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Abstract. Jacobians of maps on the Heisenberg group are shown to map suitable group

Sobolev spaces into the group Hardy space H1. From this result and a weak∗ convergence

theorem for the Hardy space H1 of the Heisenberg group, a compensated compactness prop-

erty for these Jacobians is obtained.

0. Introduction

We investigate compensated compactness properties of Jacobians of maps on the Heisen-

berg group and we prove results analogous to those for the Jacobians of maps on Rn.

Let Hn = C
n × R be the Lie group with multiplicative structure (z, t) · (z′, t′) =

(z + z′, t+ t′ + 2 Im z · z̄′) where z = (z1, . . . , zn), z′ = (z′1, . . . , z
′
n) and z · z̄′ =

∑n
j=1 zj z̄

′
j .

This is the nth order Heisenberg group. It can be shown that the group operation is C∞

on the manifold Cn × R and hence Hn is a locally compact Lie group. Let (z1, . . . , zn, t)

be coordinates on Hn. Write zj = xj + iyj and define the vector fields:

Xj =
∂

∂xj
+ 2yj

∂

∂t
Yj =

∂

∂yj
− 2xj

∂

∂t
T =

∂

∂t
.

It turns out that the Xj , Yj and T form a basis for the left invariant vector fields on

H
n. They satisfy the commutation relations [Xj , Yj ] = −4T, j = 1, . . . , n and all other
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commutators vanish. The group Hn is equipped with a natural dilation structure r(z, t) =

(rz, r2t), r > 0, which is consistent with the group multiplication. The associated norm

|(z, t)| = (|z|4 + t2)1/4 is homogeneous of degree 1 with respect to this group of dilations.

We denote by Br(u0) the Heisenberg group ball {u ∈ Hn : |u−1u0| < r}.

Haar measure on Hn is the usual Lebesgue measure on R2n+1. Convolution on the

Heisenberg group Hn is defined by

(f ∗ g)(u) =
∫
f(v)g(v−1u) dv =

∫
f(uv−1)g(v) dv.

Fix ϕ be a smooth bump on Hn with
∫
ϕ du 	= 0. For a distribution f on Hn define

f+(u) = sup
δ>0
|(f ∗ ϕδ)(u)| where ϕδ(u) = δ−2n−2ϕ(δ−1u).

If γ > 2n+2
2n+3 , the Hardy space Hγ(Hn) = Hγ is the set of all f such that f+ ∈ Lγ(Hn). An

alternative definition of Hγ(Hn) can be given via the atomic decomposition. See [FOS] or

[CW] for details.

Given a C1 map F = (f1, . . . , fn) from H
n into Rn, define

(0.3) Jac(F ) = det



L1f1 L1f2 . . . L1fn
L2f1 L2f2 . . . L2fn

...
...

...
Lnf1 Lnf2 . . . Lnfn


 ,

where Lj is either Xj or Yj . We would like to show that Jac(F ) maps a product of suitable

group Sobolev spaces into the spaces Hγ(Hn) for 1 ≥ γ > 2n+2
2n+3 . The analogous result for

the vector fields ∂
∂xj

, 1 ≤ j ≤ n on Rn has been proved by P. L. Lions and Y. Meyer when

γ = 1 and extended by [CLMS] for 1 ≥ γ > n
n+1 . Note that the lower bound for γ in both

cases is d
d+1 , where d is the homogeneous dimension of the group. Our first result is

Theorem 1. Let n ≥ 2 and for 1 ≤ j ≤ n, let 1 < pj < 2n+2. Let γ =
(

1
p1

+ · · ·+ 1
pn

)−1

be the harmonic mean of the pj’s. We suppose that 2n+2
2n+3 < γ ≤ 1. Then, there exists
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a constant C > 0 that depends only on n and on the pj’s such that for every map F =

(f1, . . . fn) on Hn we have:

(0.4) ‖ Jac(F )‖Hγ ≤ C
n∏
j=1

[ n∑
k=1

(‖Xkfj‖Lpj + ‖Ykfj‖Lpj )
]
.

1. Proof of Theorem 1

Note that since γ is the harmonic mean of the pj ’s, Hölder’s inequality implies that

| Jac(F )|γ is integrable. The novelty provided by our Theorem is that any smooth maximal

function of Jac(F ) raised to the power γ is also integrable.

Two basic ingredients are needed for the proof. The first is that whenever F =

(f1, . . . , fn) is a compactly supported C1 map on the Heisenberg group, Jac(F ) has integral

zero. This is explained in the next section. The second ingredient is the Poincaré (local

Sobolev) inequality (1.0) stated below.

