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Abstract. We introduce the notion of transference (k + 1)-tuples of strongly continuous

mappings defined on an amenable group G. We use these tuples to transfer boundedness
properties of multilinear operators from products of Lebesgue spaces into Lp and weak Lp.

0. Introduction and statement of results

Fix an integer k ≥ 2. Let G be an amenable group and (M,dµ) a measure space. For

0 ≤ j ≤ k, let 0 < pj ≤ ∞, and assume that p0 = p is given by

1

p0
=

1

p1
+ · · ·+ 1

pk
.

Assume that for any 0 ≤ j ≤ k and any u ∈ G, Rju is a bounded map from the Banach space

Lpj (M) into itself. We denote by ‖Rju‖op the operator norm of Rju : Lpj (M) → Lpj (M).

We say that Rju is strongly continuous if for any sequence un → u in the topology of G, we

have ‖Rjunf−R
j
uf‖Lpj (M) → 0 for all f ∈ Lpj (M). We call the family (R0

u, R
1
u, . . . , R

k
u)u∈G

a transference (k + 1)-tuple if the following are true:

(0.1) for 0 ≤ j ≤ k, the maps u→ Rju are strongly continuous.

(0.2) sup{‖Rju‖op, u ∈ G} = Cj <∞, for 0 ≤ j ≤ k.

∗Research partially supported by the National Science Foundation

1991 Mathematics Subject Classification. Primary 42.

Typeset by AMS-TEX

1



(0.3) R0
vR

j
uf = Rjvuf , for all u, v ∈ G, 1 ≤ j ≤ k, and all f ∈ D,

where D is some dense subclass of all the spaces Lpj (M) and we are implicitly assuming

that the domain of any R0
u includes the ranges of each of the Rjv. [BPW] used transference

couples, (k = 1), to transfer boundedness properties of convolution and maximal operators.

In this paper, we will use (k + 1)-tuples to transfer boundedness properties of multilinear

operators from amenable groups into measure spaces. The general maximal transference

presented in [BPW] can be extended to the multilinear setting, but this will not concern

us in this paper.

We need to make the additional assumption that each R0
u is multiplicative. More

precisely, this means that R0
u(fg) = (R0

uf)(R0
ug) whenever f , g, and fg belong to D.

This property is clearly satisfied if the R0
u’s are given by actions on the points of M , i.e.

for all u ∈ G there exist maps Uu : M →M , such that

(0.4) (R0
uf)(x) = f(U0

u−1x).

In this paper we shall, in fact, assume that (0.4) holds. In many settings (0.4) is a conse-

quence of being multiplicative. Moreover, the restriction given by (0.4) is used explicitly

for all the families Rj in the proof of the weak-type transference announced in Theorem 2.

Let λ be left Haar measure on G. It is well known that if G is amenable with respect to

left Haar measure λ, it is also amenable with respect to right Haar measure ρ. The spaces

Lpj (G) are defined with respect to left Haar measure λ. Consider the multilinear operator

T on the group G defined by

(0.5) T (g1, . . . , gk)(v) =

∫
Gk

K(u1, . . . , uk)g1(u−11 v) . . . gk(u−1k v) dλ(u1) . . . dλ(uk),

for gj in some dense subspace of Lpj (G), where K is a kernel on G which may not be

integrable. For k = 1, T is a usual convolution operator but for k ≥ 2 it isn’t. We transfer

the operator T to an operator T̃ defined by :

(0.6) T̃ (f1, . . . , fk)(x) =

∫
Gk

K(u1, . . . , uk)(R1
u1
f1)(x) . . . (Rkukfk)(x) dλ(u1) . . . dλ(uk),
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for fj in D. We have the following:

Theorem 1. Let T be as in (0.5), where the Rju’s satisfy (0.1), (0.2), (0.3), and (0.4).

Assume that T is a bounded operator from Lp1(G) × · · · × Lpk(G) → Lp(G) with bound

N . Then T̃ can be extended to a bounded operator from Lp1(M)× · · ·×Lpk(M)→ Lp(M)

with bound no larger than NC0C1 . . . Ck.

We denote by Lp,∞(M) the space weak Lp(M) with quasinorm

‖f‖Lp,∞ = sup
α>0

α

[
µ
(
{x ∈M : |f(x)| > α}

)] 1
p

.

Let us now consider the case where all the Rj ’s are given by actions on points. That

is, for all 1 ≤ j ≤ k and for all u ∈ G, there exist maps U ju : M → M such that the

representations Rju have the special form

(0.7) (Rjuf)(x) = f(U ju−1x).

