
Lp BOUNDS FOR SINGULAR INTEGRALS
AND MAXIMAL SINGULAR INTEGRALS WITH ROUGH

KERNELS

LOUKAS GRAFAKOS AND ATANAS STEFANOV

Abstract. Convolution type Calderón-Zygmund singular integral operators with
rough kernels p.v. Ω(x)/|x|n are studied. A condition on Ω implying that the cor-
responding singular integrals and maximal singular integrals map Lp → Lp for
1 < p < ∞ is obtained. This condition is shown to be different from the condition
Ω ∈ H1(Sn−1).

1. Introduction and statements of results

In this paper, Ω will be a complex-valued integrable function defined on the sphere
Sn−1 with mean value zero with respect to surface measure. Denote by TΩ the
Calderón-Zygmund singular integral operator defined as follows:

(1) (TΩf)(x) = lim
ε→0

∫
|y|>ε

Ω(y/|y|)
|y|n

f(x− y) dy = p.v.

∫
Rn

Ω(y/|y|)
|y|n

f(x− y) dy,

for f in the Schwartz class S(Rn). The limit in (1) is easily shown to exist for any f
continuously differentiable function on Rn with some decay at infinity.

For ε > 0, denote by

(T ε
Ωf)(x) =

∫
|y|>ε

Ω(y/|y|)
|y|n

f(x− y) dy

the truncated singular integral associated with TΩ and by

(T ∗Ωf)(x) = sup
ε>0

|T ε
Ωf(x)|

the maximal singular integral operator corresponding to this Ω.
Establishing the a priori bound ‖T ε

Ωf‖Lp ≤ C‖f‖Lp independently of f ∈ S(Rn)
and of ε > 0, leads to a (unique) extension of T ε

Ω on Lp(Rn). Now, for f ∈ Lp(Rn),
T ε

Ωf converges in Lp as ε → 0 to some TΩf (which extends TΩf defined in (1) for
f ∈ S(Rn)), and by Fatou’s lemma, TΩ is a bounded operator on Lp.

A similar a priori bound for T ∗Ω implies that for f ∈ Lp(Rn), Tεf converges (to
TΩf) almost everywhere as ε→ 0.

We now discuss Lp boundedness properties of these operators. It is well known
that if Ω has some smoothness, then both TΩ and T ∗Ω extend to bounded operators on
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Lp(Rn) for all 1 < p < ∞. See [11] for details. In this paper we shall be concerned
with Ω rough. The method of rotations introduced by Calderón and Zygmund [2]
implies that TΩ and T ∗Ω map Lp(Rn) → Lp(Rn) for any Ω odd in L1(Sn−1). The
situation for general Ω’s is significantly more involved. Calderón and Zygmund [2]
proved that if

(2)

∫
Sn−1

|Ω(θ)| ln(2 + |Ω(θ)|) dθ <∞,

then TΩ and T ∗Ω are bounded operators on Lp for 1 < p <∞.
Some years later, condition (2) above was independently improved by Connett [4]

and Ricci and Weiss [9] who showed that if

(3) Ω ∈ H1(Sn−1),

then TΩ maps Lp(Rn) into itself for 1 < p <∞. H1(Sn−1) here denotes the 1-Hardy
space on the unit sphere in the sense of Coifman and Weiss [3]; (this paper contains
a proof of this result only in dimension n = 2). See also [8] for a simple proof of this
result on Rn.

The H1 condition (3) is also sufficient to imply that T ∗Ω is bounded on Lp for
1 < p < ∞. For a proof of this fact we refer the reader to [8] and also to Fan and
Pan [7] who recently obtained this result independently for a more general class of
operators.

The main purpose of this paper is to present alternative conditions that imply Lp

boundedness for TΩ and T ∗Ω. If we examine the proof giving the formula of the Fourier
transform of p.v. Ω(x)/|x|n, we observe that the mild assumption

(4) sup
ξ∈Sn−1

∫
Sn−1

|Ω(θ)| ln 1

|θ · ξ|
dθ < +∞,

suffices to imply that (p.v. Ω(x)/|x|n)̂ is a bounded function, which is equivalent
to saying that TΩ maps L2(Rn) into itself. It is unknown to us whether condition (4)
implies Lp boundedness for some p 6= 2.

