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Abstract. A systematic treatment of multilinear Calderón-Zygmund operators is
presented. The theory developed includes strong type and endpoint weak type esti-
mates, interpolation, the multilinear T1 theorem, and a variety of results regarding
multilinear multiplier operators.

1. Introduction

The classical Calderón-Zygmund theory and its ramifications have proved to be a
powerful tool in many aspects of harmonic analysis and partial differential equations.
The main thrust of the theory is provided by the Calderón-Zygmund decomposi-
tion, whose impact is deep and far-reaching. This decomposition is a crucial tool
in obtaining weak type (1, 1) estimates and consequently Lp bounds for a variety of
operators acting on function spaces on Rn and taking values in some Banach spaces.
The Littlewood-Paley theory, with its incisive characterizations of function spaces on
Rn, can also be obtained as a consequence of the Calderón-Zygmund theory. The
realization of pseudodifferential operators in terms of singular integrals of Calderón-
Zygmund type is yet another accomplishment of the theory that brings up intimate
connections with operator theory and partial differential equations.

The study of multilinear operators is not motivated by a mere quest to generalize
the theory of linear operators but rather by their natural appearance in analysis.
Coifman and Meyer were one of the first to adopt a multilinear point of view in
their study of certain singular integral operators, such as the Calderón commutators,
paraproducts, and pseudodifferential operators. The remarkable proof of the bound-
edness of the bilinear Hilbert transform by Lacey and Thiele [16], [17] provides, in our
view, a further motivation for the systematic development and study of multilinear
singular integrals. Within this framework, the bilinear Hilbert transform naturally
arises in the context of the bilinear method of rotations, as described at the end of
this article.

In this work we prove a variety of theorems regarding what we call multilinear
Calderón-Zygmund operators. Their name is justified by the fact that these opera-
tors have kernels which satisfy standard estimates and bear boundedness properties
analogous to those of the classical linear ones. Particular examples of these operators
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have been previously studied by Coifman and Meyer [6], [7], [8], [9], [18], assum-
ing sufficient smoothness on their symbols and kernels. Our approach provides a
systematic treatment of general m-linear Calderón-Zygmund operators on Rn under
minimal smoothness assumptions on their kernels.

Our first result, Theorem 1, is concerned with the natural weak type endpoint
estimate of Calderón-Zygmund operators on the m-fold product of L1 spaces. This
theorem improves on results of Coifman and Meyer [6], [7], and Kenig and Stein [15].
A further refinement of Theorem 1, needed for interpolation purposes, is presented
in Theorem 2. Next, we show that boundedness of multilinear Calderón-Zygmund
operators on one product of Lp spaces implies boundedness on all suitable products
of Lebesgue spaces. The precise statement of this result is given in Theorem 3. The
situation is then in complete analogy with the linear case, where boundedness on just
one Lp space implies boundedness on all Lp spaces for 1 < p <∞; the characteristic
feature of Calderón-Zygmund operators. Other results we discuss include the mul-
tilinear version of the Peetre-Spanne-Stein theorem [19], [20], [21], on the action of
singular integrals on L∞ and the multilinear T1 theorem, Theorem 4. This last result
provides a powerful characterization of boundedness of multilinear singular integrals
on products of Lp spaces in the spirit of the celebrated theorem of David and Journé
[10]. Our characterization says that an m-linear Calderón-Zygmund singular integral
operator T is bounded on products of Lebesgue spaces if and only if

sup
ξ1∈Rn

. . . sup
ξm∈Rn

‖T (e2πiξ1·( · ), . . . , e2πiξm·( · ))‖BMO <∞,

and similarly for the m transposes of T . A different formulation of a T1 theorem for
multilinear forms was given before by Christ and Journé [5]. We apply our version
of the multilinear T1 theorem to obtain some new continuity results for multilin-
ear translation invariant operators and multilinear pseudodifferential operators. We
devote the last section of this article to a further analysis of multilinear multipliers.

2. Notation and preliminaries

We will be working on n-dimensional space Rn. We denote by S(Rn) the space of
all Schwartz functions on Rn and by S ′(Rn) its dual space, the set of all tempered
distributions on Rn. Similarly we denote by D(Rn) the set of all C∞ functions with
compact support on Rn and by D′(Rn) the set of all distributions on Rn. We denote
by Lp = Lp(Rn) the classical Lebesgue spaces of measurable functions whose modulus
to the pth power is integrable, with the usual modification when p = ∞. We also
denote by Lp,q = Lp,q(Rn) the Lorentz spaces defined by

‖f‖Lp,q =




(∫ ∞

0

(
t

1
pf ∗(t)

)q dt

t

) 1
q

if q <∞ and 0 < p ≤ ∞,

sup
t>0

t
1
pf ∗(t) if q =∞ and 0 < p ≤ ∞,

(1)

where f ∗ is the nonincreasing rearrangement of f on (0,∞). Clearly Lp,p = Lp and
Lp,∞ = weak Lp. BMO = BMO(Rn) denotes the usual space of functions with
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bounded mean oscillation. We use the notation p′ = p/(p − 1) for 1 < p < ∞,
1′ =∞, and ∞′ = 1.

We will use the following definition for the Fourier transform in n-dimensional
euclidean space

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ dx,

while f∨(ξ) = f̂(−ξ) will denote the inverse Fourier transform.
The action of a distribution u on a test function f will be denoted by 〈u , f〉 . Let

T be an m-linear operator from S(Rn)×· · ·×S(Rn) into S ′(Rn) which is continuous
with respect to the natural topologies of these spaces. A version of the Schwartz
kernel theorem (c.f. [13]) gives that any such T has a kernel K, which is a tempered
distribution on (Rn)m+1, such that for all f1, . . . , fm, g in S(Rn)

〈T (f1, . . . , fm), g〉 = 〈K , g ⊗ f1 ⊗ · · · ⊗ fm〉.(2)

Here g ⊗ f1 ⊗ · · · ⊗ fm denotes the function

(x, y1, . . . , ym)→ g(x)f1(y1) . . . fm(ym).

Conversely every tempered distribution K on (Rn)m+1 defines a continuous m-linear
map from S(Rn)× · · · × S(Rn) into S ′(Rn) whose kernel is K. We will occasionally
write K(x, y1, . . . , ym) for the distribution K to indicate the variables on which it
acts.

In this work we study m-linear operators defined on products of test functions
and we seek conditions to extend them as bounded operators on certain products of
Banach spaces. We will use the notation

‖T‖X1×···×Xm→X = sup
‖f‖Xj=1

1≤j≤m

‖T (f1, . . . , fm)‖X

to denote the norm of an m-linear operator T from a product of Banach spaces of
functions X1 × · · · × Xm into a quasi-Banach space X. We say that T is bounded
from X1 × · · · ×Xm into X when the norm above is finite.

An m-linear operator T : S(Rn)× · · · × S(Rn)→ S ′(Rn) is linear in every entry
and consequently it has m formal transposes. The jth transpose T ∗j of T is defined
via

〈T ∗j(f1, . . . , fm) , h〉 = 〈T (f1, . . . , fj−1, h, fj+1, . . . , fm) , fj〉,
for all f1, . . . , fm, g in S(Rn).

It is easy to check that the kernel K∗j of T ∗j is related to the kernel K of T via

K∗j(x, y1, . . . , yj−1, yj, yj+1, . . . , ym) = K(yj, y1, . . . , yj−1, x, yj+1, . . . , ym).(3)

Note that if a multilinear operator T maps a product of Banach spaces X1×· · ·×Xm

into another Banach space X, then the transpose T ∗j maps the product of Banach
spaces X1× . . . Xj−1×X∗×Xj+1×· · ·×Xm into X∗j . Moreover, the norms of T and

T ∗j are equal.
It is sometimes customary to work with the adjoints of an m-linear operator T

whose kernels are the complex conjugates of the kernels K∗j defined above. In this
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paper we choose to work with the transposes, as defined above, to simplify the nota-
tion. This choice presents no differences in the study of these operators.

LetK(x, y1, . . . , ym) be a locally integrable function defined away from the diagonal
x = y1 = · · · = ym in (Rn)m+1, which satisfies the size estimate

|K(x, y1, . . . , ym)| ≤ A

(|x− y1|+ · · ·+ |x− ym|)nm
(4)

for some A > 0 and all (x, y1, . . . , ym) ∈ (Rn)m+1 with x �= yj for some j. Further-
more, assume that for some ε > 0 we have the smoothness estimates

|K(x, y1, . . . , yj, . . . , ym)−K(x′, y1, . . . , yj, . . . , ym)|

≤ A|x− x′|ε
(|x− y1|+ · · ·+ |x− ym|)nm+ε

(5)

whenever |x− x′| ≤ 1
2
max1≤j≤n |x− yj| and also that for each j,

|K(x, y1, . . . , yj, . . . , ym)−K(x, y1, . . . , y
′
j, . . . , ym)|

≤
A|yj − y′j|ε

(|x− y1|+ · · ·+ |x− ym|)nm+ε

(6)

whenever |yj − y′j| ≤ 1
2
max1≤j≤n |x − yj|. Note that condition (5) is a regularity

condition for K∗j defined in (3) in terms of K.
For convenience in the notation, we will assume a more symmetric form of the above

estimates. It is easy to see that with an appropriate constant cn,m > 0, condition (4)
can also be written as

|K(y0, y1, . . . , ym)| ≤ cn,mA

(
∑m

k,l=0 |yk − yl|)mn
;(7)

while conditions (5) and (6) follow from the more concise estimate

|K(y0, . . . , yj, . . . , ym)−K(y0, . . . , y
′
j, . . . , ym)| ≤

cn,mA|yj − y′j|ε
(
∑m

k,l=0 |yk − yl|)mn+ε
,(8)

whenever 0 ≤ j ≤ m and |yj − y′j| ≤ 1
2
max0≤k≤m |yj − yk|.

We also note that condition (8) with ε = 1 is a consequence of

|∇K(y0, y1, . . . , ym)| ≤ A

(
∑m

k,l=0 |yk − yl|)nm+1
,

where ∇ denotes the gradient in all possible variables.
We will reserve the letter A for the constant that appears in the size and regularity

estimates of K. (If these numbers are different, we will take A to be the largest of
all these constants.)

In this article we study m-linear operators T : S(Rn) × · · · × S(Rn) → S ′(Rn)
for which there is a function K defined away from the diagonal x = y1 = · · · = ym in
(Rn)m+1 satisfying (7) and (8) and such that

T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym,(9)
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whenever f1, . . . , fm ∈ D(Rn) and x /∈ ∩m
j=1supp fj.

Let K̃ be the Schwartz kernel of T . Note that if (7), (8), and (9) are satisfied, then
for f1, . . . , fm, g in D(Rn) with ∩m

j=1supp fj ∩ supp g = ∅, we have that

〈K̃, g ⊗ f1 ⊗ · · · ⊗ fm〉 =

∫
Rn

∫
(Rn)m

K(x, y1, . . . , ym)f(y1) . . . fm(ym) dy1 . . . dym dx,

as an absolutely convergent integral. For this reason, we will say that T is anm-linear
operator with Calderón-Zygmund kernel K. The class of all functions satisfying (7)
and (8) with parameters m, A, and ε will be denoted by m-CZK(A, ε).

