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Abstract. A multilinear version of Schur’s test is obtained for products of Lp

spaces and is used to derive boundedness for multilinear multiplier operators acting
on Sobolev and Besov spaces.

1. Introduction

The classical Schur test provides a criterion for boundedness of positive operators.
We extend this result to the multilinear setting. As an application we prove bounded-
ness for certain multilinear multiplier operators acting on products of Besov spaces.
These operators are not positive, but appropriate discretization techniques reduce
their study to positive tensors acting on spaces of sequences. In that setting Schur’s
test can be applied. This application extends a result of Coifman and Meyer for
multilinear multipliers [3], [15], to diagonal Besov spaces (and in particular Sobolev
spaces). Related results have been recently obtained in [2], [20], and [9] using different
techniques.

The arguments related to the multilinear Schur test are elementary, yet powerful,
since they provide nontrivial necessary and sufficient conditions for positive multilin-
ear operators to be bounded on products of Lp spaces. These results are discussed in
Section 2. In Section 3 we set up the background for the aforementioned application.
The details of the proof are given in Section 4.

The authors started this collaboration while they were at the Mathematical Sci-
ences Research Institute, Berkeley, during the program in Harmonic Analysis, Fall
1997. They want to thank the MSRI and the organizers of the program for providing
a very inspiring research atmosphere.

2. A multilinear Schur test

Let us recall a known version of Schur’s test. Let X and Y be measure spaces
equipped with nonnegative, σ-finite measures and let T be a linear operator taking
measurable functions on Y to measurable functions on X. We assume that T is an
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integral operator which can be written in the form

Tf(x) =

∫
K(x, y)f(y) dy,

for some nonnegative kernel K(x, y) ≥ 0. We denote by T ∗ be the formal transpose
operator

T ∗f(y) =

∫
K(x, y)f(x) dx.

Also, for 1 < p <∞, we denote by p′ = p/(p− 1) the dual exponent.

Theorem. (Schur’s test). Let A > 0. The following are equivalent.
(a) T maps Lp(Y ) to Lp(X) with norm less than or equal to A.
(b) For all B > A there exists a measurable function h on Y , 0 < h <∞ a.e., such
that

T ∗((Th)p−1) ≤ Bp hp−1 a.e.

(c) For all B > A there exist measurable functions u on Y and w on X, 0 < u, w <∞
a.e., such that

T (up
′
) ≤ B wp′ a.e.

T ∗(wp) ≤ B up a.e.

Before we discuss the multilinear case we mention some related history. The test is
named after I. Schur who gave a sufficient condition for a square matrix to map l2(Z)
to l2(Z), see [17]. This result was extended by Hardy, Littlewood, and Polya [10] on
lp, for 1 < p <∞; see also [11]. In 1959 Karlin [13] proved that (a) implies (c) above
when p = 2. In 1963 Aronszajn, Mulla, and Szeptycki [1] proved that (c) implies (a)
for all 1 < p <∞, and Gagliardo [8] established the equivalence between (a) and (c)
for all 1 < p < ∞ (his paper was published two years later). In 1990 Howard and
Schep [12] introduced the equivalent condition (b) involving only one function.

In the multilinear setting, a version of Schur’s test for weighted Lp spaces was
proved by Cwikel and Kerman [4]. They showed that a positive n-linear operator
maps a product of weighted Lp spaces into a weighted Lr space if and only if a
set of 3n + 5 conditions involving (n + 1)(n + 2) functions hold. In this article we
give a new set of n + 1 conditions involving only n + 1 functions to characterize
boundedness of such operators. We work with unweighted Lebesgue spaces since we
can always incorporate the weights with the measures, when the resulting measures
are also σ-finite. We also obtain a version of Schur’s test in the off-diagonal case
1/r >

∑n
j=1 1/pj. Here we need a set of n+ 2 conditions involving n+ 1 functions to

characterize boundedness. These versions of Schur’s test are better suited for certain
applications as indicated in Example 1 and Theorem 3.

We now set up the background for the multilinear version of Schur’s test. Let
X1, . . . , Xn be measure spaces equipped with nonnegative, σ-finite measures µj, j =
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1, . . . , n. Also let X be another measure space with nonnegative measure µ. Let

K(x, x1, . . . , xn) ≥ 0(1)

be a nonnegative measurable function on the product space X × X1 × · · · × Xn.
Consider the n-linear operator T with kernel K, that is

T (f1, . . . , fn)(x) =

∫
X1

· · ·
∫
Xn

K(x, x1, . . . , xn)f1(x1) . . . fn(xn) dµ1(x1) . . . dµn(xn),

defined for suitable measurable functions fj on Xj. T (f1, . . . , fn) is then a measurable
function on X. Since T is n-linear it has n transposes. The jth transpose T ∗j of T is
the transpose of the linear operator

g → T (f1, . . . , fj−1, g, fj+1, . . . , fn)

with the functions fk fixed for k �= j. It is easy to check that the kernel Kj of the
operator T ∗j is

Kj(x, x1, . . . , xj−1, xj, xj+1, . . . , xn) = K(xj, x1, . . . , xj−1, x, xj+1, . . . , xn).

Fix indices 1 < p1, . . . , pn, r <∞ satisfying

1

p1

+ · · ·+ 1

pn
=

1

r
.(2)

We are interested in finding a necessary and sufficient condition for T to map the
product of Lebesgue spaces Lp1(X1) × · · · × Lpn(Xn) into Lr(X). We have the fol-
lowing.

Theorem 1. Let A > 0. The following are equivalent.
(a) T maps Lp1(X1)× · · · × Lpn(Xn) to Lr(X) with norm less than or equal to A.
(b) For all B > A there exist measurable functions hj on Xj with 0 < h1, . . . , hn <∞
a.e., such that

T ∗j(h1, . . . , hj−1, T (h1, . . . , hn)
r−1, hj+1, . . . , hn) ≤ Brh

pj−1
j a.e.(3)

for all 1 ≤ j ≤ n.
(c) For all B > A there exist measurable functions uj on Xj and w on X with
0 < u1, . . . , uN , w <∞ a.e., such that

T (u
p′1
1 , u

p′2
2 , . . . , u

p′n
n ) ≤ B wr′ a.e.

