the L1 and Lp norms on [− da ,− b
a ] of the other two terms in (2.10).

We now estimate these terms.

∣∣∣∣
+∞∫

ax+d

f(x− t)
dt

t

∣∣∣∣ ≤
+∞∫

ax+d

|f(x− t)| dt
t

=

+∞∫
a(x+

d
a )

|f̃(t− x)| dt
t

=

+∞∫
a(x+

d
a )

∣∣∣f̃(
d
a + t− (x + d

a )
)∣∣∣ dt

t
= Ta(| d

a
f̃ |)(x + d

a ) = d
a

(
Ta(| d

a
f̃ |)

)
(x)(2.12)

Also

∣∣∣∣
ax+b∫
−∞

f(x− t)
dt

t

∣∣∣∣ =
∣∣∣∣

+∞∫
−ax−b

f(x + t)
dt

t

∣∣∣∣ ≤
+∞∫

a(−x− ba )

|f(x + t)| dt
t

=

+∞∫
a(−x− ba )

|f(− b
a + t− (−x− b

a ))| dt
t

= Ta(|− ba f |)(−x−
b
a ) = − ba

^
(
Ta(|− ba f |)

)
(x)(2.13)

An application of the Lemma gives the following Lp estimate

(2.14) ‖ d
a

(
Ta(| d

a
f̃ |)

)
‖Lp[− da ,− ba ] ≤ ‖Ta(| da f̃ |)‖Lp[0,∞) ≤ Cp,a‖f‖Lp ,

and consequently the L1 estimate

(2.15) ‖ d
a

(
Ta(| d

a
f̃ |)

)
‖L1[− da ,− ba ] ≤ a

− 1
p′ ‖ d

a

(
Ta(| d

a
f̃ |)

)
‖Lp[− da ,− ba ] ≤ Cp,a‖f‖Lp .

Similarly, we obtain

(2.16) ‖− ba
(
^Ta(|− ba f |)

)
‖Lp[− da ,− ba ] ≤ ‖Ta(|− ba f |)‖Lp[0,∞) ≤ Cp,a‖f‖Lp ,

and the corresponding L1 estimate

(2.17) ‖− ba
(
^Ta(|− ba f |)

)
‖L1[− da ,− ba ] ≤ a

− 1
p′ ‖− ba

(
^Ta(|− ba f |)

)
‖Lp[− da ,− ba ] ≤ Cp,a‖f‖Lp .

7



Using (2.10)-(2.17) we conclude that for 0 < a < 1

(2.18) ‖Ha,b,df‖L1[− da− ba ] + ‖Ha,b,df‖Lp[− da ,− ba ] ≤ Cp,a‖f‖Lp .

(2.7), (2.8), (2.9), and (2.18) now imply

‖Ha,b,df‖L1 + ‖Ha,b,df‖Lp ≤ Cp,a‖f‖Lp ,

which completes the proof of (2.2) and (2.3).
An application of the M. Riesz-Thorin interpolation Theorem ([Z] page 95), gives the

required estimate (2.1).

3. The case p =∞, 1 ≤ q <∞, and a > 0 (a �= 1).

Fix a, p and q as indicated. As in the previous section, we can reduce matters to the
situation when d− b = 1. We must show that

(3.1) ‖Ha,b,df‖Lq ≤ Ca,q‖f‖L∞ .

We consider the same three cases as in section 2.
For x > − b

a we have

|(Ha,b,df)(x)| ≤
ax+d∫
ax+b

|f(x− t)| dt
t
≤ ‖f‖L∞ ln

∣∣∣∣ax + d

ax + b

∣∣∣∣ = ‖f‖L∞ ln
∣∣∣∣x + b

a + 1
a

x + b
a

∣∣∣∣
and since obviously

+∞∫
− ba

∣∣∣ln
∣∣∣∣x + b

a + 1
a

x + b
a

∣∣∣∣
∣∣∣qdx ≤ Bq

q

a
< +∞,

it follows that

(3.2) ‖Ha,b,df‖Lq(− ba ,∞) ≤ a−
1
qBq‖f‖L∞ .

