Analytic families of multilinear operators

Loukas Grafakos and Mieczystaw Mastyto

Abstract

We prove complex interpolation theorems for analytic families of multilinear operators
defined on quasi-Banach spaces, with explicit constants on the intermediate spaces. We
obtain analogous results for analytic families of operators defined on spaces generated by
the Calderon method applied to couples of quasi-Banach lattices with nontrivial lattice
convexity. As an application we derive a multilinear version of Stein’s classical interpo-
lation theorem for analytic families of operators taking values in Lebesgue, Lorentz, and
Hardy spaces. We use this theorem to prove that the biliner Bochner-Riesz operator is
bounded from LP(R™) x LP(R™) into LP/?(R™) for 1 < p < 2.

1 Introduction

Stein’s interpolation theorem [19] for analytic families of operators between LP spaces (p > 1)
has found several significant applications in harmonic analysis. This theorem provides a gen-
eralization of the classical single-operator Riesz-Thorin interpolation theorem to a family
{T.} of operators that depend analytically on a complex variable z. This theorem has been
extended to analytic families defined on quasi-Banach spaces and taking values in Lebesgue
spaces (or more general quasi-Banach function lattices) by Cwikel and Sagher [6].

The aim of this paper is to prove a version of Stein’s interpolation theorem for analytic
families of multilinear operators defined on products of quasi-Banach spaces and taking
values in quasi-Banach function lattices. In the framework of Banach spaces, interpolation
for analytic families of multilinear operators can be obtained via duality in a way similar
to that used in the linear case [19]. For instance, one may adapt the proofs in Zygmund
[22, Chapter XII, (3.3)] and Berg and Lofstrom [3, Theorem 4.4.2] for a single multilinear
operator to a family of multilinear operators. However, this duality-based approach is
not applicable to quasi-Banach spaces since their topological dual spaces may be trivial.

Motivated by important applications of multilinear interpolation in the context of certain
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quasi-Banach spaces, we introduce an appropriate notion of analytic families of multilinear
operators taking values in quasi-Banach function lattices on a measure space, which avoids
the duality problem. The influence of the work of Calderén [4] and Sagher [17, 18] on this
paper is considerable.

We introduce notation from interpolation theory relevant for this work. Throughout this
paper, the open strip {z; 0 < Rez < 1} in the complex plane is denoted by S, its closure by
S and its boundary by 9S. Let A(S) be the space of scalar-valued functions, analytic in S
and continuous and bounded in S. For a given couple (Ag, A1) of quasi-Banach spaces and
A another quasi-Banach space satisfying A C Ay N Ay, we denote by F(A) the space of all

functions f: S — A that can be written as finite sums of the form

N
f(z)= Z(pk(z)ak, z €S,
k=1
where a; € A and @y, € A(S). For every f € F(A) we set
£l 74y = max {sup || £(it) ]| 4y, sup £ (1 +it)[|a, }-
teR teR

For every 6 € (0,1) we define on Ayg N A; the following quasi-seminorm: for a € AgN A; set

lallo = inf {|[fll £(apnay); f € F(Ao N A1), f(0) =a}.

Clearly we have that ||allg < ||a]|4,na, for every a € AgN A;, and notice that || - ||g could be
identically zero (see [20, §3]).

A quasi-Banach couple is said to be admissible whenever for all 8 € (0,1), | - |lp is
a quasi-norm on AgN A, and in this case, the quasi-normed space (AgN A1, ||-||g) is denoted
by (Ao, A1)s.

We will make use the of following result (see [18, Theorem 1]) which states that if A is
dense in Ay N Aq, then for a € A we have

lalle = nf{|[fll7ca): f € F(A), f(0) = a}.

If in addition there is a completion of (A, A1)g which is set-theoretically contained
in Ay + Ay, then it is denoted by [Ag, A1]p. We refer to [7, 10, 17, 18], where complex
interpolation of certain quasi-Banach spaces is studied.

Notice that if f € F(ApN A1), and 0 < § < 1 then the following important estimate is

well known in the case where Ay, A; are Banach spaces (see [4]),

o0 o0

log || f(it)]| 4, Po (0, ) dt+/ log [|f(1+at)]|a, Pr(0,8)dt, (1)

— 00

log | /(6)lls < /

— 00



where Py(6,t) and P;(0,t) are the values of the Poisson kernels of the strip, on Rez = 0
and Re z = 1, respectively. The same estimate holds in the case of quasi-Banach spaces; the
proof is similar to the Banach space case (see [4] or [3, Lemma 4.3.2]).

We recall that the Poisson kernels P; (j = 0,1) for the strip are obtained from the
Poisson kernel for the unit disc by means of a conformal mapping and are given by

e ™Y sin 1
sin? mx + (cosmr — (—1)de~7(t=9))2

Pj(x +1y,t) = , wHiyeS.

Using the fact that the Poisson kernels satisfy

/Po(G,t)dtzl—H, /Pl(e,t)dtzé
R R

together with (1), Jensen’s inequality, and the concavity of the logarithmic function, we

obtain the following result:

Lemma 1.1. Let (Ag, A1) be a couple of complex quasi-Banach spaces. For every f in

F(AgN A1), 0 < pg,p1 < o0, and 0 < 6§ <1 we have

1-60 0

1£Oo < (25 [ IfGER@.0d) ™ (5 [ I+ il A d)™.
1-60J)_o 0 0) !

Before we begin our discussion of analytic families of multilinear operators we recall
(see [9, 19]) that a continuous function F': S — C which is analytic in S is said to be of
admissible growth if there is 0 < « < 7 such that

log |F'(z)]
< eollmz|
zeS

The following lemma due to Hirschman [9] (see also [8]) will play a key role hereby.

Lemma 1.2. If a function F: S — C is analytic in S, continuous on S, and is of admissible

growth, then for all § € (0,1) we have

e} o0

log |F'(0)] g/ log |F'(it)| Py(0,t) dt+/ log |F(1+4t)| P1(6,t) dt.
—o0 —o0

All measure spaces considered throughout this paper will be complete and o-finite. Let
(Q,%, 1) be a complete o-finite measure space and let LO(y) (resp., L%(11)) denote the space
of all equivalence classes of real-valued (resp., complex-valued) measurable functions on 2
with the topology of convergence in measure on p-finite sets. A quasi-Banach (function)
lattice X on (2, X, i) is a subspace of L°(1), which is complete with respect to a quasi-norm

|- |l and it is a solid subspace in L°(y), i.e., it has the property: f € L%(u), g € X |f| < |g|



a.e. implies f € X and ||f]x < ||g|lx; moreover we will assume that there exists u € X
with u > 0 a.e..

