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A Selberg integral formula and applications

Loukas Grafakos and Carlo Morpurgo

University of Missouri and Università di Milano

Abstract. We obtain a 3-fold Selberg integral formula. As a consequence
we are able to compute the explicit value of the sharp constant in a trilinear
fractional integral inequality due to Beckner.

1. Introduction

Multilinear fractional integral inequalities have been used in connection with
restriction theorems of the Fourier transform and also in obtaining estimates for
the k-plane and the x-ray transform. See for instance [C1], [C2], and [D].

In this article we are interested in a sharp form of a multilinear fractional
integral inequality obtained by [B] (Theorem 6).

Theorem [B]. Let 1 < p1, . . . , pk < ∞,
∑k

j=1 p−1
j > 1, and 0 ≤ γij = γji < n be

real numbers satisfying

∑
1≤j≤k,

j 6=s

γjs =
2n

p′s
and

1
n

∑
1≤i<j≤k

γij +
k∑

j=1

1
pj

= k, (0)

where pj and p′j are dual exponents. Then

∣∣∣∣ ∫
Rnk

k∏
j=1

fj(xj)
∏

1≤i<j≤k

|xi − xj |−γij dx1 . . . dxk

∣∣∣∣ ≤ C(γij , n)
k∏

j=1

‖f‖pj
. (1)

Moreover, the best constant C(γij , n) in (1) is attained for the extremal functions

fj(x) = A(1 + |x|2)−n/pj up to a conformal automorphism.

The conditions in (0) are necessary to ensure conformal invariance of the
variational inequality. It is worth mentioning that the one dimensional form of
inequality (1) above when all the exponents are equal was obtained by [C1] without
sharp constants (and without the first restriction in (0)).
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The value of the best constant in (1) was computed in [B]:

C(γij , n) = |Sn|
−k+ 1

n

∑
1≤i<j≤k

γij ∫
Snk

∏
1≤i<j≤k

|ξi − ξj |−γij dξ1 . . . dξk, (2)

where |Sn| = (4π)n/2Γ(n/2)Γ(n)−1 is the Lebesgue measure of the unit sphere in
Rn+1. This formula brings a connection between multilinear fractional integral
inequalities and Selberg integrals.

Multiple integrals such as the one in (2) are known as Selberg’s integrals and
their exact values are useful in representation theory and in mathematical physics.
These integrals have only been computed in special cases, for instance by Selberg
himself when n = 1 and γij = γ (see [Se]), or when n = 2 and γij = 1 (see [Ca]),
but not in general. For a treatment of Selberg integrals, the reader could consult
[Me], section 17.11.

The question we would like to address is the following:

Question. Can the constant C(n, γij) be expressed in terms of special functions?

In this paper we give an answer to this question when k = 3. We able to
compute the three-fold Selberg integral (2) when γ12 + γ23 + γ31 = n for n ≥ 1.
This constraint is related to the issue of conformal invariance. In some sense our
result is the opposite of the earlier results on precise values of the integrals in (2).
We can compute (2) for small k but arbitrary n instead of small n but arbitrary
k.

Before we state our first theorem we would like to discuss the case k = 2. The
bilinear version of (2) is the well known Hardy-Littlewood-Sobolev inequality∫

R2n
|x− y|−γf1(x)f2(y)dxdy ≤ A(γ, p1, p2, n)‖f1‖p1‖f2‖p2 (3)

which holds when 1/p1 + 1/p2 > 1, 1/p1 + 1/p2 + d/n = 2, and 0 < γ < n. The
sharp constant in inequality (3) was derived by [L] when p1 = p2 = 2n/(2n − γ)
and also when p1 = 2 or p2 = 2. When p1 = p2 = 2n/(2n− γ), the sharp constant
in (3) is

A(γ, p1, p2, n) = |Sn|(γ−2n)/n

∫
(Sn)2

|ξ − η|−γdξdη,

which can be easily computed since∫
Sn

|ξ − η|−γdξ = 2n−γπn/2 Γ
(

n−γ
2

)
Γ
(
n− γ

2

) , (4)
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for all given η ∈ Sn.
We now turn our attention to the case k = 3. In turns out that in this case we

can find a closed form for the value of the constant in (2) when 1/p1+1/p2+1/p3 =
2 or equivalently γ12 + γ23 + γ31 = n. It will be convenient to slightly change our
notation in this case. We set −γ12 = d1 − n, −γ23 = d2 − n, and −γ31 = d3 − n.
Now for 0 < d1, d2, d3 < n we denote by