Let B be a Heisenberg group ball. We denote by 2B its double and by |B| its the

Lebesgue measure.

Theorem. Let q and r be given such that 1
2n+2 <

1
r < 1 and 1

r − 1
2n+2 ≤ 1

q ≤ 1. Then

there exists a constant C > 0 that depends only on n, q and r such that for all Heisenberg

group balls B and for all f with mean value zero over B, the following inequality is valid

(1.0)
(∫

B

|f(u)|qdu
) 1
q

≤ C|B|m
2n∑
j=1

[(∫
2B

|(Xjf)(u)|rdu
) 1
r

+
(∫

2B

|(Yjf)(u)|rdu
) 1
r
]
,

where we set m = 1
2n+2 + 1

q − 1
r ≥ 0.

The theorem above is true even when the ball 2B on the right hand side of the inequality

is replaced by the ball B. This more subtle result has been proved by Jerison [JE] when

1 ≤ q = r <∞ and recently by Lu [L1], [L2] in the remaining cases, including the endpoint

case m = 0. The global form of (1.0) can be found in [FOS] and [VSC]. The local case

stated above can be obtained in different ways. We refer the reader to [L2] for a proof.
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To prove Theorem 1 we only need the Poincaré inequality above for m > 0. We will

need the case m = 0 to prove the sharper endpoint result that the Jacobian (0.3) maps

into the space weak Hγ for γ = 2n+2
2n+3 . (See next section).

Let F be a compactly supported C1 map from the Heisenberg group into Rn. Our

estimates will be independent of the function F and a density argument will give the

required inequality for general functions F for which the right hand side of (0.4) is finite.

Fix ψ a smooth bump with support inside the unit ball |u| < 1 and also fix u0 = (z0, t0) ∈
H
n. We need to show that supδ>0 | Jac(F ) ∗ ψδ| ∈ Lγ . We have

(Jac(F ) ∗ ψδ)(u0) =
∫∫

Cn× R

Jac(F )(z, t) ϕδ(z, t) dzdz̄dt,

where ϕδ(z, t) = ϕu0
δ (z, t) = δ−2n−2ψ

(
z0−z
δ

t0−t−2 Im z·z̄0
δ2

)
. Let F = (f1, f2, . . . , fn). Start

with the identity:

Jac(F )ϕδ =− det



f1(L1ϕδ) L1f2 . . . L1fn
f1(L2ϕδ) L2f2 . . . L2fn

...
...

...
f1(Lnϕδ) Lnf2 . . . Lnfn




+ det



L1(f1ϕδ) L1f2 . . . L1fn
L2(f1ϕδ) L2f2 . . . L2fn

...
...

...
Ln(fnϕδ) Lnf2 . . . Lnfn


 ,(1.1)

which follows from the multilinearity of the Jacobian. Let c1 =
∫
Bδ
f1 du where Bδ =

Bδ (u0) = {u ∈ Hn : |u−1u0| < δ}. We replace f1 by f1 − c1 in (1.1) and we note that

Jac(F ) remains unchanged. Next we integrate over the Heisenberg group. Note that the

second determinant in (1.1) is the Jacobian of the map (f1ϕδ, f2, . . . , fn). A crucial fact,

explained in the next section, is that Jacobians of compactly supported maps have integral

zero. Using this fact we conclude that

(1.2)
∫
Hn

Jac(F )ϕδ du = −
∫
Hn

det




(f1 − c1)(L1ϕδ) L1f2 . . . L1fn
(f1 − c1)(L2ϕδ) L2f2 . . . L2fn

...
...

...
(f1 − c1)(Lnϕδ) Lnf2 . . . Lnfn


 du
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Expand the determinant in (1.2) along its first column. We obtain

(1.3)
∣∣∣∣
∫
Hn

Jac(F )ϕδ du
∣∣∣∣ =

∣∣∣∣
∫
Hn

n∑
j=1

(−1)j+1 (f1 − c1)(Ljϕδ)Mj(f2, . . . , fn) du
∣∣∣∣,

where Mj is a minor. We treat only one term of the sum in (1.3), say the first one,

since the remaining terms are similar. The minor M1 is a sum of terms of the form

±
∏n
j=2 Lmjfj where {m2, . . . ,mn} = {2, . . . , n}. We need to estimate the Lγ (quasi)norm

of the supremum over all δ > 0 of a typical term of the form

(1.4)
∫
Hn

|f1 − c1| |L1ϕδ|
n∏
j=2

|Lmjfj | du.

