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Abstract

We prove complex interpolation theorems for analytic families of multilinear operators
defined on quasi-Banach spaces, with explicit constants on the intermediate spaces. We
obtain analogous results for analytic families of operators defined on spaces generated by
the Calderón method applied to couples of quasi-Banach lattices with nontrivial lattice
convexity. As an application we derive a multilinear version of Stein’s classical interpo-
lation theorem for analytic families of operators taking values in Lebesgue, Lorentz, and
Hardy spaces. We use this theorem to prove that the biliner Bochner-Riesz operator is
bounded from Lp(Rn)× Lp(Rn) into Lp/2(Rn) for 1 < p < 2.

1 Introduction

Stein’s interpolation theorem [19] for analytic families of operators between Lp spaces (p ≥ 1)

has found several significant applications in harmonic analysis. This theorem provides a gen-

eralization of the classical single-operator Riesz-Thorin interpolation theorem to a family

{Tz} of operators that depend analytically on a complex variable z. This theorem has been

extended to analytic families defined on quasi-Banach spaces and taking values in Lebesgue

spaces (or more general quasi-Banach function lattices) by Cwikel and Sagher [6].

The aim of this paper is to prove a version of Stein’s interpolation theorem for analytic

families of multilinear operators defined on products of quasi-Banach spaces and taking

values in quasi-Banach function lattices. In the framework of Banach spaces, interpolation

for analytic families of multilinear operators can be obtained via duality in a way similar

to that used in the linear case [19]. For instance, one may adapt the proofs in Zygmund

[22, Chapter XII, (3.3)] and Berg and Löfstrom [3, Theorem 4.4.2] for a single multilinear

operator to a family of multilinear operators. However, this duality-based approach is

not applicable to quasi-Banach spaces since their topological dual spaces may be trivial.

Motivated by important applications of multilinear interpolation in the context of certain
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quasi-Banach spaces, we introduce an appropriate notion of analytic families of multilinear

operators taking values in quasi-Banach function lattices on a measure space, which avoids

the duality problem. The influence of the work of Calderón [4] and Sagher [17, 18] on this

paper is considerable.

We introduce notation from interpolation theory relevant for this work. Throughout this

paper, the open strip {z; 0 < Re z < 1} in the complex plane is denoted by S, its closure by

S and its boundary by ∂S. Let A(S) be the space of scalar-valued functions, analytic in S

and continuous and bounded in S. For a given couple (A0, A1) of quasi-Banach spaces and

A another quasi-Banach space satisfying A ⊂ A0 ∩ A1, we denote by F(A) the space of all

functions f : S → A that can be written as finite sums of the form

f(z) =

N∑
k=1

ϕk(z)ak, z ∈ S,

where ak ∈ A and ϕk ∈ A(S). For every f ∈ F(A) we set

‖f‖F(A) = max
{

sup
t∈R
‖f(it)‖A0 , sup

t∈R
‖f(1 + it)‖A1

}
.

For every θ ∈ (0, 1) we define on A0 ∩A1 the following quasi-seminorm: for a ∈ A0 ∩A1 set

‖a‖θ = inf
{
‖f‖F(A0∩A1); f ∈ F(A0 ∩A1), f(θ) = a

}
.

Clearly we have that ‖a‖θ ≤ ‖a‖A0∩A1 for every a ∈ A0 ∩A1, and notice that ‖ · ‖θ could be

identically zero (see [20, §3]).

A quasi-Banach couple is said to be admissible whenever for all θ ∈ (0, 1), ‖ · ‖θ is

a quasi-norm on A0∩A1, and in this case, the quasi-normed space (A0∩A1, ‖·‖θ) is denoted

by (A0, A1)θ.

We will make use the of following result (see [18, Theorem 1]) which states that if A is

dense in A0 ∩A1, then for a ∈ A we have

‖a‖θ = inf{‖f‖F(A); f ∈ F(A), f(θ) = a}.

If in addition there is a completion of (A0, A1)θ which is set-theoretically contained

in A0 + A1, then it is denoted by [A0, A1]θ. We refer to [7, 10, 17, 18], where complex

interpolation of certain quasi-Banach spaces is studied.

Notice that if f ∈ F(A0 ∩ A1), and 0 < θ < 1 then the following important estimate is

well known in the case where A0, A1 are Banach spaces (see [4]),

log ‖f(θ)‖θ ≤
∫ ∞
−∞

log ‖f(it)‖A0P0(θ, t) dt+

∫ ∞
−∞

log ‖f(1 + it)‖A1P1(θ, t) dt, (1)
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where P0(θ, t) and P1(θ, t) are the values of the Poisson kernels of the strip, on Re z = 0

and Re z = 1, respectively. The same estimate holds in the case of quasi-Banach spaces; the

proof is similar to the Banach space case (see [4] or [3, Lemma 4.3.2]).

We recall that the Poisson kernels Pj (j = 0, 1) for the strip are obtained from the

Poisson kernel for the unit disc by means of a conformal mapping and are given by

Pj(x+ iy, t) =
e−π(t−y) sinπx

sin2 πx+ (cosπx− (−1)je−π(t−y))2
, x+ iy ∈ S.

Using the fact that the Poisson kernels satisfy∫
R
P0(θ, t) dt = 1− θ,

∫
R
P1(θ, t) dt = θ

together with (1), Jensen’s inequality, and the concavity of the logarithmic function, we

obtain the following result:

Lemma 1.1. Let (A0, A1) be a couple of complex quasi-Banach spaces. For every f in

F(A0 ∩A1), 0 < p0, p1 <∞, and 0 < θ < 1 we have

‖f(θ)‖θ ≤
( 1

1− θ

∫ ∞
−∞
‖f(it)‖p0A0

P0(θ, t) dt
) 1−θ

p0

(1

θ

∫ ∞
−∞
‖f(1 + it)‖p1A1

P1(θ, t) dt
) θ
p1 .