If X is a quasi-Banach lattice on (2,3, 1) and w € L%(u) is strictly positive a.e., then
we define X (w) to be the quasi-Banach lattice of all f € L%(u) such that fw € X, equipped
with the quasi-norm || f|| x(w) = [ fwlx-

If X is a quasi-Banach lattice, we will use the same letter X to denote its complezification,
namely, the space of all f € L%(u) such that |f| € X, with the quasi-norm || f|x = 11| -
A quasi-Banach lattice X is said to be maximal (or X has the Fatou property) whenever
0< fu?fae, fn€X,and sup,> || fullx < oo implies that f € X and ||fullx — ||fllx-

The Kothe dual space X' of a quasi-Banach lattice X on (€, X, ) is defined as the space
of all f € L) such that [, |fg|dp < oo for every g € X. It is a Banach lattice on (2, %, 1)

when equipped with the norm

Iflx = sup /Q \Fol du.

llgllx <1

In certain cases X’ could be trivial, for instance, if X = LP on a nonatomic measure space
with 0 < p < 1, then (LP)’ is trivial. Notice that X is a maximal Banach lattice if and only
if X = X" := (X'")" with equality of norms (see, e.g., [14, p. 30]).

If Xy and X are quasi-Banach lattices on a given measure space (2, %, 4) and 0 < 6 < 1,
we define the quasi-Banach lattice Xy = Xé_ng to be the space of all f € L°(u) such that
IfI < |fol*=0£1]? p-a.e. for some f; € X; (i = 0,1) and equipped with the quasi-norm

£ x, = inf {1l 2NN £ < [fol 0 A% prae.}.

A quasi-Banach lattice X is said to be p-conver (0 < p < 00) if there exists a constant

C > 0 such that for any fi,...,fn € X we have

[ 1m) | < (Sals) ™
k=1 k=1

The optimal constant C' in this inequality is called the p-convexity constant of X, and is
denoted, by M®) (X). A quasi-Banach lattice is said to have nontrivial convexity whenever
it is p-convex for some 0 < p < oo.

We now introduce the concept of analytic families of multilinear operators with respect
to a measure. Let (2,%, ) be a measure space and let Xj,...,A,, be linear spaces. We
assume that for every z € S there is a multilinear operator T,: Xj x - -- x X, — Lo (1). The
family {7}, g is said to be analytic if for any (z1,...,7,) € X1 X - - - X Ay, and for almost
every w € §2 the function

2= Ty(x1, ey ty)(w), z€S (2)



is analytic in S and continuous on S. Additionally, if for j = 0 and j = 1 the function
(taw) Hﬂ+it($la"'a$n)(w)? (t,W) €RXx Q

is (£ x X)-measurable for every (z1,...,2,) € X1 X - - - X Xy, and for almost every w € Q
the function (2) is of admissible growth, then the family {7} is said to be an admissible
analytic family. Here L is the o-algebra of Lebesgue measurable sets in R.

We now state the main result of this article.

Theorem 1.1. For each 1 < i < m, let X; = (Xo;, X1;) be admissible couples of quasi-
Banach spaces, and let (Yo,Y1) be a couple of maximal quasi-Banach lattices on a measure
space (,%, 1) such that each Yj is pj-convex for j = 0,1. Assume that X; is a dense
linear subspace of Xo; N X1; for each 1 < i < m, and that {Tz}ze§ s an admissible analytic
family of multilinear operators T,: X1 x - - - x X, — Yy N Yi. Suppose that for every
(T1y ey Ty) EX1 X -+ X X, tER and j = 0,1,

[ Tjie (@1, s mm)ly; < Kj(@)lJzallxg - [2mllx;,

where K are Lebesque measurable functions such that K; € LPi(P;(6,-) dt) for all 8 € (0,1).
Then for all (x1,...,xm) € X1 X -+ X X, all s €R, and all 0 < 6 < 1 we have

1-6

0 m
1o, ) [y amoys < (M (0)' ™ (@D (30) Ko(s) [T il cx e 3)
=1

where

log Ky(s) = /R Po(6,1) log Ko(t + 5) dt + /R PL(6,1) log Ky (£ + ) dt. (@)

2 Quasi-Banach lattices and the proof of the main theorem

Before proving our main theorem, we make some remarks concerning quasi-Banach lattices.

Suppose we are given a quasi-Banach lattice X on (£2,%, ). For any 0 < s < oo we
define X*® to be a quasi-Banach lattice of all x € L°(u) such that |z|* € X equipped with
the quasi-norm |[|z||xs = H|x]SH;/S Note that if X is p-convex, then for f € X'/P and
Fioeesfn € XYP with | f| < S°7_, | fxl, we have

oo < | 30527, = (S0e) ",

n

< (M) Y (Il Pl = (PP 3 il
k=1

k=1



This shows that the lattice norm || - ||* defined for f € X'/? by

11 = it {3 W fellseusns 11 < S0 el me N,
k=1 k=1

satisfies
MP NP e < - I1F < g

In particular this implies the well known fact that if a quasi-Banach lattice X on (Q, %, u)
is p-convex (0 < p < 00), then there exists a Banach function space Y on (€2, X, i) such that
f € X if and only if |f|P € Y and

(M@ fllx < P17 < 17lx

We state below a lemma which is well know fact but we do not have references. We only
mention that it easily follows by the above estimates in combination with the description
of a second Kothe dual space E” of any Banach lattice E (see [21, pp. 451, 471]), which
states that f € E” if and only if there exists a sequence (f,,)5; of elements in E, such that

0 < fn T |f| ae. and sup,, || fn]|g < 0o. Moreover for any f € E” we have

If e = inf { lim || fullg; 0 < fu 1 |f] ae. }.

Lemma 2.1. Let X be a quasi-Banach lattice on (2,3, u) which is p-convex for some

0 < p < oco. Then there exists a Banach lattice Y on (2,3, u) such that YP = X and

(MPEX)IfIx < Mflve < Ifllxs f € X

If in addition X is mazimal, then Y can be chosen also maximal.