We plan to investigate boundedness properties of operators T with kernels in the
class m-CZK(A, ε) from a product of Lp spaces into another Lebesgue space. Since
kernels satisfying condition (4) include certain distributions which are homogeneous
of degree −mn, if the corresponding operator maps Lp1 × · · · × Lpm → Lp, then the
equation

1

p1

+ · · ·+ 1

pm
=

1

p
must hold, as dictated by homogeneity.

For notational convenience, we will occasionally write

(y1, . . . , ym) = !y,

K(x, y1, . . . ym) = K(x, !y),

dy1 . . . dym = d!y.

As in the linear case, the smoothness assumption on the kernel allows us to extend
the action of an operator T with kernel in m-CZK(A, ε) to functions in (C∞ ∩L∞).
To achieve this, let us fix a C∞ function ψ supported in the ball of radius two in Rn

and satisfying 0 ≤ ψ(x) ≤ 1 and ψ(x) = 1 when 0 ≤ |x| ≤ 1. Let ψk(x) = ψ(2−kx).
We have the following.

Lemma 1. Every multilinear operator T with kernel K in m-CZK(A, ε) can be
extended to (C∞ ∩ L∞)× · · · × (C∞ ∩ L∞) as an element of D′(Rn) via

T (f1, . . . , fm) = lim
k→∞

(
T (ψkf1, . . . , ψkfm) +G(ψkf1, . . . , ψkfm)

)
,

where

G(ψkf1, . . . , ψkfm) = −
∫

min
1≤j≤m

|yj |>1

K(0, !y)(ψkf1)(y1) . . . (ψkfm)(ym) d!y,

and the limit above is taken in the weak∗-topology of D′(Rn).

Proof. Let fj ∈ L∞ ∩ C∞ for 1 ≤ j ≤ m. Set

Fk = T (ψkf1, . . . , ψkfm) +G(ψkf1, . . . , ψkfm).

Since D′(Rn) is sequentially complete, it is enough to show that for each function
g ∈ D(Rn) the limk→∞〈Fk, g〉 exists. Let B(0, R) be the ball centered at zero of
radius R > 0. Fix g ∈ D(Rn), select a positive integer k0 so that supp g ⊂ B(0, 2k0),
and write for k > k0

〈Fk, g〉 = 〈Fk0 , g〉+ 〈Fk − Fk0 , g〉.
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Any multilinear operator L satisfies the identity

L(f1, . . . , fm)− L(h1, . . . , hm) =
m∑
j=1

L(h1, . . . , hj−1, fj − hj, fj+1, . . . , fm),(10)

with the obvious interpretations when j = 1 or j = m. Using (10) we can write

〈Fk − Fk0 , g〉 =
m∑
j=1

〈T (ψk0f1, . . . , ψk0fj−1, (ψk − ψk0)fj, ψkfj+1, . . . , ψkfm), g〉+

m∑
j=1

∫
Rn

G(ψk0f1, . . . , ψk0fj−1, (ψk − ψk0)fj, ψkfj+1, . . . , ψkfm)g(x) dx.

(11)

We need to show that each term in (11) has a limit as k → ∞. Note that for all
k ≥ k0,

∩m
j=1supp (ψk − ψk0)fj ∩ supp g = ∅,

so using (9), we control the two terms for j = 1 in (11) by∫
Rn

∫
min

2≤l≤m
|yl|>1

∫
|y1|>2k0

|K(x, !y)−K(0, !y)|

|(ψk(y1)− ψk0(y1))f1(y1)ψk(y2)f2(y2) · · ·ψk(ym)fm(ym)g(x)| d!y dx

+

∫
Rn

∫
min

2≤l≤m
|yl|≤1

∫
|y1|>2k0

|K(x, !y)|

|(ψk(y1)− ψk0(y1))f1(y1)ψk(y2)f2(y2) · · ·ψk(ym)fm(ym)g(x)| d!ydx,

and similarly for j ≥ 2. Using the smoothness and size conditions on the kernel, it
is an easy consequence of the Lebesgue dominated convergence theorem that (11)
converges to

m∑
j=1

∫
Rn

∫
min

1≤l≤m
l =j

|yl|>1

∫
|yj |>2k0

(
K(x, !y)−K(0, !y)

)

(1− ψk0(yj))f1(y1)f2(y2) · · · fm(ym)g(x) d!y dx

+
m∑
j=1

∫
Rn

∫
min

1≤l≤m
l =j

|yl|>1

∫
|yj |>2k0

K(x, !y)

(1− ψk0(yj))f1(y1)f2(y2) · · · fm(ym)g(x) d!ydx,

(12)

as k → ∞. We conclude that 〈Fk, g〉 = 〈Fk0 , g〉 + 〈Fk − Fk0 , g〉 has a limit as
k →∞.
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If the functions fj have compact support, then by choosing k0 large enough (12)
becomes zero. Thus for f1, . . . , fm in D(Rn) the actual value of T (f1, . . . , fm) is
different from the value given in the above lemma by the constant

G(f1, . . . , fm) = −
∫

min
1≤j≤m

|yj |>1

K(0, !y)f1(y1) . . . fm(ym) d!y.(13)

This slight discrepancy, however, will cause no ambiguities when T (f1, . . . , fm) is seen
as an element of BMO.

We will later need to apply induction on the degree m of multilinearity of an
operator T . We will then need to consider (m − 1)-linear operators obtained by
freezing one of the functions on which T acts. The following lemma will be useful for
this purpose.

Lemma 2. Let K be in m-CZK(A, ε), let fm ∈ L∞, and for (x, y1, . . . , ym−1) not
in the diagonal of (Rn)m define

Kfm(x, y1, . . . , ym−1) =

∫
Rn

K(x, y1, . . . , ym−1, ym)fm(ym) dym.(14)

Then for some constant cn,m > 0 we have that K is in (m−1)-CZK(cn,m‖fm‖L∞A, ε).

Proof. Using estimate (4) we obtain

|Kfm(x, y1, . . . , ym−1)| ≤ ‖fm‖L∞A
∫

Rn

(|x− y1|+ · · ·+ |x− ym|)−nm dym

≤ cn,m‖fm‖L∞A(|x− y1|+ · · ·+ |x− ym−1|)−n(m−1),

which gives the size estimate for Kfm .
To verify the smoothness conditions, set x = y0 and assume that for some 0 ≤ j ≤

m− 1 we have

|yj − y′j| ≤
1

2
max

0≤k≤m−1
|yj − yk| ≤

1

2
max

0≤k≤m
|yj − yk|.

Then, using (8), we obtain

|Kfm(y0, . . . , yj, . . . , ym−1)−Kfm(y0, . . . , y
′
j, . . . , ym−1)|

≤‖fm‖L∞
∫

Rn

cn,mA|yj − y′j|ε
(
∑m

k,l=0 |yk − yl|)mn+ε
dym

≤‖fm‖L∞
∫

Rn

cn,mA|yj − y′j|ε(
|y0 − ym|+

∑m−1
k,l=0 |yk − yl|

)mn+ε dym

≤‖fm‖L∞
cn,mA|yj − y′j|ε( ∑m−1

k,l=0 |yk − yl|
)(m−1)n+ε

.
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By symmetry, Lemma 2 is also true if we freeze any other variable in K instead
of ym. Moreover, given an m–linear operator T and a fixed function fj for some
1 ≤ j ≤ m, we can construct the following (m− 1)–linear operator

Tfj(f1, . . . , fj−1, fj+1, . . . , fm) = T (f1, . . . , fj−1, fj, fj+1, . . . , fm).(15)

It is easy to check that the transposes of the operators defined this way are

(Tfj)
∗k =(T ∗k)fj , when k = 1, . . . , j − 1,

(Tfj)
∗k =(T ∗(k+1))fj , when k = j, . . . ,m− 1.

(16)

Lemma 3. Assume that T is a multilinear operator with kernel K in m-CZK(A, ε)
which extends to a bounded operator from Lp1 × · · · × Lpm into Lp for some indices
1 ≤ p1, . . . , pm, p <∞ and 1 ≤ pm ≤ ∞. Fix a compactly supported bounded function
fm and let Tfm be as in (15). Then Tfm is an (m− 1)-linear operator with Calderón-
Zygmund kernel Kfm given by (14).

Proof. Let f1, . . . , fm−1 in D and let fm be a compactly supported function in L∞.
We need to show that

Tfm(f1, . . . , fm−1)(x)

=

∫
(Rn)m−1

Kfm(x, y1, . . . , ym−1)f1(y1) . . . fm−1(ym−1) dy1 . . . dym−1
(17)

for x /∈ ∩m−1
j=1 supp fj. We will prove (17) by testing against smooth functions h

supported in the complement of
(
∩m−1

j=1 supp fj
)
. Duality gives

〈T (f1, . . . , fm−1, fm), h〉 = 〈T ∗m(f1, . . . , fm−1, h), fm〉,(18)

where T ∗m(f1, . . . , fm−1, h) is a well-defined function in Lp′m , if pm < ∞, and in L1,
if pm =∞. Moreover, since ∩m−1

j=1 supp fj ∩ supp h = ∅, this function is given by the
absolutely convergent integral

z →
∫

(Rn)m
K(x, y1, . . . , ym−1, z)f1(y1) . . . fm−1(ym−1)h(x) dy1 . . . dym−1dx

for all z ∈ Rn. It follows that (18) is given by the absolutely convergent integral∫
Rn

∫
(Rn)m−1

Kfm(x, y1, . . . , ym−1)f1(y1) . . . fm−1(ym−1) dy1 . . . dym−1 h(x) dx

which implies (17).

Remark. If fm does not have compact support, then we cannot conclude from
(9) that Tfm is associated to the Calderón-Zygmund kernel Kfm as defined in (14)
(though the function Kfm satisfies the right estimates). We therefore choose to work
with L∞ functions with compact support when we consider the operators Tfm , to
ensure that their kernels are indeed given by (14) and are a fortiori in the class
(m− 1)-CZK(‖fm‖L∞A, ε).

We also observe that if an m-linear operator with kernel in m-CZK(A, ε) extends
to a bounded operator on a product of Lpj spaces with pj < ∞, then the integral
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representation (9) still holds for compactly supported and bounded functions fj. This
last statement can be easily shown using an elementary limiting argument.

3. An endpoint weak type estimate

The Calderón-Zygmund decomposition is the key tool used in obtaining weak type
(1, 1) boundedness for classical linear singular integral operators. In this section
we use this decomposition to obtain endpoint weak type results for the multilinear
operators discussed in Section 1.

Since L1 is a natural endpoint space for boundedness of singular integrals in the
scale of Lp spaces (1 < p <∞), it is not surprising that the corresponding endpoint
result for m-linear operators is attained on the m-fold product L1 × · · · × L1. By
homogeneity this product should be mapped into L1/m,∞. In fact, for operators given
by homogeneous kernels, such weak type estimates have been recently obtained by
Kenig and Stein [15], building on previous work by Coifman and Meyer [6].