T ∗1(wr, u
p′2
2 , . . . , u

p′n
n ) ≤ B up11 a.e.

. . .

T ∗n(u
p′1
1 , u

p′2
2 , . . . , w

r) ≤ B upnn a.e.

(4)

We now prove this result. For notational simplicity we only give the proof in the
case n = 2. The general case presents no differences, only notational inconveniences.
Set p1 = p, p2 = q, f1 = f , f2 = g, u1 = u, and u2 = v below.
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Proof. Let us start by proving that (b) implies (c). We are given h1 and h2 satisfying
(3). Define u, v, and w via up

′
= h1, v

q′ = h2 and Bwr
′
= T (h1, h2). Then (4) is

clearly satisfied for this choice of u, v, and w.
We now prove that (c) implies (a). We will estimate the Lr norm of T (f, g) using

duality. Let f ∈ Lp(X1), g ∈ Lq(X2), and h ∈ Lr′(X) which we can assume to be
nonnegative. Then,∫

X

T (f, g)h dµ =

∫
X1

∫
X2

∫
X

K(x, x1, x2)h(x)f(x1)g(x2) dµ(x)dµ2(x2)dµ1(x1).(5)

Write the integrand above as L(x, x1, x2)M(x, x1, x2)N(x, x1, x2) where

L(x, x1, x2) = h(x)
u(x1)

p′/r′v(x2)
q′/r′

w(x)
K(x, x1, x2)

1/r′ ,

M(x, x1, x2) = f(x1)
w(x)r/pv(x2)

q′/p

u(x1)
K(x, x1, x2)

1/p, and

N(x, x1, x2) = g(x2)
u(x1)

p′/qw(x)r/q

v(x2)
K(x, x1, x2)

1/q.

Here we used the facts that 1/p+1/q = 1/r, 1/r′+1/q = 1/p′ and 1/p+1/r′ = 1/q′.
We now apply Hölder’s inequality with exponents r′, p, q to the functions L, M , N
with respect to the measure dµ1(x1)dµ2(x2)dµ(x) in X1 ×X2 ×X to control (5) by
the product(∫

X

hr
′

wr′
T (up

′
, vq

′
)dµ

)1/r′ (∫
X1

fp

up
T ∗1(wr, vq

′
)dµ1

)1/p (∫
X2

gq

vq
T ∗2(up

′
, wr)dµ2

)1/q

.

Fubini’s theorem above is justified by the σ-finiteness of the spaces. Now using (4)
we conclude that the above (and hence (5)) is bounded by

B
1
r′+

1
p
+ 1
q ‖h‖Lr′‖f‖Lp‖g‖Lq ,

and invoking duality this implies (a).
We now concentrate on the third part of the equivalence, the fact that (a) implies

(b). Without loss of generality we assume that A = ‖T‖ = ‖T ∗1‖ = ‖T ∗2‖ = 1,
where the norms are taken on the correct spaces. We therefore take B > 1 in the
argument below. We introduce operators R(f, g) and S(f, g) acting on functions f
on X1 and g on X2 as follows

R(f, g) = T ∗1(T (f, g)r/r
′
, g)p

′/p, S(f, g) = T ∗2(f, T (f, g)r/r
′
)q
′/q.

Observe that for f ∈ Lp(X1) and g ∈ Lq(X2) the following estimates are valid.

‖R(f, g)‖Lp(X1) ≤ ‖f‖rp
′/r′p

Lp(X1)‖g‖
rp′/p
Lq(X2),(6)

‖S(f, g)‖Lq(X2) ≤ ‖f‖rq
′/q

Lp(X1)‖g‖
rq′/r′q
Lq(X2).(7)
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In fact, to verify (6) we use that T maps Lp×Lq → Lr and that T ∗1 maps Lr
′×Lq →

Lp
′
in the sequence of inequalities below.

‖R(f, g)‖Lp = ‖T ∗1(T (f, g)r/r
′
, g)‖p′/p

Lp
′

≤ ‖T‖p′/p‖T (f, g)r/r
′‖p′/p
Lr′
‖g‖p′/pLq

= ‖T‖p′/p‖T (f, g)‖rp′/r′pLr ‖g‖p′/pLq

≤ ‖T‖rp′/p‖f‖rp′/r′pLp ‖g‖rp′/pLq = ‖f‖rp′/r′pLp ‖g‖rp′/pLq .

Likewise for S(f, g). Now set B1 = Brp′/p > 1 and B2 = Brq′/q > 1. Use the fact
that X1 and X2 are σ-finite to select functions f1 > 0 a.e. on X1 and g1 > 0 a.e. on
X2 such that ‖f1‖Lp ≤ (B1 − 1)/B1 and ‖g1‖Lq ≤ (B2 − 1)/B2. Define sequences fn
on X1 and gn on X2 inductively by setting

fn+1 = f1 +
1

B1

R(fn, gn), gn+1 = g1 +
1

B2

S(fn, gn).(8)

We claim that ‖fn‖Lp(X1) ≤ 1 and similarly ‖gn‖Lq(X2) ≤ 1 for all n. This is best
seen by induction. Clearly ‖f1‖Lp ≤ 1 and ‖g1‖Lq ≤ 1. If we have ‖fn‖Lp ≤ 1 and
‖gn‖Lq ≤ 1 for some integer n, then

‖fn+1‖Lp ≤ ‖f1‖Lp +
1

B1

‖R(fn, gn)‖Lp ≤
B1 − 1

B1

+
1

B1

‖fn‖rp
′/r′p

Lp ‖gn‖p
′/p
Lq ≤ 1

and similarly for gn+1.
Since the kernel K ≥ 0 we have that T , T ∗1, and T ∗2 are increasing functionals in

every argument and thus so are R and S. This implies that the sequences fn and gn
are increasing. Let h1 be the pointwise limit of fn as n→∞ and h2 be the pointwise
limit of gn as n→∞. Fatou’s Lemma implies that ‖h1‖Lp ≤ 1 and ‖h2‖Lq ≤ 1 which
tell us that h1 and h2 are finite a.e. Clearly h1 ≥ f1 > 0 a.e and h2 ≥ g1 > 0 a.e.