We observe that |(L1ϕδ)(u)| ≤ Cδ−2n−3. To see this, recall that u0 = (z0, t0) and let

z0 = (x0
j + iy0j ) and z = (xj + iyj). Then (X1ϕδ)(z, t) = 1

δ2n+2 {− 1
δ
∂ψ
∂x1

+ 2y01−2y1
δ2

∂ψ
∂t },

where the function inside the curly brackets is evaluated at
(
z0−z
δ ,

t0−t−2 Im z·z̄0
δ2

)
. Since

ψ is supported in the unit ball we deduce that |y01 − y1| ≤ δ and therefore the expression

inside the curly brackets above is bounded by Cδ−1. We obtain the estimate |(X1ϕδ)(u)| ≤
Cδ−2n−3 and similarly |(Y1ϕδ)(u)| ≤ Cδ−2n−3 for all u ∈ Hn. Let’s now estimate (1.4) by

(1.5) Cδ−2n−3

∫
Bδ

|f1 − c1|
n∏
j=2

|Lmjfj | du.

For any 1 ≤ j ≤ n select 1 < sj < pj and let q = (1 −
∑n
j=2

1
sj

)−1. Because of our

assumption on γ and on the pj ’s , one can check that 0 < 1
s1
− 1

2n+2 <
1
q < 1. We now

apply Hölder’s inequality to (1.5) with exponents

1
q

+
1
s2

+ . . .+
1
sn

= 1.

We estimate (1.5) by

(1.6) Cδ−2n−3 ‖f1 − c1‖Lq(Bδ)
n∏
j=2

‖Lmjfj‖Lsj (Bδ).

5



We are now ready to use the Poincaré inequality (1.0). Since we have 1
2n+2 <

1
s1
< 1 and

1
s1
− 1

2n+2 <
1
q , the hypotheses are satisfied. We obtain that (1.6) is bounded by

Cδ−2n−3(δ2n+2)(
1

2n+2+ 1
q− 1

s1
)
[ n∑
k=1

[
‖Xkf1‖Ls1 (2Bδ) + ‖Ykf1‖Ls1 (2Bδ)

]] n∏
j=2

‖Lmjfj‖Lsj (Bδ)

which equals

Cδ
−(2n+2)

nP

j=1

1
sj

[ n∑
k=1

[
‖Xkf1‖Ls1 (2Bδ) + ‖Ykf1‖Ls1 (2Bδ)

]] n∏
j=2

‖Lmjfj‖Lsj (Bδ)(1.7)

≤C ′
n∏
j=1

[ n∑
k=1

[(
(|Xkfj |sj )∗

) 1
sj (u0) +

(
(|Ykfj |sj )∗

) 1
sj (u0)

]]
,(1.8)

where by g∗ we denote the Hardy-Littlewood maximal function of g on the Heisenberg

group defined as follows:

g∗(u0) = sup
ε>0

1
|Bε(u0)|

∫
Bε(u0)

|g(u)| du.

(1.8) now controls the supremum over all δ > 0 of (1.4). Summing (1.8) over all possible

permutations {m2, . . . ,mn} = {2, . . . , n} we get the estimate below for the first term of

the sum in (1.3):

(1.9) C ′(n− 1)!
n∏
j=1

[ n∑
k=1

[(
(|Xkfj |sj )∗

) 1
sj (u0) +

(
(|Ykfj |sj )∗

) 1
sj (u0)

]]
.

Similar estimates hold for the other terms of the sum in (1.3). In fact, the proof is exactly

the same, except that the index 1 is replaced by some 2 ≤ l ≤ n. Now (1.9) majorizes

the supremum over all δ > 0 of (1.3). Since sj < pj , Hölder’s inequality with exponents
1
p1

+ . . .+ 1
pn

= 1
γ and the boundedness of the Hardy-Littlewood maximal function on Lt

for t > 1 will give that the Lγ (quasi)norm of (1.9) is bounded above by

(1.10) Cn,pj

n∏
j=1

[ n∑
k=1

[
‖Xkfj‖Lpj + ‖Ykfj‖Lpj

]]
.
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Therefore ‖ supδ>0 |
∫

Jac(F )ϕδ du|‖Lγ is dominated by (1.10) and the proof of (0.4) is now

complete.

2. Remarks on Theorem 1

We begin this section by indicating why Jac(F ) has integral zero whenever F is a

compactly supported C1 function from the Heisenberg group into Rn.