The theorem bellow is sharp in the sense that the space L1/m,∞ cannot be replaced
by L1/m, as indicated by an example given in Section 6.

Theorem 1. Let T be a multilinear operator with kernel K in m-CZK(A, ε). As-
sume that for some 1 ≤ q1, q2, . . . , qm ≤ ∞ and some 0 < q <∞ with

1

q1
+

1

q2
+ · · ·+ 1

qm
=

1

q
,

T maps Lq1 × · · · × Lqm into Lq,∞. Then T can be extended to a bounded operator
from the m-fold product L1×· · ·×L1 into L1/m,∞. Moreover, for some constant Cn,m

(that depends only on the parameters indicated) we have that

‖T‖L1×···×L1→L1/m,∞ ≤ Cn,m

(
A+ ‖T‖Lq1×···×Lqm→Lq,∞

)
.(19)

Proof. Set B = ‖T‖Lq1×···×Lqm→Lq,∞ . Fix an α > 0 and consider functions fj ∈ L1

for 1 ≤ j ≤ m. Without loss of generality we may assume that ‖f1‖L1 = · · · =
‖fm‖L1 = 1. Setting Eα = {x : |T (f1, . . . , fm)(x)| > α}, we need to show that for
some constant C = Cm,n we have

|Eα| ≤ C(A+B)1/mα−1/m.(20)

(Once (20) has been established for fj’s with norm one, the general case follows
immediately by scaling.) Let γ be a positive real number to be determined later.
Apply the Calderón-Zygmund decomposition to the function fj at height (αγ)1/m

to obtain ‘good’ and ‘bad’ functions gj and bj, and families of cubes {Qj,k}k with
disjoint interiors such that

fj = gj + bj

and

bj =
∑
k

bj,k
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where

support(bj,k) ⊂ Qj,k∫
bj,k(x)dx = 0∫

|bj,k(x)|dx ≤ C(αγ)1/m|Qj,k|

| ∪k Qj,k| ≤ C(αγ)−1/m

‖bj‖L1 ≤ C
‖gj‖Ls ≤ C(αγ)1/ms′

for all j = 1, 2, . . . ,m and any 1 ≤ s ≤ ∞; (s′ is here the dual exponent of s). Now
let

E1 ={x : |T (g1, g2, . . . , gm)(x)| > α/2m}
E2 ={x : |T (b1, g2, . . . , gm)(x)| > α/2m}
E3 ={x : |T (g1, b2, . . . , gm)(x)| > α/2m}

. . .

E2m ={x : |T (b1, b2, . . . , bm)(x)| > α/2m},

where each Es = {x : |T (h1, h2, . . . , hm)(x)| > α/2m} with hj ∈ {gj, bj} and all the

sets Es are distinct. Since |{x : |T (f1, . . . , fm)(x)| > α}| ≤
∑2m

s=1 |Es|, it will suffice
to prove estimate (20) for each of the 2m sets Es.

Let us start with set E1 which is the easiest. Chebychev’s inequality and the
Lq1 × · · · × Lqm → Lq,∞ boundedness give

|E1| ≤
(2mB)q

αq
‖g1‖qLq1 . . . ‖gm‖qLqm ≤

CBq

αq

m∏
j=1

(αγ)
q

mq′
j

=
C ′Bq

αq
(αγ)(m− 1

q
) q
m = C ′Bqα−

1
mγq−

1
m .

(21)

Consider a set Es as above with 2 ≤ s ≤ 2m. Suppose that for some 1 ≤ l ≤ m
we have l bad functions and m− l good functions appearing in T (h1, . . . , hm), where
hj ∈ {gj, bj} and assume that the bad functions appear at the entries j1, . . . , jl. We
will show that

|Es| ≤ Cα−1/m
(
γ−1/m + γ−1/m(Aγ)1/l

)
.(22)

Let l(Q) denote the side-length of a cube Q and let Q∗ be a certain dimensional
dilate of Q with the same center. Fix an x /∈ ∪m

j=1∪k (Qj,k)
∗. Also fix for the moment

the cubes Qj1,k1 , . . . , Qjl,kl and without loss of generality suppose that Qj1,k1 has the
smallest size among them. Let cj1,k1 be the center ofQj1,k1 . For fixed yj2 , . . . , yjl ∈ Rn,
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the mean value property of the function bj1,k1 gives

∣∣∣∣∣
∫
Qj1,k1

K(x, y1, . . . , yj1 , . . . , ym)bj1,k1(yj1) dyj1

∣∣∣∣∣
=

∣∣∣∣∣
∫
Qj1,k1

(
K(x, y1, . . . , yj1 , . . . , ym)−K(x, y1, . . . , cj1,k1 , . . . , ym)

)
bj1,k1(yj1) dyj1

∣∣∣∣∣
≤

∫
Qj1,k1

|bj1,k1(yj1)|
A |yj1 − cj1,k1 |ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1

≤
∫
Qj1,k1

|bj1,k1(yj1)|
C A l(Qj1,k1)

ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1 ,

where the previous to last inequality above is due to the fact that

|yj1 − cj1,k1 | ≤ cn l(Qj1,k1) ≤
1

2
|x− yj1 | ≤

1

2
max

1≤j≤m
|x− yj|.

Multiplying the just derived inequality

∣∣∣∣∣
∫
Qj1,k1

K(x, !y)bj1,k1(yj1) dyj1

∣∣∣∣∣ ≤
∫
Qj1,k1

C A |bj1,k1(yj1)| l(Qj1,k1)
ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε
dyj1

by
∏

i/∈{j1,...,jl}
|gi(yi)| and integrating over all yi with i /∈ {j1, . . . , jl}, we obtain the

estimate

∫
(Rn)m−l

∏
i/∈{j1,...,jl}

|gi(yi)|
∣∣∣∣∣
∫
Qj1,k1

K(x, !y)bj1,k1(yj1) dyj1

∣∣∣∣∣
∏

i/∈{j1,...,jl}
dyi

≤
∏

i/∈{j1,...,jl}
‖gi‖L∞

∫
Qj1,k1

|bj1,k1(yj1)|
AC l(Qj1,k1)

ε

(
∑l

j=1 |x− yj|)mn−(m−l)n+ε
dyj1

≤C A
∏

i/∈{j1,...,jl}
‖gi‖L∞ ‖bj1,k1‖L1

l(Qj1,k1)
ε( ∑l

j=1(l(Qi,ki) + |x− ci,ki|)
)nl+ε

≤C A
∏

i/∈{j1,...,jl}
‖gi‖L∞ ‖bj1,k1‖L1

l∏
i=1

l(Qji,ki)
ε
l

(l(Qi,ki) + |x− ci,ki|)n+ ε
l

.

(23)

The penultimate inequality above is due to the fact that for x /∈ ∪m
j=1 ∪k (Qj,k)

∗ and
yj ∈ Qj,k we have that |x − yj| ≈ l(Qj,kj) + |x − cj,kj |, while the last inequality is
due to our assumption that the cube Qj1,k1 has the smallest side-length. It is now a
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simple consequence of (23) that for x /∈ ∪m
j=1 ∪k (Qj,k)

∗ we have

|T (h1, . . . , hm)(x)|

≤CA
∫

(Rn)m−1

∏
i/∈{j1,...,jl}

|gi(yi)|
l∏

i=2

( ∑
ki

|bji,ki(yji)|
) ∣∣∣∣∣

∫
Qj1,k1

K(x, !y ) bj1,k1(yj1) dyj1

∣∣∣∣∣
∏
i=j1

dyi

≤CA
∏

i/∈{j1,...,jl}
‖gi‖L∞

l∏
i=1

l(Qji,ki)
ε
l

(l(Qi,ki) + |x− ci,ki|)n+ ε
l

∫
(Rn)l−1

l∏
i=2

( ∑
ki

|bji,ki(yji)|
)
dyi2 . . . dyil

≤CA
∏

i/∈{j1,...,jl}
‖gi‖L∞

l∏
i=2

( ∑
ki

‖bji,ki‖L1 l(Qji,ki)
ε
l

(l(Qi,ki) + |x− ci,ki|)n+ ε
l

)

≤C ′A(αγ)
m−l
m

l∏
i=1

( ∑
ki

(αγ)1/m l(Qji,ki)
n+ ε

l

(l(Qi,ki) + |x− ci,ki|)n+ ε
l

)
= C ′′Aαγ

l∏
i=1

Mi,ε/l(x),

where

Mi,ε/l(x) =
∑
ki

l(Qji,ki)
n+ ε

l

(l(Qi,ki) + |x− ci,ki|)n+ ε
l

is the Marcinkiewicz function associated with the union of the cubes {Qi,ki}k. It is a
known fact [22] that∫

Rn

Mi,ε/l(x) dx ≤ C| ∪ki Qi,ki| ≤ C ′(αγ)−1/m.

Now, since

| ∪m
j=1 ∪k(Qj,k)

∗| ≤ C(αγ)−1/m,

inequality (22) will be a consequence of the estimate

|{x /∈ ∪m
j=1 ∪k (Qj,k)

∗ : |T (h1, . . . , hm)(x)| > α/2m}| ≤ C(αγ)−1/m(Aγ)1/l.(24)

We prove (24) using an L1/l estimate outside ∪m
j=1 ∪k (Qj,k)

∗; recall here that we are
considering the situation where l is not zero. Using the size estimate derived above
for |T (h1, . . . , hm)(x)| outside the exceptional set, we obtain

|{x /∈ ∪m
j=1 ∪k (Qj,k)

∗ : |T (h1, . . . , hm)(x)| > α/2m}|

≤Cα−1/l

∫
Rn−∪mj=1∪k(Qj,k)∗

(
αγAM1,ε/l(x) . . .Ml,ε/l(x)

)1/l
dx

≤C(γA)1/l

( ∫
Rn

M1,ε/l(x)dx

)1/l

. . .

( ∫
Rn

Ml,ε/l(x)dx

)1/l

≤C ′(γA)1/l
(
(αγ)−1/m . . . (αγ)−1/m

)1/l
= C ′α−1/m(Aγ)1/lγ−1/m,

which proves (24) and thus (22).
We have now proved (22) for any γ > 0. Selecting γ = (A + B)−1 in both (21)

and (22) we obtain that all the sets Es satisfy (20). Summing over all 1 ≤ s ≤ 2m

we obtain the conclusion of the theorem.
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For purposes of interpolation that will become apparent in the next section, we
will need the following strengthening of Theorem 1.

Let us denote by Lp,1
c the space of all compactly supported functions in Lp,1 for

0 < p <∞. Also set L∞,1
c = L∞c , the set of all compactly supported functions in L∞.

(Recall that the definition in (1) gives L∞,1 = {0} but, to simplify the statement in
the next theorem, we set L∞,1

c = L∞c .)