Next we will show that R(fn, gn) and S(fn, gn) converge to R(h1, h2) and S(h1, h2)
pointwise. Observe that the Lebesgue dominated convergence theorem implies that fn
converges to h1 in Lp(X1) and gn converges to h2 in Lq(X2). Then T (fn, gn) converges
to T (h1, h2) in Lr(X) and thus T (fn, gn)

r/r′ converges to T (h1, h2)
r/r′ in Lr

′
(X). The

continuity of T ∗1 implies that T ∗1(T (fn, gn)
r/r′ , gn) converges to T ∗1(T (h1, h2)

r/r′ , h2)
in Lp

′
(X1) and hence R(fn, gn) converges to R(h1, h2) in Lp(X1). Hence some subse-

quence of R(fn, gn) converges to R(h1, h2) a.e. Here we are using again the fact that
the underlying spaces are σ-finite. However, since R(fn, gn) is increasing it follows
that the whole sequence converges to R(h1, h2) a.e. Similarly we prove that S(fn, gn)
converges to S(h1, h2) a.e.

Now letting n→∞ in (8) we obtain that

h1 = f1 +
1

B1

R(h1, h2), a.e

h2 = g1 +
1

B2

S(h1, h2), a.e
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These two equations imply that

T ∗1(T (h1, h2)
r/r′ , h2) ≤Brh

p/p′

1 , a.e

T ∗2(h1, T (h1, h2)
r/r′) ≤Brh

q/q′

2 , a.e

which is the required conclusion since we showed that 0 < h1, h2 <∞ a.e.

We now give a concrete application of Theorem 1.
Example 1. Let X1 = X2 = · · · = Xn = (0,∞) with the usual Lebesgue measure
and let T be the n-linear Hilbert operator

T (f1, . . . , fn)(x) =

∫ ∞

0

· · ·
∫ ∞

0

f1(x1) . . . fn(xn)

(x+ x1 + · · ·+ xn)n
dx1 . . . dxn.

Observe that T coincides with all of its transposes. Let 1 < p1, . . . , pn, r < ∞
satisfy (2) as before. To show that T maps Lp1 × · · · × Lpn into Lr it suffices to find
u1, . . . , un, w satisfying condition (4). For 1 ≤ j ≤ n set

uj(xj) = x
−1/pjp

′
j

j , and w(x) = x−1/rr′ .

Using induction, it is not hard to see that all the conditions in (4) are satisfied with
equality and appropriate constants for this choice of uj and w. This implies that T
maps Lp1(0,∞)× · · · × Lpn(0,∞) into Lr(0,∞).

Next we discuss how to modify conditions (b) and (c) in Theorem 1 to characterize
boundedness of positive multilinear operators in the off-diagonal case

1

r
>

n∑
j=1

1

pj
.(9)

For the corresponding result in the linear case (n = 1 below) see [8] and [18]. We
have the following.

Theorem 2. Let 1 < p1, p2, ..., pn, r < ∞ satisfy (9) and let A > 0. The following
are equivalent.
(a) T maps Lp1(X1)× · · · × Lpn(Xn) to Lr(X) with norm less than or equal to A.
(b) For all B > A there exist measurable functions hj on Xj which satisfy 0 <
h1, . . . , hn <∞ a.e. such that

T ∗j(h1, . . . , hj−1, T (h1, . . . , hn)
r−1, hj+1, . . . , hn) ≤ Brh

pj−1
j a.e.

for all 1 ≤ j ≤ n, and ∫
X

(
T (h1, ..., hn)(x)

)r
dµ(x) ≤ Br.(10)
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(c) For all B > A there exist measurable functions uj on Xj and w on X with
0 < u1, . . . , uN , w <∞ a.e., such that

T (u
p′1
1 , u

p′2
2 , . . . , u

p′n
n ) ≤ B wr′ a.e.

T ∗1(wr, u
p′2
2 , . . . , u

p′n
n ) ≤ B up11 a.e.

. . .

T ∗n(u
p′1
1 , u

p′2
2 , . . . , w

r) ≤ B upnn a.e.

and ∫
X

T (v
p′1
1 , . . . , v

p′n
n )(x)wr(x) dµ(x) ≤ B.(11)

Proof. The proof follows from a minor modification of the proof of Theorem 1. As
before we take n = 2 for simplicity.

We show that (a) implies (b) by exactly repeating the corresponding argument in
the proof of Theorem 1. It is noteworthy to observe that nowhere in that argument
we used that 1/r = 1/p + 1/q. (In particular, this part of the proof holds for any
exponents 1 < p, q, r <∞.) The new condition (10) also follows because∫

X

T (h1, h2)
r dµ =

∫
X

T (h1, h2)T (h1, h2)
r/r′ dµ =

∫
X1

T ∗1(T (h1, h2)
r/r′ , h2)h1 dµ1

≤
∫
X1

Brh
p/p′

1 h1 dµ1 = Br

∫
X1

hp1 dµ1 ≤ Br,

since we proved in the previous theorem that ‖h1‖Lp ≤ 1.
We show that (b) implies (c) by defining u, v, and w as before.
To see that (c) implies (a), modify the argument in the proof of Theorem 1 as

follows. In (5) write the integrand as

L(x, x1, x2)M(x, x1, x2)N(x, x1, x2)O(x, x1, x2),

where the new factor is

O(x, x1, x2) = u(x1)
1−p′/r′−p′/qv(x2)

1−q′/r′−q′/pw1−r/p−r/q(x)K(x1, x2, x3)
1/r−1/p−1/q.

