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Abstract

We prove boundedness of pseudodifferential operators with symbols
satisfying the conditions |∂β

ξ ∂γ
xa(x, ξ)| ≤ Cβ,γ |ξ|m−|β|+|γ| on homoge-

neous Besov-Lipschitz and Triebel-Lizorkin spaces

1 Introduction

The study of pseudodifferential operators with symbols in the exotic classes
Sm

1,1 has received a lot of attention. These are operators of the form

(Tf)(x) =
∫
Rn

eix·ξa(x, ξ)f̂(ξ) dξ,

where the symbol a(x, ξ) is a C∞(Rn ×Rn) function satisfying

|∂β
ξ ∂γ

xa(x, ξ)| ≤ Cβ,γ(1 + |ξ|)m−|β|+|γ|,

for all β, γ n-tuples of nonnegative integers. The interest in such operators
is in part due to the role they play in the paradifferential calculus of Bony
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[1]. The fact that not all such operators of order zero are bounded on L2

complicates their study. Nevertheless, the exotic pseudodifferential opera-
tors do preserve spaces of smooth functions. See for example Meyer [12],
Runst [15], Bourdaud [2], as well as Stein [16] and the references therein.

The continuity results are often obtained by making use of the so-called
singular integral realization of the operators. This involves proving esti-
mates on the Schwartz kernels of the pseudodifferential operators similar to
those of the kernels of Calderón–Zygmund operators. There is, however, an
alternative approach working directly with the symbols of the pseudodiffer-
ential operators. This approach has been pursued by Hörmander in [9] and
[10] for L2–based Sobolev spaces. The ideas in those papers combined with
wavelets techniques were latter extended to Lp–based Sobolev spaces and
other more general spaces of smooth functions by Torres [17].

In this note we consider C∞ symbols a(x, ξ) in Rn × (Rn \ {0}) that
satisfy the following conditions: For all n-tuples of nonnegative integers β
and γ there exist positive constants Cβ,γ such that

|∂β
ξ ∂γ

xa(x, ξ)| ≤ Cβ,γ |ξ|m−|β|+|γ|, (1)

for (x, ξ) ∈ Rn × (Rn \ {0}). We call such symbols homogeneous symbols
of type (1, 1) and order m. The class of all such symbols will be denoted by
Ṡm

1,1.
Our purpose is to show boundedness for pseudodifferential operators

with symbols in Ṡm
1,1 on homogeneous function spaces. Our results are mo-

tivated by a theorem of Grafakos [8] who proved boundedness of pseudod-
ifferential operators with symbols in Ṡm

1,1 on homogeneous Lipschitz spaces.
The proof in [8] follows more or less the singular integral approach of Stein
in [16]. In this paper we use a wavelet approach borrowing ideas from [17].

The appropriate setting for our results is in the context of the ho-
mogeneous Triebel-Lizorkin Ḟα,q

p (Rn) spaces and Besov-Lipschitz spaces
Ḃα,q

p (Rn) (see the definition of these spaces below). As with inhomogeneous
symbols, it is possible to show that the Schwartz kernels of the operators of
order zero satisfy for x 6= y estimates of the form

|∂γ
xK(x, y)|+ |∂γ

y K(x, y)| ≤ Cγ |x− y|−n−|γ| (2)

and even better estimates for |x − y| large. See for example the book by
Meyer [13], p.294. It is then possible to analyze boundedness properties of
the operators using versions of the T1-Theorem of David and Journé [4].
Moreover, such type of results are applied to pseudodifferential operators
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with inhomogeneous symbols in the book of Meyer mentioned before (p.329)
in the context of Besov spaces with smoothness α > 0 and p, q > 1 (cf.
also [11]). The arguments therein may be adapted to pseudodifferential
operators with homogeneous symbols and the same range of parameters
for the Besov spaces. Our approach, however, will be based on some very
simple calculations that notoriously work for both full scales of Ḟα,q

p (Rn)
and Ḃα,q

p (Rn) spaces.
Let S(Rn) be the space of Schwartz test functions and denote its dual

by S ′(Rn), the space of tempered distributions. In this paper the Fourier
transform of a function f ∈ S(Rn) is given by f̂(ξ) =

∫
f(x)e−ix·ξdx and

S0(Rn) is used to denote the subspace of S(Rn) consisting of all functions
whose Fourier transform vanishes to infinite order at zero. The dual space
of S0(Rn), with respect to the topology inherited from S(Rn), is S ′/P(Rn),
the set of tempered distributions modulo polynomials. The Triebel-Lizorkin
and Besov-Lipschitz spaces are defined as follows. Let ϕ be a function in
S(Rn) satisfying supp ϕ̂ ⊂ {ξ : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂| ≥ C > 0 for
3/5 ≤ |ξ| ≤ 5/3. Define ϕj(ξ) = 2jnϕ(2jξ). For α real, 0 < p, q < ∞, and f
in S ′/P(Rn) define the Triebel-Lizorkin and Besov-Lipschitz norms of f by