Theorem 2. Let T be a multilinear operator with kernel K in m-CZK(A, ε). As-
sume that for some 1 ≤ q1, q2, . . . , qm ≤ ∞ and some 0 < q <∞ with

1

q1
+

1

q2
+ · · ·+ 1

qm
=

1

q

T maps Lq1,1
c × · · · × Lqm,1

c into Lq,∞. Then T is a bounded operator from the m-fold
product L1 × · · · × L1 into L1/m,∞. Moreover, for some constant Cn,m (that depends
only on the parameters indicated) we have that

‖T‖L1×···×L1→L1/m,∞ ≤ Cn,m

(
A+ ‖T‖Lq1×···×Lqm→Lq,∞

)
.(25)

Proof. The proof of this theorem only requires some minor modifications in the proof
of the previous result. Let fj ∈ L1. Without loss of generality, we may assume that
they have compact support and norm one. It follows that the gj’s obtained from
the fj’s using the Calderón-Zygmund decomposition, fj = gj + bj, must also have
compact support. Moreover, it is easy to see that

‖gj‖Lqj ,1 ≤ C(αγ)1/mq′j

when qj <∞, while ‖gj‖L∞ ≤ C(αγ)1/m as before. These estimates are sufficient to
deduce (21) while the rest of the arguments remain unchanged.

4. Multilinear interpolation

In this section we show how to obtain strong type Lp1×· · ·×Lpm → Lp boundedness
results for multilinear Calderón-Zygmund operators starting from a single estimate.
To avoid unnecessary technical complications (see the remark at the end of Lemma 3)
we will be working with L∞c instead of L∞ .

Theorem 3. Let T be a multilinear operator with kernel K in m-CZK(A, ε). Let
1 ≤ q1, q2, . . . , qm, q <∞ be given numbers with

1

q
=

1

q1
+

1

q2
+ · · ·+ 1

qm
.

Suppose that either (i) or (ii) below hold:
(i) T maps Lq1,1 × · · · × Lqm,1 into Lq,∞ if q > 1,
(ii) T maps Lq1,1 × · · · × Lqm,1 into L1 if q = 1.
Let p, pj be numbers satisfying 1/m ≤ p <∞, 1 ≤ pj ≤ ∞, and

1

p
=

1

p1

+
1

p2

+ · · ·+ 1

pm
.

Then all the statements below are valid:
(iii) when all pj > 1, then T can be extended to a bounded operator from Lp1×· · ·×Lpm
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into Lp, where Lpk should be replaced by L∞c if some pk =∞;
(iv) when some pj = 1, then T can be extended to a bounded map from Lp1×· · ·×Lpm

into Lp,∞, where again Lpk should be replaced by L∞c if some pk =∞.
(v) when all pj = ∞, then T can be extended to a bounded map from the m-fold
product L∞c × · · · × L∞c into BMO.

Moreover, there exists a constant Cn,m,pj ,qi such that under either assumption (i)
or (ii), we have the estimate

‖T‖Lp1×···×Lpm→Lp ≤ Cn,m,pj ,qi

(
A+B

)
,(26)

where B = ‖T‖Lq1×···×Lqm→Lq,∞ if q > 1, and B = ‖T‖Lq1×···×Lqm→L1 if q = 1.
Furthermore, conclusions (iii), (iv), and (v) as well estimate (26) are also valid

for all the transposes T ∗j, 1 ≤ j ≤ m.

Remark. Hypothesis (i) is not strong enough to imply (iii) nor (iv) when q = 1. The
reason is that L1,∞ does not have a predual and its dual is not useful in interpolation.

Before we prove the theorem we set up some notation. We will identify exponents
p1, . . . , pm, p for which T maps Lp1×· · ·×Lpm into Lp with points (1/p1, . . . , 1/pm, 1/p)
in Rm+1. We need to show that T is bounded for (1/p1, . . . , 1/pm, 1/p) in the
convex hull of the m + 2 points E = (1, 1, . . . , 1,m), O = (0, 0, . . . , 0, 0), C1 =
(1, 0, . . . , 0, 1), C2 = (0, 1, . . . , 0, 1), . . . , and Cm = (0, 0, . . . , 1, 1) We will denote
this set by EC1 . . . CmO. Observe that the simplex C1C2 . . . Cm is contained in the
(m− 1)-dimensional plane

P = {(1/p1, . . . , 1/pm, 1/p) : 1/p1 + · · ·+ 1/pm = 1/p = 1}
and splits EOC1 . . . Cm into two simplices EC1 . . . Cm and OC1 . . . Cm based on the
equilateral polygon C1 . . . Cm in P . See Figure 1. Let qj, q be as in the statement of
the theorem and let Q = (1/q1, . . . , 1/qm, 1/q). In a geometric language, assumption
(i) is saying that Q lies in the interior of OC1 . . . Cm while assumption (ii) is saying
that Q lies in the interior of C1 . . . Cm. Geometrically speaking, conclusion (iii) is
saying that T satisfies a strong type bound in the closure of the simplex OC1C2 . . . Cm

minus its vertices union the interior of the simplex EC1C2 . . . Cm. Conclusion (iv)
is saying that T satisfies a weak type bound on the vertices C1, . . . , Cm and on the
exterior faces of the simplex EC1 . . . Cm.

Let Mj be the midpoints of the line segments OCj. Then the (m− 1)-dimensional
simplices Pj = C1 . . . Cj−1MjCj+1 . . . Cm determine the planes of symmetry with
respect to the transposes T ∗j. See Figure 1. This means that the reflection of the
point

P = (1/p1, . . . , 1/pm, 1/p)

in OC1 . . . Cm with the respect to Pj is the point

(1/p1, . . . , 1/pj−1, 1/p
′, 1/pj+1, . . . , 1/pm, 1/p

′
j).

Observe that the boundedness of the transpose T ∗j at the latter point is equivalent
to the boundedness of T at P .

The main idea of the proof of the theorem is to obtain appropriate bounds in
each of the faces of the polyhedron EC1 . . . CmO by reducing matters to (m − 1)-
linear operators. Induction on m will then be used to obtain the required bounds
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on the faces of this polyhedron which will imply strong type bounds on its interior,
by interpolation. In the case m = 1 (required by the induction) all the statements
of the theorem are known classical results about linear Calderón-Zygmund operators
which we therefore omit.

Figure 1. A geometric description of the proof of Lemma 4 for trilin-
ear operators.

We will need to use the following version of the multilinear Marcinkiewicz inter-
polation theorem, Theorem A below, obtained by Grafakos and Kalton [11]. Other
versions of the multilinear Marcinkiewicz interpolation theorem can be found in Jan-
son [14] and Strichartz [24].
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We say that a finite subset Θ of [0,∞)m is affinely independent if the conditions∑
θ∈Θ

λθθ = (0, . . . , 0) and
∑
θ∈Θ

λθ = 0

imply λθ = 0, for all θ ∈ Θ.

Theorem A. ([11] Theorem 4.6) Let 0 < pj,k, pj ≤ ∞ for 1 ≤ j ≤ m + 1 and
1 ≤ k ≤ m, suppose that for j = 1, . . . ,m+ 1 we have

m∑
k=1

1

pj,k
=

1

pj
,

and that the set Θ = {(1/pj,1, . . . , 1/pj,m) : j = 1, . . . ,m+1} is affinely independent,
that is

det




1/p1,1 1/p1,2 . . . 1/p1,m 1
1/p2,1 1/p2,2 . . . 1/p2,m 1
. . . . . . . . . . . . . . .

1/pm+1,1 1/pm+1,2 . . . 1/pm+1,m 1


 �= 0.

Assume that an m-linear map T satisfies

‖T (χE1 , . . . , χEm)‖Lpj,∞ ≤M |E1|1/pj,1 . . . |Em|1/pj,m(27)

for all sets Ej of finite measure and all 1 ≤ j ≤ m + 1. Suppose that the point
(1/q1, . . . , 1/qm, 1/q) lies in the open convex hull of the points (1/pj,1, . . . , 1/pj,m, 1/pj)
in Rm+1. Then T extends to a bounded m-linear map from Lq1 × · · · × Lqk into Lq

with constant a multiple of M .

Remark. If (27) is assumed to hold on characteristic functions of compact sets, then
it follows that T maps Lq1

c × · · · × Lqm
c into Lq and a simple density argument gives

the conclusion of Theorem A. Naturally, the same conclusion holds if (27) is valid for
general compactly supported functions fj (instead of χEj).

The proof of Theorem 3 will be a consequence of Theorem A and of the following
lemma.

Lemma 4. Under either hypothesis (i) or (ii) there exists a point V in the interior
of the (m − 1)-dimensional simplex C1C2 . . . Cm at which T satisfies a strong type
bound with constant a multiple of (A+B). Similarly for every 1 ≤ j ≤ m there exists
a point V ∗j in the interior of C1C2 . . . Cm at which T ∗j satisfies a strong type bound
with constant also a multiple of (A+B).

Let us now prove Theorem 3 assuming Lemma 4.

Proof. Using Theorem 2, we obtain a weak type estimate for T at the point E.
Duality and Lemma 4 imply that T satisfies a strong type bound at certain points
Vj which lie in the interior of each of the m faces

Sj = OC1 . . . Cj−1Cj+1 . . . Cm

of the simplex OC1 . . . Cm. (Vj is the reflection of V ∗j with respect to Pj.) We will use
this information and induction onm to obtain strong type bounds for T in the closure
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of each face Sj minus its vertices. At the vertices C1, . . . , Cj−1, . . . , Cj+1, . . . , Cm of Sj
we will prove weak type bounds. We achieve this by using the inductive hypothesis
that the theorem is true for (m− 1)-linear operators.

For simplicity let us only work with the face Sj for j = m. Fix a function fm in
L∞c (Rn) and define the (m− 1)-linear operator

Tfm(f1, . . . , fm−1) = T (f1, f2, . . . , fm).

By Lemma 3, it follows that Tfm has a kernel in (m − 1)-CZK(cn,m‖fm‖L∞A, ε).
Moreover, Tfm satisfies a strong type estimate at a point Vm in the interior of the
face Sm with bound a constant multiple of (A+B)‖fm‖L∞ since T satisfies a strong
type estimate at the point Vm with bound a constant multiple (A+B). The induction
hypothesis now gives that Tfm is bounded on the closure of the (m− 1)-dimensional
simplex OC1 . . . Cm−1 minus its vertices. It also gives that Tfm satisfies weak type
estimates at the vertices C1, . . . , Cm−1. Moreover, all the bounds in the estimates
are constant multiples of A‖fm‖L∞ + (A + B)‖fm‖L∞ . It follows that T satisfies a
strong type estimate on the interior of the face Sm with bound a multiple of (A+B)
with the restriction that its last argument lies in L∞c . Similarly T satisfies a weak
type estimate at the vertices C1, . . . , Cm−1 with bound a multiple of (A + B) with
the same restriction on its last argument.

Next we observe that if Dj are points in the interior of the faces Sj then the points
D1, . . . , Dm and E are affinely independent in the sense of Theorem A.