Now apply Hölder’s inequality with exponents r′, p, q, and (1/r − 1/p − 1/q)−1.
The new factor is controlled using condition (11). Here we use the assumption that
1/r > 1/p+ 1/q.

3. Wavelet discretization of bilinear operators and Besov spaces

We shall use the discrete Littlewood-Paley definition of Besov spaces (see [16] and
[19] for details). We fix a function φ in the Schwartz space S(Rn) whose Fourier

transform satisfies |φ̂(ξ)| > 0 in the annulus π/4 < |ξ| < π and is zero everywhere
else. Set φν(x) = 2νnφ(2νx). For 0 < p, s < ∞ and any real α, the homogeneous
Besov space Ḃα,s

p (Rn) can be defined to be the collection of all tempered distributions



8 LOUKAS GRAFAKOS AND RODOLFO H. TORRES

modulo polynomials (S ′/P) such that

‖f‖Ḃα,sp
=

( ∑
ν

(
2να‖f ∗ φν‖Lp

)s)1/s

<∞.(12)

We will consider the “diagonal” case s = p which we will simply denote by Ḃα
p . These

spaces measure oscillatory properties of functions both at large and small scales. In
particular for p = 2, these spaces coincide with the (homogeneous) Sobolev spaces.
It is true that (Ḃα

p )∗ = Ḃ−αp′ , for 1 ≤ p <∞.
Based on the work of Frazier and Jawerth [5] the function φ in (12) can be chosen

to generate an almost orthogonal wavelet (φ–transform) decomposition of the Besov
spaces. That is, every f ∈ Ḃα

p can be written in the form

f =
∑
ν,k

〈f, φνk〉φνk,(13)

and

‖f‖Ḃαp ≈
( ∑

ν,k

(
|〈f, φνk〉|2ν(α+n/2−n/p))p)1/p

;(14)

where ν ranges over Z, k over Zn,

φνk(x) = 2νn/2φ(2νx− k),
and 〈·, ·〉 stands for the pairing of distributions and test functions. See also [14] and
[7].

Let ḃαp be the space of all sequences s = {sνk} for which

‖s‖ḃαp =

( ∑
ν,k

(
|sνk|2ν(α+n/2−n/p))p)1/p

<∞.(15)

Using (13) we can associate to every bilinear operator a discrete tensor

A = {a(λm, νk, µl)} = {〈T (φνk, φµl), φλm〉};
that is,

T (f, g) =
∑
λ,m

∑
µ,l

∑
ν,k

a(λm, νk, µl)〈f, φνk〉〈g, φµl〉φλm.(16)

We consider also the associated trilinear form

Λ(f, g, h) =
∑
λ,m

∑
µ,l

∑
ν,k

a(λm, νk, µl)〈f, φνk〉〈g, φµl〉〈h, φλm〉.(17)

Because of (14), T maps Ḃα1
p ×Ḃα2

q into Ḃα3
r if and only if the tensor A maps ḃα1

p × ḃα2
q

into ḃα3
r . Note that the right hand side of (15) is the Lp norm on Z×Zn with respect

to the measure

dα,p = {dα,pνk } = {2ν(α+n/2−n/p)p}.
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It follows that we can realize the discrete trilinear form in (17) on Lp spaces. More
precisely, for three sequences s = {sνk}, t = {tµl}, and u = {uλm}, we will consider

Λ(s, t, u) =
∑
λ,m

∑
µ,l

∑
ν,k

a(λm, νk, µl)sνktµluλm

=
∑
λ,m

∑
µ,l

∑
ν,k

K(λm, νk, µl)sνktµlũλmd
α1,p
νk d

α2,q
µl d

α3,r
λm ,

where

ũλm = uλm2−λ(α3+n/2−n/r)r/r′2λ(−α3+n/2−n/r′) = uλm2−λ(α3r+(r/r′−1)n/2)

and

K(λm, νk, µl) = a(λm, νk, µl)2−ν(α1+n/2−n/p)p2−µ(α2+n/2−n/q)q.(18)

We will apply then Theorem 1 to the (discrete) bilinear integral operator with kernel
|K(λm, νk, µl)| as an operator from Lp(Z×Zn, dα1,p)×Lq(Z×Zn, dα2,q) into Lr(Z×
Zn, dα3,r). A similar approach was used by Frazier and Jawerth [6] in the linear case.
Note that

‖ũ‖Lr′ (Z×Zn,dα3,r) = ‖u‖Lr′ (Z×Zn,d−α3,r
′
) = ‖u‖

ḃ
−α3
r′
.

Therefore, from the wavelet decomposition and the estimate

|Λ(s, t, u)| ≤ C‖s‖Lp(Z×Zn,dα1,p)‖t‖Lq(Z×Zn,dα2,q)‖ũ‖Lr′ (Z×Zn,dα3,r),

with s = {< f, φνk >}, t = {< g, φµl >}, and u = {< h, φλm >}, it will follow that

| < T (f, g), h > | ≤ C‖f‖Ḃα1
p
‖g‖Ḃα2

q
‖h‖

Ḃ
−α3
r′
,

and by duality T will map Ḃα1
p × Ḃα2

q into Ḃα3
r .

4. Estimates on the tensors of bilinear multipliers

We consider bilinear multipliers

T (f, g)(x) =

∫
Rn

∫
Rn

σ(ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η)dξ dη,

with symbols satisfying

|∂βξ ∂δησ(ξ, η)| ≤ Cβ,δ(|ξ|+ |η|)−(|β|+|δ|)(19)

for all (ξ, η) �= (0, 0) and all multi-indices β and δ. Such operators are a priori defined
for functions in the space S0 given by

S0 = {f ∈ S : ∂γ f̂(0) = 0 for all γ}.
It is easy to verify that the class of bilinear multipliers with symbols satisfying (19)
is closed by taking either transpose. The symbols of the formal transposes are given
by σ∗1(ξ, η) = σ(−(ξ + η), η) and σ∗2(ξ, η) = σ(ξ,−(ξ + η)).