‖f‖Ḟ α,q
p (Rn) = ‖(

∞∑
j=−∞

(2jα|ϕj ∗ f |)q)1/q‖Lp ,

and

‖f‖Ḃα,q
p (Rn) = (

∞∑
j=−∞

(‖2jα(ϕj ∗ f)‖Lp)q)1/q,

respectively. Note the the above definitions are given modulo all polynomi-
als, so strictly speaking an element of the spaces Ḟα,q

p (Rn) and Ḃα,q
p (Rn) is

an equivalent class of distributions. It can be shown that the definition of
these spaces is independent of ϕ. The space S0(Rn) is dense in all of these
spaces. For these and further properties of these function spaces we refer to
the books [14] and [19].

We have the following results for operators with symbols in Ṡm
1,1 acting

on the spaces Ḟα,q
p (Rn) and Ḃα,q

p (Rn).

Theorem 1.1 Let 0 < p, q < ∞. For α > n(max(1, p−1, q−1) − 1), every
pseudodifferential operator

(Tf)(x) =
∫
Rn

a(x, ξ)f̂(ξ)eix·ξdξ, f ∈ S0
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with symbol a(x, ξ) in Ṡm
1,1 extends to a bounded operator that maps the

space Ḟα+m,q
p (Rn) to Ḟα,q

p (Rn). For α ≤ n(max(1, p−1, q−1) − 1), every T
as above which satisfies T ∗xγ = 0 for all |γ| ≤ n(max(1, p−1, q−1)− 1)− α
extends to a bounded operator from Ḟα+m,q

p (Rn) to Ḟα,q
p (Rn).

Theorem 1.2 Let 0 < p, q < ∞. For α > n(max(1, p−1, q−1) − 1), every
pseudodifferential operator

(Tf)(x) =
∫
Rn

a(x, ξ)f̂(ξ)eix·ξdξ, f ∈ S0 (3)

with symbol a(x, ξ) in Ṡm
1,1 extends to a bounded operator that maps the

space Ḃα+m,q
p (Rn) to Ḃα,q

p (Rn). For α ≤ n(max(1, p−1, q−1) − 1), every T
as above which satisfies T ∗xγ = 0 for all |γ| ≤ n(max(1, p−1, q−1)− 1)− α
extends to a bounded operator from Ḃα+m,q

p (Rn) to Ḃα,q
p (Rn).

We end this section with the following observation. Note that if m −
|γ|+ |β| < 0, then ∂γ

ξ ∂β
xa(x, ξ) is singular at ξ = 0 and for a general function

f in S the integral in (3) is not absolutely convergent. For this reason it is
natural to define the operator T initially on S0.

2 The proof of the theorems

As discussed above it is natural to consider T initially defined on S0. More-
over, we have

Lemma 2.1 Let a(x, ξ) be a symbol in Ṡm
1,1. Then the pseudodifferential

operator with symbol a(x, ξ) maps S0 to S. In particular, its formal transpose
T ∗ maps S ′ to S ′/P.

Let f be a function in S0 and let ∆ξ be the Laplace operator in the
variable ξ. Since for any positive integer N ,

(I −∆ξ)N (eix·ξ) = (1 + |x|2)Neix·ξ,

an integration by parts gives

(Tf)(x) =
∫
Rn

eix·ξ (I −∆ξ)N

(1 + |x|2)N

(
a(x, ξ)f̂(ξ)

)
dξ. (4)
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Since f̂ vanishes to infinity order at the origin, the conditions on the symbol
a(x, ξ) and an application of Leibnitz’s rule give

|(Tf)(x)| ≤ Rm,N (f)
(1 + |x|2)N

, (5)

whereRm,N is an appropriate seminorm in S. A similar computation applies
to the derivatives ∂γ(Tf), thus proving the lemma.

For an n-tuple of integers k and an integer j denote by Qjk the dyadic
cube {(x1, . . . , xn) ∈ Rn : ki ≤ 2jxi < ki + 1}, by xQjk

its “lower left
corner” 2−jk and by l(Qjk) its side length 2−j . For Q dyadic let ϕQ(x) =
|Q|1/2ϕj(x − xQ). A function ϕ as in the definition of the homogeneous
spaces can be chosen so that for f ∈ S ′,

f =
∑
Q

< f, ϕQ > ϕQ, (6)

where < f, ϕQ > simply denotes the action of the distribution f on the test
function ϕQ. For f in Ḟα,q

p (Rn) or Ḃα,q
p (Rn) the convergence in (6) is in

the (quasi)-norm of the spaces and for f in S0 is in the topology of S. See
[6] and [7].