Motivated by (4) we consider the family of conditions

(5) sup
ξ∈Sn−1

∫
Sn−1

|Ω(θ)|
(

ln
1

|θ · ξ|

)1+α

dθ < +∞

for α > 0. We can show that if Ω satisfies condition (5) for some α > 0, then TΩ maps
Lp(Rn) into itself for some p 6= 2. More precisely, we have the following theorem:

Theorem 1. Let Ω be a function in L1(Sn−1) with mean value zero which satisfies
condition (5) for some α > 1. Then TΩ extends to a bounded operator from Lp(Rn)
into itself for (2 + α)/(1 + α) < p < 2 + α.

As a corollary we obtain that if Ω satisfies condition (5) for all α > 0, then it maps
Lp(Rn) into itself for all 1 < p <∞. Regarding T ∗Ω we can prove the following:

Theorem 2. Let Ω be a function in L1(Sn−1) with mean value zero which satisfies
condition (5) for some α > 1. Then T ∗Ω extends to a bounded operator from Lp(Rn)
into itself for 1 + 3/(1 + 2α) < p < 2(2 + α)/3.



Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR INTEGRALS 3

We conclude that if Ω satisfies condition (5) for all α > 0, then T ∗Ω maps Lp to Lp

for all 1 < p <∞. We don’t know whether the ranges of indices in Theorems 1 and 2
are sharp. More fundamentally, we do not know an example of an Ω ∈ L1(Sn−1) such
that TΩ maps Lp → Lp for some given p = p0 ≥ 2 but not for some other p1 > p0.

In section 5, we show that condition (5) for all α > 0 is indeed disjoint from the
H1 condition (3).

2. Boundedness of singular integrals

The theme of the proof of Theorem 1 is based on ideas developed by J. Duoandikoet-
xea and J.-L. Rubio de Francia [6] to treat several other operators of this sort. Define

σk(x) =
Ω(x)

|x|n
χ2k≤|x|≤2k+1 , k ∈ Z.

Observe that σ̂k(ξ) = σ̂0(2
kξ). We calculate σ̂0(ξ). Set ξ′ = ξ/|ξ|. Expressing σ̂0 in

polar coordinates, we obtain

(6) σ̂0(ξ) =

∫
Sn−1

Ω(θ)

[∫ 2

1

e2πir|ξ|(ξ′·θ)dr

r

]
dθ.

Using that Ω has mean value zero, we deduce that

(7) |σ̂0(ξ)| ≤ 2π(ln 2)‖Ω‖L1|ξ| = C|ξ|,
which is a good estimate for |ξ| ≤ 2. For |ξ| ≥ 2 observe the following: The integral
inside brackets in (6) is bounded by min

(
2, 3|ξ′·θ|−1|ξ|−1

)
. (Pick a θ so that ξ′·θ 6= 0.)

Therefore it must satisfy the estimate

(8)

∣∣∣∣∫ 2

1

e2πir|ξ|(ξ′·θ)dr

r

∣∣∣∣ ≤ 2
(
ln(3

2
|ξ′ · θ|−1)

)1+α

(ln |ξ|)1+α
.

It follows from (8) and (5) that

(9) |σ̂0(ξ)| ≤ C(ln |ξ|)−1−α for |ξ| ≥ 2.

Since σk is obtained from σ0 by a suitable dilation, it follows that there exists a
constant C > 0, such that for all k ∈ Z the estimates below are valid:

|σ̂k(ξ)| ≤ C(ln |2kξ|)−1−α, for 2k|ξ| ≥ 2,

|σ̂k(ξ)| ≤ C2k|ξ|, for 2k|ξ| ≤ 2.
(10)

Now let ψ be a C∞ function supported in {x ∈ Rn : 3/4 ≤ |x| ≤ 9/4}, such
that

∑
j∈Z(ψ(2jξ))2 = 1. Let Sj be the operator given on the Fourier transform by

multiplication by ψj(ξ) = ψ(2jξ). Define

Tjf =
∑
k∈Z

Sj+k(σk ∗ Sj+kf).

It is easy to see that the identity

TΩf =
∑
j∈Z

Tjf
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is valid at least for f in the Schwartz class. Using a Fourier transform calculation,
(10), and the fact that ψj+k is supported near the annulus |ξ| ∼ 2−j−k, we obtain that
Tj are bounded on L2(Rn) with bound C2−j for j ≥ 0 and C(|j|)−1−α for j ≤ −1.
In short

(11) ‖Tjf‖L2 ≤ C(1 + |j|)−1−α‖f‖L2 for all j ∈ Z.