Qd1,d2,d3 [f1, f2, f3] =
∫
R3n

|x−y|d1−n|y−z|d2−n|z−x|d3−nf1(x)f2(y)f3(z)dxdydz

(5)
the trilinear fractional integral that appears in (1). With this notation, inequality
(1) is just

Qd1,d2,d3 [f1, f2, f3] ≤ C(d1, d2, d3, n)‖f1‖p1‖f2‖p2‖f3‖p3 , (6)

where 0 < d1, d2, d3 < n are real numbers satisfying d1 + d2 + d3 > n, and
p1 = 2n/(d1 + d3), p2 = 2n/(d1 + d2), p3 = 2n/(d2 + d3). The best constant in
the inequality above can be written as

C(d1, d2, d3, n) = |Sn|−
d1+d2+d3

n

∫
(Sn)3

|ξ−η|d1−n|η−ζ|d2−n|ζ−ξ|d3−ndξdηdζ. (7)

We now state our first result:

Theorem 1. Let 0 < d1, d2, d3 < n, and d1 +d2 +d3 = 2n. Then, for any distinct

x, y, z ∈ Rn the following formula holds∫
Rn

|x−t|−d2 |y−t|−d3 |z−t|−d1dt = B(d1, d2, d3, n)|x−y|d1−n|y−z|d2−n|z−x|d3−n,

(8)
where

B(d1, d2, d3, n) = πn/2
3∏

j=1

Γ
(n−dj

2

)
Γ
(dj

2

) .

Similarly, for any distinct ξ, η, ζ ∈ Sn we have∫
Sn

|ξ−τ |−d2 |η−τ |−d3 |ζ−τ |−d1dτ = B(d1, d2, d3, n)|ξ−η|d1−n|η−ζ|d2−n|ζ−ξ|d3−n.

(9)

Corollary 1. Let 0 < d1, d2, d3 < n and d1 + d2 + d3 = 2n. Then the following

Selberg integral formula holds:∫
(Sn)3

|ξ − η|d1−n|η − ζ|d2−n|ζ − ξ|d3−ndξdηdζ = |Sn|(2π)n
3∏

j=1

Γ
(dj

2

)
Γ
(
n− dj

2

) , (10)
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and thus the exact value of the best constant in (2) when d1 + d2 + d3 = 2n is

C(d1, d2, d3, n) = (2π)n|Sn|−1
3∏

j=1

Γ
(dj

2

)
Γ
(
n− dj

2

) . (11)

We point out that the kernel formula (8) is a trilinear version of the standard
beta integral on Rn:∫

Rn
|x− t|−α1 |y − t|−α2dt = πn/2 Γ

(
n−α1

2

)
Γ
(

n−α2
2

)
Γ
(

α1+α2−n
2

)
Γ
(

α1
2

)
Γ
(

α2
2

)
Γ
(
n− α1+α2

2

) |x− y|n−α1−α2 ,

(12)
which is valid when 0 < α1, α2 < n, α1 + α2 > n. It is still unclear to us how if
there exists a corresponding k-fold analogue of (8) and (9).

2. The proof of Theorem 1

Let us denote by f̂(ξ) =
∫
Rn e−2πiξ·xf(x)dx the Fourier transform of f .

Clearly both sides of (8) are invariant under translations, dilations, and rotations
of x, y, z. Therefore, by a translation we can assume that z = 0, by a dilation that
|y| = 1, and by a rotation that y = e1 = (1, 0, . . . , 0). Recall that

(|x|d−n)∧(ξ) = πn/2−d Γ
(

d
2

)
Γ
(

n−d
2

) |ξ|−d := c(d)|ξ|−d

in the sense of distributions.
After these reductions, we prove (8) by showing that the Fourier transform of

both sides coincide. The function x → |x− e1|d1−n|x|d3−n has Fourier transform

(
|x|d3−n|x− e1|d1−n

)∧(ξ)

=c(d3)c(d1)|ξ|−d3 ∗
(
|ξ|−d1e−2πiξ·e1

)
=c(d3)c(d1)

∫
Rn

|ξ − η|−d3 |η|−d1e−2πiη·e1dη

=c(d3)c(d1)|ξ|n−d1−d3

∫
Rn

|ξ′ − t|−d3 |t|−d1e−2πi|ξ|t·e1dt, (13)

where ξ′ = ξ/|ξ|. Now, for given ξ find a rotation Aξ so that Aξe1 = ξ′. Clearly
|ξ′ − t| = |e1 − A−1