We recall a quite general version of Minkowski’s inequality, whose proof can be found for
instance in [15, pp. 45-46]. Let (Q1, 31, 1), (Q2, 32, ) be measure spaces and F': 1 x Q3 —
R measurable with respect to the o-algebra of v X y-measurable sets, and let E be a Banach
lattice on (€21, %1, 1) and assume that F'(-,t) € E for t € Qp and t — ||F (-, )| g belongs to
Li(v). Then
F(-,1) dy(t)(

E//

< /Q FC Dl ().

11,

We point out the following fact (see [12]) that will be used in the sequel: if (€2, 3;, 1;)
(i = 0,1) are measure spaces and X is a Banach lattice on (g2, X9, i12), then for any 31 X Xo-
measurable function f defined on Q; x €y, the function vy (given by vs(s) == || f(s,-)||x
and vy(s) = oo if f(s,-) ¢ X for s € ) is ¥j-measurable if ;1 is discrete or if py is
arbitrary but X has a norm which satisfies the so called (C')-condition (i.e., 0 <z, Tz € X



implies ||z,||x — ||z]|x). Notice that Luxemburg [11] gives a simple example, using the
Bohr compactification of the integers, showing that the result need not hold if X does not
satisfy the (C')-condition.

Next, we have the following result:

Lemma 2.2. Let (Xo, X1) be a couple of complex quasi-Banach lattices on a measure space*

(2, %, 1) such that Xg is po-convex and X1 is p1-conver. Then for every 0 < 6 < 1 we have
2]l 1-0 59 < (M) (X)) (M (X1)? |12l (x0.x1)0: = € Xo N X1
In particular (Xo, X1) is an admissible quasi-Banach couple.

Proof. Fix e > 0. For a given € X(N X, there exists a function f € F(XyNX;) such that

the function

Flow) = fo) ) =S or()r(w), 2€5, wen,
1<k<N,z, € XoNXi1, pr € A(S), satisfies F'(0,w) = z(w) and

1F] 7(xonxy) < (L4 )]l (x0,x1)-

Applying Lemma 1.1 to the scalar case (i.e., to Ag = A1 = C) yields

P(0.0)] < ( 9/ F(it, )P Po(0, 1) dr) ™ " (;/

= yo(w)1 1 (w)?,

00 6

|F(1 + it, w)[PLPy (0, ) dt) "

where for every w €
1 o0 1
wo() = (7 /_Oo [F (it )P Po(0.1)dt) ™,
1

yi(w) = <f /Oo |F (1 +it,w)[P* Py(, 1) dt)H,

—0Q0

By Lemma 2.1 there exists a Banach lattice E; on (£2,3, ) such that for j = 0,1

(MP X)) fllx, < I1F 1L v < fllxy, fEX;

Since the above identities yp and y; are given by Riemann integrals of functions with values

in Banach lattices Ey and E7, respectively, we obtain

1 & .
o0l = o™l < =5 [ PGt 5, Pofo. 0y,

*Recall all measure spaces in this article are assumed to be complete and o-finite.



1
ol = Non Pl < 5 [ NEQ+ it |, Pr(6. 00

Consequently,

lyollxo < M%) (Xo)llyoll 2o
1

< M(po) (XO) <f¢9

00 1/
/- H|F<z't,->|p°HEOPo<9,t>dt) :

1/
= MPo)( XO 9/ | F(it, - pOPO(H,t) dt) "
0

1 ) 1/po
< M(pO)(X0)<m |11, poe. 0 d)

< (14 &) M%) (X0) 12 (0,1

Similarly we obtain
lyalle, < MEPIX) (1 + &)l (x0.x1),-
‘9

Combining |z| < |yo|'~%|y1|? with the preceding estimates for the norms of 3o and y; in X

and X1, respectively, yields
2l -0 5o < (1 + &) (M P (X))o (M P (X)) (|2 (x0,x1)0-

Since € > 0 was arbitrary, the proof is complete. O

We now prove Theorem 1.1.

Proof. Without loss of generality, we may assume that s = 0. If this case is proved, then
applying the result for s = 0 to the admissible analytic family 2z — T, = Ltis With
I?j (t) = Kj(t+s), j = 1,2, for a fixed real s, we obtain the required estimate (4).

Fix 0 <6 <1 and (z1,...,2m) € X1 X -+ X Xp,. Without loss of the generality we may
assume that ||z;||(x,, x,,), < 1 for each 1 <4 < m. Once this case is completed, replacing
x; by (1= 8)zi/||zill (x4;,x1,)5» We obtain (3) for general z; when we let  — 0.

There exist finite sequences {x;;};2, in & and {p;x};2, in A(S) such that for each
1< <m,

zi = in(0) Tik
k=1

and

o<

ng
HZ‘sz Lik
1 F(Xi)

For every z € S define F,: Q — C by

:Tz(kz:lcplk(z)xlk,.. Zcpmk $mk)( ), w e (5)



Since all functions ¢, ;, are bounded in S and

Z Z P11 (2) Pk (2) Te(@1 k5 oy T o) (W),
ki=1
our hypothesis on the family {7} yields that for almost every w € €, the function z — F(w)

is analytic in S, continuous in S, and of admissible growth. Thus applying Lemma 1.2 we

obtain that for almost all w € )

log | Fy(w)| < / " log [Fiu(w)] Po(6, ) di + / " log | Fren(w)| Pr(0, 1) dt. (6)

—00 —0o0

Since the Poisson kernels satisfy
/Po(ﬂ,t)dt: 1—6 and /P1(9,t)dt:9,
R R

vp and vy defined by dvg(t) = (1 —0)"1Py(0,t) dt and dv(t) = 0~ Py(6,t) dt are probability
measures on R.

Taking exponentials of both sides of the above inequality we obtain

o) < (exp [toglFutp ()" (exp [ togl ()l dn (o)

This implies

o) < ([ 1R an@) " ([ 1Fmar i) = mw o w’,

where for j =0, 1,

9/101

gj(w) = (/R | Fjpit(w)[PI de(t)) 1/pj, w € .