In this case, we replace condition (0.3) by

(0.8) U juvf = U juU
0
v f for all j = 1, . . . , k, all u, v ∈ G, and all f ∈ D.

We now have the following

Theorem 2. Assume that the Rju’s satisfy (0.1), (0.2), (0.7), and (0.8). Assume that T

given by (0.5) extends to a bounded operator from Lp1(G)× · · · ×Lpk(G)→ Lp,∞(G) with

norm N . Then T̃ can be extended to a bounded operator Lp1(M)×· · ·×Lpk(M)→ Lp,∞(M)

with a bound no larger than NC0C1 . . . Ck.

Finally, observe that an immediate consequence of (0.3) is

(0.9) R0
vR

0
v−1Rju = Rju
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for all u, v ∈ G and 1 ≤ j ≤ k.

1. The proof of Theorem 1

We first assume that L = support(K) is compact in all variables and that K is bounded

in absolute value by some constant CK on L. Once the required estimate is proved for such

kernels K, with bounds independent of their support and their size, a density argument

will give the conclusion for all kernels K.

The amenability of G is equivalent to Leptin’s condition: given ε > 0 and B a compact

subset of G, there exists an open subset V of G, such that B̄ is compact and

(1.1) λ(B−1V ) ≤ (1 + ε)λ(V ).

For a given ε > 0 and L = support(K), fix such a V . Also fix f1, . . . , fk ∈ D. The

multiplicative property of R0
v and (0.9) imply

(1.2) T̃ (f1, . . . , fk)(x) =

∫
Gk

K(u1, . . . , uk)R0
v

[ k∏
j=1

(Rjv−1uj
fj)

]
(x)dλ(u1) . . . dλ(uk)

for all v in G. By the continuity of R0
v, we can “move” R0

v outside the k-fold integral in

(1.2). Since T̃ (f1, . . . , fk) is in Lp(M), (with bounds that depend on K) and R0
v is bounded

on Lp(M) uniformly in v ∈ G, the following estimate holds

∫
M

|T̃ (f1, . . . , fk)(x)|p dµ(x)

≤ Cp0
∫
M

∣∣∣∣ ∫
Gk

K(u1, . . . , uk)
k∏
j=1

(
Rjv−1uj

fj
)
(x) dλ(u1) . . . dλ(uk)

∣∣∣∣p dµ(x),(1.3)

for all v in G. Next, we average inequality (1.3) over V and we interchange the order of
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integration to the right hand side of the averaged inequality. We obtain∫
M

|T̃ (f1, . . . , fk)(x)|p dµ(x) ≤

Cp0
λ(V )

∫
M

∫
V

∣∣∣∣ ∫
Gk

K(u1, . . . , uk)
k∏
j=1

(
Rjv−1uj

fj
)
(x) dλ(u1) . . . dλ(uk)

∣∣∣∣p dλ(v)dµ(x).

(1.4)

We denote by χA the characteristic function of the set A. Observe that we can replace

(Rjv−1uj
fj)(x) by hj(u

−1
j v, x) in (1.4), where hj(w, x) = (Rjw−1fj)(x)χL−1V (w−1). Clearly

hj(·, x) ∈ Lpj (G) for all x ∈M . By the boundedness of T from Lp1(G)× · · · × Lpk(G)→

Lp(G), we deduce the estimate

(1.5)

∫
M

|T̃ (f1, . . . , fk)(x)|p dµ(x) ≤ Cp0N
p

λ(V )

∫
M

k∏
j=1

‖hj(·, x)‖p
Lpj (G)

dµ(x).

At this point, we apply Hölder’s inequality with exponents

1 =
1

p1/p
+ · · ·+ 1

pk/p

to the right hand side of (1.5). We first assume that all pj <∞ for all j. We have

(1.6)

∫
M

|T̃ (f1, . . . , fk)(x)|p dµ(x) ≤ Cp0N
p

λ(V )

k∏
j=1

(∫
M

‖(Rjfj)(x)χL−1V ‖
pj
Lpj (G)

dµ(x)
) p
pj
.