Before we begin our discussion of analytic families of multilinear operators we recall

(see [9, 19]) that a continuous function F : S → C which is analytic in S is said to be of

admissible growth if there is 0 ≤ α < π such that

sup
z∈S

log |F (z)|
eα|Im z| <∞.

The following lemma due to Hirschman [9] (see also [8]) will play a key role hereby.

Lemma 1.2. If a function F : S → C is analytic in S, continuous on S, and is of admissible

growth, then for all θ ∈ (0, 1) we have

log |F (θ)| ≤
∫ ∞
−∞

log |F (it)|P0(θ, t) dt+

∫ ∞
−∞

log |F (1 + it)|P1(θ, t) dt.

All measure spaces considered throughout this paper will be complete and σ-finite. Let

(Ω,Σ, µ) be a complete σ-finite measure space and let L0(µ) (resp., L̃0(µ)) denote the space

of all equivalence classes of real-valued (resp., complex-valued) measurable functions on Ω

with the topology of convergence in measure on µ-finite sets. A quasi-Banach (function)

lattice X on (Ω,Σ, µ) is a subspace of L0(µ), which is complete with respect to a quasi-norm

‖ · ‖ and it is a solid subspace in L0(µ), i.e., it has the property: f ∈ L0(µ), g ∈ X |f | ≤ |g|
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a.e. implies f ∈ X and ‖f‖X ≤ ‖g‖X ; moreover we will assume that there exists u ∈ X
with u > 0 a.e..

If X is a quasi-Banach lattice on (Ω,Σ, µ) and w ∈ L0(µ) is strictly positive a.e., then

we define X(w) to be the quasi-Banach lattice of all f ∈ L0(µ) such that fw ∈ X, equipped

with the quasi-norm ‖f‖X(w) = ‖fw‖X .

IfX is a quasi-Banach lattice, we will use the same letterX to denote its complexification,

namely, the space of all f ∈ L̃0(µ) such that |f | ∈ X, with the quasi-norm ‖f‖X =
∥∥|f |∥∥

X
.

A quasi-Banach lattice X is said to be maximal (or X has the Fatou property) whenever

0 ≤ fn ↑ f a.e., fn ∈ X, and supn≥1 ‖fn‖X <∞ implies that f ∈ X and ‖fn‖X → ‖f‖X .

The Köthe dual space X ′ of a quasi-Banach lattice X on (Ω,Σ, µ) is defined as the space

of all f ∈ L0(µ) such that
∫

Ω |fg| dµ <∞ for every g ∈ X. It is a Banach lattice on (Ω,Σ, µ)

when equipped with the norm

‖f‖X′ = sup
‖g‖X≤1

∫
Ω
|fg| dµ .

In certain cases X ′ could be trivial, for instance, if X = Lp on a nonatomic measure space

with 0 < p < 1, then (Lp)′ is trivial. Notice that X is a maximal Banach lattice if and only

if X = X ′′ := (X ′)′ with equality of norms (see, e.g., [14, p. 30]).

If X0 and X1 are quasi-Banach lattices on a given measure space (Ω,Σ, µ) and 0 < θ < 1,

we define the quasi-Banach lattice Xθ = X1−θ
0 Xθ

1 to be the space of all f ∈ L0(µ) such that

|f | ≤ |f0|1−θ|f1|θ µ-a.e. for some fi ∈ Xi (i = 0, 1) and equipped with the quasi-norm

‖f‖Xθ = inf
{
‖f0‖1−θX0

‖f1‖θX1
; |f | ≤ |f0|1−θ|f1|θ µ-a.e.

}
.

A quasi-Banach lattice X is said to be p-convex (0 < p < ∞) if there exists a constant

C > 0 such that for any f1,...,fn ∈ X we have∥∥∥( n∑
k=1

|fk|p
)1/p∥∥∥

X
≤ C

( n∑
k=1

‖fk‖pX
)1/p

.

The optimal constant C in this inequality is called the p-convexity constant of X, and is

denoted, by M (p)(X). A quasi-Banach lattice is said to have nontrivial convexity whenever

it is p-convex for some 0 < p <∞.

We now introduce the concept of analytic families of multilinear operators with respect

to a measure. Let (Ω,Σ, µ) be a measure space and let X1,...,Xm be linear spaces. We

assume that for every z ∈ S there is a multilinear operator Tz : X1×· · ·×Xm → L̃0(µ). The

family {Tz}z∈S is said to be analytic if for any (x1, ..., xn) ∈ X1 × · · · × Xm and for almost

every ω ∈ Ω the function

z 7→ Tz(x1, ..., xm)(ω), z ∈ S (2)
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is analytic in S and continuous on S. Additionally, if for j = 0 and j = 1 the function

(t, ω) 7→ Tj+it(x1, ..., xn)(ω), (t, ω) ∈ R× Ω

is (L × Σ)-measurable for every (x1, ..., xn) ∈ X1 × · · · × Xm, and for almost every ω ∈ Ω

the function (2) is of admissible growth, then the family {Tz} is said to be an admissible

analytic family. Here L is the σ-algebra of Lebesgue measurable sets in R.

We now state the main result of this article.