It follows from Lemma 2.1 that the action of a pseudodifferential operator
on S0 can be expressed as

Tf =
∑
Q

< f, ϕQ > TϕQ. (7)

The operator given by (7) is the one that is extended to the whole homoge-
neous space in our Theorems. We now turn to the proofs.

The map
Sϕ(f) = {< f, ϕQ >}Q (8)

is called the ϕ-transform (or sequence of nonorthogonal wavelet coefficients).
It is well known by the work in [5], [6] that the homogeneous ϕ-transform
provides a characterization of the spaces Ḟα,q

p (Rn) and Ḃα,q
p (Rn) via the

equivalence of norms

‖f‖Ḟ α,q
p (Rn) ∼

∥∥∥∥∥∥∥
∑

j

 ∑
l(Q)=2−j

|Q|−α/n−1/2| < f, ϕQ > |χQ

q1/q
∥∥∥∥∥∥∥

Lp
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and

‖f‖Ḃα,q
p (Rn) ∼

∑
j

∥∥∥∥∥∥
∑

l(Q)=2−j

|Q|−α/n−1/2| < f, ϕQ > |χQ

∥∥∥∥∥∥
q

Lp

1/q

,

where χQ is the characteristic function of Q.
For α, p, and q as above let J = n/ min(1, p, q) and let [α] be the integer

part in α. A smooth molecule for Ḟα,q
p (Rn) or Ḃα,q

p (Rn) associated with a
dyadic cube Q with side length l(Q) is a function mQ satisfying:

∫
xγmQ(x) dx = 0 if |γ| ≤ [J − n− α] (9)

|mQ(x)| ≤ |Q|−1/2(1 + l(Q)−1|x− xQ|)−max(J+ε,J+ε−α) (10)

|∂γmQ(x)| ≤ |Q|−1/2−|γ|/n(1 + l(Q)−1|x− xQ|)−J−ε, |γ| ≤ [α] + 1 (11)

The importance of these functions is due to the fact that if

f =
∑
Q

sQmQ

in S ′, where {mQ} is a family of smooth molecules for Ḟα,q
p (Rn) or Ḃα,q

p (Rn),
then

‖f‖Ḟ α,q
p (Rn) ≤ C

∥∥∥∥∥∥∥
∑

j

 ∑
l(Q)=2−j

|Q|−α/n−1/2|sQ|χQ

q1/q
∥∥∥∥∥∥∥

Lp

or

‖f‖Ḃα,q
p (Rn) ≤ C

∑
j

∥∥∥∥∥∥
∑

l(Q)=2−j

|Q|−α/n−1/2|SQ|χQ

∥∥∥∥∥∥
q

Lp

1/q

.

For the above results we refer again to [6] and [7].
Now, let T be a linear continuous operator from S0 → S ′. Assume that

TϕQ = C|Q|−m/nmQ, (12)

where {mQ}Q is a family of smooth molecules for Ḟα,q
p (Rn) or Ḃα,q

p (Rn).
Then using the ϕ-transform it is easy to see that T can be extended as a
bounded operator from Ḟα+m,q

p (Rn) to Ḟα,q
p (Rn) or from Ḃα+m,q

p (Rn) to
Ḃα,q

p (Rn).
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Suppose that T is a pseudodifferential operator whose symbol a(x, ξ) is
in Ṡm

1,1. By the remark (12) above it will suffice to show that for a fixed
dyadic cube Q, TϕQ is a scaled multiple of a molecule. A simple dilation
shows that

(TϕQ)(x) =
∫

eix·ξa(x, ξ)ϕ̂Q(ξ)dξ = 2jn/2(TQϕ)(2jx− k), (13)

if Q = Qjk, where we set

(TQf)(x) =
∫

eix·ξa(2−j(x + k), 2jξ)f̂(ξ)dξ.

Let us fix a multi-index γ. We have

(∂γTQϕ)(x) =
∫
Rn

eix·ξ ∑
δ≤γ

Cδ(iξ)δ∂γ−δ
x (a(2−j(x + k), 2jξ)ϕ̂(ξ) dξ (14)

for certain Cδ constants, where δ ≤ γ simply means that δj ≤ γj for all
j = 1, . . . , n.