We will also need estimates for the following maximal operator

f → σ∗(f) = sup
k∈Z

(|σk| ∗ |f |).

Without loss of generality we can assume that ‖Ω‖L1(Sn−1) = 1. It follows that

|̂σ0|(0) = 1. Introduce a radial function in the Schwartz class Φ, such that Φ̂(ξ) = 1 for

|ξ| ≤ 2 and Φ̂(ξ) = 0 for |ξ| > 3. Let us also introduce Φk defined by Φ̂k(ξ) = Φ̂(2kξ).
Clearly we have

(12) σ∗(f) ≤ sup
k∈Z

|(|σk| − Φk) ∗ |f ||+ sup
k∈Z

|Φk ∗ |f ||.

Denote µk = |σk| − Φk. Since µ̂k(0) = 0, the same proof giving (10) implies that

|µ̂k(ξ)| ≤ C2k|ξ|, for 2k|ξ| ≤ 2,

|µ̂k(ξ)| ≤ C(log |2kξ|)−1−α, for 2k|ξ| ≥ 2.
(13)

Therefore we obtain from (12) that

(14) σ∗(f) ≤ sup
k∈Z

(µk ∗ |f |) +Mf ≤

(∑
k

|µk ∗ |f ||2
)1/2

+Mf,

where M is the Hardy-Littlewood maximal function. Since for all 1 < r <∞,

(15)
∥∥∥(∑

k

(µk ∗ f)2
)1/2
∥∥∥r

Lr
= Average

∥∥∑
k

εk(µk ∗ f)
∥∥r

Lr ,

over all choices of signs εk = ±1, estimates for the square function on the right
hand side of (14) can be obtained from estimates on integral operators of the form
g →

∑
k εk(µk ∗ g). Now using (13) and (14) we conclude that σ∗ maps L2 → L2,

whenever α > 0. At this point we recall the following lemma:

Lemma 1. (See [6] p. 544) If ‖σ∗(f)‖Ls ≤ C‖f‖Ls and
1

2s
=

∣∣∣∣12 − 1

q

∣∣∣∣, then for

arbitrary functions gk we have∥∥(∑
k∈Z

|σk ∗ gk|2)1/2
∥∥

Lq ≤ C
∥∥(∑

k∈Z

|gk|2)1/2
∥∥

Lq .

Applying Lemma 1 with s = 2 and q = q0 = 4, we obtain that

(16) ‖Tjf‖Lq0 ≤ C
∥∥(∑

k∈Z

|σk ∗Sj+kf |2)1/2
∥∥

Lq0
≤ C

∥∥(∑
k∈Z

|Sj+kf |2)1/2
∥∥

Lq0
≤ C‖f‖Lq0 ,

where the middle inequality is a consequence of Lemma 1 and the first and last
inequalities follow from the Littlewood-Paley theorem.
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Interpolating between estimates (11) and (16) we obtain that

‖Tjf‖Lp ≤ C(1 + |j|)−(1+α)θp‖f‖Lp ,

where 1/p = θp/2 + (1− θp)/q0. Now observe that TΩ =
∑

j∈Z Tj maps Lp → Lp for

all p’s for which p′1 < p < p1, where p1 = (4 + 4α)/(2 + α) is the unique solution of
the equation (1 + α)θp = 1. The same argument also gives that Tεf =

∑
k εk(µk ∗ f)

maps Lp → Lp for p′1 < p < p1 uniformly on the choice of the signs (εj), εj = ±1.
It follows that the square function in (15) is also bounded on Lp for this range of p’s
and hence so is σ∗(f) by the estimate in (14). Thus we are in a position to apply
Lemma 1 again with s in the interval (p′1, p1).

Now continue this way. Fix s1 ∈ (2, p1) and let q1 be the unique number bigger
than q0 = 4 which satisfies the equation 1/2s′1 = |1/2− 1/q1|. Apply Lemma 1 with
s = s′1 and q = q1. As before we obtain that TΩ maps Lp → Lp for p′2 < p < p2,
where p2 is the unique solution of the equation (1 + α)θp = 1, where θp is given by
1/p = θp/2 + (1 − θp)/q1 now. This bootstrapping argument leads to an inductive
definition of three sequences 2 = p0 < p1 < . . . , 2 < s1 < s2 < . . . , and 4 = q0 <
q1 < . . . such that for k = 1, 2, . . .

pk−1 < sk < pk,
1

pk

− 1

qk−1

=
1

1 + α

(
1

2
− 1

qk−1

)
,

1

2s′k
=

1

2
− 1

qk
.