Notice that gy and g1 are measurable functions by Tonelli’s theorem. We claim that g; € Y;
for j = 0,1. By Lemma 2.1 there exists a maximal Banach lattice E; on (€, X, i) such that
for j=0,1

M®¥) " [ £y, < 1 ges < Wflly;, fE€Y5

Put C; = M (pf)(Y-) for j = 0,1. By Minkowski’s inequality we have
1/ 1/p;
oty < 9205 | [ 1EaP a0 ) < €[ N a g, dvse) ™
: 1/ , 1/p;
/ 1Fy it O[3, dvs () ”Jscj / | Ejie) [ dvg())
ni N, . 1/ .
C; (/ HTth(thlk(j+it)x1k,...,290mk(j+it)a:mk> ’; av;(1))
J
. 1/p;
o [t (T8 s 0 ) ost)
Xje
C'j(/K t)P7 dv;(t) ) /pj

IN

IN



This gives that Fyp = Ty(x1,...,Tmy) € Yy with

Tzt zm)llve < lgolly,® lgnll$; < Co~?CY K (8, po, o),

where we set

[

K0, po.p1) = (1%9 /R Ko(t)? Po(6, 1) dt)l”og (% /R K7 Pr(0,0)dr)

To finish the proof, we use the well known fact that if a quasi-Banach lattice E is r-
convex, then it is p-convex for every 0 < p < r, and MP)/(E) < M")(E) (sece, e.g., [5]).
Repeating the preceding discussion with p in place of both pg and p; we obtain for every

0 < p < min{pg, p1},

1To (@1, xm)llyy < llgolls;? lgrllS; < Co~CT K (8, p,p).
To conclude the proof, use that vy and v, are probability measures to deduce that

1 1/p71-0 /1 1/p16
; — 1 P - P

Tim KO.p) = T [(+ /R Koy R0,y ae) ] [(5 /R K\ Puo.t)dt) ]

= exp (/ Py(0,t)log Ko(t) dt) exp (/ Py(0,t)log Ki(t) dt)

R R
= K9(0)7

and this yields (4) when s = 0. The case of a general s follows by a translation as discussed

at the beginning of the proof. O

3 General applications

We now obtain certain easy consequences of the above theorem. We will need a variant of
Calderdn’s lemma for quasi-Banach lattices. Since this requires a different proof than in the

Banach case, we include a proof for the sake of completeness.

Lemma 3.1. Let (Xo, X1) be a couple of complex quasi-Banach lattices on a measure space
(Q,%2,pn). Ifxj € X; (j=0,1) are such that |xo| and |z1| are bounded above and their non-

zero values have positive lower bounds, then |zo|*%|21]° € (Xo, X1)g and
—0 0 —0 6
oo™ %117 g, x, < lzoll i 1%,
Proof. Fix ¢ > 1. Without loss of generality we can assume that ||zo|x, = ||z1]|x, = 1.

Let x = |2o|'7%|z1|? and let E = supp. Our hypotheses imply that there exist integers
0 < N < M such that

s_N|:z:0(w)] <lr(w)| < 5M|330(w)|, w€EE.

10



For each —N <k < M —1 let x}, = x xg,, where
By := {w € E; e¥|zo(w)|<|a1(w)] < e |zo(w) ]
Then we have
= |roxm | Cleixs, |’ < e lmol Xy, ar <O n | xa,

and so for any finite sequence {A;} of complex numbers with |A\;x| < 1 we have

M M
‘ Z )\k57k037k‘ <e Z lzo| XE, < €lzol,
k=N k=N

and

M

M
‘ )\k&‘(l*a)kxk‘ <e Z 21Xy, < elza].
k=N k=—N

Consequently, for j = 0,1, we have

M
sup H )\ke(j_e)kxk’ <e. (7)
[Ak|<1 k:ZN Xy
Let f be a function f: S — Xy N X defined by
M
f(z)= Z b0y, 2€S.
k=—N

Since || = 1 for every t € R, thus combining with (7) yields
sup [ f(j +it)|x; <e.
teR

Since f(0) = ngw:_N zp =z, x € (Xo, X1)g with

||‘rH(X0,X1)g S €

and this completes the proof since € > 1 was arbitrary. O

Let X be a quasi-Banach space on a measure space. Following the Banach case, we
say that an element z € X has order continuous quasi-norm if for any sequence (z,,) of
measurable functions such that 0 < z,, < |z|, and z,, — |z| a.e., we have |z, — |z|||x — O.
A quasi-Banach lattice X is said to be order continuous if every € X has order continuous

quasi-norm.

The following corollary is an immediate consequence of Lemma 3.1 combined with the

proof of Theorem 1.14 in [15, pp. 244-245].

11



Corollary 3.1. Let (Xo,X1) be a couple of complex quasi-Banach lattices on a measure
space (0,2, p). If © € Xo N X1 has an order continuous norm in XéfeXf, then for every
0<6<1,

HxH(X(),Xl)g S HxHXOl79X19

As a consequence of the above corollary and Lemma 2.2, we obtain a variant of Calderén’s

theorem for quasi-Banach lattices.

Theorem 3.1. Let (Xo, X1) be a couple of complex quasi-Banach lattices on a measure
space with nontrivial lattice convexity constants. If the space Xé_aXf has order continuous

quasi-norm, then
[Xo, X1]p = X X7

up to equivalences of norms (isometrically, provided that lattice converity constants are equal

to 1). In particular this holds if at least one of the spaces Xo or Xy is order continuous.

Proof. The first part follows by application of Lemma 3.1 and Corollary 3.1. Now if Xy or

X1 is order continuous, then it is easy to see that Xé_aXf is also order continuous. O

We remark that Theorem 1.1 combined with the preceding relationships between spaces
(X0, X1)g and Xé_eX f generated by couples of complex quasi-Banach lattices give multilin-
ear theorems for analytic families of multilinear operators on quasi-Banach lattices of type
X&ngf . As a special case we obtain the following interpolation theorem for mulitilinear

operators:

Theorem 3.2. For each 1 < i <m, let (Xo;, X1:) be complex quasi-Banach function lattices
and let Y; be complex p;-convex maximal quasi-Banach function lattices with p;-convewity
constants equal 1 for j = 0,1. Suppose that either Xo; or Xi; is order continuous for each
1<i<m. LetT be a multilinear operator defined on (Xo1 + X11) X -+ X (Xom + X1m) and
taking values in Yo+ Y1 such that T: X;1 X -+ - X Xy — Ys 48 bounded with quasi-norm M;
fori=0,1. Then for 0 <0 <1, T: (Xo1)" " ?(X11)? x - - x (Xom)" 0 (X1m)? — Y3 V7 is
bounded with the quasi-norm

T < My~ M.