Theorem 1.1. For each 1 ≤ i ≤ m, let Xi = (X0i, X1i) be admissible couples of quasi-

Banach spaces, and let (Y0, Y1) be a couple of maximal quasi-Banach lattices on a measure

space (Ω,Σ, µ) such that each Yj is pj-convex for j = 0, 1. Assume that Xi is a dense

linear subspace of X0i ∩X1i for each 1 ≤ i ≤ m, and that {Tz}z∈S is an admissible analytic

family of multilinear operators Tz : X1 × · · · × Xm → Y0 ∩ Y1. Suppose that for every

(x1, ..., xm) ∈ X1 × · · · × Xm, t ∈ R and j = 0, 1,

‖Tj+it(x1, ..., xm)‖Yj ≤ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm

where Kj are Lebesgue measurable functions such that Kj ∈ Lpj (Pj(θ, ·) dt) for all θ ∈ (0, 1).

Then for all (x1, ..., xm) ∈ X1 × · · · × Xm, all s ∈ R, and all 0 < θ < 1 we have

‖Tθ+is(x1, ..., xm)‖Y 1−θ
0 Y θ1

≤ (M (p0)(Y0))
1−θ

(M (p1)(Y1))
θ
Kθ(s)

m∏
i=1

‖xi‖(X0i,X1i)θ , (3)

where

logKθ(s) =

∫
R
P0(θ, t) logK0(t+ s) dt+

∫
R
P1(θ, t) logK1(t+ s) dt. (4)

2 Quasi-Banach lattices and the proof of the main theorem

Before proving our main theorem, we make some remarks concerning quasi-Banach lattices.

Suppose we are given a quasi-Banach lattice X on (Ω,Σ, µ). For any 0 < s < ∞ we

define Xs to be a quasi-Banach lattice of all x ∈ L0(µ) such that |x|s ∈ X equipped with

the quasi-norm ‖x‖Xs =
∥∥|x|s∥∥1/s

X
. Note that if X is p-convex, then for f ∈ X1/p and

f1,...,fn ∈ X1/p with |f | ≤
∑n

k=1 |fk|, we have

‖f‖X1/p ≤
∥∥∥ n∑
k=1

(|fk|1/p)p
∥∥∥
X1/p

=
∥∥∥( n∑

k=1

(|fk|1/p)p
)1/p∥∥∥p

X

≤ (M (p)(X))p
n∑
k=1

∥∥|fk|1/p∥∥pX = (M (p)(X))p
n∑
k=1

‖fk‖X1/p .
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This shows that the lattice norm ‖ · ‖∗ defined for f ∈ X1/p by

‖f‖∗ = inf
{ n∑
k=1

‖fk‖X1/p ; |f | ≤
n∑
k=1

|fk|, n ∈ N
}
,

satisfies

(M (p)(X))−p ‖ · ‖X1/p ≤ ‖ · ‖∗ ≤ ‖ · ‖X1/p .

In particular this implies the well known fact that if a quasi-Banach lattice X on (Ω,Σ, µ)

is p-convex (0 < p <∞), then there exists a Banach function space Y on (Ω,Σ, µ) such that

f ∈ X if and only if |f |p ∈ Y and

(M (p)(X))−1 ‖f‖X ≤
∥∥|f |p∥∥1/p

Y
≤ ‖f‖X .

We state below a lemma which is well know fact but we do not have references. We only

mention that it easily follows by the above estimates in combination with the description

of a second Köthe dual space E′′ of any Banach lattice E (see [21, pp. 451, 471]), which

states that f ∈ E′′ if and only if there exists a sequence (fn)∞n=1 of elements in E, such that

0 ≤ fn ↑ |f | a.e. and supn ‖fn‖E <∞. Moreover for any f ∈ E′′ we have

‖f‖E′′ = inf
{

lim
n→∞

‖fn‖E ; 0 ≤ fn ↑ |f | a.e.
}
.

Lemma 2.1. Let X be a quasi-Banach lattice on (Ω,Σ, µ) which is p-convex for some

0 < p <∞. Then there exists a Banach lattice Y on (Ω,Σ, µ) such that Y p = X and

(M (p)(X))−1‖f‖X ≤ ‖f‖Y p ≤ ‖f‖X , f ∈ X.

If in addition X is maximal, then Y can be chosen also maximal.

We recall a quite general version of Minkowski’s inequality, whose proof can be found for

instance in [15, pp. 45–46]. Let (Ω1,Σ1, µ), (Ω2,Σ2, ν) be measure spaces and F : Ω1×Ω2 →
R measurable with respect to the σ-algebra of ν×µ-measurable sets, and let E be a Banach

lattice on (Ω1,Σ1, µ) and assume that F (·, t) ∈ E for t ∈ Ω2 and t 7→ ‖F (·, t)‖E belongs to

L1(ν). Then ∥∥∥∫
Ω2

F (·, t) dν(t)
∥∥∥
E′′
≤
∫

Ω2

‖F (·, t)‖E dν(t).

We point out the following fact (see [12]) that will be used in the sequel: if (Ωi,Σi, µi)

(i = 0, 1) are measure spaces and X is a Banach lattice on (Ω2,Σ2, µ2), then for any Σ1×Σ2-

measurable function f defined on Ω1 × Ω2, the function vf (given by vf (s) := ‖f(s, ·)‖X
and vf (s) = ∞ if f(s, ·) /∈ X for s ∈ Ω1) is Σ1-measurable if µ1 is discrete or if µ1 is

arbitrary but X has a norm which satisfies the so called (C)-condition (i.e., 0 ≤ xn ↑ x ∈ X
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implies ‖xn‖X → ‖x‖X). Notice that Luxemburg [11] gives a simple example, using the

Bohr compactification of the integers, showing that the result need not hold if X does not

satisfy the (C)-condition.