Now fix N > max(J, J − α)/2. An integration by parts gives

(∂γTQϕ)(x) =
∫
Rn

eix·ξ (I −∆ξ)N

(1 + |x|2)N

∑
δ≤γ

Cδ(iξ)δ∂γ−δ
x (a(2−j(x+k), 2jξ)ϕ̂(ξ) dξ

(15)
By Leibnitz’s rule, there exist constants Kα,β such that

(I −∆ξ)N∂γ−δ
x (a(2−j(x + k), 2jξ)ϕ̂(ξ)(iξ)δ) =∑

|α+β|=2N

Kα,β∂β
ξ ∂γ−δ

x (a(2−j(x + k), 2jξ)∂α
ξ (ϕ̂(ξ)(iξ)δ)).

Using the estimates (1) we conclude that

|∂β
ξ ∂γ−δ

x (a(2−j(x + k), 2jξ)| ≤ Cβ,γ−δ2j|β|2−j(|γ|−|δ|)|2jξ|m+(|γ|−|δ|)−|β|

≤ C2jm|ξ|m+(|γ|−|δ|)−|β|.

Summing over all α, β, and δ as above and using that |ξ| ∼ 1 we conclude
that the integrand in (15) is pointwise bounded by Cγ2jm(1 + |x|2)−N and
thus

|(∂γTQϕ)(x)| ≤ Cγ2jm(1 + |x|2)−N . (16)
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We now dilate and translate (16) to deduce that

|(∂γTQϕ)(x)| ≤ C2jn/22j|γ|2jm(1 + |2jx− k|2)−N

≤ C|Q|−m/n−1/2−|γ|/n(1 + l(Q)−1|x− xQ|)−max(J+ε,J+ε−α)

We must now check the vanishing moment condition for TϕQ. If [J −
n − α] < 0 this condition is vacuous. If [J − n − α] ≥ 0, this is an easy
consequence of the hypothesis T ∗xγ = 0, since∫

xγ(TϕQ)(x)dx =< xγ , TϕQ >=< T ∗(xγ), ϕQ >= 0.

Both theorems are now proved.
We conclude this section with some remarks.
1. For p > 1 let p′ denote p/(p − 1). It can be shown that the spaces

Ḟα,q
p (Rn) can actually be considered as spaces of distributions modulo poly-

nomials of degree less than or equal to [α − n/p]. (See [6] page 154.) For
1 < p, q < ∞, if T maps Ḟα+m,q

p (Rn) to Ḟα,q
p (Rn), then by duality T ∗ maps

Ḟ−α,q′
p′ (Rn) to Ḟ−α−m,q′

p′ (Rn). It follows that for T ∗ to be even well-defined
on Ḟ−α,q′

p′ (Rn) it must annihilate polynomials of degree [−α − n/p′]. The
conditions on T ∗ in the second part of Theorems 1.1 and 1.2 for α < 0
become then necessary for p → 1+.

2. For more general operators T with kernels satisfying estimates (2) and
the usual weak boundedness property assumed in the T1-Theorem (which
is always satisfied by pseudodifferential operators of order zero and their
transposes), the results in [13] state that the conditions T (xγ) = 0 for all
|γ| ≤ [α] imply that T is bounded on Ḃα,q

p (Rn) for α > 0 and p, q ≥ 1.
Let now α < 0. If T is a pseudodifferential operator in Ṡ0

1,1, then T ∗ is not
necessarily a pseudodifferential operator. Nevertheless, its kernel K∗(x, y)
is K(y, x) and, hence, it still satisfies the estimates (2) by symmetry. The
results in [13] state that if T ∗ annihilates polynomials of degree less than or
equal to [−α], then T ∗ is bounded on Ḃ−α,q

p , and then by duality T = T ∗∗ is
bounded in Ḃα,q

p , which agrees with our results. Such duality arguments are
not available for other values of the parameters but our proof is still valid.

3. When m 6= 0, we could have precomposed the operator with an
appropriate power of the Laplacian and reduced our proof to the case m =
0. There are also versions of the T1-Theorem for general operators whose
kernels satisfy appropriate m-versions of the estimates (2). In principle,
such results could be applied to operators in Ṡm

1,1 and some values of the
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parameters α, p and q, but they lead to weaker results than the ones we
have presented here (cf. [18]).

4. Note that our approach does not require the giving of a precise mean-
ing on the action of an operator T (satisfying (2)) on polynomials, as it is
usually required in the T1-Theorem and its versions. We only need to know
that T ∗ acts on polynomials, which is automatic by duality.

5. Operators with homogeneous symbols of degree m in ξ satisfying
estimates (1) were studied by Calderón and Zygmund [3]. For this subclass
of symbols a partial calculus holds but it does not extend to the whole class
Ṡm

1,1 (see [16], p.268).