We conclude this section by noting that in the case of probability measures and under
the assumption of separability, the following interpolation theorem for operators was proved
by Kalton [13, Theorem 2.2] and was applied to study a problem in uniqueness of structure
in quasi-Banach lattices. The proof presented in [13] is completely different than ours and

uses a deep theorem by Nikishin and the theory of Hardy H,-spaces on the unit disc.

12



Theorem 3.3. Let (Q1,%1, 1) and (Qo, X9, uo) be measures spaces. Let X;, i = 0,1,
be complex p;-convex quasi-Banach lattices on (21,%1, u1) and let Y; be complex p;-convex
mazximal quasi-Banach lattices on (Qa, Xa, 1) with p;-convezity constants equal 1. Suppose
that either Xo or X7 is order continuous. LetT: Xo+X1 — Lo(ug) be a continuous operator
such that T(Xo) C Yo and T(X1) C Yi. Then for 0 < 0 < 1, T maps X9 = X3 XY{ into
Yo =Yy 'Y and

—0 0
1T xg—ve < N7 13 0 1T 1%,

4 Applications to Lebesgue, Lorentz, and Hardy spaces

In this section we discuss applications of our results in the context of classical quasi-Banach
spaces which appear in many areas of analysis. We first provide some results concerning
the descriptions of the Calderén spaces XéfeXf , where Xy and X; are r.i. quasi-Banach
spaces and we provide applications to Lorentz spaces. In these descriptions we estimate the
constants of equivalence of quasi-norms.

We first introduce some definitions. We recall that a quasi-Banach function lattice X on
(2, %, p) is said to be a rearrangement invariant space (r.i. for short) if for every f € L°(u)
and g € X with puy = pg, we have f € X and || f||x = ||g||x. Here py denotes the distribution
function of | f| with respect to p, i.e., ps(s) = p({w € Q; |f(w)| > s}), s > 0. The decreasing
rearrangement f* of f with respect to p is defined by f*(t) = inf{s > 0; ps(s) <t}, ¢t > 0.
In what follows the space of all f € L%(u) such that f*(400) := limg .o, f*(t) = 0 is denoted
by Ag

Let (©,%, 1) be a nonatomic measure space and let I = (0, 4(€2)) be equipped with the

Lebesgue measure \. If F is a quasi-Banach lattice on (I, A), then we define
E® = EO) () = {f € LO(u); f* € B}.

It is easily checked that if the dilation operator Dy f(t) = f(t/2), for all t € I, is bounded on
the cone of non-negative decreasing elements in E, then E®*), equipped with the quasi-norm
given by || f|l g := || f*|| for all f € E®) is a r.i. quasi-Banach space on (€, %, ).

An r.i. space X on a nonatomic measure space (€2, 3, u) is said to be generated by a quasi-
Banach lattice E on I = (0, u(£2)) provided the following conditions are satisfied: f € X if
and only if f € E®) and ||fllx = [Ifl| -

The Lorentz space Ly 4 := Ly 4(€2) on a measure space (2,%, 1), 0 < p < 00,0 < g < o0

consists of all f € L%(u) such that the following quasi-norm is finite

(/OOO (tl/f’f*(t))qcf)l/q it0<q<oo

1|2y =
sup;=o Y7 f*(t) ifg=o00.

13



Notice that L, ; is generated by the weighted quasi-Banach lattice L(w), where w(t) =
t1/P=1/4 for all € T and 0 < p,q < oo and w(t) = t'/7 in the case when 0 < p < co and
q = 00.

We now apply the results of the previous sections. We begin by noticing that Theorem
3.1 contains the following well-known fact: If 0 < pg, p1 < oo and (LP°, LP') is a couple on

any measure space, then
[Lpo,Lp1]9 = [Po

isometrically, where 1/pg = (1 — 0)/po + 0/p1 for all 0 < 6 < 1; in fact simple calculations
show that
(Lpo)lfG(LM)e — [po

with equality of norms. Since L? is p-convex and L™ is 1-convex with the convexity constants
equal 1, the result follows Theorem 3.1 if py # p1. If pg = p1 = 00, the statement is obvious.
We state the following technical result which seems of independent interest.

The following Lemma is surely well-known to specialists, but we include a proof.

Lemma 4.1. Let (Xo, X1) be a couple of r.i. quasi-Banach spaces on a nonatomic measure
space (2,5, ). Assume that X; (j = 0,1) is generated by a quasi-Banach lattice E; on
(I,\). Then the following hold:

(i) X;7'x¢ — (Eé_eEf)(*) and the inclusion map id has norm
lidll < G3~7cy,
where Cj = sup {||Dagllg;; lgllz, <1, g is a nonnegative decreasing function}.

(ii) Let P be a positive linear operator such that P(E;) C Ej for j = 0,1. Assume that
Pf is a nonincreasing function on I for every 0 < f € FEg+ E1 and there exists
C > 0 such that g < C'Pg for any nonegative nonincreasing function g € Fo+ Eq. If
(Eé_eEf)(*) C Ao, then (E(l)_eEf)(*) — Xé_ng and the inclusion map id has norm

lidll < ClI P, 1P|,

Proof. Let |f]| < |fol'7%|f1]® p-a.e. with f; € X; (j = 0,1). Then we have
£ < f5@/2) 0 (1t/2)" = (Dafg () (Do f (1)), tel
Since || D2 f |5, < Cjl fjllx, for j = 0,1, f* € Ey~EY with
11y < Co~ CP I follie, 111,
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and so the required estimate follows.

(ii). We will use the following known property S(f&feff) < S(f)'7IS(£1), fo, f1 € X,
valid for positive operators S: X — L%(u) defined on solid linear subspace X' of L°(u).

Let f € (Eé_gEf)(*). Then f* < gé_eg? with 0 < g; € E; (j = 0,1). Applying the
preceding property yields

f* < COPf* < C(Pgo) ' (Par)’.

Since f*(+o00) = 0, the Ryff Theorem (see [1, Chapter 2, Corollary 7.6]) implies that there
exists a measure preserving map o: 2 — I such that |f| = f* o o p-a.e. on the support of

f. Thus if we put hj = P(g;) oo for j = 0,1 we deduce that
1fl<CniPng,  p-ae.