Once strong type estimates have been obtained on the faces Sj, Theorem A implies
strong type estimates in the closure of the simplex OC1 . . . Cm minus its m + 1 ver-
tices, union the interior of the simplex EC1 . . . Cm. Note that we are using here the
remark after Theorem A since in one of the arguments of T only compactly supported
functions appear. The weak type bounds on the sides of the simplex EC1 . . . Cm fol-
low by interpolation between E and the points Cj at which we already know that a
weak type estimate holds. The weak type estimates on each of the edges ECj are
obtained by complex interpolation. This concludes the proof of (iii) and (iv) for T .

To obtain conclusion (v) observe that the induction hypothesis gives that Tfm
maps the (m− 1)-fold product L∞c × · · · × L∞c into BMO with bound a multiple of
(A+B)‖fm‖L∞ . Since fm is an arbitrary element of L∞c , assertion (v) follows for T .

Since Lemma 4 gives the same conclusion for all the transposes T ∗j of T , it follows
that the same result is also valid for all the of T ∗j’s as claimed in the statement of
the Theorem 3.

We now prove Lemma 4.

Proof. Let F be the point of intersection of the line segment QE with the simplex

C1C2 . . . Cm. Under hypothesis (i) pick F̃ on the lineQE, close to F and in the interior

of the simplex OC1 . . . Cm. Under assumption (ii) just let F̃ = F = Q. Multilinear
complex interpolation between the points E and Q implies that T satisfies a weak

type estimate at the point F̃ with constant bounded by a multiple of (A+ B). The
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estimate at the point F̃ implies in particular that

‖T (f1, . . . , fm)‖Lα,∞ ≤ C(A+B)
m∏

k=1

‖fk‖Lαk,1(28)

for some α1, . . . αm, α > 1. Under assumption (ii) this step is vacuous since estimate

(28) already holds. Now let Gj and G̃j be the reflections of F and F̃ about Pj.

Duality gives the following estimates at the points G̃j

‖T ∗j(f1, . . . , fm)‖Lα′,1 ≤ C(A+B)
∏
k =j

‖fk‖Lαk,1‖fj‖Lα′j ,1 .(29)

This is because for s > 1, Ls,∞ is the dual space of Ls′,1 and these two spaces
are ‘norming duals’ of each other (i.e. each of the two norms can be realized as a
supremum of integrals against functions in the unit ball of the other space). Now

let Hj be the intersection of the line G̃jE with the (m − 1)-dimensional simplex

C1C2 . . . Cm. Pick a point H̃j on the line G̃jE but inside OC1 . . . Cm and near Hj.
See Figure 1. Theorem 2 implies that T ∗j satisfies a weak type estimate at the point

E. Multilinear complex interpolation between the points E and G̃ gives the following

Lorentz space estimate at the point H̃j

‖T ∗j(f1, . . . , fm)‖Lγj,∞ ≤ C(A+B)‖fj‖Lβjj,1
∏
k =j

‖fk‖Lβkj,1 ,

for some 1 < γj, βkj < ∞. Now reflect the points Hj and H̃j about Pj to obtain

points Rj and R̃j at which T satisfies the Lorentz space estimates

‖T (f1, . . . , fm)‖Lβjj′,∞ ≤ C(A+B)‖fj‖
L
γ′
j
,1

∏
k =j

‖fk‖Lβkj,1 .

We now havem+1 points R̃1, . . . , R̃m, and E at which T satisfies restricted weak type
estimates of the form Ls1,1×· · ·×Lsm,1 → Ls,∞ with constant bounded by a multiple of
(A+B). We observed earlier that if Dj are points in the interior of the faces Sj, then
the points D1, . . . , Dm, E are affinely independent in the sense of Theorem A. Since
the notion of affine independence is stable under small perturbations, we conclude

that the m+ 1 points R̃1, . . . , R̃m, and E are affinely independent when the R̃j’s are
very close to the Rj’s. Theorem A implies that T satisfies a strong type estimate at

every point P = (1/p1, . . . , 1/pm, 1/p) in the interior of the polyhedron R̃1 . . . R̃mE
with bound a multiple of (A + B). In this way we obtain a point V in the interior
of the (m − 1)-dimensional simplex C1C2 . . . Cm at which T satisfies a strong type
bound with constant a multiple of (A+B).

To obtain the points V ∗j as in the statement of the lemma we argue as follows. Let
Wj be the reflections ofQ with respect to Pj. Then T ∗j satisfies a strong type estimate
at the point Wj. Repeat the argument above with T ∗j playing the role of T and Wj

playing the role of the starting point Q. We find points V ∗j in the interior of the
(m− 1)-dimensional simplex C1C2 . . . Cm at which T ∗j satisfies a strong type bound
with constant a multiple of (A+B). This concludes the proof of the Lemma.
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Remark. As mentioned earlier, to avoid technical complications we have obtained
estimates only on L∞c . In many instances, such estimates and certain ad hoc proce-
dures allow extensions of linear or multilinear operators to all of L∞. One way to
achieve this is described in the book of Meyer and Coifman [18], Section 13.3, in their
treatment of multilinear multiplier operators.
Remark. Extensions to L∞ can also be obtained in certain cases by duality. Notice
that Theorem 3 gives that T ∗j maps the m-fold product Lm×· · ·×Lm into L1. Using
duality, we can then extend T as a bounded operator

Lm × · · · × Lm × L∞ × Lm × · · · × Lm → Lm′ .

We obtain similar extensions for all points in the boundary of OC1 . . . Cm, except at
the vertices O,C1, . . . , Cm.

We now discuss how to achieve this extension at the vertex O. This will allow us
to obtain a multilinear version of the theorem of Peetre, Spanne, and Stein on the
boundedness of a linear Calderón-Zygmund operators from L∞ to BMO.

Proposition 1. Under either hypothesis (i) or (ii) of Theorem 3, T has an extension
that maps

L∞ × · · · × L∞ → BMO

with bound a constant multiple of (A+B). By duality, T also maps

L∞ × · · · ×H1 × · · · × L∞ → L1.

(where H1 is the Hardy space predual of BMO).

Proof. Fix a C∞ function ψ supported in the ball of radius two in Rn and satisfying
0 ≤ ψ(x) ≤ 1 and ψ(x) = 1 when 0 ≤ |x| ≤ 1 and let ψk(x) = ψ(2−kx) as in
Lemma 1. Theorem 3 gives that T maps

L∞c × · · · × L∞c × L2 → L2.

Since T is well defined on this product of spaces the expression T (ψkf1, . . . ψkfm) is
a well defined L2 function whenever fj ∈ L∞. For f1, . . . , fm ∈ L∞ let

G(ψkf1, . . . , ψkfm) = −
∫

min
1≤j≤m

|yj |>1

K(0, !y)(ψkf1)(y1) . . . (ψkfm)(ym) d!y.

Lemma 1 implicitly contains a proof that the limit

lim
k→∞

(
T (ψkf1, . . . , ψkfm) +G(ψkf1, . . . , ψkfm)

)
= T (f1, . . . , fm),

exists pointwise almost everywhere and defines a locally integrable function. (The
smoothness of the functions fj in the proof this lemma was needed to make sense of
the expression T (ψkf1, . . . , ψkfm) when T was only defined on S(Rn)×· · ·×S(Rn).)
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To check that this extension of T maps L∞ × · · · × L∞ into BMO, let us observe
that

‖T (f1, . . . , fm)‖BMO ≤ lim sup
k→∞

∥∥T (ψkf1, . . . , ψkfm) +G(ψkf1, . . . , ψkfm)
∥∥
BMO

= lim sup
k→∞

‖T (ψkf1, . . . , ψkfm)‖BMO

≤cn,m(A+B) lim sup
k→∞

‖ψkf1‖L∞ . . . ‖ψkfm‖L∞

=cn,m(A+B)‖f1‖L∞ . . . ‖fm‖L∞ ,
where the last inequality follows by assertion (v) of Theorem 3.

5. The multilinear T1 theorem

As we saw in Section 4, if a multilinear operator with kernel in m-CZK(A, ε) maps
Lq1×· · ·×Lqm into Lq for a single point (1/q1, . . . , 1/qm, 1/q) with q > 1, then T maps
Lp1 × · · ·×Lpm into Lp in the full range of possible exponents. It is therefore natural
to ask under what conditions T maps Lq1 × · · · × Lqm into Lq for one (m + 1)-tuple
(1/q1, . . . , 1/qm, 1/q). A necessary and sufficient condition for this to happen is given
by the multilinear T1 theorem discussed in this section.

The linear T1 theorem was obtained by David and Journé [10]. Its original for-
mulation involves three conditions equivalent to L2 boundedness. These conditions
are that T1 ∈ BMO, T ∗1 ∈ BMO, and that a certain weak boundedness property,
which we do not need to state here, holds. An equivalent formulation of the T1
theorem, also found in [10] and better suited for our purposes, is the following: A
linear operator T with kernel in 1-CZK(A, ε) maps L2(Rn)→ L2(Rn) if and only if

sup
ξ∈Rn

(
‖T (e2πiξ·( · ))‖BMO + ‖T ∗(e2πiξ·( · ))‖BMO

)
<∞.

In this section we will state and prove a multilinear version of the T1 theorem using
the characterization stated above. We will base some of our arguments on yet another
formulation of the T1 theorem given by Stein [23]. Let us consider the set of all C∞

functions supported in the unit ball of Rn satisfying

‖∂αφ‖L∞ ≤ 1,

for all multiindices |α| ≤ [n/2]+1. Such functions are called normalized bumps. For
a normalized bump φ, x0 ∈ Rn, and R > 0, define the function

φR,x0(x) = φ
(
x−x0

R

)
.

The formulation in [23], Theorem 3, page 294, says that a necessary and sufficient
condition for an operator T with kernel in 1-CZK(A, ε) to be L2-bounded is that for
some constant B > 0 we have

‖T (φR,x0)‖L2 + ‖T ∗(φR,x0)‖L2 ≤ BRn/2

for all normalized bumps φ, all R > 0 and all x0 ∈ Rn. Moreover, the norm of the
operator T on L2 (and therefore on Lp) is bounded by a constant multiple of (A+B).

We are now in a position to state the multilinear T1 theorem. Recall that in view
of Lemma 1, T (e2πiξ1·( · ), . . . e2πiξm·( · )) is a well defined element of D′(Rn).
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Theorem 4. Fix 1 < q1, . . . , qm, q <∞ with

1

q1
+ · · ·+ 1

qm
=

1

q
.(30)

Let T be a continuous multilinear operator from S(Rn)×· · ·×S(Rn)→ S ′(Rn) with
kernel K in m-CZK(A, ε). Then T has a bounded extension from Lq1 × · · · × Lqm

into Lq if and only if

sup
ξ1∈Rn

. . . sup
ξm∈Rn

‖T (e2πiξ1·( · ), . . . , e2πiξm·( · ))‖BMO ≤ B(31)

and also

sup
ξ1∈Rn

. . . sup
ξm∈Rn

‖T ∗j(e2πiξ1·( · ), . . . , e2πiξm·( · ))‖BMO ≤ B(32)

for all j = 1, . . . ,m. Moreover, if (31) and (32) hold then we have that

‖T‖Lq1×···×Lqm→Lq ≤ cn,m,qj(A+B),

for some constant cn,m,qj depending only on the parameters indicated.