Let b = supk pk. The above equations easily imply that b = 2 + α. Therefore TΩ

maps Lp to Lp for 2 ≤ p < 2 + α. The remaining range of p’s follows by duality.

3. Boundedness of maximal singular integrals

We now prove Theorem 2. We use below the same notation as in the previous
section. Let

(Tkf)(x) =

∫
|y|>2k

Ω(y)

|y|n
f(x− y) dy =

∞∑
j=k

(σj ∗ f)(x),

(T ∗f)(x) = sup
k
|(Tkf)(x)|.

If 2k−1 ≤ ε < 2k, then

|(T ε
Ωf)(x)| ≤ |(Tkf)(x)|+

∣∣∣∣∫
ε<|y|<2k

Ω(y)

|y|n
f(x− y) dy

∣∣∣∣ ≤ |(Tkf)(x)|+ (|σk| ∗ |f |)(x).

From the proof of Theorem 1 we know that σ∗ maps Lp → Lp for (2 + α)/(1 + α) <
p < 2 + α. Since

|(T ∗Ωf)(x)| ≤ |(T ∗f)(x)|+ σ∗(|f |)(x),
it suffices to show that T ∗ : Lp → Lp for the claimed range of p’s, which is contained
in the interval ((2 + α)/(1 + α), 2 + α).

With Φ as in the previous section, estimate

(17) sup
k∈Z

|(Tkf)(x)| ≤ sup
k∈Z

∣∣∣∣∣Φk ∗
∞∑

j=k

σj ∗ f

∣∣∣∣∣+ sup
k∈Z

∣∣∣∣∣(δ − Φk) ∗
∞∑

j=k

σj ∗ f

∣∣∣∣∣ ,



6 LOUKAS GRAFAKOS AND ATANAS STEFANOV

where δ is Dirac mass at the origin. It is easy to see that

sup
k∈Z

∣∣∣∣∣Φk ∗
∞∑

j=k

σj ∗ f

∣∣∣∣∣ ≤ C (M(Tf) +M(f)) , (see [6], p.548)

which implies Lp bounds for the first term on the right hand side of (17) for
(2 + α)/(1 + α) < p < 2 + α. Control the second term on the right hand side of (17)
by

sup
k∈Z

∣∣∣∣∣(δ − Φk) ∗
∞∑

j=0

σj+k ∗ f

∣∣∣∣∣ ≤
∞∑

j=0

Qj(f),

where

(Qjf)(x) = sup
k∈Z

|(δ − Φk) ∗ σj+k ∗ f | .

To conclude the proof of Theorem 2, it suffices to show that for j ≥ 0 we have

‖Qjf‖Lp ≤ C‖f‖Lp , for 2 ≤ p < 2 + α, and(18)

‖Qjf‖L2 ≤ C(1 + j)−α‖f‖L2 .(19)

Then, a simple interpolation between (18) and (19) gives that Qj maps Lp → Lp

with bound Cδ(1 + j)2α(2+α−δ−p)/p(α−δ), for any δ > 0 small, and the conclusion of
Theorem 2 follows by summing on j.

Now observe that

|Qjf | ≤ sup
k
|σj+k ∗ f |+ sup

k
|Φk ∗ σj+k ∗ f | ≤ C(σ∗(f) +M(σ∗(f))).

Therefore Qj is bounded on Lp whenever σ∗ is, that is ‖Qjf‖Lp ≤ C‖f‖Lp when
2 ≤ p < 2+α and (18) is proved. To prove (19) we need to exploit some orthogonality.
We have

‖Qjf‖2
L2 ≤

∑
k

‖(δ − Φk) ∗ σj+k ∗ f‖2
L2 = Average‖

∑
k

εk

(
(δ − Φk) ∗ σj+k ∗ f

)
‖2

L2 ,

where ε = (εk)k is a sequence of ±1’s. For a fixed sequence εk = ±1, let us denote by

Mj,kf = εk(δ − Φk) ∗ σj+k ∗ f.