To conclude observe that h; € X; by hi = P(g;)* = P(g;) (since P(g;) is a nonincreasing

function on I) for j = 0,1. Since P is positive and P: E; — E;, P is bounded and so
17l x; = [R5 ll2; < I1Pll5;ll95lE; -
Combining these facts, we see that f € Xé_eXlg with
1-6 0
1fllxe < Kllgolli, 19115,
where K = CHPHEGHPH%I. Since f* € (Eol_eEf)(*) and f* < gi7%? with arbitrary

go € Ep and g1 € E1, the proof is complete. ]

Remark 4.1. It is easily seen that examples of positive operators which satisfy the hypothe-
ses of the Lemma 4.1(i1) are operators P, = Dao @, 0 < r < oo where for every 0 < r < oo

O f(t) = </t°° f(s)r ds)l/r.

S

s given by

To apply the Lemma 4.1 to the Lorentz spaces A, , we recall the following result (see,
e.g., [16, Theorem 2]): If 1 < p < o0, 1/p+1/p' =1 and u and v are weighted functions on
(0,00), then there exists C' > 0 such that

([ ot [~ seras ai)™ < [Tirwpora)”. re ),

if and only if

B =sup (/Oru(t)f“ dt) 1/p(/roov(t)—f)' dt) Y7 < o

In addition B < C < p'/?(p")'/7'B.
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We single out the following specific case of the well-known Hardy inequality for the

Hardy operator @ given by

which states that if 1 < p < oo and 1 < ¢ < oo, then for all f € LI(w), where w(t) = t1/P~1/4
for all ¢ > 0 we have

() @manon E)™ <o ( ["@rison )"

For simplicity we discuss applications only to the classical Lorentz spaces on infinite

nonatomic measure spaces.

Corollary 4.1. Let 0 < pj,q; < oo and let Ly, 4, for j = 0,1 be Lorentz spaces on an

infinite nonatomic measure space (2, %, 1). Then for 0 < 6 < 1 the quasi-norm of

Xg = (Lpo,qo)l_e([/plm)a

is equivalent to that of L4, where 1/p = (1 —6)/po+60/p1 and 1/qg = (1 —6)/q0 + 0/aq1.

Moreover for all f € Xy we have

3 91/p 0
272l < IIfllx, < (log 2)" (06" 'PD)° 1 f 1|2,

where s = 1 whenever 1 < pg,p1 < 0o and 1 < qp,q1 < 00 and s > max{1/po,1/q0,1/p1,1/q1}

otherwise.

Proof. Clearly Ly, 4 is generated by E; := L% (w;), where w;(t) = t/Pi=1/4; for t > 0.
Since Ei~"E¢ = L9(w) with equality of norms where w(s) = wo(s)'~wy (t)? = t*/P=/4 for
all ¢ > 0,

(B BN = Ly, (8)
with equality of quasi-norms. Thus the left hand of the required inequality follows from
Lemma 4.1(i) by [|D2||g; < 21/P; for j = 0,1.

To conclude we apply Lemma 4.1(ii). We first assume that 1 < p; < co and 1 < ¢; < oo

for j = 0,1. Now observe that for any nonnegative and nonincreasing function g € L} (\)

loc
g(t) < ! /t 96) g <
~log2 Jyp s ~lo

we have

1
D t t .
g2 QOQQ( )7 >0

Since || D2|| E; < 21/Pi  the aforementioned Hardy inequality shows that P := Dyo Q: Ej —
Ej for j = 0,1 and
21/p; Dj

Plg < .
I1Ple, < ot
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This in combination with (8) shows by L, , C Ag that an operator P satisfies all hypotheses

in (ii) of Lemma 4.1 and so
(Eé_eEf)(*) — (LPO,QO)l_e(LPMh)e’
where the inclusion map id has norm
ol/p
idll < 1-6, 60
]l < fogzP0 P
and consequently the required right hand estimate of quasi-norms follows by (8).

We now consider the general case. We use the easily-verified fact that for any couple

(X0, X1) of quasi-Banach lattices on a measure space and every s > 0,
(X Px1)* = (X)'(X})’, 0 (0,1).

with equality of quasi-norms. In particular, for any s > max;—o1{1/p;,1/¢;} (note that s

can be taken to be equal to 1 when 1 < pg,p; < oo and 1 < gp, ¢ < 00) this yields that

Xg = ((LPO,QO)I_G(LPMH)G)S = ((LPO,QO)S)l_H(Lm,%)8)0 = (LSPO7SQO)1_9(LSP1,SQ1)6

with equality of quasi-norms.
The second part of the proof gives (Xy)° = Ly sq With equivalence of quasi-norms. As
an immediate consequence, we obtain (by (X*®)!/* = X with equality of quasi-norms) the

required equality of considered spaces. Furthermore, we have
C
1 ll(xp)s < @ 1 llzpg)s: [ € (Lpg)®s
where Cs = 21/pssp(1)79p?.

Combining we obtain Xy = L, , with

21/p 0
I1fllx, < (log2)° s*(pg7p9)* 1Ly f € Lpg

and so this completes the proof. O

Next, we have the following result on interpolation of analytic multilinear operators on

products of Lorentz spaces.

Theorem 4.1. Let (21,31, p1) and (g, 39, p2) be measure spaces. For 1 < i < m, fix
0 < qo,q1,q0i, q1i < 00, 0 < 1ro,71,70i, 715 < 00 and for 0 < 8 < 1, define q,r,q;,r; by setting

1 1-60 40 1 1-60 4

1—-60 40 1 1-6 0

) Y )

1
qi qoi q14 i Toq 14 q q0 q1 r To 1
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Assume that X; is a dense linear subspace of Lgg, ro; (21) NV Lgy; 71, (21) and that {T.} 5 is an
admissible analytic family of multilinear operators Ty : Xy XX Xy, — Lgg ro(Q2)NLg, r, (Q2).
Suppose that for every (hi,...,hpy) € X1 X - X X, t € R and j = 0,1, we have

[ Tjrit(has vy hn)ll iz, 1 2) < K5O Rallzy, @) - ML, v @)

where K are Lebesgue measurable functions such that K; € LPi(P;(,-)dt) for all § € (0,1),
where p; is chosen so that 0 < p; < q;j and p; < r; for each j =0,1.
Then for all (fi, ..., fm) € X1 X -+ X Xy, 0< 0 <1, and s € R we have

1-6

qo PO q1 P1
||T9+is(f1>---afm)H(LqO,m,qu,rl)e < (M) <CI1 —p1) K HHLH(LQO o Lay.ri)o0

where

log Ky(s) = / Po(6,1) log Ko(t + 5) di + / PL(0,1) log K, (£ + ) dt.
R R

If in addition the measures spaces are infinite and nonatomic, then for all (fi, ..., fm) in

Xy X X Xy, and s €ER, and 0 < 6 < 1 we have

1-6

q0 P q1 P
Tosis o i) iy < € () ™ (2 )lKa ]IHﬁh%nm
where =0 8
C = 2q+Z, 1 q uqy 41
log 2

with w =1 4f 1 < qo,q1 < 00 and 1 < 19,1 < oo, while w > max{1/qo,1/q1,1/ro,1/r1}

otherwise.