ξ t|, |t| = |A−1
ξ t|, and t · e1 = t · A−1

ξ ξ′ = A−1
ξ t · A−2

ξ ξ′. Hence,
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with s = A−1
ξ t the expression in (13) is equal to

c(d3)c(d1)|ξ|n−d1−d3

∫
Rn

|e1 − s|−d3 |s|−d1e−2πis·A−2
ξ

ξds

= c(d3)c(d1)|ξ|n−d1−d3 ĥ(A−2
ξ ξ),

where h(t) := |t− e1|−d3 |t|−d1 .
On the other hand, let us denote by g(x) the left hand side of (8) when z = 0

and y = (1, 0, . . . , 0). We have that

ĝ(ξ) =
(
h ∗ |t|−d2

)∧(ξ) = c(n− d2)ĥ(ξ)|ξ|d2−n.

Using that d1 + d2 + d3 = 2n and that c(n − d)−1 = c(d) we deduce that the
Fourier transforms of the two sides of (8) are equal if and only if

ĥ(ξ) = ĥ(A−2
ξ ξ) for almost all ξ ∈ Rn. (14)

We now use the fact that if a function is reflection invariant with respect to a
hyperplane then so is its Fourier transform. Modulo rotations and translations
it is enough to check this for hyperplanes of the form xj = 0. But the function
h is constant along circles orthogonal to e1; in particular h is reflection invariant
with respect to the hyperplanes xj = 0, for j = 2, 3, . . . , n, and hence so is ĥ.
But A−2

ξ ξ can be obtained from ξ by finitely many reflections with respect to the
above hyperplanes, and this concludes the proof of (8).

To prove (9) we use the stereographic projection π̄ : Rn → Sn. Recall that
the Jacobian of π̄ is

|Jπ̄(t)| = 2n(1 + |t|2)−n, (15)

and that for any a, b in Rn we have

|π̄(a)− π̄(b)| = 2|a− b|(1 + |a|2)− 1
2 (1 + |b|2)− 1

2 . (16)

Now let ξ = π̄(x), η = π̄(y), ζ = π̄(z), and τ = π̄(t) in the integral on the left hand
side of (7). Using formulas (12) and (13) one can obtain (7) by simply rewriting
(6) in terms of the coordinates ξ, η, ζ, τ . QED

Proof of Corollary 1. Formula (10) follows by integrating (9) with respect to ξ, ζ,
η and using (3). Formula (11) is immediate from (7). QED

It follows from analyticity considerations, that the upper bound for the dj in
Corollary 1 can be extended to 2n instead of n. Of course this is not the case in
Theorem 1 since the integral in (8) may diverge if dj ≥ n.
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3. Applications to a sharp Sobolev embedding

In this section we will discuss a connection between multilinear integrals of
type (1) with equal exponents and Sobolev embeddings. This connection will be
most useful in the context of conformal deformations.

Let us discuss first the case k = 2. Inequality (3) can also be written as

‖Iα(f)‖q ≤ Np,α,n‖f‖p, (17)

where α − n = −γ, 1/q = 1/p − α/n, 1 < p, q < ∞, and Iα denotes fractional
integration given by

Iα(f)(x) =
Γ
(

n−α
2

)
2απn/2Γ

(
α
2

) ∫
Rn

|x− y|α−nf(y)dy. (18)

When q′ = p, the sharp constant in (17) is

Np,α,n = 2−απ−α/2 Γ
(

n−α
2

)
Γ
(

n+α
2

)[
Γ(n)
Γ
(

n
2

)]α/n

. (19)

as computed in [L]. Inequality (17) expresses the sharp embedding from Lp(Rn) ↪→
L̇p′

−α(Rn), where α = n(2/p− 1) > 0, 1 < p < 2, and

L̇q
−α(Rn) = {f ∈ S ′(Rn) : ‖f‖L̇q

−α
= ‖Iα(|f |)‖q < ∞}

is a homogeneous Sobolev space.
We now consider the case k = 3. When d1 = d2 = d3 = d and f1 = f2 = f3 =

f , inequality (6) is a special case of a more general sharp inequality derived in
[Mo]. In the special case 0 < d ≤ 2 it is possible to write Qd[f ] as a certain path
integral, which is an L3 norm with an appropriate Wiener measure. This allows
us to conclude that the expression

f → Qd[f ] =
(
Qd,d,d[|f |, |f |, |f |]