We will need the following

Lemma 2. Let m ≥ 1, j ≥ 0, and k1 ≤ . . . ≤ k2m be integers. Then

‖Mj,k1 . . .Mj,k2m‖2→2 ≤ C2m

2m∏
i=1

(
1

1 + j + ki − k1

)1+α

.
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Proof. Since Φ̂k1(ξ) vanishes for 2k1|ξ| ≤ 2 we have,

‖Mj,k1 . . .Mj,k2mf‖
2
L2 =

∫
Rn

2m∏
i=1

∣∣∣1− Φ̂ki
(ξ)
∣∣∣2 |σ̂j+ki

(ξ)|2|f̂(ξ)|2dξ

≤ (C)2m

∫
|ξ|≥21−k1

2m∏
i=1

[
1

log (2j+ki|ξ|)

]2+2α

|f̂(ξ)|2dξ

≤ C2m

2m∏
i=1

[
1

1 + j + ki − k1

]2+2α

‖f‖2
L2 ,

where we used the first estimate in (10) in the last inequality above. �

Now we return to the proof of Theorem 2. We must show that
∥∥∥M ε,N

j

∥∥∥
2→2

≤
C(1 + j)−α uniformly on N and ε = (εk), where

M ε,N
j =

N∑
k=−N

εkMj,k.

Since M ε,N
j are self adjoint operators, we have∥∥∥M ε,N

j

∥∥∥2m

2→2
=
∥∥∥(M ε,N

j )2m
∥∥∥

2→2
≤

∑
−N≤k1≤...≤k2m≤N

‖Mj,k1 . . .Mj,k2m‖2→2

≤
∑

−N≤k1≤...≤k2m≤N

C2m

2m∏
i=1

(
1

1 + j + ki − k1

)1+α

≤ NC2m

(1 + j)1+α

(
1

(1 + j)α

)2m−1

≤ N
C2m

1 + j
(1 + j)−2mα.

Taking (2m)th roots and letting m→∞ we obtain∥∥∥M ε,N
j

∥∥∥
2→2

≤ C(1 + j)−α.

This concludes the proof of (19) and hence of Theorem 2.

4. Examples

It is easy to see that condition (5) for all α > 0 contains the case Ω ∈ Lq(Sn−1),
q > 1, considered by several authors, including [6]. However, it does not include the
condition Ω ∈ LlogL(Sn−1) of Calderón and Zygmund. It is therefore natural to ask
whether there exist examples of Ω /∈ LlogL(Sn−1) which satisfy (5) for all α > 0. In
this section we prove something more.

We construct an example to show that there exist integrable functions on Sn−1

with mean value zero which are not in H1(Sn−1) but which satisfy (5) for all α > 0.
We also show that there exist functions in L1(Sn−1) which satisfy the converse. The
examples are given only when n = 2 but they can be easily lifted to higher dimensions.
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We begin with the converse which is easier. The function

Ω(θ) =
∞∑

k=2

eikθ

(log k)2

belongs to H1(S1) but it fails to satisfy condition (5) for any α > 0. Both assertions
follow from the fact that Ω(θ) behaves like θ−1 log−2(θ−1) as θ → 0+ (See [13] p.
189).

We now construct an Ω ∈ L1(S1) \ H1(S1) with mean value zero which satisfies
condition (5) for all α > 0. The example presented below is unavoidably complicated.
The problem is that such a function must have an infinite number of spikes which
are sufficiently far away from each other and which are (barely) integrable and have
mean value zero.

At this point we think of S1 as the interval [0, 1] via the identification

(20) Ω̃(x) = Ω(cos(2πx), sin(2πx)),

where Ω is defined on S1 and Ω̃ on [0, 1]. It is not hard to see that under the
identification given in (20), the condition Ω /∈ H1(S1) is equivalent to the fact that

the Hilbert transform of Ω̃χ[0,1] is not in L1(R1), and condition (5) is equivalent to

(21) sup
0≤z≤1

∫ 1

0

|Ω̃(x)| ln1+α 1

|x− z|
dx ≤ Cα <∞.

For a detailed justification of these facts see [10]. Now let

an = (lnn)−1, bn = e−γn ,

γn = e(ln n)1/2

, δn = e−γ
1/4
n ,

dn = an + δn, cn = an − δn.