Fox x < − da we have

|(Ha,b,d)(x)| ≤
ax+d∫
ax+b

|f(x− t)| dt−t ≤ ‖f‖L∞ ln
∣∣∣∣x + d

a − 1
a

x + d
a

∣∣∣∣
8



and since
− da∫

−∞

∣∣∣ln
∣∣∣∣x + d

a − 1
a

x + d
a

∣∣∣∣
∣∣∣qdx ≤ Bq

q

a
< +∞,

we obtain

(3.3) ‖Ha,b,df‖Lq(−∞,− da ) ≤ a−
1
qBq‖f‖L∞ .

Finally for − da ≤ x ≤ − b
a we argue as follows: Observe that for ax + b ≤ t ≤ ax + d we

have −ax− d− d
a ≤ x− t ≤ −ax− b− b

a and thus b− d− d
a ≤ x− t ≤ d− b− b

a . We have

(Ha,b,d)(x) =

ax+d∫
ax+b

f(x− t)
dt

t
=

ax+d∫
ax+b

(
fχ[−1− da ,1− ba ]

)
(x− t)

dt

t
.

It follows from (2.18) that

‖Ha,b,df‖Lq [− da ,− ba ] ≤Cq,a‖fχ[−1− da ,1− ba ]‖Lq

≤Cq,a
(
2 + 1

a

) 1
q ‖f‖L∞ = C ′q,a ‖f‖L∞(3.4)

We conclude from (3.2), (3.3), and (3.4) that (3.1) holds.

4. The case 1 < p <∞, 1 ≤ q ≤ p, and a > 1.

Fix a, p and q as indicated. As before we assume that d− b = 1 and consider the same
three cases as in section 2. Observing that x− t > 0 in (2.4) when x > − b

a , we have

+∞∫
− ba

|(Ha,b,df)(x)| dx ≤
+∞∫
− ba

(1−a)x−b∫
(1−a)x−d

|f(t)| dt

x− t
dx

=

+∞∫
− ba

(a−1)x+d∫
(a−1)x+b

|f(−t)| dt

x + t
dx

=

1+
b
a∫

b
a

|f̃(t)|

t−b
a−1∫
− ba

dx

x + t
dt +

+∞∫
1+

b
a

|f̃(t)|

t−b
a−1∫
t−d
a−1

dx

x + t
dt by Fubini

=

1∫
0

|f̃(t + b
a )| ln | aa−1 | dt +

+∞∫
1

|f̃(t + b
a )| ln

∣∣ t
t− 1

a

∣∣ dt.(4.1)
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The function ln
∣∣ t
t− 1

a

∣∣ ∈ Lp
′
. Controlling (4.1) using Hölder’s inequality, we obtain:

(4.2)

+∞∫
− ba

|(Ha,b,df)(x)| dx ≤
(
ln | aa−1 |+ a

− 1
p′Bp′

)
‖f‖Lp .

When x < − da , the expression x− t in (2.4) is negative. We then have

− da∫
−∞

|(Ha,b,df)(x)| dx ≤
− da∫
−∞

(1−a)x−b∫
(1−a)x−d

|f(t)| dt

t− x
dx

=

− da∫
−∞

(a−1)x+d∫
(a−1)x+b

|f(−t)| dt

−x− t
dx

=

d
a−1∫
−∞

|f̃(t)|

t−b
a−1∫

t−d
a−1

dx

−x− t
dt +

d
a∫

d
a−1

|f̃(t)|
− da∫

t−d
a−1

dx

−x− t
dt by Fubini

=

−1∫
−∞

|f̃(t + d
a )| ln

∣∣ t
t+ 1

a

∣∣ dt +

0∫
−1

|f̃(t + d
a )| ln

∣∣ a
a−1

∣∣ dt.(4.3)

As observed, the function ln
∣∣ t
t+ 1

a

∣∣ is in Lp
′
. By Hölder’s inequality, (4.3) is bounded by

(4.4)
(
a
− 1
p′Bp′ + ln

∣∣ a
a−1

∣∣) ‖f‖Lp .
Adding (4.2) and (4.4) we obtain

(4.5)

+∞∫
− ba

|(Ha,b,df)(x)| dx +

− da∫
−∞

|(Ha,b,df)(x)| dx ≤ Cp,a‖f‖Lp .