Interchanging the order of integration in (1.6), we obtain∫
M

|T̃ (f1, . . . , fk)(x)|p dµ(x)

≤C
p
0N

p

λ(V )

k∏
j=1

( ∫
L−1V

∫
M

∣∣Rjujfj∣∣pj dµ duj) p
pj

≤Np

∏k
j=0 C

p
j

λ(V )

k∏
j=1

( ∫
L−1V

∫
M

∣∣fj∣∣pj dµ duj) p
pj
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=Np

∏k
j=0 C

p
j

λ(V )

k∏
j=1

λ(L−1V )
p
pj

k∏
j=1

‖fj‖pLpj

≤(1 + ε)Np
k∏
j=0

Cpj

k∏
j=1

‖fj‖pLpj ,(1.7)

by Leptin’s condition (1.1). Since ε > 0 was arbitrary, the required conclusion follows. If

some of the pj ’s, but not all of them, are equal to ∞, factor out all the L∞ norms from

the second integral in (1.5) and since 1
p is the sum of the remaining 1

pj
’s, we can apply

Hölder’s inequality to these pj ’s. The rest of the proof is the same. Finally if pj =∞ for

all j, then the argument above can be easily adapted to this case. The proof of Theorem

1 is now complete.

2. The proof of Theorem 2

We now suitably modify the proof of Theorem 1 to obtain Theorem 2. This modification

is precisely the one used in Theorem (2.6) in [CW]. In this reference there is a discussion

that motivates the arguments given which is certainly applicable here.

Let ε, L and V be as before. We first assume that all of the pj ’s are finite. Fix α > 0.

Let Aα = {x ∈ M : |T̃ (f1, . . . , fk)(x)| > α} and for v ∈ V , let Bα(v) = {x ∈ M :

|T̃ (f1, . . . , fk)(U0
vx)| > α}. It is easy to check that Bα = R0

v−1 [Aα]. By the boundedness

of R0 on Lp(M) we obtain

(2.1)
(
µ(Aα)

) 1
p ≤ C0

(
µ(Bα(v))

) 1
p ,

for all v ∈ V . Averaging the pth power of (2.1) over V , we obtain

µ(Aα) ≤ Cp0
λ(V )

∫
V

µ(Bα(v))dλ(v) =
Cp0
λ(V )

∫
V

∫
M

χBα(v)(x)dµ(x)dλ(v)

=
Cp0
λ(V )

∫
M

∫
V

χDα(x)(v)dλ(v)dµ(x) =
Cp0
λ(V )

∫
M

λ
(
Dα(x)

)
dµ(x),(2.2)

where Dα(x) = {v ∈ V : x ∈ Bα(v)}. By property (0.6) we have Dα(x) =

{v ∈ V :
∫
Gk

K(u1, . . . , uk)f1(Uu−1
1 vx) . . . fk(Uu−1

k vx) dλ(u1) . . . dλ(uk) > α}. We can
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now replace fj(Uu−1
j vx) by hj(u

−1
j v, x), where hj(w, x) = fj(Uwx)χL−1V (w). Clearly

hj(·, x) ∈ Lpj (G) for all x ∈M . The assumed weak type estimate for T gives

(2.3) λ
(
Dα(x)

)
≤ Np

αp

k∏
j=1

‖hj(·, x)‖p
Lpj (G)

.

Using (2.2) and (2.3), we obtain

µ(Aα) ≤ Cp0N
p

λ(V )αp

∫
M

k∏
j=1

‖hj(·, x)‖pLpj (G) dµ(x)

≤ Cp0N
p

λ(V )αp

k∏
j=1

(∫
M

‖hj(·, x)‖pjLpj (G) dµ(x)
) p
pj
,(2.4)

where we applied Hölder’s inequality as before. By Fubini’s Theorem and the boundedness

of the maps Rj on Lpj (M), we obtain the following bound for (2.4)

Np

∏k
j=0 C

p
j

λ(V )αp

k∏
j=1

( ∫
L−1V

∫
M

∣∣fj∣∣pj dµ duj) p
pj

=Np

∏k
j=0 C

p
j

λ(V )αp

k∏
j=1

λ(L−1V )
p
pj

k∏
j=1

‖fj‖pLpj (M)

≤(1 + ε)
Np

αp

k∏
j=1

Cpj

k∏
j=0

‖fj‖pLpj (M)
,(2.6)

where we used Leptin’s condition (1.1) in the last inequality above. Since ε > 0 was

arbitrary, (2.4) and (2.6) imply the required weak type inequality. The removal of the

restriction on the support and the size of K is standard. Finally, the case where some or

all of the pj ’s are infinite is treated as in the previous section.