Next, we have the following result:

Lemma 2.2. Let (X0, X1) be a couple of complex quasi-Banach lattices on a measure space∗

(Ω,Σ, µ) such that X0 is p0-convex and X1 is p1-convex. Then for every 0 < θ < 1 we have

‖x‖X1−θ
0 Xθ

1
≤ (M (p0)(X0))1−θ(M (p1)(X1))θ ‖x‖(X0,X1)θ , x ∈ X0 ∩X1.

In particular (X0, X1) is an admissible quasi-Banach couple.

Proof. Fix ε > 0. For a given x ∈ X0∩X1 there exists a function f ∈ F(X0∩X1) such that

the function

F (z, ω) := f(z)(ω) =

N∑
k=1

ϕk(z)xk(ω), z ∈ S, ω ∈ Ω,

1 ≤ k ≤ N , xk ∈ X0 ∩X1, ϕk ∈ A(S), satisfies F (θ, ω) = x(ω) and

‖F‖F(X0∩X1) ≤ (1 + ε)‖x‖(X0,X1)θ .

Applying Lemma 1.1 to the scalar case (i.e., to A0 = A1 = C) yields

|F (θ, ω)| ≤
( 1

1− θ

∫ ∞
−∞
|F (it, ω)|p0P0(θ, t) dt

) 1−θ
p0

(1

θ

∫ ∞
−∞
|F (1 + it, ω)|p1P1(θ, t) dt

) θ
p1

= y0(ω)1−θy1(ω)θ,

where for every ω ∈ Ω

y0(ω) =
( 1

1− θ

∫ ∞
−∞
|F (it, ω)|p0P0(θ, t) dt

) 1
p0 ,

y1(ω) =
(1

θ

∫ ∞
−∞
|F (1 + it, ω)|p1P1(θ, t) dt

) 1
p1 .

By Lemma 2.1 there exists a Banach lattice Ej on (Ω,Σ, µ) such that for j = 0, 1

(M (pj)(Xj))
−1 ‖f‖Xj ≤ ‖f‖Epjj ≤ ‖f‖Xj , f ∈ Xj .

Since the above identities y0 and y1 are given by Riemann integrals of functions with values

in Banach lattices E0 and E1, respectively, we obtain

‖y0‖p0Ep00
= ‖|y0|p0‖E0 ≤

1

1− θ

∫ ∞
−∞

∥∥|F (it, ω)|p0
∥∥
E0
P0(θ, t) dt,

∗Recall all measure spaces in this article are assumed to be complete and σ-finite.
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‖y1‖p1Ep11
= ‖|y1|p1‖E1 ≤

1

θ

∫ ∞
−∞

∥∥|F (1 + it, ω)|p1
∥∥
E1
P1(θ, t) dt.

Consequently,

‖y0‖X0 ≤M (p0)(X0)‖y0‖Ep00

≤M (p0)(X0)
( 1

1− θ

∫ ∞
−∞

∥∥|F (it, ·)|p0
∥∥
E0
P0(θ, t) dt

)1/p0

= M (p0)(X0)
( 1

1− θ

∫ ∞
−∞
‖F (it, ·)‖p0

E
p0
0

P0(θ, t) dt
)1/p0

≤M (p0)(X0)
( 1

1− θ

∫ ∞
−∞
‖F (it, ·)‖p0X0

P0(θ, t) dt
)1/p0

≤ (1 + ε)M (p0)(X0) ‖x‖(X0,X1)θ .

Similarly we obtain

‖y1‖X1 ≤M (p1)(X1)(1 + ε)‖x‖(X0,X1)θ .

Combining |x| ≤ |y0|1−θ|y1|θ with the preceding estimates for the norms of y0 and y1 in X0

and X1, respectively, yields

‖x‖X1−θ
0 Xθ

1
≤ (1 + ε)(M (p0)(X0))1−θ(M (p1)(X1))θ ‖x‖(X0,X1)θ .

Since ε > 0 was arbitrary, the proof is complete.

We now prove Theorem 1.1.

Proof. Without loss of generality, we may assume that s = 0. If this case is proved, then

applying the result for s = 0 to the admissible analytic family z 7→ T̃z = Tz+is with

K̃j(t) = Kj(t+ s), j = 1, 2, for a fixed real s, we obtain the required estimate (4).

Fix 0 < θ < 1 and (x1, ..., xm) ∈ X1 × · · · × Xm. Without loss of the generality we may

assume that ‖xi‖(X0i,X1i)θ < 1 for each 1 ≤ i ≤ m. Once this case is completed, replacing

xi by (1− δ)xi/‖xi‖(X0i,X1i)θ , we obtain (3) for general xi when we let δ → 0.

There exist finite sequences {xi k}nik=1 in Xi and {ϕi k}nik=1 in A(S) such that for each

1 ≤ i ≤ m,

xi =

ni∑
k=1

ϕi k(θ)xi k

and ∥∥∥ ni∑
k=1

ϕi k xi k

∥∥∥
F(Xi)

< 1.