We expand Jac(F ) along a column, say the first one. We obtain

(2.1) Jac(F ) =
n∑
j=1

(−1)j+1(Ljf1)Mj(f2, . . . , fn).

Next, we integrate over the Heisenberg group. Using that F is compactly supported and

that the Lj ’s are skew-adjoint, (L∗j = −Lj), an integration by parts gives:

(2.2)
∫
Hn

Jac(F ) du = −
∫
Hn

f1

n∑
j=1

(−1)j+1Lj [Mj(f2, . . . , fn)] du.

Each Lj [Mj(f2, . . . , fn)] is a sum of (n − 1)! terms so the sum in (2.2) consists of a total

of n! signed terms. Note that since Lj ∈ {Xj , Yj}, all the commutators [Lj , Lk] = 0. This

means that the vector fields Lj , 1 ≤ j ≤ n commute with each other and the order of the

indices i1, . . . , in in the expression Li1Li2 . . . Lin is irrelevant. An easy induction argument,

shows that the sum in (2.2) is identically equal to zero! We omit the details. Let us state

this observation as a proposition.

Proposition. Let k ≤ N and suppose that Z1, . . . , Zk are smooth skew adjoint vector

fields in RN which commute with each other. Then for all f1, . . . , fk compactly supported

C1 functions on RN , the Jacobian det(Zjfl) has integral zero.

Let us point out that there is a more esoteric reason for the apperently artificial can-

cellation discussed above. As the reader may have guessed this reason must involve some

general way of integrating by parts, i.e. some form of Stokes’ Theorem. For instance,
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in RN let Zj = ∂
∂xj

, for 1 ≤ j ≤ N . Pick a ball B properly containing the support of

(f1, . . . , fN ). We have

∫
RN

det(Zjfl) dx =
∫
B

det(Zjfl) dx1 ∧ . . . ∧ dxN =
∫
B

df1 ∧ . . . ∧ dfN =

∫
B

d(f1df2 ∧ . . . ∧ dfN ) =
∫
∂B

f1df2 ∧ . . . ∧ dfN = 0,

since f1 vanishes on ∂B. We used Stokes’ Theorem in the penultimate equality above.

Finally we note that the proof of Theorem 1 can be modified to give the following

endpoint result. We denote by ‖g‖Hγ,∞ the weak Lγ(Hn) (quasi)norm of g+.

Theorem 1a. In the endpoint case where the harmonic mean of p1, . . . , pn is γ = 2n+2
2n+3 ,

there exits a constant C > 0 that depends only on n and on the pj’s, such that for all F

= (f1, . . . , fn) as before, the following estimate holds:

(2.3) ‖ Jac(F )‖Hγ,∞ ≤ C
n∏
j=1

[ n∑
k=1

(‖Xkfj‖Lpj + ‖Ykfj‖Lpj )
]
.

Sketch of proof: We set q = (1 −
∑n
j=2

1
pj

)−1. Since p1 < 2n + 2, we conclude that

1 < q < ∞. Up to and including estimate (1.5) the proof is similar to the previous

section. Then we obtain (1.6) by applying Hölder’s inequality to (1.5) with exponents q,

s2 = p2, . . . , sn = pn. The Poincaré inequality (1.0) with m = 0 will give (1.8) where the

sj ’s are replaced by the pj ’s. Therefore, the pointwise estimate

(2.4) Cn,pj

n∏
j=1

[ n∑
k=1

[(
(|Xkfj |pj )∗

) 1
pj (u0) +

(
(|Ykfj |pj )∗

) 1
pj (u0)

]]
.

holds for the supremum over all δ > 0 of (1.3). We obtain the required weak type inequality

by applying to (2.4) an argument similar to that in [G], page 77.

We end this section by noting that for some typle F = (f1, . . . , fn) of compactly sup-

ported smooth functions, Jac(F ) doesn’t have vanishing first order moments and hence it
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can’t lie in Hγ for γ ≤ 2n+2
2n+3 . Therefore, Theorem 1a is sharp since the weak space Hγ,∞

cannot be replaced by the (strong) space Hγ .