3. Remarks and Applications

We begin by observing that the kernels K(u1, . . . , uk) of the previous sections can de-

pend on l variables only, say u1, . . . , ul, while the remaining k − l variables can be linear
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functions of the first l variables. Let us consider the case where ul+1, . . . , uk are related

to the variable ul by the relation ul
bl

= ul+1

bl+1
= · · · = uk

bk
, where bl, . . . , bk are nonzero real

numbers. More precisely, let

(3.1) K = K0(u1, . . . , ul)δul
bl

=
ul+1
bl+1

=···=uk
bk

,

where 1 ≤ l < k, δ is the Dirac distribution, and K0 is a function of l variables. For this

kernel K, the k-fold integral (0.5) defining T reduces to an l-fold integral. Assuming first

that K0 is compactly supported and bounded, the proofs of Theorems 1 and 2 apply as

before with minor modifications. Then a density argument will give the conclusion for

general K0.

We are now going to give some applications of our Theorems. Let G = Z with counting

measure, M = R with Lebesgue measure, and K(n1, . . . , nk) a complex-valued function

on Zk, or a distribution of the type (3.1). For 1 ≤ j ≤ k, let aj be multipliers for Lpj (R)

and define the operators Rju acting on Lpj (R) as follows:

(R0
uf)(x) = f(x− u) = (f̂(ξ)e2πiuξ )̌ , (Rjuf)(x) = (f̂(ξ)aj(ξ)e

2πiuξ )̌ ,

where we are using the definition f̂(ξ) =
∫
R f(x)e−2πixξdx. It is easy to see that the family

(R0
u, . . . , R

k
u)u∈Z satisfies (0.1)-(0.4), and thus it is a transference (k+ 1)-tuple as the ones

we considered. Assume that the operator

(3.2) T (g1, . . . , gk)(n) =
∑

(m1,...,mk)∈Zk
K(m1, . . . ,mk)g1(n−m1) . . . gk(n−mk)

maps Lp1(Z) × · · · × Lpk(Z) into Lp(Z). Then Theorem 1 implies that the transferred

operator

T̃ (f1, . . . , fk)(x) =
∑

(m1,...,mk)∈Zk
K(m1, . . . ,mk)(R1

m1
f1)(x) . . . (Rkmkfk)(x),
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maps Lp1(R) × · · · × Lpk(R) into Lp(R). In particular, if the multipliers mj(ξ) have the

special form e2πidjξ for some dj real constants, and T maps Lp1(Z) × · · · × Lpk(Z) into

Lp,∞(Z), then by Theorem 2, T̃ maps Lp1(R)× · · · ×Lpk(R) into Lp,∞(R). An interesting

situation arises when the kernel K is the distribution

(3.3) K(n1, . . . , nk) =
1

n1
δn1
b1

=
n2
b2

=···=nk
bk

,

where bj are nonzero and pairwise distinct numbers, and the notation in (3.3) means

that all the variables n1, . . . , nk have collapsed to being multiples of the single variable

n1. For p ≥ 1, it is a difficult open question whether the operator T in (3.2) maps

Lp1(Z)× · · · ×Lpk(Z) into Lp(Z). Replacing 1
n1

by 1
nε1

or by 1
n1(logn1)1+ε

in (3.3) for some

ε > 0, we have examples of multilinear operators for which we know that the operator T

in (3.2) is bounded.

Next, we turn to an application regarding fractional integrals. Let G = R1 and M = Rn,

both with usual Lebesgue measure. For g1, . . . gk functions on R1, and 0 < α < 1 let

Iα(g1, . . . gk)(x) =

∫ +∞

−∞
g1(x− θ1t) . . . gk(x− θkt) |t|α−1 dt,

where θ1, . . . , θk are fixed nonzero and pairwise distinct numbers. Let p1, . . . , pk > 1, and

assume that their harmonic sum p satisfies 1
1+α ≤ p < 1

α . By Theorem 1 in [G] we have

that Iα maps Lp1(R) × · · · × Lpk(R) into Lq(R), where 1
q + α = 1

p . Fix a unit vector

ω ∈ Sn−1. Using the maps R0
u = Identity, (Rjuf)(x) = f(x − uθjω) for all u ∈ R and

0 ≤ j ≤ k, we obtain that the transferred operator

Ĩα,ω(f1, . . . fk)(x) =

∫ +∞

−∞
g1(x− θ1tω) . . . gk(x− θktω) |t|α−1 dt,

maps Lp1(Rn)×· · ·×Lpk(Rn) into Lq(Rn) when 1
q +α = 1

p . Here we are using the fact that

the kernel of Iα has the special form K(u1, . . . , uk) = |u1

θ1
|α−1δu1

θ1
=
u2
θ2

=···=uk
θk

. Compare this

result with Theorem 1 in [G] in dimension n.
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