In the following lemmata we recall some basic estimates. The first one follows
from some usual integration by parts arguments, while the others follow from stan-
dard computations using the cancellations involved to subtract appropriate Taylor
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polynomials. For brevity in the presentation we will not repeat the computations
here, but full details are given in [9].

Lemma 1. Let T be a bilinear operator with symbol σ(ξ, η) satisfying (19). Then,
for any family of almost orthogonal wavelets {φνk} as in Section 3,

|∂γT (φνk, φµl)(x)| ≤ CN,γ
2νn/22µn/2 max(2ν , 2µ)|γ|

(1 + 2ν |x− 2−νk|)N(1 + 2µ|x− 2−µl|)N

for all γ and all N > n.

Lemma 2. Let ψλ be a function in Rn that satisfies

|ψλ(x)| ≤ CN
2λn/2

(1 + 2λ|x− xλ|)N
(20)

and ∫
Rn

ψλ(x)x
γ dx = 0 for all |γ| ≤ L− 1.(21)

Let ψν,µ be another function satisfying

|∂γψν,µ(x)| ≤ CN
2νn/22µn/2 max(2ν , 2µ)|γ|

(1 + 2ν |x− xν |)N(1 + 2µ|x− xµ|)N
for all |γ| ≤ L(22)

for some xν, xµ in Rn, and all N > n. Suppose that λ ≥ max(ν, µ). Then for all
N > 0 we have ∣∣∣∣

∫
Rn

ψλ(x)ψν,µ(x) dx

∣∣∣∣ ≤
Cn,N,L 2−(λ−max(ν,µ))L 2−λn/2 2νn/2 2µn/2

((1 + 2min(λ,ν)|xλ − xν |)(1 + 2min(ν,µ)|xν − xµ|)(1 + 2min(µ,λ)|xµ − xλ|))N
.

Lemma 3. Suppose that ψν satisfies

|∂γψν(x)| ≤ CN
2νn/22ν|γ|

(1 + 2µ|x− xν |)N
for all |γ| ≤ L(23)

for some xν in Rn and all N > n. Suppose also that ψµ,λ is another function satisfying
(22) for γ = 0 and also∫

Rn

ψµ,λ(x)x
γ dx = 0 for all |γ| ≤ L− 1.(24)

Assume that max(µ, λ) ≥ ν. Then for all N > 0 we have∣∣∣∣
∫

Rn

ψν(x)ψµ,λ(x) dx

∣∣∣∣ ≤
Cn,N 2−(max(µ,λ)−ν)L 2−max(µ,λ)n/2 2min(µ,λ)n/2 2νn/2

((1 + 2min(ν,µ)|xν − xµ|)(1 + 2min(µ,λ)|xµ − xλ|)(1 + 2min(λ,ν)|xλ − xν |))N
.

When no cancellation is assumed, we have the following.
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Lemma 4. Suppose that ψν, ψµ, ψλ are functions defined on Rn satisfying the fol-
lowing estimates for all x ∈ Rn

|ψν(x)| ≤CN
2νn/2

(1 + 2ν |x− xν |)N
(25)

|ψµ(x)| ≤CN
2µn/2

(1 + 2µ|x− xµ|)N
,(26)

|ψλ(x)| ≤CN
2λn/2

(1 + 2λ|x− xλ|)N
,(27)

for some xν, xµ, xλ in Rn and all N > n. Then the following estimate is valid∫
Rn

|ψν(x)| |ψµ(x)| |ψλ(x)| dx ≤

Cn,N 2−max(ν,µ,λ)n/2 2med(ν,µ,λ)n/2 2min(ν,µ,λ)n/2

((1 + 2min(ν,µ)|xν − xµ|)(1 + 2min(µ,λ)|xµ − xλ|)(1 + 2min(λ,ν)|xλ − xν |))N
,

where med(ν, µ, λ) is one of the parameters (ν, µ, λ) chosen so that min(ν, µ, λ) ≤
med(ν, µ, λ) ≤ max(ν, µ, λ).

We can now use the above to estimate the entries of the discrete tensor associated
to the bilinear multiplier operators under consideration. To simplify the notation we
define

B(νk, µl) = (1 + 2min(ν,µ)|2−νk − 2−µl|)
and similarly B(µl, λm) and B(λm, νk).

Lemma 5. Let T be a bilinear operator with symbol σ(ξ, η) satisfying (19) and let
{φνk} be a family of almost orthogonal wavelets. Then the bilinear tensor associated
with T , {a(λm, νk, µl)} = {〈T (φνk, φµl), φλm〉}, satisfies the following estimates with
N > n:

|a(λm, νk, µl)| ≤ Cn,N,L 2−(λ−max(ν,µ))L 2−λn/2 2νn/2 2µn/2

(B(νk, µl)B(µl, λm)B(λm, νk))N
,(28)

for all L ≥ 0 and λ ≥ max(ν, µ).

|a(λm, νk, µl)| ≤ Cn,N,L 2−(ν−max(λ,µ))L 2−νn/2 2λn/2 2µn/2

(B(νk, µl)B(µl, λm)B(λm, νk))N
,(29)

for all L ≥ 0 and ν ≥ max(µ, λ).

|a(λm, νk, µl)| ≤ Cn,N,L 2−(µ−max(λ,ν))L 2−µn/2 2λn/2 2νn/2

(B(νk, µl)B(µl, λm)B(λm, νk))N
,(30)

for all L ≥ 0 and µ ≥ max(ν, λ).