Proof. We begin the proof by observing that the necessity of conditions (31) and
(32) follows from Proposition 1. The thrust of this theorem is provided by their
sufficiency, i.e. the fact that if (31) and (32) hold, then T is extends to a bounded
operator from Lq1 × · · · × Lqm into Lq.

Let us say that T is BMO-restrictedly bounded with bound C if

‖T (φR1,x1

1 , . . . , φRm,xm
m )‖BMO ≤ C <∞,

and

‖T ∗j(φR1,x1

1 , . . . , φRm,xm
m )‖BMO ≤ C <∞

for all 1 ≤ j ≤ m, all φj normalized bumps, all Rj > 0, and all xj ∈ Rn.
We will need the following lemma whose proof we postpone until the end of this

section.

Lemma 5. If (31) and (32) are satisfied, then T is BMO-restrictedly bounded with
bound a multiple of B > 0.

We will now show by induction on m that if T is BMO-restrictedly bounded with
bound B > 0, then it must map Lq1 × · · · × Lqm → Lq for some 1 < q, qj < ∞
satisfying

1

q1
+ · · ·+ 1

qm
=

1

q
,

with norm controlled by a multiple of (A+B).
To start the induction, we explain why this fact is true when m = 1. Note that for

a point y outside the ball B(x, 2R), the size estimate on the kernel of T gives

|T (φR,x)(y)| ≤ CARn|x− y|−n.(33)
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By Lemma 5, the BMO norm of the function T (φR,x) is bounded by a multiple of
B. Pick z at distance 5R from x. As usual, let gE denote the average of the function
g on a ball E. Then,

‖T (φR,x)‖L2(B(x,2R)) ≤ ‖T (φR,x)− T (φR,x)B(x,2R)‖L2(B(x,2R))

+ ‖T (φR,x)B(x,2R) − T (φR,x)B(z,R)‖L2(B(x,2R))

+ ‖T (φR,x)B(z,R)‖L2(B(x,2R))

≤ cBRn/2 + cBRn/2 + cARn/2,

where we have used (33) and basic properties of BMO functions. The same compu-
tations apply to T ∗. It follows that

‖T (φR,x)‖L2 + ‖T ∗(φR,x)‖L2 ≤ c(A+B)Rn/2.(34)

As mentioned before, see Stein [23], this last condition implies that T maps L2 into
L2 with bound a multiple of (A+B). This completes the case m = 1 of the induction.

Suppose now that the required conclusion of the BMO-restrictedly boundedness
condition is valid for (m−1)-linear operators. Let T be an m-linear operator which is
BMO-restrictedly bounded with bound B > 0. Consider the (m− 1)-linear operator

TφRm,xmm
(f1, . . . , fm−1) = T (f1, . . . , fm−1, φ

Rm,xm
m )

obtained from T by freezing an arbitrary normalized bump in the last entry. It is
easy to see that TφRm,xmm

satisfies the (m − 1)-linear BMO-restrictedly boundedness

condition with bound B, because of identities (16). The induction hypothesis implies
that TφRm,xmm

is bounded from Lq1 × · · · × Lqm−1 into Lq for some 1 < qj, q < ∞
satisfying 1/q1 + · · · + 1/qm−1 = 1/q. Since φ is compactly supported, Lemma 3
gives that TφRm,xmm

has a kernel in (m−1)-CZK(A, ε). Theorem 3 (v) now gives that

TφRm,xmm
maps the (m− 1)-fold product L∞c ×· · ·×L∞c into BMO with norm at most

a multiple of (A+B). Thus the estimate

‖T (g, φR2,x2

2 , . . . , φRm,xm
m )‖BMO ≤ c(A+B)‖g‖L∞(35)

holds for all g ∈ L∞c . Similar estimates hold when the function g above appears in
any other entry 2 ≤ j ≤ m.

Now for 1 ≤ j ≤ m consider the operators Tgj defined by

Tgj(f1, . . . , fm−1) = T (f1, . . . , fj−1, gj, fj+1, . . . , fm−1),

for functions gj ∈ L∞c . Inequality (35) is saying that Tg1 satisfies the (m − 1)-linear
BMO-restrictedly boundedness condition with constant a multiple of (A+B)‖g1‖L∞ .
Similar conclusions are valid for Tgj . The inductive hypothesis implies that Tgj maps

Lq1 × · · · × Lqj−1 × Lqj+1 × · · · × Lqm → Lq

for some 1 < qk = qk(j), q = q(j) <∞ satisfying∑
1≤k≤m
k =j

1

qk
=

1

q
,
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with bound a multiple of A‖gj‖L∞ + (A+B)‖gj‖L∞ . It follows that

T : Lq1 × · · · × Lqj−1 × L∞c × Lqj+1 · · · × Lqm → Lq,

with norm controlled by a multiple of (A+B). Therefore, for 1 ≤ j ≤ m there exist
points Qj in the interior of the faces Sj, as defined in Section 4, at which T satisfies
strong type estimates with bound a multiple of (A + B). Furthermore, Theorem 2
gives that T maps L1 × · · · × L1 into L1/m,∞. We have observed that the m + 1
points Q1, . . . , Qm, and E are affinely independent. We can then use Theorem A to
interpolate between these points and obtain a point Q in the interior of OC1C2 . . . Cm

at which T satisfies a strong type bound with the required constant. This concludes
the proof of the theorem modulo the proof of Lemma 5.

We now prove Lemma 5.

Proof. At a formal level the proof of this lemma is clear since we can write each
bump as the inverse Fourier transform of its Fourier transform and interchange the
integrations with the action of T to obtain

T (φR1,x1

1 , . . . , φRm,xm
m )

=

∫
Rn

̂φR1,x1

1 (ξ1) . . .

∫
Rn

̂φR1,xm
m (ξm)T (e2πiξ1·( · ), . . . , e2πiξm·( · )) d!ξ.

(36)

To justify this identity we provide the following argument.

Let us set φ
Rj ,xj
j = φj. Pick a smooth and compactly supported function g with

mean value zero and let ψk be as in Lemma 1. Observe that (ψkφ1, . . . , ψkφm) con-
verges to (φ1, . . . , φm) in S(Rn)× · · · × S(Rn) and therefore

lim
k→∞
〈T (ψkφ1, . . . , ψkφm), g〉 = 〈T (φ1, . . . , φm), g〉.

The continuity and multilinearity of T also allow us to write

〈T (φ1, . . . , φm), g〉

= lim
k→∞

∫
Rn

. . .

∫
Rn

φ̂1(ξ1) . . . φ̂m(ξm) 〈T
(
ψke

2πiξ1·( · ), . . . , ψke
2πiξm·( · )), g〉 d!ξ.(37)

Pick k0 so that the support of g is contained in ball of radius 2k0 centered at the
origin. Set

Fk = T (ψke
2πiξ1·( · ), . . . , ψke

2πiξm·( · )) +G(ψke
2πiξ1·( · ), . . . , ψke

2πiξm·( · ))

where G is defined in Lemma 1. Using that g has mean-value zero we obtain

〈T (ψke
2πiξ1·( · ), . . . , ψke

2πiξm·( · )), g〉 = 〈Fk, g〉 = 〈Fk0 , g〉+ 〈Fk − Fk0 , g〉.(38)

The proof of Lemma 1 gives that |〈Fk − Fk0 , g〉| is bounded uniformly on ξ1, . . . , ξm
by a constant that depends on g. On the other hand

〈T (ψk0e
2πiξ1·( · ), . . . , ψk0e

2πiξm·( · )), g〉
=〈K, g ⊗ ψk0e

2πiξ1·( · ) ⊗ · · · ⊗ ψk0e
2πiξm·( · )〉,

(39)



24 LOUKAS GRAFAKOS AND RODOLFO H. TORRES

whereK is the Schwartz kernel of T . It follows that the expression in (39) is controlled
by a finite sum of the L∞ norms of derivatives of g ψk0e

2πiξ1·( · ) . . . ψk0e
2πiξm·( · ) on a

compact set (that depends on g). This is in turn bounded by

Cg(1 + |ξ1|)N . . . (1 + |ξm|)N

for some N > 0 and some constant Cg depending on g. The Lebesgue dominated
convergence theorem allows us to pass the limit inside the integrals in (37) to obtain

〈T (φ1, . . . , φm), g〉 =

∫
Rn

. . .

∫
Rn

φ̂1(ξ1) . . . φ̂m(ξm) 〈T
(
e2πiξ1·( · ), . . . , e2πiξm·( · )

)
, g〉d!ξ.

Using the H1-BMO duality we obtain that the distribution T (φ1, . . . , φm) can be
identified with a BMO function satisfying

‖T (φ1, . . . , φm)‖BMO ≤ B‖φ̂1‖L1 . . . ‖φ̂m‖L1 ≤ cB.
In the last inequality we used the fact that all the derivatives of the normalized

bumps up to order [n/2] + 1 are bounded and also the fact that ‖φ̂j‖L1 = ‖̂φRj ,xj
j ‖L1

is independent of Rj > 0 and of xj ∈ Rn.

We now mention another characterization of boundedness of multilinear operators
with Calderón-Zygmund kernels. This formulation can be used in specific applications
to justify formal computations involving the action of an operator on an m-tuple of
characters.

Proposition 2. Let ψk be as in Lemma 1. Fix 1 < q1, . . . , qm, q <∞ with

1

q1
+ · · ·+ 1

qm
=

1

q
.(40)

Let T be a continuous multilinear operator from S(Rn)×· · ·×S(Rn)→ S ′(Rn) with
kernel K in m-CZK(A, ε). Then T has a bounded extension from Lq1 × · · · × Lqm

into Lq if and only if

sup
k>0

sup
ξ1∈Rn

. . . sup
ξm∈Rn

‖T (ψke
2πiξ1·( · ), . . . , ψke

2πiξm·( · ))‖BMO ≤ B(41)

and also

sup
k>0

sup
ξ1∈Rn

. . . sup
ξm∈Rn

‖T ∗j(ψke
2πiξ1·( · ), . . . , ψke

2πiξm·( · ))‖BMO ≤ B(42)

for all j = 1, . . . ,m. Moreover, if (41) and (42) hold then we have that

‖T‖Lq1×···×Lqm→Lq ≤ cn,m,qj(A+B),

for some constant cn,m,qj depending only on the parameters indicated.

Proof. Using our definition for T (e2πiξ1·( · ), . . . , e2πiξm·( · )), it follows that (41) and (42)
imply (31) and (32) respectively.