)1/3

is a norm when 0 < d ≤ 2. It is quite natural to expect that Qd is a norm also
when 2 < d < n, although we are not quite certain how to prove this in general.
When d = 2n/3, however, it is an easy consequence of Theorem 1 that Qd is a
norm since it is the L3 norm of a fractional integral.
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Corollary 2. We have that for all f ≥ 0,

Q2n/3

[
f
]

= (2π)n/3‖In/3(f)‖3 = (2π)n/3‖f‖L̇3
−n/3

. (20)

To prove Corollary 2, take d1 = d2 = d3 = 2n/3 in (8). Then multiply (8)
by f(x)f(y)f(z) and integrate with respect to dx, dy, and dz. Apply Fubini’s
theorem and use (18) to obtain (20). QED

Thus, in the special case d1 = d2 = d3 = 2n/3 inequality (6) is the same as
inequality (17), with q = 3 = p′ and α = n/3. Observe that the constants also
coincide since

(|Sn|−2B(2n/3, 2n/3, 2n/3, n))1/3 = C(2n/3, 2n/3, 2n/3, n) = (2π)n/3N3/2,n/3,n,

as it should be. This gives a relationship between the sharp embedding given by
(6) and the sharp Sobolev embedding given in (17) when d = 2n/3.

It is fairly routine to check that the expression Qdf remains unchanged if f is
replaced by (f ◦ U)|JU |d/n, where U is a conformal transformation of Rn and JU

is its Jacobian. This transformation is scaled suitably to preserve Ln/d. We will
denote by Bd the space of all measurable functions f on Rn such that Qdf < ∞.
The main feature of the space Bd is the conformal invariance of its ‘norm’ Qd. It
is reasonable to ask whether Bd is related to any L3-based homogeneous Sobolev
space. By homogeneity it can only be compared to L̇3

n/3−d. We have the following:

Theorem 2. The space Bd is contained in L̇3
n/3−d when n > d > 2n/3 but Bd

contains L̇3
n/3−d when 2n/3 > d > n/3; furthermore both inclusions are strict.

Quantitatively speaking, for any n > d > 2n/3 there exists a constant C = Cd,n

such that for all measurable functions f we have

‖Id−n/3(|f |)‖3 ≤ CQd[f ]. (21)

For any 2n/3 > d > n/3 there exists a constant C = Cd,n such that for all

measurable functions f we have

Qd[f ] ≤ C‖Id−n/3(|f |)‖3. (22)

4. The proof of Theorem 2

Observe that the left hand side of (21) is equal to

Cd,n

∫
R3n

Kd(x, y, z)f(x)f(y)f(z)dxdydz,
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where

Kd(x, y, z) =
∫
Rn

|x− t|d− 4n
3 |y − t|d− 4n

3 |z − t|d− 4n
3 dt.

If we establish that for 2n/3 < d < 2n we have

Kd(x, y, z) ≤ Cd,n|x− y|d−n|y − z|d−n|z − x|d−n, (23)

then (21) will follow immediately. Similarly if we prove that for n/3 < d < 2n/3
we have

|x− y|d−n|y − z|d−n|z − x|d−n ≤ Cd,nKd(x, y, z), (24)

then (22) will follow as well. Now a simple dilation implies that (23) and (24)
are valid for |x|, |y|, |z| ≤ 1, then they are valid for |x|, |y|, |z| ≤ R with the same
constant for all R > 0. Letting R → ∞ we conclude that (23) and (24) are valid
for all R > 0. Therefore, it suffices to prove (23) and (24) for |x|, |y|, |z| ≤ 1.

Given any three points x, y, z in Rn, let M(x, y, z) = max(|x−y|, |y−z|, |z−x|)
be their maximum and m(x, y, z) = min(|x− y|, |y− z|, |z−x|) be their minimum.
Let us also call µ(x, y, z) the number in the middle. Then we have that µ(x, y, z) ≥
1
2M(x, y, z). The following lemma gives us asymptotic estimates for Kd(x, y, z).