βn = 1− (lnn+ 3
2
ln γn)γ−1

n ,

Heuristically speaking, an is a sequence that decays slowly to zero, cn and dn are
symmetric points about an at distance δn, (cn − bn, cn) and (dn − bn, dn) are small
intervals near cn and dn with length bn = e−γn , where (lnn)ε << γn << nε for all
ε > 0, and the βn’s are powers that converge to 1 at a rate ∼ γ−1

n . It is easy to see
that

(22)
b1−βn
n

1− βn

=
1

nγ
1/2
n (lnn+ 3

2
(lnn)1/2)

∼ 1

nγ
1/2
n lnn

,

for n large. Now let

Ω̃(x) =
∞∑

n=109

(
1

|x− cn|βn
χ(cn−bn,cn)(x)−

1

|x− dn|βn
χ(dn−bn,dn)(x)

)
.

We first verify that condition (21) holds for all α > 0. The worst possible z’s in (21)

are the singularities of Ω̃, i.e. the points z = cn, dn, and z = 0. By symmetry we
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consider only z = cn and z = 0. Fix N ≥ 109 and take z = cN . We have∫ 1

0

|Ω̃(x)| ln1+α 1

|x− cN |
dx ≤ I1(N) + I2(N) + I3(N) + I4(N),

where

I1(N) =
∑
n6=N

cn∫
cn−bn

1

|x− cn|βn
ln1+α 1

|x− cN |
dx,

I2(N) =
∑
n6=N

dn∫
dn−bn

1

|x− dn|βn
ln1+α 1

|x− cN |
dx,

I3(N) =

cN∫
cN−bN

1

|x− cN |βN
ln1+α 1

|x− cN |
dx,

I4(N) =

dN∫
dN−bN

1

|x− dN |βN
ln1+α 1

|x− cN |
dx.

Observe that I2(N) ≤ I1(N) and that I4(N) ≤ I3(N). Also, it is easy to see that

sup
N≥109

I3(N) ≤ C sup
N≥109

b1−βN

N

1− βN

ln1+α 1

bN
≤ C sup

N≥109

γ1+α
N

Nγ
1/2
N lnN

≤ Cα.

To control sup
N≥109

I1(N) we need to show that

(23) sup
N≥109

∑
n6=N

cn∫
cn−bn

1

|x− cn|βn
ln1+α 1

|x− cN |
dx

 ≤ Cα.

Using that |x − cN | ∼ |cn − cN | ∼ |an − aN | in the integrand above and (22), we
conclude that (23) will be a consequence of

(24) sup
N≥109

[∑
n6=N

b1−βn
n

1− βn

ln1+α 1

|an − aN |

]
≤ Cα.

We have two cases. For n > N, |an−aN | ≥ |aN+1−aN | ≥ (N ln2N)−1 and therefore

sup
N≥109

[∑
n>N

b1−βn
n

1− βn

ln1+α 1

|an − aN |

]
≤ C sup

N≥109

∑
n>N

ln1+α(N ln2N)

nγ
1/2
n lnn

≤ Cα,
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the latter being an easy consequence of the integral test. For 109 ≤ n ≤ N − 1 we
have

N−1∑
n=109

b1−βn
n

1− βn

ln1+α 1

|an − aN |

≤ C
N−1∑

n=109

1

nγ
1/2
n lnn

ln1+α 1

|(lnn)−1 − (lnN)−1|
= A(N) +B(N),

where A(N) is the sum above of over the indices 109 ≤ n < γN and B(N) is the sum
over the the indices γN ≤ n ≤ N − 1. On A(N) we have |(lnn)−1 − (lnN)−1|−1 ≤
C lnn, and thus A(N) is clearly bounded independently of N . On B(N) we have
|(lnn)−1 − (lnN)−1|−1 ≤ CN(lnN)2. Now estimate sup

N≥109

B(N) by

C sup
N≥109

ln1+α(N2)
∑

n≥γN

1

nγ
1/2
n lnn

≤ C sup
N≥109

ln1+α(N2)

γ
1/3
γN

≤ C,

where we used the integral test to deduce the first inequality above. This concludes
the proof of (21) when z = cN . Condition (21) for z = 0 is equivalent to the following
inequality

∞∑
n=109

ln1+α(lnn)

nγ
1/2
n lnn

≤ Cα,

which is certainly correct by the choice of our parameters. This proves that Ω̃ satisfies
condition (21) for all α > 0.