It is possible to obtain a version of Theorem 4 involving a certain multilinear weak
boundedness property and the action of T and its transposes on them-tuple (1, . . . , 1).
In fact, using other methods, Christ and Journé established in [5] a multilinear T1
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theorem for forms. Consider the (m + 1)-linear form defined on functions in D(Rn)
via

U(f1, . . . , fm, fm+1) = 〈T (f1, . . . , fm), fm+1〉.
It is proved in [5] that the estimates

|U(f1, . . . , fm+1)| ≤ C
( ∏
j =k,l

‖fj‖L∞
)
‖fk‖L2‖fl‖L2

are equivalent to imposing an appropriate multilinear weak boundedness condition on
U , together with the hypotheses Uj(1) ∈ BMO. The distributions Uj(1) are defined
by 〈Uj(1), g〉 = U(1, . . . , 1, g, 1, . . . , 1), with g, a test function with mean zero, in the
j-position.

The version of the the T1 theorem we gave is more suitable for some applications.
We end this section with an example. Other applications of our multilinear T1
theorem are given in the next section.

Example. Consider the class of multilinear pseudodifferential operators

T (f1, . . . , fm)(x) =

∫
Rn

. . .

∫
Rn

σ(x, !ξ)f̂1(ξ1) . . . f̂m(ξm) e2πix·(ξ1+···+ξm)dξ1 . . . dξm

with symbols σ satisfying

|∂αx∂β1

ξ1
. . . ∂βmξm σ(x, ξ1, . . . , ξm)| ≤ Cα,β(1 + |ξ1|+ · · ·+ |ξm|)|α|−(|β1|+···+|βm|),

for all α, β1, . . . , βm n-tuples of nonnegative integers. We will denote the class of all
such symbols by m-S0

1,1. It is easy to see that such operators have kernels in m-CZK.
For these operators we have that

T (e2πiη1·( · ), . . . , e2πiηm·( · )) = σ(x, η1, . . . , ηm)e2πix·(η1+···+ηm),

which is uniformly bounded in ηj ∈ Rn. It follows from Theorem 4 that a necessary
and sufficient condition for T to map a product of Lp spaces into another Lebesgue
space with the usual relation on the indices, is that T ∗j(e2πiη1·( · ), . . . , e2πiηm·( · )) are
in BMO uniformly in ηk ∈ Rn. In particular this is the case if all the transposes
of T have symbols in m-S0

1,1. Therefore we have obtained the following multilinear
extension of a result of Bourdaud [2].

Corollary 1. Let T be a multilinear pseudodifferential operator with symbol in the
class m-S0

1,1. Suppose that all of the transposes T ∗j also have symbols in m-S0
1,1. Then

T extends as bounded operator from Lp1 × · · · × Lpm into Lp, when 1 < pj <∞ and

1

p1

+ · · ·+ 1

pm
=

1

p
.(43)

Moreover, if one pj = 1, then T maps Lp1 × · · · × Lpm into Lp,∞ and in particular it
maps L1 × · · · × L1 → L1/m,∞.

In general the symbols of the transposes of an operator with symbol in m-S0
1,1

are hard to compute. Nevertheless, this can be explicitly achieved for the class of
operators studied in the next section.
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6. Translation invariant multilinear operators

Let τh(f)(x) = f(x− h) be the translation of a function f on Rn by h ∈ Rn. We
say that a multilinear operator T from S(Rn) × · · · × S(Rn) → S ′(Rn) commutes
with translations, or that it is translation invariant, if for all f1, . . . , fm ∈ S(Rn) and
all h ∈ Rn we have

τh(T (f1, . . . , fm)) = T (τhf1, . . . , τhfm).(44)

Whenm = 1, an operator that satisfies (44) and maps Lp → Lq for some 1 ≤ p, q ≤ ∞
must be given by convolution with a tempered distribution K0 on Rn, i.e. it has the
form

Tf(x) = (K0 ∗ f)(x).

An analogous result is true for multilinear operators.

Proposition 3. Let T be a continuous multilinear operator originally defined from
S(Rn) × · · · × S(Rn) into S ′(Rn). Assume that T commutes with translations and
that it extends to a bounded operator from Lp1 × · · · × Lpm into Lp for some indices
1 ≤ p1, . . . , pm, p ≤ ∞. Then there exists a tempered distribution K0 on (Rn)m such
that for all f1, . . . , fm in S(Rn) we have

T (f1, . . . , fm)(x) =
(
K0 ∗ (f1 ⊗ · · · ⊗ fm)

)
(x, . . . , x),(45)

where ∗ denotes convolution on (Rn)m, and

(f1 ⊗ · · · ⊗ fm)(y1, . . . , ym) = f1(y1) . . . fm(ym).

Formally speaking, this proposition is saying that the Schwartz kernel K of T has
the special form K(x, y1, . . . , ym) = K0(x− y1, . . . , x− ym).

Proof. We indicate the main ideas. Fix f1, . . . , fm ∈ S(Rn). Using identity (10) and
the property that T commutes with translations we obtain that

∂

∂xk
T (f1, . . . , fm) =

m∑
j=1

T (f1, . . . , fj−1,
∂

∂xk
fj, fj+1, . . . , fm),

and hence any distributional partial derivative of T (f1, . . . , fm) is an Lp function.
Then T (f1, . . . , fm) agrees almost everywhere with a continuous function whose value
at zero is controlled by a finite sum of Lp norms of derivatives of T (f1, . . . , fm). Define
a continuous multilinear functional L on S(Rn)× · · · × S(Rn) by setting

L(f1, . . . , fm) = T (f1, . . . , fm)(0).

Since (S(Rn)× · · · × S(Rn))′ can be identified with S ′((Rn)m), there exists a distri-
bution u ∈ S ′((Rn)m) such that

L(f1, . . . , fm) = 〈u, f1 ⊗ · · · ⊗ fm〉.

Let ũ be the reflection of u, i.e. ũ(F ) = u(F̃ ), where F̃ (z) = F (−z). Then K0 = ũ
is the required distribution.
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Using the Fourier transform we can write (at least in the distributional sense) the
multilinear operator

T (f1, . . . , fm)(x) =

∫
(Rn)m

K0(x− y1, . . . , x− ym)f1(y1) . . . fm(ym) d!y,

as

T (f1, . . . , fm)(x) =

∫
(Rn)m

σ(ξ1, . . . , ξm)f̂1(ξ1) . . . f̂m(ξm)e2πi(ξ1+···+ξm)·xd!ξ,(46)

where σ is the Fourier transform of K0 in (Rn)m. Under this general setting, σ may
be a distribution but we are only interested here in the case where σ is a function.
We want to consider translation invariant operators which are given by (46), with σ
a function, and which extend to bounded operators from some product of Lp spaces
into another Lebesgue space. Observe that (46) is a priori well defined for f1, . . . , fm
in S(Rn) when the function σ is locally integrable and has some tempered growth at
infinity, i.e. it satisfies an estimate of the form

|σ(ξ1, . . . , ξm)| ≤ C(|ξ1|+ · · ·+ |ξm|)N(47)

when |ξ1| + · · · + |ξm| > R for some C,N,R > 0. In the sequel, whenever we write
(46), we will assume that σ is locally integrable and satisfies (47).

Definition. A locally integrable function σ defined on (Rn)m and satisfying (47) is
called a (p1, . . . , pm, p) multilinear multiplier if the corresponding operator T given by
(46) extends to a bounded operator from Lp1(Rn)× · · · ×Lpm(Rn) into Lp(Rn). We
denote by Mp1,...,pm,p(R

n) the space of all (p1, . . . , pm, p) multilinear multipliers on
Rn. We define the norm of σ inMp1,...,pm,p(R

n) to be the norm of the corresponding
operator T from Lp1 × · · · × Lpm into Lp, i.e.

‖m‖Mp1,...,pm,p
= ‖Tm‖Lp1×···×Lpm→Lp .

In view of the correspondence between kernels K0 and multipliers σ, multilinear
operators which commute with translations will also be called multilinear multiplier
operators. It is natural to ask whether the symbols of multilinear multiplier operators
which are bounded from Lp1 × · · · × Lpm into Lp, where the indices satisfy

1

p1

+ · · ·+ 1

pm
=

1

p
,(48)

are themselves bounded functions. This is of course the case when m = 1, since such
operators are always L2 bounded. The following theorem gives some basic properties
of multilinear multipliers and in particular answers this question.

Proposition 4. The following are true:

(i) If λ ∈ C, σ, σ1 and σ2 are in Mp1,...,pm,p, then so are λσ and σ1 + σ2, and

‖λσ‖Mp1,...,pm,p
= |λ|‖σ‖Mp1,...,pm,p

,

‖σ1 + σ2‖Mp1,...,pm,p
≤ Cp

(
‖σ1‖Mp1,...,pm,p

+ ‖σ2‖Mp1,...,pm,p

)
.

(ii) If σ(ξ1, . . . , ξm) ∈ Mp1,...,pm,p and τ1, . . . , τm ∈ Rn, then σ(ξ1 + τ1, . . . , ξm + τm)
is in Mp1,...,pm,p with the same norm.
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(iii) If σ(ξ1, . . . , ξm) ∈ Mp1,...,pm,p and δ > 0, then δ
n( 1
p1

+···+ 1
pm
− 1
p
)
σ(δξ1, . . . , δξm) is

in Mp1,...,pm,p with the same norm.
(iv) If σ(ξ1, . . . , ξm) ∈Mp1,...,pm,p and A is an orthogonal matrix in Rn, then

σ(Aξ1, . . . , Aξm) is in Mp1,...,pm,p with the same norm.
(v) Let σj be a sequence of functions inMp1,...,pm,p such that ‖σj‖Mp1,...,pm,p

≤ C for
all j = 1, 2, . . . . If σj are uniformly bounded by a locally integrable function on
Rn, they satisfy (47) uniformly in j, and they converge pointwise to σ a.e. as
j →∞, then σ is in Mp1,...,pm,p with norm bounded by C.

(vi) Assume that for all ξj and some N > 0 we have

|σ(ξ1, . . . , ξm)| ≤ C(1 + |ξ1|+ · · ·+ |ξm|)N

and that σ is inMp1,...,pm,p, for some 1 ≤ p1, . . . , pm ≤ ∞ and 0 < p <∞ satis-
fying (48). Then σ is a bounded function with L∞ norm less than itsMp1,...,pm,p

norm and thus Mp1,...,pm,p can be naturally embedded in L∞.
(vii) Let 1 ≤ p1, . . . , pm ≤ ∞ and 0 < p < ∞ satisfying (48). Then the spaces

Mp1,...,pm,p(R
n) are complete, and thus they are Banach spaces when p ≥ 1 and

quasi-Banach spaces when p < 1.