Lemma. Let |x|, |y|, |z| ≤ 1. Then for 5n/6 < d < n we have

Kd(x, y, z) ∼ M(x, y, z)3(d−n). (25)

For d = 5n/6 we have

Kd(x, y, z) ∼ M(x, y, z)−
n
2 log

M(x, y, z)
m(x, y, z)

, (26)

and for n/3 < d < 5n/6 we have

Kd(x, y, z) ∼ m(x, y, z)−n+2(d−n
3 )M(x, y, z)d− 4n

3 (27)

Now (23) and (24) are easy consequences of this lemma and of the observation
that µ(x, y, z) is always comparable to M(x, y, z).

Let us now give sketch the proof of the lemma above. Since the problem is
translation invariant, it suffices to study the asymptotic behavior of the integral
below as |α|, |β| → 0 ∫

Rn
|α− t|−n+λ|β − t|−n+λ|t|−n+λdt, (28)
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where we set λ = d − n/3 and α = z − x and β = z − y. Since both |α|, |β| ≤ 2
the problem is local and we consider the following five cases:

Case 1. |α| → 0, |β| ∼ |β − α| ∼ 1.
Case 2. |α− β| → 0, |β| ∼ |α| ∼ 1.
Case 3. |β − α| << |α| ∼ |β| → 0.
Case 4. |β − α| ∼ |α| ∼ |β| → 0.
Case 5. |α| << |β| ∼ |β − α| → 0.
It is easy to see that in case 1, the integral (28) behaves like a constant when

λ > n/2, blows up like |α|−n+2λ when λ < n/2 and also blows up like log |α|−1

when λ = n/2.
Case 2 is similar to case 1 where the roles of |α| and |β−α| are interchanged.
In case 3 the situation is slightly different. The integral (28) behaves asymp-

totically like |α|−n+λ|α−β|−n+2λ when λ < n/2, as |α|−2n+3λ when λ > n/2, and
as |α|−2n+3λ log(|α||α− β|−1) when λ = n/2.

In case 4, the integral (28) behaves asymptotically like |α− β|−2n+3λ.
Finally, case 5 follows from case 1. In this case one has asymptotic behavior

|α|−n+2λ|β|−n+λ when λ<n/2, |β|−2n+3λ when λ>n/2, and |β|−2n+3λ log(|β|/|α|)
when λ = n/2

The derivation of the asymptotics of (28) in each case involves different split-
ting of the integral (28) and use of formula (12). The details are rather tedious
and are omitted.

The exceptional case λ = n/2 corresponds to d = 5n/6 and only in this case
a logarithmic term appears.

We now indicate how the behavior of K(x, y, z) follows from the asymptotic
behavior of the integral (28). First take 5n/6 < d < n, equivalently n/2 < λ <

2n/3. Recalling that |α| = |z−x| and |β| = |z−y|, we observe that the asymptotics
in the five cases above, (i.e. C in cases 1 and 2, |x−z|−2n+3λ in case 3, |x−y|−2n+3λ

in case 4, and |y − z|−2n+3λ in case 5) is a restatement of (25). Likewise, the the
statements in the five cases above can be summarized in (26) when d = 5n/6, and
in (27) when n/3 < d < 5n/6.

Using again the asymptotics for Kd, one can construct examples to show that
the converse inequalities to (21) and (22) are false. The details are omitted. This
concludes the proof of Theorem 2. QED

5. An application to fractional integrals

Formula (8) can be used to give an alternative proof of inequality (6) in the
particular case d1 +d2 +d3 = 2n. Observe that in this case 1/p1 +1/p2 +1/p3 = 2
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while 1/p′1 + 1/p′2 + 1/p′3 = 1. Use (8) to rewrite Qd1,d2,d3(f1, f2, f3) as

1
B(d1, d2, d3, n)

∫
Rn

(f1 ∗ | · |−d2)(t) (f2 ∗ | · |−d3)(t) (f3 ∗ | · |−d1)(t) dt. (29)

Apply Hölder’s inequality to estimate (29) by

1
B(d1, d2, d3, n)

‖f1 ∗ | · |−d2‖p′1
‖f2 ∗ | · |−d3‖p′2

‖f3 ∗ | · |−d1‖p′3
. (30)

(17), (18), and (19) now imply that (30) is bounded by

1
B(d1, d2, d3, n)

3∏
j=1

π
dj
2

Γ(n−dj

2 )

Γ(n− dj

2 )

(
Γ(n/2)
Γ(n)

)−1+
dj
n

‖fj‖pj

which is nothing else than C(d1, d2, d3, n)
∏3

j=1 ‖fj‖pj
.
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