Proof. We apply Theorem 1.1. At first we notice that for any 0 < py < oo we have

1/po
e ([ P R PR N o 2

PO’ PO Py’ PO
and the space Ey = La ro is normable as long as py < ¢o and py < ro. In fact, when

po’ PO
ro < 00, the following norm on FEjy

Do 7,9 po "o
lglllzo = (1=2)( [ [t0 suwp \glduz dt
q0 0 BCQy max{t p2(B

p2(B)>min{t,u(22)}
satisfies

Alllz, < IAllLg o <

Po’ PO

(see [8, Exercise 1.4.3]) and hence (taking h = |f|P°) we have

1
do “po
() Il < W SUleo < 1A (9)
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When rg = 0o, we define

Po 1
lolles = (1-22) sup L [ gl
do 0<p2(B)<oo yp(B) w0 JB

By [8, Exercise 1.1.12], this is a norm on La . that satisfies

po’

q0
allleo < MlgllLg < 9!l o
o 0

po’ -

and thus (9) also holds in this case. This implies that M®0)(L, ) < (qio)l/ P and

q0—po
analogously M®)(L,, ) < (qlq_ﬁ)l/ P! Hence, the desired inequality

1—-6 2] m
. 40 Po q Pl ,
ITosis (1o o g o < () ™ ()™ Kol) H [T —

is a consequence of Theorem 1.1. The inequality with L, in place of (L Ly, + )o and

40,707

Ly, r, in place of (L Lg,;r.)o follows from Corollary 4.1. O

q0i,T0%

Next, we discuss an extension motivated by applications to Hardy spaces.
Under the hypotheses of Theorem 1.1, suppose additionally that: There is an operator
M defined on a linear subspace of L9(€2, 2, 1) and taking values in L°(Q, S, 1) such that:

(i) For j =0 and j = 1 the function (¢,x) — M(h(j +it,-))(w), (t,w) E R x Qis L x -
measurable for any function h: 95 xQ — C such that w — h(j+it,w) is X-measurable

for almost all t € R.
(ii)) M(Ah)(w) = [AM(h)(w) for all A € C.

(iii) For every function h as in above there is an exceptional set Ej, € ¥ with u(Ep) = 0
such that for j € {0,1}

M [ heapend)e < [~ Mot )@ e

—00
for all z € C, all § € (0,1), and all w ¢ Ej. Moreover, Ey;, = Ej, for every analytic

function 1 on S which is bounded on S.

An example of this situation arises when 2 = R"”, u is Lebesgue measure, and
M(h)(z) = Sup |05 * h(z)] (10)
>

where ¢ is a Schwartz function on R"™ with nonvanishing integral. Under assumptions (i),

(ii), (ili) Cwikel and Sagher [6] (page 981 estimate (5)) show that

log[M(Fo)(w')]S/ log[M(Fz‘t)(w)]Po(H,t)dtJr/ log[M(Fii) ()] P1(6,8) dt - (11)

—0o0 —0o0

o0
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whenever F, is an analytic function on S which is continuous and bounded on S and which
is of admissible growth. In our case, we take F, as defined in (5). But in this case, (11)
serves as a substitute for (6) and thus the proof of (3) for 7} also works for M o T,. We

obtain the following result:

Theorem 4.2. For each 1 < i < m, let X; = (Xo;, X1;) be admissible couples of quasi-
Banach spaces, and let (Yo,Y1) be a couple of complex maximal quasi-Banach lattices on
a measure space (2, %, ) such that each Yj is pj-convex for j = 0,1. Assume that X; is
a dense linear subspace of Xo; N X1; for each 1 < i < m, and that {Tz}ze§ is an admissible
analytic family of multilinear operators T,: Xy X - -+ X Xy = Yo NY,. Assume that M is
defined on the range of T, takes values in L°(2, %, 1), and satisfies (i), (ii), (iii). Suppose
that for every (x1,...,xm) € X1 X -+ X X, t ER and j = 0,1,

[IM(Tjie(@rs o zm))ly; < KiO)llzalls, - - emllxm,

where K are Lebesgue measurable functions such that K; € LPi(P;(6,-)dt) for all 8 € (0,1).
Then for all (z1,...,2m) € X1 X -+ X Xy, s ER, and 0 < 6 < 1 we have

1—9(

P m
IM(Tosis (w1, ooy ) lya-0y0 < (MP(¥0)) (MPD (V1)) Ko(s) [T ll2ill xorx10060
=1

where

logKg(s):/Po(H,t)logKo(t+s)dt+/Pl(G,t)logKl(t+s)dt.
R R

The preceding theorem has an important application to interpolation of multilinear

operators that take values in Hardy spaces.

Example 4.1. A particular case of Theorem 4.2 arises when Yy = LP°, Y1 = LP1, in
which case Y3 Yy = LP, where 1/p = (1 — 0)/po + 0/p1. If M is given by (10), then
|M(R)||Lr = ||| v, where HP is the classical Hardy space of Fefferman and Stein.

In this case, estimates of the form
[ Tpie (@1, s i) | ey < KG(E) |21l x50 - - - lomll x;0
for admissible analytic families T, when j = 0,1 imply the intermediate estimates
m
1To+s (21, Ton) | p < Ko () H ”xiH(Xm,Xu)e
i=1

for 0 < po,p1 <00, s R, and 0 < 0 < 1. Analogous estimates hold for the Hardy-Lorentz

spaces H®" where estimates of the form
| Tjtit (@1, s om) | gasrs < K@)z llxg, - llomllx;m
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for admissible analytic families T, when j = 0,1 imply
HT9+7;S(1.17"'7 )HH‘ZT < CK@ H“xz||(X017X11)0

with
[ 7]

C:2q<“q(1) eq?> ( qo >1z»o< Q1 )H
log 2 90 — po a—p/
where 0 < pj < q; < oo, pj <rj<ooandl/g=(1-0)/q+0/q1, 1/r=(1—-0)/ro+0/r
while w = 1 if 1 < qo,q1 < o0 and 1 < ro,r1 < o0 and u > max{1/qy,1/q1,1/ro,1/r1}

otherwise.