The corresponding Lp inequalities for cases 1 and 2,

(4.6) ‖Ha,b,df‖Lp(− ba ,∞) + ‖Ha,b,df‖Lp(−∞,− da ) ≤ Cp,a‖f‖Lp ,
as well as the estimates for case 3,

(4.7) ‖Ha,b,df‖Lp[− da ,− ba ] + ‖Ha,b,df‖L1[− da− ba ] ≤ Cp,a‖f‖Lp ,
are obtained as in section 2. Combining (4.5), (4.6), and (4.7) we obtain the required
result.
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5. Comments on Theorems 2 and 3

The proof of the Lp → Lq boundedness of Ia,b,d is similar to that of Ha,b,d. The only
point of deviation is that one needs to consider the cases x ≥ 0 and x < 0 separately. The
details are omitted.

The following example shows that the first operator in (1.5) may not map Lp to Lq.
Let fL = χ[−L,0] where L > 0. A simple calculation shows that H1,0,2,0fL is identically
equal to ln 2 on the interval (−∞, L]. This makes it impossible for H1,0,2,0fL to belong to
any Lebesgue space.

We now discuss the proof of Theorem 3. Since the line of ideas of its proof is similar to
that of Theorem 1, we are going to be sketchy.

We consider the cases x ≥ 0 and x < 0 separately. We begin with the case x ≥ 0. We
have the following three subcases:

(i) x ≥ 0 and x > max(− b
a ,−dc );

(ii) x ≥ 0 and min(− b
a ,−dc ) ≤ x ≤ max(− b

a ,−dc );
(iii) x ≥ 0 and x < min(− b

a ,−dc ).
In subcases (i) and (iii) Ia,b,c,df can be estimated by the operator Tα of the Lemma

applied to a translate of f or its reflection f̃ , as in section 2. In subcase (ii) write

(5.1) (Ha,b,c,df)(x) = (Hf)(x)−
m∫

−∞

f(x− t)
dt

t
−

+∞∫
M

f(x− t)
dt

t
,

where M = max(ax + b, cx + d) and m = min(ax + b, cx + d). Note that in this case t
doesn’t change sign in the integrals above. Therefore, the second and third terms in (5.1)
can be estimated using the Lemma in section 1. We omit the details.

When x is negative, we have the following three subcases:
(i) x < 0 and x > max( ba ,

d
c );

(ii) x < 0 and min( ba ,
d
c ) ≤ x ≤ max( ba ,

d
c );

(iii) x < 0 and x < min( ba ,
d
c ).

In subcases (i) and (iii) we apply the Lemma directly and in subcase (ii) we use (5.1),
the boundedness of the Hilbert transform on Lp, and the Lemma.

Finally we show that Ia,b,c,d may not map Lp to Lq when p �= q. Let fL = χ(−∞,L] as
before and consider the operator I1,0,2,0. An easy calculation shows that I1,0,2,0fL is equal
to the constant ln 2 on the interval [−L3 , L] and to ln

∣∣L+x
x

∣∣ outside this interval. If I1,0,2,0
mapped Lp tp Lq, the inequality ‖I1,0,2,0fL‖Lq ≤ Cp,q‖fL‖Lp would imply L

1
q ≤ C ′p,qL

1
p

for some C ′p,q > 0. This can hold for all L > 0 only when p = q. Also, considering I1,0,2,0
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and I1,1,2,0 we conclude that boundedness from L1 → L1 and L∞ → L∞ holds sometimes,
but not always in Theorem 3.

6. Appendix. Proof of the Lemma.

For α = 1 this is a known Lemma due to Hardy. See for instance [HLP] Theorem 319
or [S] appendix A3. Its proof is based on the estimate:

(6.1) |(T1f)(x)| ≤
+∞∫

0

|f(tx)| dt

1 + t
=

+∞∫
0

|f(tx)|t 1
p

dt

(1 + t)t
1
p

.