For every z ∈ S define Fz : Ω→ C by

Fz(ω) = Tz

( n1∑
k=1

ϕ1 k(z)x1 k, ...,

nm∑
k=1

ϕmk(z)xmk

)
(ω), ω ∈ Ω. (5)
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Since all functions ϕi k are bounded in S and

Fz(ω) =

n1∑
k1=1

· · ·
nm∑
km=1

ϕ1 k1(z) · · · ϕmkm(z)Tz(x1 k1 , ..., xm,km)(ω),

our hypothesis on the family {Tz} yields that for almost every ω ∈ Ω, the function z 7→ Fz(ω)

is analytic in S, continuous in S, and of admissible growth. Thus applying Lemma 1.2 we

obtain that for almost all ω ∈ Ω

log |Fθ(ω)| ≤
∫ ∞
−∞

log |Fit(ω)|P0(θ, t) dt+

∫ ∞
−∞

log |F1+it(ω)|P1(θ, t) dt. (6)

Since the Poisson kernels satisfy∫
R
P0(θ, t) dt = 1− θ and

∫
R
P1(θ, t) dt = θ,

ν0 and ν1 defined by dν0(t) = (1− θ)−1P0(θ, t) dt and dν1(t) = θ−1P0(θ, t) dt are probability

measures on R.

Taking exponentials of both sides of the above inequality we obtain

|Fθ(ω)| ≤
(

exp

∫
R

log |Fit(ω)|p0 dν0(t)
)(1−θ)/p0 (

exp

∫
R

log |F1+it(ω)|p1 dν1(t)
)θ/p1

.

This implies

|Fθ(ω)| ≤
(∫

R
|Fit(ω)|p0 dν0(t)

)(1−θ)/p0 (∫
R
|F1+it(ω)|p1 dν1(t)

)θ/p1
= g0(ω)1−θg1(ω)θ,

where for j = 0, 1,

gj(ω) :=
(∫

R
|Fj+it(ω)|pj dνj(t)

)1/pj
, ω ∈ Ω.

Notice that g0 and g1 are measurable functions by Tonelli’s theorem. We claim that gj ∈ Yj
for j = 0, 1. By Lemma 2.1 there exists a maximal Banach lattice Ej on (Ω,Σ, µ) such that

for j = 0, 1

(M (pj)(Yj))
−1 ‖f‖Yj ≤ ‖f‖Epjj ≤ ‖f‖Yj , f ∈ Yj .

Put Cj = M (pj)(Yj) for j = 0, 1. By Minkowski’s inequality we have

‖gj‖Yj ≤M (pj)(Yj)
∥∥∥∫

R
|Fj+it(·)|pj dνj(t)

∥∥∥1/pj

Ej
≤ Cj

(∫
R

∥∥|Fj+it(·)|pj∥∥Ej dνj(t))1/pj

≤ Cj
(∫

R

∥∥Fj+it(·)∥∥pjEpj dνj(t))1/pj
≤ Cj

(∫
R

∥∥Fj+it(·)∥∥pjYj dνj(t))1/pj

= Cj

(∫
R

∥∥∥Tj+it( n1∑
k=1

ϕ1 k(j + it)x1 k, . . . ,

nm∑
k=1

ϕmk(j + it)xmk

)∥∥∥pj
Yj
dνj(t)

)1/pj

≤ Cj
(∫

R
Kj(t)

pj
( m∏
`=1

∥∥∥ n∑̀
k=1

ϕ`k(j + it)x`k

∥∥∥
Xj`

)pj
dνj(t)

)1/pj

≤ Cj
(∫

R
Kj(t)

pj dνj(t)
)1/pj

<∞.
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This gives that Fθ = Tθ(x1, . . . , xm) ∈ Yθ with

‖Tθ(x1, . . . , xm)‖Yθ ≤ ‖g0‖1−θY0
‖g1‖θY1 ≤ C

1−θ
0 Cθ1 K(θ, p0, p1),

where we set

K(θ, p0, p1) =
( 1

1− θ

∫
R
K0(t)p0P0(θ, t) dt

) 1−θ
p0

(1

θ

∫
R
K1(t)p1P1(θ, t) dt

) θ
p1 .

To finish the proof, we use the well known fact that if a quasi-Banach lattice E is r-

convex, then it is p-convex for every 0 < p < r, and M (p)(E) ≤ M (r)(E) (see, e.g., [5]).

Repeating the preceding discussion with p in place of both p0 and p1 we obtain for every

0 < p < min{p0, p1},

‖Tθ(x1, . . . , xm)‖Yθ ≤ ‖g0‖1−θY0
‖g1‖θY1 ≤ C

1−θ
0 Cθ1 K(θ, p, p).

To conclude the proof, use that ν0 and ν1 are probability measures to deduce that

lim
p→0+

K(θ, p, p) = lim
p→0+

[( 1

1− θ

∫
R
K0(t)pP0(θ, t) dt

)1/p]1−θ [(1

θ

∫
R
K1(t)pP1(θ, t) dt

)1/p]θ
= exp

(∫
R
P0(θ, t) logK0(t) dt

)
exp

(∫
R
P1(θ, t) logK1(t) dt

)
= Kθ(0),

and this yields (4) when s = 0. The case of a general s follows by a translation as discussed

at the beginning of the proof.

3 General applications

We now obtain certain easy consequences of the above theorem. We will need a variant of

Calderón’s lemma for quasi-Banach lattices. Since this requires a different proof than in the

Banach case, we include a proof for the sake of completeness.

Lemma 3.1. Let (X0, X1) be a couple of complex quasi-Banach lattices on a measure space

(Ω,Σ, µ). If xj ∈ Xj (j = 0, 1) are such that |x0| and |x1| are bounded above and their non-

zero values have positive lower bounds, then |x0|1−θ|x1|θ ∈ (X0, X1)θ and∥∥|x0|1−θ|x1|θ
∥∥

(X0,X1)θ
≤ ‖x0‖1−θX0

‖x1‖θX1
.