|a(λm, νk, µl)| ≤ Cn,N 2−max(ν,µ,λ)n/2 2med(ν,µ,λ)n/2 2min(ν,µ,λ)n/2

(B(νk, µl)B(µl, λm)B(λm, νk))N
,(31)
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for all ν, µ, λ.
In addition under the indicated cancellation conditions the following estimates hold:

if for all |γ| ≤ L− 1 ∫
T (φνk, φµl)(x)x

γdx = 0,(32)

then

|a(λm, νk, µl)| ≤ Cn,N,L 2−(max(ν,µ)−λ)L 2−max(ν,µ)n/2 2min(ν,µ)n/2 2λn/2

(B(νk, µl)B(µl, λm)B(λm, νk))N
,(33)

when λ ≤ max(ν, µ);

if for all |γ| ≤ L− 1 ∫
T ∗1(φλm, φµl)(x)x

γdx = 0,(34)

then

|a(λm, νk, µl)| ≤ Cn,N,L 2−(max(λ,µ)−ν)L 2−max(λ,µ)n/2 2min(λ,µ)n/2 2νn/2

(B(νk, µl)B(µl, λm)B(λm, νk))N
,(35)

when ν ≤ max(λ, µ);

and if for all |γ| ≤ L− 1 ∫
T ∗2(φνk, φλm)(x)xγdx = 0,(36)

then

|a(λm, νk, µl)| ≤ Cn,N,L 2−(max(λ,ν)−µ)L 2−max(λ,ν)n/2 2min(λ,ν)n/2 2µn/2

(B(νk, µl)B(µl, λm)B(λm, νk))N
,(37)

when µ ≤ max(λ, ν).

Proof. Using Lemma 1 the estimate (28) follows from Lemma 2 with ψλ = φλm
and ψν,µ = T (φνk, φµl). Similarly (31) follows from Lemma 4. If we assume the
cancellation in the operator stated in (32), then (33) follows from Lemma 3. The
other estimates can be obtained in similar fashion reversing the roles of the parameters
ν, µ, and λ since the transposes T ∗1 and T ∗2 are in the same class as T .

Remark 1.

The cancellation conditions in Lemma 5 are always satisfied when the parameters
ν, µ, and λ are far apart. In fact, it is easy to see that the conditions in (32) are
equivalent to ∫

φ̂νk(ξ)∂
γ
η (σ(ξ, η − ξ)φ̂µl(η − ξ))|η=0 dξ = 0.(38)

Because on the condition on the support of the generating function φ̂, the above are
always satisfied if |ν − µ| > 10. Similarly with the cancellation conditions involving
the transposes of T .



A MULTILINEAR SCHUR TEST AND MULTIPLIER OPERATORS 13

5. Bilinear multipliers on Besov spaces

We will use Schur’s test to obtain boundedness results for bilinear multipliers.

Theorem 3. Let α1, α2 > 0, 1 < p, q, r < ∞, 1/p + 1/q = 1/r. Let T be a bilinear
multiplier operator whose symbol satisfies (19). Assume also that T ∗1 and T ∗2 satisfies
the cancellation conditions (34) and (36) with L = L1 ≥ α1

r′

q′ + α2
r′

p
and L = L2 ≥

α1
r′

q
+ α2

r′

p′ . Then T can be extended to be a bounded operator from Ḃα1
p × Ḃα2

q into

Ḃα1+α2
r .

Proof. We want to apply Theorem 1 to the discrete bilinear integral operator with
kernel |K(λm, νk, µl)| defined in (18) and as explained in Section 3. Thus, with the
same notation therein, we need to find three sequences u = {uνk}, v = {vµl}, and
w = {wλm}, such that

Sλm =
∑
µl

∑
νk

|K(λm, νk, µl)|up′νkv
q′

µld
α1,p
νk d

α2,q
µl ≤ Cwr

′
λm.(39)

Sνk =
∑
λm

∑
µl

|K(λm, νk, µl)|vq′µlwrλmd
α1+α2,r
λm dα1,q

µl ≤ Cu
p
νk.(40)

Sµl =
∑
νk

∑
λm

|K(λm, νk, µl)|up′νkwrλmd
α1,p
νk d

α1+α2,r
λm ≤ Cvqµl,(41)

Denoting by S the bilinear operator with kernel |K|, the above are exactly the
conditions

S(up
′
, vq

′
) ≤ Cwr′ ,

S∗1(wr, vq
′
) ≤ Cup,

S∗2(up
′
, wr) ≤ Cvq,

required by Schur’s test. We will estimate the left hand sides of (39)–(41) by splitting
each of them into six different sums. Each of these sums will be denoted by symbols
of the form Sλmνk,µl,λm, where the superscripts indicate the parameters that are kept
fixed and the subscripts are set so that ν, µ, and λ are in nonincreasing order from
left to right. Thus, for example,

Sλmνk,µl,λm =
∑
ν≥µ

∑
µ≥λ

∑
k

∑
l

|K(λm, νk, µl)|up′νkv
q′

µld
α1,p
νk d

α2,q
µl ,

where the summations indices are ν, µ, k, and l. We clearly have

Sλm ≤ Sλmνk,µl,λm + Sλmνk,λm,µl + S
λm
µl,νk,λm + Sλmλm,νk,µl + S

λm
µl,λm,νk + Sλmλm,µl,νk.

The roles of the variables ν and µ are similar. Thus, to estimate Sλm we only need
to discuss the three sums with, say, ν ≥ µ. By reversing the roles of ν and µ, the
estimates for Sνk and Sµl are also seen to be analogous and therefore we will only
treat the latter.
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We start with the simpler case p = q = r′ = 3, α1 = α2 = α. We choose
0 < ε < 3α/2 and we claim that

uνk = 2−ν(3α+n/2−ε)2/3,

vµl = 2−µ(3α+n/2−ε)2/3,

wλm = 2−λ(3α+n/4−ε)2/3,

do the job. As explained before, it suffices to consider the following nine sums.