We now prove that Ω̃ is not in the Hardy space H1. Extend Ω̃ to be equal to zero
outside the interval [0, 1]. Let H be the usual Hilbert transform. Fix N ≥ 109 and
y ∈ [dN , dN + bN ]. Obviously

(25) π|(HΩ̃)(y)| ≥ KN(y)− LN(y),

where

KN(y) =

∣∣∣∣∣∣
cN∫

cN−bN

1

|x− cN |βN

1

x− y
dx−

dN∫
dN−bN

1

|x− dN |βN

1

x− y
dx

∣∣∣∣∣∣ ,
LN(y) =

∑
n6=N

∣∣∣∣∣∣
cn∫

cn−bn

1

|x− cn|βn

1

x− y
dx−

dn∫
dn−bn

1

|x− dn|βn

1

x− y
dx

∣∣∣∣∣∣ .
We first prove that

(26) sup
N≥109

sup
y∈[dN ,dN+bN ]

LN(y) ≤ C.
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Indeed,

cn∫
cn−bn

1

|x− cn|βn

1

x− y
dx =

b1−βn
n

1− βn

1

(−bn + cn − y)
+ smaller term,

dn∫
dn−bn

1

|x− dn|βn

1

x− y
dx =

b1−βn
n

1− βn

1

(−bn + dn − y)
+ smaller term,

where the smaller terms are bounded by Cb1−βn
n /(1− βn) and

∑
n≥109

b1−βn
n /(1− βn) ≤

C. Therefore

LN(y) ≤ C
∑
n6=N

b1−βn
n

1− βn

|dn − cn|
|an − aN |2

≤ C
∑
n6=N

b1−βn
n

1− βn

δn
|an − aN |2

,

and thus it remains to prove that

(27) sup
N≥109

∑
n6=N

δn

nγ
1/2
n lnn

1

((lnn)−1 − (lnN)−1)2
≤ C.

The sum in (27) for n > N is bounded by∑
n>N

δn

nγ
1/2
n lnn

1

((lnn)−1 − (lnN)−1)2
≤ N2 ln4N

∑
n>N

δn

nγ
1/2
n lnn

≤ C,

uniformly in N ≥ 109. Split the sum in (27) for n < N into the sum A′(N) over the
indices 109 ≤ n < γN and the sum B′(N) over the indices γN ≤ n ≤ N−1. Using that
when 109 ≤ n < γN we have |(lnn)−1−(lnN)−1|−1 ≤ C lnn we conclude that A′(N) is
bounded independently ofN . When γN ≤ n ≤ N−1 we have |(lnn)−1−(lnN)−1|−1 ≤
CN(lnN)2 and hence

sup
N≥109

B′(N) ≤ C sup
N≥109

N5
∑

n≥ln N

1

nγ
1/2
n (lnn)eγ

1/4
n

≤ C,

which follows from the integral test. This proves (27) and hence LN(y) is bounded
uniformly in N .

Now we turn our attention to KN(y). Observe that the following inequality holds

dN∫
dN−bN

1

|x− dN |βN

1

y − x
dx ≥ 3

2

cN∫
cN−bN

1

|x− cN |βN

1

y − x
dx,

because of the proximity of y to the support of the first integral. Therefore

|KN(y)| ≥ c

dN∫
dN−bN

1

|x− dN |βN

1

y − x
dx− C
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when y ∈ [dN , dN + δN ]. Integrate over this set to obtain

dN+δN∫
dN

|KN(y)|dy ≥

c

∣∣∣∣∣∣
dN∫

dN−bN

1

|x− dN |βN
ln(dN + δN − x)dx−

dN∫
dN−bN

1

|x− dN |βN
ln(dN − x)dx

∣∣∣∣∣∣− CδN .

(28)

We clearly have that

(29)

∣∣∣∣∣∣
dN∫

dN−bN

1

|x− dN |βN
ln(dN + δN − x)dx

∣∣∣∣∣∣ ≤ C| ln δN |
b1−βN

N

1− βN

≤ γ
1/4
N

Nγ
1/2
N lnN

,

while the the crucial fact is that

(30)

∣∣∣∣∣∣
dN∫

dN−bN

1

|x− dN |βN
ln(dN − x)dx

∣∣∣∣∣∣ ≥ C| ln bN |
b1−βN

N

1− βN

≥ γ
1/2
N

N lnN
.

Combining (25), (26), (28), (29), and (30) we obtain

∥∥∥HΩ̃
∥∥∥

L1
≥
∑

N≥109

dN+δN∫
dN

|(HΩ̃)(y)|dy

≥ c
∑

N≥109

γ
1/2
N

N lnN
− C

∑
N≥109

1

Nγ
1/4
N lnN

− C
∑

N≥109

δN = ∞.

This proves that Ω̃ /∈ H1([0, 1]).
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