Proof. (i)-(iv) are straightforward. (v) easily follows from the Lebesgue dominated
convergence theorem and Fatou’s lemma, while (vii) is a consequence of (v). We
prove (vi). Let B be the norm of T : Lp1 × · · · ×Lpm → Lp. Let us first assume that
σ is a C∞ function. This assumption can be disposed using suitable regularization.
For fixed !a = (a1, . . . , am) ∈ (Rn)m and f1, . . . , fm ∈ S(Rn) we have that∫

(Rn)m
f̂1(ξ1) . . . f̂m(ξm)σ(!a+ ε!ξ)e2πix·(ξ1+···+ξm)d!ξ

converges to σ(!a)f1(x) . . . fm(x) as ε → 0. Moreover the functions σ(!a + ε!ξ) are in
Mp1,...,pm,p uniformly in !a and ε > 0. Fatou’s lemma (recall p <∞) and the fact that
σ is inMp1,...,pm,p give that

|σ(!a)| ‖f1 . . . fm‖Lp ≤ B‖f1‖Lp1 . . . ‖fm‖Lpm .
Picking f1 = · · · = fm we obtain the required conclusion.

We also have the following result, whose linear version was obtained by Hörmander
[12].

Proposition 5. Suppose that a multilinear multiplier operator T has a compactly
supported kernel and maps the m-fold product Lp1 × · · · × Lpm into Lp, where 1 <
pj <∞ and 0 < p <∞. Then

p ≥
(

1
p1

+ · · ·+ 1
pm

)−1
.(49)

Proof. Fix f1, . . . , fm ∈ D(Rn). Then,

T (f1 + τhf1, . . . , f1 + τhfm) = T (f1, . . . , fm) + T (τhf1, . . . , τhfm)

= T (f1, . . . , fm) + τh(T (f1, . . . , fm))
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for h sufficiently large. Taking Lp norms and letting h goes to infinity we obtain

2
1
p‖T (f1, . . . , fm)‖Lp ≤ 2

1
p1

+···+ 1
pm ‖T‖ ‖f1‖Lp1 . . . ‖fm‖Lpm ,

which implies (49).

As examples of operators that map Lp1 × Lp2 → Lp when p > ( 1
p1

+ 1
p2

)−1, we

mention the bilinear fractional integrals

Iα(f1, f2)(x) =

∫
|t|≤1

f(x+ t)g(x− t) |t|α−n dt.

These operators map Lp1(Rn)×Lp2(Rn)→ Lp(Rn) when 0 < α < n, 1 < p1, p2 <∞,
and

1

p1

+
1

p2

=
α

n
+

1

p
.

See the articles by Grafakos and Kalton [11] and also by Kenig and Stein [15] for
details.

It is very natural to ask for sufficient conditions on bounded functions σ on (Rn)m

so that the corresponding operators are continuous from Lp1×· · ·×Lpm into Lp, when
the indices satisfy (48). When m = 1, the classical Hörmander-Mihlin multiplier
theorem says that if a function σ on Rn satisfies

|∂ασ(ξ)| ≤ Cα|ξ|−|α|

for |α| ≤ [n/2] + 1, then σ is an Lp multiplier for 1 < p < ∞. The multilinear
analogue of the Hörmander-Mihlin multiplier theorem was obtained by Coifman and
Meyer when p > 1. The point of the next proposition is the extension of this result
to the range p > 1/m.

Proposition 6. Suppose that a(ξ1, . . . , ξm) is a C∞ function on (Rn)m − {0} which
satisfies

|∂β1

ξ1
. . . ∂βmξm a(ξ1, . . . , ξm)| ≤ Cβ1,...,βm(|ξ1|+ · · ·+ |ξm|)−(|β1|+···+|βm|)(50)

for all multiindices β1, . . . , βm. Let T be as in (46). Then T is a bounded operator
from Lp1 × · · · × Lpm into Lp, when 1 < pj <∞ and

1

p1

+ · · ·+ 1

pm
=

1

p
.(51)

Moreover, if one pj = 1, then T maps Lp1 × · · · × Lpm into Lp,∞ and in particular it
maps L1 × · · · × L1 → L1/m,∞.

Proof. First we observe that conditions (50) easily imply that the inverse Fourier
transform of a, satisfies

|∂β1

ξ1
. . . ∂βmξm a

∨ (x1, . . . , xm)| ≤ Cβ1,...,βm(|x1|+ · · ·+ |xm|)−(mn+|β1|+···+|βm|)(52)

for all multiindices β1, . . . , βm. It follows that the kernel

K(x, y1, . . . , ym) = a∨(x− y1, . . . , x− ym)

of the operator T satisfies the required size and smoothness conditions (4), (5), and
(6). The Lp1×· · ·×Lpm → Lp boundedness of T for a fixed point (1/p1, . . . , 1/pm, 1/p)
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satisfying (51) will follow from the multilinear T1 theorem (Theorem 4) once we have
verified the required BMO conditions. As in the example in the previous section, we
have that

T (e2πiη1·( · ), . . . , e2πiηm·( · ))(x) = a(η1, . . . , ηm)e2πix·(η1+···+ηm)

which is in L∞ and thus in BMO uniformly in η1, . . . ηm. The same calculation is
valid for the m transposes of T since their corresponding multipliers also satisfy (50).
The weak type results follow from Theorem 1.

We now turn our attention to sufficient conditions on a singular kernel K0 so that
the corresponding translation invariant operator

T (f1, . . . , fm)(x) =

∫
Rn

. . .

∫
Rn

K0(x− y1, . . . , x− ym)f1(y1) . . . fm(ym)d!y(53)

maps Lp1 × · · · × Lpm into Lp when the indices satisfy (51). The next theorem
gives a satisfactory sufficient condition. In what follows |(u1, . . . , um)| will denote the
euclidean norm of !u = (u1, . . . , um) thought as an element in Rnm.

Theorem 5. Let K0(u1, . . . , um) be a locally integrable function on (Rn)m − {0}
which satisfies the size estimate

|K0(u1, . . . , um)| ≤ A|(u1, . . . , um)|−nm,(54)

the cancellation condition∣∣∣∣
∫
R1<|(u1,...,um)|<R2

K0(u1, . . . , um) d!u

∣∣∣∣ ≤ A <∞,(55)

for all 0 < R1 < R2 <∞, and the smoothness condition

|K0(u1, . . . , uj, . . . , um)−K0(u1, . . . , u
′
j, . . . , um)| ≤ A

|uj − u′j|ε
|(u1, . . . , um)|nm+ε

,(56)

whenever |uj − u′j| < 1
2
|uj|. Suppose that for some sequence εj ↓ 0 the limit

lim
j→∞

∫
εj<|)u|≤1

K0(u1, . . . , um) d!u

exists, and therefore K0 extends to a tempered distribution on (Rn)m. Then the
multilinear operator T given by (53) maps Lp1 × · · · ×Lpm into Lp when 1 < pj <∞
and (51) is satisfied. Moreover, if one pj = 1, then it maps Lp1×· · ·×Lpm into Lp,∞.

Proof. We will use the following well-known result (see for instance the article of
Benedek, Calderón, and Panzone [1]).

Let L be a locally integrable function on RN − {0} with the following properties:

(i) |L(z)| ≤ A|z|−N ,

(ii)
∣∣∣∫R1≤|z|≤R2

L(z) dz
∣∣∣ ≤ A uniformly in 0 < R1 < R2 <∞,

(iii)
∫
|z|≥2|w| |L(z − w)− L(z)| dz ≤ A

(iv) lim
j→∞

∫
εj<|z|≤1

L(z) dz exists.
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Then L extends to a distribution on RN whose Fourier transform is a bounded
function (with L∞ norm controlled by a multiple of A).

We will prove this theorem using Theorem 4. As in the previous application of
this theorem, we have (with some formal computations that are easily justified using
Proposition 2)

T (e2πiη1·( · ), . . . , e2πiηm·( · ))(x) = e2πix·(η1+···+ηm)K̂0(η1, . . . , ηm),

which is a bounded function, hence in BMO. The calculations with the transposes
are similar; for example

T ∗1(e2πiη1·( · ), . . . , e2πiηm·( · ))(x) = e2πix·(η1+···+ηm)K̂0(−η1 − · · · − ηm, η2, . . . , ηm)

which is in BMO.

The case n = 1 and m = 2 in the corollary below was studied by Coifman and
Meyer [6].

Corollary 2. The result of Theorem 5 holds if K0 has the form

K0(u1, . . . , um) =

Ω

(
(u1, . . . , um)

|(u1, . . . , um)|

)
|(u1, . . . , um)|mn

,

where Ω is an integrable function with mean value zero on the sphere Snm−1 which is
Lipschitz of order ε > 0.

Example. Let R1 be the bilinear Riesz transform in the first variable

R1(f1, f2)(x) = p.v.

∫
R

∫
R

x− y1

|(x− y1, x− y2)|3
f1(y1)f2(y2) dy1dy2.

By Corollary 2, this operator maps Lp1(R)×Lp2(R) into Lp(R) for 1/p1+1/p2 = 1/p,
1 < p1, p1 < ∞, 1/2 < p < ∞. It also maps L1 × L1 into L1/2,∞. However, it does
not map L1 × L1 into L1/2. In fact, letting f1 = f2 = χ[0,1], an easy computation
shows that R1(f1, f2)(x) behaves at infinity like |x|−2.

It is also natural to ask whether the corollary above is true under less stringent
conditions on the function Ω. For instance, is the conclusion of Corollary 2 true when
Ω is an odd function in L1(Snm−1)? It is a classical result obtained by Caldeŕon
and Zygmund [4] using the method of rotations, that homogeneous linear singular
integrals with odd kernels are always Lp bounded for 1 < p <∞.

We now indicate what happens if the method of rotation is used in the multilinear
setting. Let Ω be an odd integrable function on Snm−1. Using polar coordinates in
Rnm we can write

T (f1, . . . , fm)(x) =

∫
Smn−1

Ω(θ1, . . . , θm)

{∫ +∞

0

f1(x− tθ1) . . . fm(x− tθm)
dt

t

}
d!θ.

Replacing θ by −θ, changing variables, and using that Ω is odd we obtain

T (f1, . . . , fm)(x) =

∫
Smn−1

Ω(θ1, . . . , θm)

{∫ +∞

0

f1(x+ tθ1) . . . fm(x+ tθm)
dt

t

}
d!θ.
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Averaging these two identities we conclude that

T (f1, . . . , fm)(x) =
1

2

∫
Smn−1

Ω(θ1, . . . , θm)

{∫ +∞

−∞
f1(x− tθ1) . . . fm(x− tθm)

dt

t

}
d!θ.

To be able to complete the method of rotations we need to know whether the operator

inside the curly brackets above is uniformly bounded in !θ ∈ Smn−1. We call the
operator

H)θ(f1, . . . , fm)(x) =

∫ +∞

−∞
f1(x− tθ1) . . . fm(x− tθm)

dt

t

the directional m-linear Hilbert transform (in the direction !θ).
The observations above involving the method of rotations motivate the following

Question. Is the operator H)θ bounded from Lp1(Rn)× · · · × Lpm(Rn) into Lp(Rn)

uniformly in !θ when 1 < p1, . . . , pm, p <∞ satisfy (51)?
Some progress has been recently achieved on this question by Thiele and indepen-

dently by Grafakos and Li, for m = 2 and n = 1.
The boundedness of the directional bilinear Hilbert transforms in dimension one

was recently obtained by Lacey and Thiele [16], [17] with constants depending on the
direction.
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