5.1. Estimate for Sµlµl,νk,λm. (No cancellation is needed.)

We use (29) and bound B(µl, λm)−1 by 1. Summing in m and then in k produces
a constant factor. Hence,

Sµlµl,νk,λm ≤

C
∑
µ≥ν

∑
ν≥λ

2−(µ−ν)L2−µn/22νn/22λn/22λ(3α−n/4)2−µ(3α+n/2)2−ν(3α+n/2−ε)2−λ(3α+n/4−ε)

≤ C
∑
µ≥ν

2ν(L+n/2−3α−n/2+ε)2µ(−L−n/2−3α−n/2)
∑
ν≥λ

2λ(n/2+3α−n/4−3α−n/4+ε).

Since ε > 0, we obtain

Sµlµl,νk,λm ≤ C2µ(−L−n−3α)
∑
µ≥ν

2ν(L−3α+2ε).

If we choose L > 3α− 2ε we obtain

Sµlµl,νk,λm ≤ C2−µ(6α+n−2ε)

as desired.

5.2. Estimate for Sµlµl,λm,νk. (We use the cancellation in T ∗1.)

We use (35) with L > 3α− ε and bound B(λm, νk)−1 by 1. Summing in m and k
produces a constant. Hence,

Sµlµl,λm,νk ≤

C
∑
µ≥λ

∑
λ≥ν

2−(µ−ν)L2−µn/22νkn/22λn/22λ(3α−n/4)2−µ(3α+n/2)2−ν(3α+n/2−ε)2−λ(3α+n/4−ε)

≤ C
∑
µ≥λ

2µ(−L−n/2−3α−n/2)2λ(n/2+3α−n/4−3α−n/4+ε)
∑
λ≥ν

2ν(L+n/2−3α−n/2+ε).

Since L− 3α+ ε > 0, we obtain

Sµlµl,λm,νk ≤ C2µ(−L−n−3α)
∑
µ≥λ

2λ(L−3α+2ε).

Again using L > 3α− 2ε we obtain the right estimate.
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5.3. Estimate for Sµlνk,µl,λm. (No cancellation is needed.)

Using (31), bounding B(λm, νk)−1 by 1, and summing in m and k produces a
factor of C2(ν−µ)n. We get,

Sµlνk,µl,λm ≤

C
∑
ν≥µ

∑
µ≥λ

2(ν−µ)n2−νn/22µn/22λn/22λ(3α−n/4)2−µ(3α+n/2)2−ν(3α+n/2−ε)2−λ(3α+n/4−ε)

≤ C
∑
ν≥µ

2µ(−n+n/2−3α−n/2)2ν(n−n/2−3α−n/2+ε)
∑
µ≥λ

2λ(n/2+3α−n/4−3α−n/4+ε).

Since ε > 0, we obtain

Sµlνk,µl,λm ≤ C2µ(−n−3α)
∑
ν≥µ

2−ν(3α−2ε),

which gives the desired estimate because 3α− ε > 0.

5.4. Estimate for Sµlλm,µl,νk. (We use the cancellation in T ∗1.)
We use the estimate (35) with L > max(3α − ε, ε) and bound the same factor in

the denominator as in the previous case. Summing in m and k produces now a factor
of C2(λ−µ)n, yielding

Sµlλm,µl,νk ≤

C
∑
λ≥µ

∑
µ≥ν

2(λ−µ)n2−(λ−ν)L2n/2(−λ+µ+ν)2λ(3α−n/4)2−µ(3α+n/2)2−ν(3α+n/2−ε)2−λ(3α+n/4−ε)

≤ C
∑
λ≥µ

2µ(−n+n/2−3α−n/2)2λ(n−L−n/2+3α−n/4−3α−n/4+ε)
∑
µ≥ν

2ν(L+n/2−3α−n/2+ε)

≤ C2µ(−n−6α+L+ε)
∑
λ≥µ

2−λ(L−ε),

and the right estimate follows.

5.5. Estimate for Sµlνk,λm,µl. (No cancellation is needed.)

We use again (31) as in the estimate for Sµlνk,µl,λm and the fact that ε > 0 to get,

Sµlνk,λm,µl ≤

C
∑
ν≥µ

∑
ν≥λ≥µ

2(ν−µ)n2−νn/22µn/22λn/22λ(3α−n/4)2−µ(3α+n/2)2−ν(3α+n/2−ε)2−λ(3α+n/4−ε)

≤ C
∑
ν≥µ

2µ(−n+n/2−3α−n/2)2ν(n−n/2−3α−n/2+ε)
∑
ν≥λ≥µ

2λ(n/2+3α−n/4−3α−n/4+ε).

≤ C2µ(−n−3α)
∑
ν≥µ

2−ν(3α−2ε),

which sums to C2µ(−n−3α+2ε) because 3α− 2ε > 0.
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5.6. Estimate for Sµlλm,νk,µl. (No cancellation is needed.)

This time we use (28) with L > 3α − ε and bound B(νk, µl)−1 by 1. Summing in
k and then in m gives rise to a factor of C2(λ−µ)n and hence

Sµlλm,νk,µl ≤

C
∑
λ≥µ

∑
λ≥ν≥µ

2(λ−µ)n2−(λ−ν)L2n/2(−λ+µ+ν)2λ(3α−n/4)2−µ(3α+n/2)2−ν(3α+n/2−ε)2−λ(3α+n/4−ε)

≤ C
∑
λ≥µ

2µ(−n+n/2−3α−n/2)2λ(−L+n−n/2+3α−n/4−3α−n/4+ε)
∑
λ≥ν≥µ

2ν(L+n/2−3α−n/2+ε).

≤ C2µ(−n−3α)
∑
λ≥µ

2λ(−3α+2ε) ≤ C2−µ(n+6α−2ε).

5.7. Estimate for Sλmνk,µl,λm. (No cancellation is needed.)

We use (31) and bound B(µl, λm)−1 by 1. Summing in l and k produces a factor
of C2(ν−λ)n. We then estimate

Sλmνk,µl,λm ≤
C

∑
ν≥λ

∑
ν≥µ≥λ

2(ν−λ)n2−νn/22µn/22λn/22−ν(3α+n/2−ε)2−µ(3α+n/2−ε)

≤ C
∑
ν≥λ

2λ(−n+n/2)2ν(n−n/2−3α−n/2+ε)
∑
ν≥µ≥λ

2µ(n/2−3α−n/2+ε).