3. Weak convergence in H1(Hn)

In this section we wish to extend the theorem of Jones and Journé, [JJ], on weak∗

convergence inH1(Rn). The proof we are going to give follows the ideas of the original proof

by [JJ] and our only contribution is its extension to general normal spaces of homogeneous

type. Following R. Maćıas and C. Segovia, [MS], we say that a space of homogeneous type

(X, d, µ) is normal if there exist two positive constants c1, c2 satisfying

(3.1) c1r ≤ µ(B(x, r)) ≤ c2r

for every ball B(x, r) with radius r and µ({x}) < r < µ(X). Since Rn, or the Heisenberg

group, with the usual structures are not normal spaces in the sense of Maćıas and Segovia,

we need to modify their definition by introducing a power of β in (3.1). We call a space

of homogeneous type (X, d, µ) β-normal if for some constants c1, c2 and β the following

inequality holds

c1r
β ≤ µ(B(x, r)) ≤ c2rβ

for every r with µ ({x}) < r < µ(X). Fortunately, a result of [MS] asserts that a given

quasimetric d may always be replaced by another quasimetric δ, which induces the same

topology, such that the space (X, δ, µ) is normal. δ(x, y) is the “measure” distance which

is defined as δ(x, y) = inf{µ(B) : B is a d-ball containing x and y} and the topologies

induced by d and δ coincide. Then by raising the quasimetric δ to the power 1/β, we

obtain a third quasimetric δβ = δ1/β such that (X, δβ , µ) is β-normal and the topologies

induced by δβ and δ coincide. Thus for all β > 0, every space of homogeneous type (X, d, µ)

has a topologically equivalent quasimetric δβ under which it is β-normal. Furthermore by

another result of [MS] every d-Lipschitz function of order α is equal a.e. to a δβ-Lipschitz

function of order βα ([MS] prove this for β = 1 but raising the metric to the power 1/β

explains the index βα).
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We assume that (X, d, µ) is a β-normal space of homogeneous type. The spaces H1(X),

VMO(X) and BMO(X) are defined in [CW].

Under the assumption of β-normality for X, the theorem of [JJ] on weak∗ convergence

in H1(Rn) carries over to H1(X).

Theorem 2. Suppose {fn} is a sequence in H1(X) such that ‖fn‖H1(X) ≤ 1 for all n and

such that fn → f a.e. Then f is in H1(X) and for all ϕ ∈ VMO(X)

∫
X

fnϕdµ→
∫
X

fϕ dµ.

Proof: We may suppose that ‖ϕ‖L1 , ‖ϕ‖L∞ ≤ 1, support(ϕ) is compact and that

‖ϕ‖Lip 1 ≤ 1. VMO is defined as the closure in BMO of the continuous functions with

compact support. To see that it is sufficient to suppose ϕ ∈ Lip 1, consider a compact

set K ⊆ X containing the support of ϕ and note that by the Stone Weierstrass Theorem

Lip 1 ∩ C(K) is uniformly dense in C(K).

Fix ε > 0. We need to find an n0 such that for all n ≥ n0 , |
∫

(fn − f)ϕdµ| ≤ ε. By

Fatou’s lemma ‖f‖L1 = ‖lim
n
|fn|‖L1 ≤ lim

n
‖fn‖L1 ≤ lim

n
‖fn‖H1 ≤ 1. Thus f ∈ L1 and we

can therefore find a δ > 0 such that
∫
A
|f | dµ ≤ ε whenever µ(A) ≤ Cδeε−1

. We select δ

smaller than εβ+1e−ε
−1

.

By Egorov’s Theorem, there exists a set E such that fn → f uniformly on X − E and

µ(E) < δ. Let τ = max (0, 1 + ε log(χE)∗), where (χE)∗ denotes the Hardy-Littlewood

maximal function of the characteristic function of the set E. Note that 0 ≤ τ ≤ 1 and

τ ≡ 1 a.e. on E. We will show that ϕτ ∈ BMO(X) and

(3.3) ‖ϕτ‖BMO ≤ Cε.

Assuming (3.3) we complete the proof of Theorem 2. Clearly E is contained in the

support of τ . However, the support of τ is not very much larger than E; in fact, the weak
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type (1,1) estimate for the maximal function gives that µ (support(τ)) ≤ Ceε−1
µ (E) ≤

Ceε
−1
δ. Hence

∫
support(τ)

|f | dµ ≤ ε by our choice of δ. We now select n0 such that for all

n ≥ n0 the uniform norm of fn − f on X −E is smaller than ε. Then for n ≥ n0 we have

|
∫
X

(fn − f)ϕdµ| ≤ |
∫
X

(fn − f)ϕ(1− τ) dµ|+ |
∫
X

fϕτ dµ|+ |
∫
X

fnϕτ dµ|

≤ ‖fn − f‖L∞(X−E)‖ϕ‖L1 +
∫

support (τ)

|f | dµ+ ‖fn‖H1‖ϕτ‖BMO

≤ ε+ ε+ Cε = (C + 2)ε.