5 An application to the bilinear Bochner-Riesz operators

Stein’s [19] motivation to study analytic families of operators might have been the study of

the Bochner-Riesz operators
B = [ (- 1eP) Tyt
1€1<1

in which the “smoothness” variable § affects the degree p of integrability of B®(f) on LP(R™).

Here f is a Schwartz function on R™ and fis its Fourier transform defined by

&)= fla)je™%dz, ¢eR"
Rn

Using interpolation for analytic families of operators, Stein showed that whenever § >
(n —1)]1/p — 1/2|, then B® maps LP(R") to itself for 1 < p < ooc.
Recent interest in bilinear operator has led to the consideration of the bilinear Bochner-

Riesz operators. For Schwartz functions f, g on R™ these are defined as
0o [] L Al ) F @ g, ()
€12 +In|2<1

where the integral is over R?". Several boundedness results concerning these means have

recently been obtained in [2]. Among them we state two:
e For any § > 0, there is an estimate
I1S°(f, 9l < Cs [ £ 112 llgll 2 (13)
e For any 0 > n — 1/2, there is an estimate

1S°(f. ) gz < CslIf | llgl - (14)
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Both estimates hold for all functions f, g in the corresponding spaces with constants Cj, C§
only depending on § and the dimension n.

We make some remarks about the extension of these estimates to the case where ¢ is
replaced by z = § + it, where d,t are real.

The bilinear Bochner-Riesz means S* can also be written in the form

S*(f,9)(x) = //Kz(x —y1,& = y2) f(y1)9(y2)dyr dys
for some kernel K,. A well-known calculation (see [8, Appendix B.5]) shows that the kernel
of S+ is

L0+ 1+4it) Jypitsn(2m|a])
Ksyir(x1,22) = ot ’;‘53—#-{-71 = (21,32).

Consider the case where 6 > n — 1/2. Then using known asymptotics for Bessel functions
([8] Appendix B.8) we have that this kernel satisfies an estimate of the form:

C(n+ 8 +it)
(14 |z|)otnt1/2°

[ K5t (21, w2)| <
where C(n + § + it) is a constant that satisfies
C(n+6+it) < Cppse? 41”

for some B > 0. Then for § > n —1/2, we have

1 1
Ko , <C BJtf? ’
Hoie(w1, @2)| < Cos €8 e (T3 g lye

with € = %(6 —n—1/2). Tt follows that the bilinear operator S°** is bounded by a product
of two linear operators, each of which has a good integrable kernel. It follows that So+
is bounded from L' x L' to L'/? with constant Ki(t) < 07,1+5€B‘t|2 whenever § > n — 1/2.
This yields an extension of (14) for complex values of 0.

To obtain the analogous extension of (13), we slightly modify the proof of Theorem 4.7

in [2]. This theorem claims that

Is* <C swp (1= u? = | ) e m, (15)

HL2><L2—>L1 wel—1,1]

where W1t®! is the Sobolev space of functions with 1 4+ a “derivatives” in L! with a > 0.

/29| 1» and is

The norm on the Sobolev space W*P is defined via ||v|wse = [|(I — A)
comparable to the norm |[v|[zs + [|v|}jsp, Where |[v]|}iep = |[(=A)*2v||p. In (15) the
constant C’ depends only on the dimension and «. To estimate the Sobolev norm in (15)

when z = 0 +it, 6 > 0, we need Lemma 4.4. in [2] which claims that

H(]‘ - | : |2)iHWs,q(]Rn) S C€C|Im2‘2 (16)
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when 0 < s < Rez + %, 1 < ¢ < oo with constants ¢, C' depending only on n,q,s. Fixing
z=20+1it, d >0, we pick 0 < a < d and we write:

H(l —ut = (-5F+itHW1+a»1(R) (1 - H (1- u2 1/2‘ 6+it>HW1+a»1(R)

= (=)= [ P sy

C( 2)5704 6c|t\2 < C@CMQ,

since 6 —a > 0 and then (1—u?)°~® < 1 for u € [1,1]. Tt follows that S°** is bounded from
L? x L? to L' with constant Ko(t) < Cq’l+6ec|t|2 whenever § > 0. This yields an extension of
(13) for complex values of 6.

In [2], intermediate results for S° are obtained rather indirectly via bilinear real interpo-
lation applied to operators appearing in a decomposition of S. Here we provide intermediate
estimates via a direct proof based on complex interpolation for analytic families of bilinear

operators.

Theorem 5.1. Let 1 < p < 2. For any A > (2n—1)(1/p—1/2), S* maps LP(R") x LP(R™)
to LP/2(R™).

Proof. To apply Theorem 1.1 we set Xo1 = Xoo = L%, X113 = X2 = L', Yy = L,
Y, = LY2, X, is the space of Schwartz functions on R”, which is dense in L' and L2

We fix 6 > 0 and we consider the bilinear analytic family {7}, g, where T}, := S (n—3)=+9
for all z € S. (Recall that S = (0,1) x R is the unit strip). We claim that this family is

admissible. Indeed, for f, g Schwartz functions we have
z 5 X n
-/ (1= I = InP) " flogmyem = agdn, xR,
£|2+|77|2<1

and the map z ~ T.(f,g) is analytic in S, continuous and bounded on S, and jointly

measurable in (t,z) when z =it or z = 1 + it. Moreover, for all z € R™ we have

b log [T.(f, g)(x)| <

= allm z
z€S € | |

with o = 0 < m when f, g are Schwartz functions; in fact |15(f, g)(x)| < ||J?HL1 g |lr:-
Based on the preceding discussion, we have that when Re z = 0, T, maps L% x L? to L'
with constant Ky(t) < Cn7(sec|t‘2 for some C), 5,¢ > 0. We also have that when Rez =1, T}
maps L' x L' to L'/? with constant K;(t) < 07’%563‘” for some Cj, 5, B > 0. We notice
that for these functions K;(t) we have that the constant K(6,1,1/2) in (4) is finite; in this

case % = Te 0 , hence 0 = 2( = — f) An application of Theorem 1.1 yields that S* maps
LP(R™) x LP(R”) to LP/2(R") when A =2(n — 3) (2 = 3) + 0> (2n = 1)(3 — 3). O
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