≤ C2λ(−n/2−3α+ε)
∑
ν≥λ

2ν(−3α+ε) ≤ C2−λ(n/2+6α−2ε).

5.8. Estimate for Sλmλm,νk,µl. (We use the cancellation in T ∗2 and Remark 1.)

By Remark 1, for ν << λ we have as much cancellation as we want in T ∗2. We use
(37) and bound B(νk, µl)−1 by 1. This time summing in k and l produces a factor
of C2(λ−ν)n. We proceed with

Sλmλm,νk,µl ≤
C

∑
λ≥ν

∑
ν≥µ

2(λ−ν)n2−(λ−µ)L2−λn/22µn/22νn/22−ν(3α+n/2−ε)2−µ(3α+n/2−ε)

≤ C
∑
λ≥ν

2λ(n−L−n/2)2ν(−n+L+n/2−3α−n/2+ε)
∑
ν≥µ

2µ(L+n/2−3α−n/2+ε).

If we choose L large enough,

Sλλm,νk,µl ≤ C2λ(n/2−L)
∑
λ≥ν

2ν(L−n−6α+2ε) ≤ C2−λ(n/2+6α−2ε).

On the other hand if λ ∼ ν, we use the cancellation in T ∗2, (37), with L > 3α− ε
and we replace ν by λ in the above computations to obtain

Sλmλm,νk,µl ≤

C
∑
λ≥µ

2−(λ−µ)L2−λn/22µn/22λn/22−λ(3α+n/2−ε)2−µ(3α+n/2−ε)
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≤ C2λ(−L−3α−n/2+ε)
∑
λ≥µ

2µ(L+n/2−3α−n/2+ε),

and the right estimate follows.

5.9. Estimate for Sλmνk,λm,µl. (We use the cancellation in T ∗2.)

We use the cancellation in T ∗2 and (37) with L > 3α− ε and B(νk, µl)−1 bounded
by 1. Summing in k and l produces

Sλmνk,λm,µl ≤

C
∑
ν≥λ

∑
λ≥µ

2(ν−λ)n2−(ν−µ)L2−νn/22µn/22λn/22−ν(3α+n/2−ε)2−µ(3α+n/2−ε)

≤ C
∑
ν≥λ

2λ(−n+n/2)2ν(−L+n−n/2−3α−n/2+ε)
∑
λ≥µ

2µ(L+n/2−3α−n/2+ε).

≤ C2λ(L−n/2−3α+ε)
∑
ν≥λ

2ν(−L−3α+ε) ≤ C2−λ(n/2+6α−2ε).

This concludes the proof in the case p = q = r′ = 3 and α1 = α2 = α.

5.10. The general case. (1/p+ 1/q + 1/r′ = 1, α1, α2 > 0.)
The general case is only notationally more complicated. We want to find three

sequences of the form

uνk = 2−νxν ,

vµl = 2−µxµ ,

wλm = 2−λxλ ,

for some xν , xµ, and xλ real which satisfy condition (c) of Theorem 1. Homogeneity
considerations (counting the powers of 2 in the previous calculations) show that
xν , xµ, xλ must be solutions of the system of linear equations,

−p′xν + qxµ − rxλ = F (α2, q)

pxν − q′xµ − rxλ = F (α1, p)(42)

−p′xν − q′xµ − r′xλ = −n/2

where

F (y, z) = (y + n/2− n/z)z − (α1 + α2 + n/2− n/r)r.
The system (42) has infinitely many solutions which can be written in the form,

xλ = α1 + α2 + n/2r′ − ε/r
xν = α1r

′/p′q′ + α2r
′/pp′ + n/2p′ − εr′/pp′(43)

xµ = α1r
′/qq′ + α2r

′/p′q′ + n/2q′ − εr′/qq′
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with ε arbitrary. It is rather tedious but completely elementary to check that all the
computations carried out in the case p = q = r′ = 3 can be repeated in the general
case if ε > 0 is chosen so that

L1 >α1
r′

q′
+ α2

r′

p
− εr

′

p
> ε > 0

L2 >α1
r′

q
+ α2

r′

p′
− εr

′

q
> ε > 0.

Because of the hypotheses of the theorem, these conditions can always be achieved if
we choose ε small enough. We spare the reader from these routine computations, but
we work out a particular case, say the term Sµlλm,µl,νk, to illustrate what is needed.
Proceeding as in 5.4 we use (34) with

L > max(ε, α1
r′

q′
+ α2

r′

p
− εr

′

p
) = α1

r′

q′
+ α2

r′

p
− εr

′

p

and obtain

Sµlλm,µl,νk ≤

C
∑
λ≥µ

∑
µ≥ν

2(λ−µ)n2−(λ−ν)L2(−λ+µ+ν)n/22λ(α1+α2+n/2−n/r)r2−µ(α2+n/2−n/q)q2−νxνp
′
2−λxλr

≤ C
∑
λ≥µ

2µ(n/2−nq/2−α2q)2λ(−L−n/2+nr/2−nr/2r′+ε)
∑
µ≥ν

2ν(L−α1r′/q′−α2r′/p+εr′/p)

≤ C2µ(n/2−nq/2−α2q+L−α1r′/q′−α2r′/p+εr′/p)
∑
λ≥µ

2−λ(L−ε)

≤ C2µ(n/2−nq/2−α2q+L−α1r′/q′−α2r′/p+εr′/p−L+ε)

= C2−µ(α1r′/q′+α2r′(1/p+q/r′)+nq/2−n/2−ε(r′/p+1)

= C2−µxµq,

where in the last equality we have used the facts that

1

pq
+

1

r′
=

1

p′q′
,

1

2
− 1

2q
=

1

2q′
,

and
r′

pq
+

1

q
=
r′

qq′
.
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