Proof. Fix ε > 1. Without loss of generality we can assume that ‖x0‖X0 = ‖x1‖X1 = 1.

Let x = |x0|1−θ|x1|θ and let E = suppx. Our hypotheses imply that there exist integers

0 ≤ N ≤M such that

ε−N |x0(ω)| ≤ |x1(ω)| < εM |x0(ω)|, ω ∈ E.

10



For each −N ≤ k ≤M − 1 let xk = xχEk , where

Ek :=
{
ω ∈ E; εk|x0(ω)|<|x1(ω)| ≤ εk+1|x0(ω)

}
.

Then we have

xk = |x0χEk |
1−θ|x1χEk |

θ ≤ ε εkθ|x0|χEk , xk ≤ ε−k(1−θ)|x1|χEk ,

and so for any finite sequence {λk} of complex numbers with |λk| ≤ 1 we have

∣∣∣ M∑
k=−N

λkε
−kθxk

∣∣∣ ≤ ε M∑
k=−N

|x0|χEk ≤ ε|x0|,

and ∣∣∣ M∑
k=−N

λkε
(1−θ)kxk

∣∣∣ ≤ ε M∑
k=−N

|x1|χEk ≤ ε|x1|.

Consequently, for j = 0, 1, we have

sup
|λk|≤1

∥∥∥ M∑
k=−N

λkε
(j−θ)kxk

∥∥∥
Xj
≤ ε. (7)

Let f be a function f : S → X0 ∩X1 defined by

f(z) =

M∑
k=−N

εk(z−θ)xk, z ∈ S.

Since |εit| = 1 for every t ∈ R, thus combining with (7) yields

sup
t∈R
‖f(j + it)‖Xj ≤ ε.

Since f(θ) =
∑M

k=−N xk = x, x ∈ (X0, X1)θ with

‖x‖(X0,X1)θ ≤ ε

and this completes the proof since ε > 1 was arbitrary.

Let X be a quasi-Banach space on a measure space. Following the Banach case, we

say that an element x ∈ X has order continuous quasi-norm if for any sequence (xn) of

measurable functions such that 0 ≤ xn ≤ |x|, and xn → |x| a.e., we have ‖xn − |x|‖X → 0.

A quasi-Banach lattice X is said to be order continuous if every x ∈ X has order continuous

quasi-norm.

The following corollary is an immediate consequence of Lemma 3.1 combined with the

proof of Theorem 1.14 in [15, pp. 244-245].
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Corollary 3.1. Let (X0, X1) be a couple of complex quasi-Banach lattices on a measure

space (Ω,Σ, µ). If x ∈ X0 ∩ X1 has an order continuous norm in X1−θ
0 Xθ

1 , then for every

0 < θ < 1,

‖x‖(X0,X1)θ ≤ ‖x‖X1−θ
0 Xθ

1
.

As a consequence of the above corollary and Lemma 2.2, we obtain a variant of Calderón’s

theorem for quasi-Banach lattices.

Theorem 3.1. Let (X0, X1) be a couple of complex quasi-Banach lattices on a measure

space with nontrivial lattice convexity constants. If the space X1−θ
0 Xθ

1 has order continuous

quasi-norm, then

[X0, X1]θ = X1−θ
0 Xθ

1

up to equivalences of norms (isometrically, provided that lattice convexity constants are equal

to 1). In particular this holds if at least one of the spaces X0 or X1 is order continuous.

Proof. The first part follows by application of Lemma 3.1 and Corollary 3.1. Now if X0 or

X1 is order continuous, then it is easy to see that X1−θ
0 Xθ

1 is also order continuous.

We remark that Theorem 1.1 combined with the preceding relationships between spaces

(X0, X1)θ and X1−θ
0 Xθ

1 generated by couples of complex quasi-Banach lattices give multilin-

ear theorems for analytic families of multilinear operators on quasi-Banach lattices of type

X1−θ
0 Xθ

1 . As a special case we obtain the following interpolation theorem for mulitilinear

operators:

Theorem 3.2. For each 1 ≤ i ≤ m, let (X0i, X1i) be complex quasi-Banach function lattices

and let Yj be complex pj-convex maximal quasi-Banach function lattices with pj-convexity

constants equal 1 for j = 0, 1. Suppose that either X0i or X1i is order continuous for each

1 ≤ i ≤ m. Let T be a multilinear operator defined on (X01 +X11)×· · ·× (X0m +X1m) and

taking values in Y0 + Y1 such that T : Xi1 × · · · ×Xim → Yi is bounded with quasi-norm Mi

for i = 0, 1. Then for 0 < θ < 1, T : (X01)1−θ(X11)θ × · · · × (X0m)1−θ(X1m)θ → Y 1−θ
0 Y θ

1 is

bounded with the quasi-norm

‖T‖ ≤M1−θ
0 M θ

1 .