3 Examples and applications

Symbols in Ṡm
1,1 which are independent of x exist in abundance. For instance,

it is easy to see that the reciprocal of an elliptic polynomial of n variables
which is homogeneous of degree m > 0 is in Ṡ−m

1,1 .
An example of a homogeneous symbol in the class Ṡ0

1,1 is the following:

+∞∑
k=−∞

ei2kx·ξφ(2−kξ),

where φ is a smooth bump supported away from the origin. More generally,
suppose that the sequence of smooth functions {mk(x)}k∈Z in Rn satisfies

‖∂βmk‖∞ ≤ Cα2|α|k, (17)

for all α n-tuples of nonnegative integers and k any integer. Then the symbol

a(x, ξ) =
+∞∑

k=−∞
mk(x)φ(2−kξ)

is in Ṡ0
1,1.

We now give an application. Let ∆j be the Littlewood-Paley operators
defined by ∆̂jg(ξ) = ĝ(ξ)φ(2−jξ), where φ is a smooth bump supported
away from the origin which satisfies

∑
j∈Z φ(2−jξ) = 1 for all ξ 6= 0.

Suppose now that f is a function on Rn that satisfies∑
j∈Z

‖∆jf‖∞ ≤ C(f) < ∞. (18)
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Let F be a C∞ function on Rn with F (0) = 0. Suppose that f is in some
of the homogeneous function space discussed in the previous section with
index of smoothness α > 0. Denote such space by Xα,q

p . We claim that
F (f) lies in the same space Xα,q

p . For the proof of this we borrow the ideas
of Bony as presented in [12].

For k integer define

fk =
k∑

j=−∞
∆jf, (19)

and write f = limk→∞ fk, with uniform convergence because of (18). The
functions fk have Fourier transforms with compact support and they are
smooth (actually analytic of exponential type). Moreover, by (18), they are
uniformly bounded. Using (18) and Bernstein’s inequality we obtain the
following estimates for their derivatives

‖∂αfk‖∞ ≤ Cα2|α|k‖fk‖∞ ≤ C(f)Cα2|α|k. (20)

Write now

F (f) = lim
N→∞

N∑
k=−N

F (fk)− F (fk−1) =
+∞∑

k=−∞
F (fk)− F (fk−1), (21)

where convergence is justified from the fact that F is continuous, F (0) = 0
and that fN → f and f−N → 0 uniformly as N → +∞. Next apply the
mean value theorem to write (21) as

F (f)(x) =
+∞∑

k=−∞
mk(x) (∆kf)(x),

where

mk =
∫ 1

0
F ′(tfk + (1− t)fk−1) dt. (22)

Using (20), the smoothness of F , and the chain rule, we see that the functions
mk satisfy (17). We conclude that the symbol

a(x, ξ) =
+∞∑

j=−∞
mj(x)φ(2−jξ)

is in Ṡ0
1,1. We have that F (f) = Taf . It follows from Theorems 1.1 and

1.2 that the function F (f) is in Xα,q
p , provided α > 0 and p, q ≥ 1, or if
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α > n(max(1, p−1, q−1) − 1). Observe that because of the nonlinearity of
the problem, in the estimate

‖F (f)‖Xα,q
p

≤ Cf‖f‖Xα,q
p

, (23)

the constant Cf depends on f . In fact, both the functions mk and the
symbol a depend on f . If we assume that F (t) = tD then, after a careful
examination of the arguments above and of the proof of the theorems in the
previous section, we see that Cf in (23) is controlled by a suitable (large)
power of the bound C(f) in (18).

Finally observe that the left hand side of (18) is the Ḃ0,1
∞ norm of f . By

some well-known facts about functions of exponential type (see [19]),

‖∆jf‖∞ ≤ C2jn/p‖∆jf‖p.

¿From this one obtains the inequality (Sobolev-Besov embedding)∑
j∈Z

‖∆jf‖∞ ≤ C
∑
j∈Z

2jn/p‖∆jf‖p.

Then, in particular, the application described can be used in Ḃα,q
p (Rn) with

α = n/p and q = 1 yielding (23) with Cf controlled by a power of ‖f‖
Ḃ

n/p,1
p

.
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Comm. Partial Diff. Eq. 13 (1988), 1059–1083.

[3] A. Calderón and A. Zygmund, Singular integral operators and differen-
tial equations, Amer. J. Math. 79 (1957), 801–821.
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[9] L. Hörmander, Pseudodifferential operators of type 1,1, Comm. Partial
Diff. Eq. 13 (1988) 1085–1111.
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