This proves that fn converges weakly∗ to f . Let us now show (3.3). The estimate

1
µ(B)

∫
B

|ϕτ | dµ ≤ 1
µ(B)

‖ϕ‖L∞µ
(
support (τ)

)
≤ 1
µ(B)

Ceε
−1
δ ≤ Cε

β+1

µ(B)
≤ Cε

holds when B is a ball with µ(B) ≥ εβ . Assume therefore that µ(B) ≤ εβ . If ϕB is the

average of ϕ over B, for x ∈ B we have

|ϕ(x)− ϕB | ≤
1
µ(B)

∫
B

|ϕ(x)− ϕ(y)| dµ(y) ≤

C

µ(B)

∫
B

d(x, y) dµ(y) ≤ C radius (B) ≤ Cµ(B)
1
β ≤ Cε.

We used that ϕ is Lipschitz and that X is β-normal in the inequalities above. Now assume

for a moment that

(3.4) ‖τ‖BMO ≤ Cε.

Then (3.3) follows easily, since for all balls B we have:

1
µ(B)

∫
B

|ϕτ − ϕBτB | dµ ≤
|τB |
µ(B)

∫
B

|ϕ− ϕB | dµ+
|ϕB |
µ(B)

∫
B

|τ − τB | dµ ≤ Cε.

It suffices therefore to prove (3.4). Since max(0, g) = g+|g|
2 and ‖ |g| ‖BMO ≤ 2‖g‖BMO,

(3.4) reduces to the estimate

(3.5) ‖ log(χE)∗‖BMO ≤ C.
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For 0 < δ < 1, the function
(
(χE)∗

)δ is an A1-weight with a bound Bδ that depends only

on δ and not on E. For a proof of this see [S2], Ch. V par. 5.2. The proof presented

there for Euclidean spaces can be easily adapted to spaces of homogeneous type. Therefore(
(χE)∗

)δ is an A2-weight with bound B2
δ . By the comment in [S2] Ch. V par. 1.8, the

logarithm of an A2-weight is in BMO with norm bounded by the logarithm of the A2

bound of the weight. The same argument applies in the setting of a space of homogeneous

type. We obtain that log(χE)∗ = 1
δ log

(
(χE)∗

)δ is in BMO with norm ≤ 2
δ logBδ. This

concludes the proof of (3.5) and hence of Theorem 2. A different proof of (3.5) can be

found in [CR] and [JO].

4. Compensated Compactness properties of Jacobians

In this section, we give a corollary of Theorems 1 and 2. We say that a sequence of

functions converges weakly∗ in H1 if it converges in the weak∗ topology of H1 = (VMO)∗.

For a sequence of functions Fk : Hn → R
n, we use the notation Fk = (fk1 , . . . , f

k
n). Let Lj

be Xj or Yj as before. We have the following

Corollary. (Compensated compactness property of Jacobians on the Heisenberg group.)

Let B > 0 be a constant. Suppose that for some pj, 1 < pj < ∞ with harmonic mean 1,

and for some sequence of functions Fk : Hn → R
n the bound below holds:

(4.1)
n∑

j,l=1

‖Ljfkl ‖Lpl ≤ B for all k = 1, 2, 3, . . . .

Then some subsequence Jac(Fk′) of Jac(Fk) converges weakly∗ in H1(Hn). Furthermore,

if for all j, l ∈ {1, . . . , n} the sequences Ljfkl converge to gjl a.e. as k →∞, then det(gjl)

is in H1(Hn) and Jac(Fk′) converges weakly∗ to det(gjl) as k′ →∞.

Proof: By (4.1) and Theorem 1, the sequence Jac(Fk) satisfies ‖ Jac(Fk)‖H1 ≤ CB for

all k. H1(Hn) is the dual of VMO(Hn). The Banach-Alaoglu Theorem guarantees the

existence of a subsequence Jac(Fk′) which converges weakly∗ in H1. If Ljfkl → gjl a.e.
12



as k → ∞, then Jac(Fk) → det(gjl) a.e. and hence Jac(Fk′) → det(gjl) a.e. as k′ → ∞.

By Theorem 2 we conclude that det(gjl) is in H1 and that the weak∗ limit of Jac(Fk′) is

det(gjl). The proof of the Corollary is now complete.

The authors would like to thank the referee for his useful comments.
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