We conclude this section by noting that in the case of probability measures and under

the assumption of separability, the following interpolation theorem for operators was proved

by Kalton [13, Theorem 2.2] and was applied to study a problem in uniqueness of structure

in quasi-Banach lattices. The proof presented in [13] is completely different than ours and

uses a deep theorem by Nikishin and the theory of Hardy Hp-spaces on the unit disc.
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Theorem 3.3. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measures spaces. Let Xi, i = 0, 1,

be complex pi-convex quasi-Banach lattices on (Ω1,Σ1, µ1) and let Yi be complex pi-convex

maximal quasi-Banach lattices on (Ω2,Σ2, µ2) with pi-convexity constants equal 1. Suppose

that either X0 or X1 is order continuous. Let T : X0+X1 → L0(µ2) be a continuous operator

such that T (X0) ⊂ Y0 and T (X1) ⊂ Y1. Then for 0 < θ < 1, T maps Xθ = X1−θ
0 Xθ

1 into

Yθ = Y 1−θ
0 Y θ

1 and

‖T‖Xθ→Yθ ≤ ‖T‖
1−θ
X0→Y0 ‖T‖

θ
X1→Y1 .

4 Applications to Lebesgue, Lorentz, and Hardy spaces

In this section we discuss applications of our results in the context of classical quasi-Banach

spaces which appear in many areas of analysis. We first provide some results concerning

the descriptions of the Calderón spaces X1−θ
0 Xθ

1 , where X0 and X1 are r.i. quasi-Banach

spaces and we provide applications to Lorentz spaces. In these descriptions we estimate the

constants of equivalence of quasi-norms.

We first introduce some definitions. We recall that a quasi-Banach function lattice X on

(Ω,Σ, µ) is said to be a rearrangement invariant space (r.i. for short) if for every f ∈ L0(µ)

and g ∈ X with µf = µg, we have f ∈ X and ‖f‖X = ‖g‖X . Here µf denotes the distribution

function of |f | with respect to µ, i.e., µf (s) = µ({ω ∈ Ω; |f(ω)| > s}), s ≥ 0. The decreasing

rearrangement f∗ of f with respect to µ is defined by f∗(t) = inf{s > 0; µf (s) ≤ t}, t ≥ 0.

In what follows the space of all f ∈ L0(µ) such that f∗(+∞) := limt→∞ f
∗(t) = 0 is denoted

by Λ0

Let (Ω,Σ, µ) be a nonatomic measure space and let I = (0, µ(Ω)) be equipped with the

Lebesgue measure λ. If E is a quasi-Banach lattice on (I, λ), then we define

E(∗) = E(∗)(µ) :=
{
f ∈ L0(µ); f∗ ∈ E

}
.

It is easily checked that if the dilation operator D2f(t) = f(t/2), for all t ∈ I, is bounded on

the cone of non-negative decreasing elements in E, then E(∗), equipped with the quasi-norm

given by ‖f‖E(∗) := ‖f∗‖E for all f ∈ E(∗), is a r.i. quasi-Banach space on (Ω,Σ, µ).

An r.i. space X on a nonatomic measure space (Ω,Σ, µ) is said to be generated by a quasi-

Banach lattice E on I = (0, µ(Ω)) provided the following conditions are satisfied: f ∈ X if

and only if f ∈ E(∗) and ‖f‖X = ‖f‖E(∗) .

The Lorentz space Lp,q := Lp,q(Ω) on a measure space (Ω,Σ, µ), 0 < p <∞, 0 < q ≤ ∞
consists of all f ∈ L0(µ) such that the following quasi-norm is finite

‖f‖Lp,q :=


(∫ ∞

0

(
t1/pf∗(t)

)q dt
t

)1/q
if 0 < q <∞

supt>0 t
1/pf∗(t) if q =∞ .
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Notice that Lp,q is generated by the weighted quasi-Banach lattice Lq(w), where w(t) =

t1/p−1/q for all ∈ I and 0 < p, q < ∞ and w(t) = t1/p in the case when 0 < p < ∞ and

q =∞.

We now apply the results of the previous sections. We begin by noticing that Theorem

3.1 contains the following well-known fact: If 0 < p0, p1 ≤ ∞ and (Lp0 , Lp1) is a couple on

any measure space, then

[Lp0 , Lp1 ]θ = Lpθ

isometrically, where 1/pθ = (1 − θ)/p0 + θ/p1 for all 0 < θ < 1; in fact simple calculations

show that

(Lp0)1−θ(Lp1)θ = Lpθ

with equality of norms. Since Lp is p-convex and L∞ is 1-convex with the convexity constants

equal 1, the result follows Theorem 3.1 if p0 6= p1. If p0 = p1 =∞, the statement is obvious.

We state the following technical result which seems of independent interest.

The following Lemma is surely well-known to specialists, but we include a proof.

Lemma 4.1. Let (X0, X1) be a couple of r.i. quasi-Banach spaces on a nonatomic measure

space (Ω,Σ, µ). Assume that Xj (j = 0, 1) is generated by a quasi-Banach lattice Ej on

(I, λ). Then the following hold:

(i) X1−θ
0 Xθ

1 ↪→
(
E1−θ

0 Eθ1
)(∗)

and the inclusion map id has norm

‖id‖ ≤ C1−θ
0 Cθ1 ,

where Cj = sup
{
‖D2g‖Ej ; ‖g‖Ej ≤ 1, g is a nonnegative decreasing function

}
.

(ii) Let P be a positive linear operator such that P (Ej) ⊂ Ej for j = 0, 1. Assume that

Pf is a nonincreasing function on I for every 0 ≤ f ∈ E0 + E1 and there exists

C > 0 such that g ≤ CPg for any nonegative nonincreasing function g ∈ E0 + E1. If(
E1−θ

0 Eθ1
)(∗) ⊂ Λ0, then

(
E1−θ

0 Eθ1
)(∗)

↪→ X1−θ
0 Xθ

1 and the inclusion map id has norm

‖id‖ ≤ C‖P‖1−θE0
‖P‖θE1

.