Then Minkowski’s integral inequality gives

(6.2) ‖T1f‖Lp(0,∞) ≤
+∞∫

0

dt

(1 + t)t
1
p

‖f‖Lp(0,∞) ≤ Cp ‖f‖Lp .

The case α > 1 is a consequence of the case α = 1, in view of the fact that

(6.3)
∣∣∣∣

+∞∫
αx

f(t− x)
dt

t

∣∣∣∣ ≤
+∞∫
x

|f(t− x)| dt
t

.

We now do the case 0 < α < 1.

∣∣∣∣
+∞∫

αx

f(t− x)
dt

t

∣∣∣∣ ≤
+∞∫

αx

|f(t− x)| dt
t

=

+∞∫
(α−1)x

|f(t)| dt

t + x

=

(1−α)x∫
0

|f(−t)| dt

x− t
+

+∞∫
0

|f(t)| dt

t + x

=

1−α∫
0

|f(−tx)| dt

1− t
+

+∞∫
0

|f(tx)| dt

t + x
= I + II.

As before the Lp(0,∞) norm of term II is bounded by Cp ‖f‖Lp(0,∞). Now

(6.4) I =

1−α∫
0

|f(−tx)| t 1
p

dt

t
1
p (1− t)

,
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and another application of Minkowski’s integral inequality gives that the Lp(0,∞) norm
of I is bounded by

(6.5) ‖f‖Lp(−∞,0)
1−α∫
0

dt

t
1
p (1− t)

≤ Cp,α ‖f‖Lp .

Part (i) of the Lemma is proved.
We now prove part (ii). For α < 0 and x < 0 we have

∣∣∣∣
+∞∫

αx

f(t− x)
dt

t

∣∣∣∣ ≤
+∞∫

αx

|f(t− x)| dt
t

=

+∞∫
(α−1)x

|f(t)| dt

t + x

=

+∞∫
(α−1)x

|f(t)| dt

t− 1
=

+∞∫
1−α

|f(−xt)| t 1
p

dt

t
1
p (t− 1)

.

Since 1 − α > 1, the function t−
1
p (t − 1)−1 is integrable on [1 − α,∞) and Minkowski’s

integral inequality will give the desired conclusion.
The following nth dimensional analogue of the Lemma in discussion can be obtained

similarly. This was independently observed by [SoW] (Lemma 2).

Remark. Let α > 0. For a function f on Rn, let

(6.6) (Tαf)(x) =
∫
Rn

f(y)
dy

|y|n + αn|x|n .

Then Tα maps Lp(Rn) into itself for 1 < p <∞.

Indeed, changing variables and using polar coordinates, we write

(6.7) (Tf)(x) =
∫
Rn

f(|x|y) dy

|y|n + αn
=

+∞∫
r=0




∫
Sn−1

f(r|x|θ)r np dθ


 rn−1dr

r
n
p (rn + αn)

.

Taking Lp norms (in x) and using Minkowski’s integral inequality, we obtain

(6.8) ‖Tf‖Lp(Rn) ≤ ωn−1

( +∞∫
r=0

rn−1dr

r
n
p (rn + αn)

)
‖f‖Lp(Rn) = Cp,n,α‖f‖Lp(Rn),

13



where ωn−1 denotes the area of the unit sphere Sn−1 ⊂ Rn. This finishes the proof.

Finally, we have two comments to make.
It would be interesting to know for which measurable sets A(x), the truncated Hilbert

kernel 1
tχt∈A(x) gives an operator bounded on Lp. The results in this paper answer this

question for sets A(x) = {t : a|x|+ b ≤ t ≤ c|x|+ d} and A(x) = {t : ax+ b ≤ t ≤ cx+ d}.
The big question is whether the bilinear Hilbert transform

(6.9) H(g, f)(x) = p.v.
∫ ∞
−∞

g(x + t)f(x− t)
dt

t

maps L∞×Lp into Lp, for 1 < p < +∞. As of this writing, M. Lacey and C. Thiele report
significant progress on this problem.
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