Proof. Let |f | ≤ |f0|1−θ|f1|θ µ-a.e. with fj ∈ Xj (j = 0, 1). Then we have

f∗(t) ≤ f∗0 (t/2)1−θf∗1 (t/2)θ = (D2f
∗
0 (t))1−θ(D2f

∗
1 (t))θ, t ∈ I.

Since ‖D2f
∗
j ‖Ej ≤ Cj‖fj‖Xj for j = 0, 1, f∗ ∈ E1−θ

0 Eθ1 with

‖f∗‖Eθ ≤ C
1−θ
0 Cθ1‖f0‖1−θX0

‖f1‖θX1
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and so the required estimate follows.

(ii). We will use the following known property S(f1−θ
0 fθ1 ) ≤ S(f0)1−θS(f1)θ, f0, f1 ∈ X ,

valid for positive operators S : X → L0(µ) defined on solid linear subspace X of L0(µ).

Let f ∈
(
E1−θ

0 Eθ1
)(∗)

. Then f∗ ≤ g1−θ
0 gθ1 with 0 ≤ gj ∈ Ej (j = 0, 1). Applying the

preceding property yields

f∗ ≤ CPf∗ ≤ C(Pg0)1−θ(Pg1)θ.

Since f∗(+∞) = 0, the Ryff Theorem (see [1, Chapter 2, Corollary 7.6]) implies that there

exists a measure preserving map σ : Ω → I such that |f | = f∗ ◦ σ µ-a.e. on the support of

f . Thus if we put hj = P (gj) ◦ σ for j = 0, 1 we deduce that

|f | ≤ C h1−θ
0 hθ1, µ-a.e.

To conclude observe that hj ∈ Xj by h∗j = P (gj)
∗ = P (gj) (since P (gj) is a nonincreasing

function on I) for j = 0, 1. Since P is positive and P : Ej → Ej , P is bounded and so

‖hj‖Xj = ‖h∗j‖Ej ≤ ‖P‖Ej‖gj‖Ej .

Combining these facts, we see that f ∈ X1−θ
0 Xθ

1 with

‖f‖Xθ ≤ K‖g0‖1−θE0
‖g1‖θE1

,

where K = C‖P‖1−θE0
‖P‖θE1

. Since f∗ ∈
(
E1−θ

0 Eθ1
)(∗)

and f∗ ≤ g1−θ
0 gθ1 with arbitrary

g0 ∈ E0 and g1 ∈ E1, the proof is complete.

Remark 4.1. It is easily seen that examples of positive operators which satisfy the hypothe-

ses of the Lemma 4.1(ii) are operators Pr = D2 ◦Qr, 0 < r <∞ where for every 0 < r <∞
is given by

Qrf(t) :=
(∫ ∞

t

f(s)r

s
ds
)1/r

.

To apply the Lemma 4.1 to the Lorentz spaces Λp,q we recall the following result (see,

e.g., [16, Theorem 2]): If 1 ≤ p ≤ ∞, 1/p+ 1/p′ = 1 and u and v are weighted functions on

(0,∞), then there exists C > 0 such that(∫ ∞
0

∣∣∣u(t)

∫ ∞
t

f(s) ds
∣∣∣p dt)1/p

≤ C
(∫ ∞

0
|f(t)v(t)|p dt

)1/p
, f ∈ Lp(v),

if and only if

B = sup
r>0

(∫ r

0
u(t)p dt

)1/p(∫ ∞
r

v(t)−p
′
dt
)1/p′

<∞.

In addition B ≤ C ≤ p1/p(p′)1/p′B.
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We single out the following specific case of the well-known Hardy inequality for the

Hardy operator Q given by

Qf(t) =

∫ ∞
t

f(s)

s
ds, t > 0,

which states that if 1 < p <∞ and 1 ≤ q <∞, then for all f ∈ Lq(w), where w(t) = t1/p−1/q

for all t > 0 we have(∫ ∞
0

(t1/p|Qf(t)|)q dt
t

)1/q
≤ p

(∫ ∞
0

(t1/p|f(t)|)q dt
t

)1/q
.

For simplicity we discuss applications only to the classical Lorentz spaces on infinite

nonatomic measure spaces.

Corollary 4.1. Let 0 < pj , qj < ∞ and let Lpj ,qj for j = 0, 1 be Lorentz spaces on an

infinite nonatomic measure space (Ω,Σ, µ). Then for 0 < θ < 1 the quasi-norm of

Xθ := (Lp0,q0)1−θ(Lp1,q1)θ

is equivalent to that of Lp,q, where 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1 − θ)/q0 + θ/q1.

Moreover for all f ∈ Xθ we have

2−1/p ‖f‖Lp,q ≤ ‖f‖Xθ ≤
21/p

(log 2)s
ss(p1−θ

0 pθ1)s ‖f‖Lp,q ,

where s = 1 whenever 1 < p0, p1 <∞ and 1 ≤ q0, q1 <∞ and s > max{1/p0, 1/q0, 1/p1, 1/q1}
otherwise.

Proof. Clearly Lpj ,qj is generated by Ej := Lqj (wj), where wj(t) = t1/pj−1/qj for t > 0.

Since E1−θ
0 Eθ1 = Lq(w) with equality of norms where w(s) = w0(s)1−θw1(t)θ = t1/p−1/q for

all t > 0, (
E1−θ

0 Eθ1)(∗) = Lp,q (8)

with equality of quasi-norms. Thus the left hand of the required inequality follows from

Lemma 4.1(i) by ‖D2‖Ej ≤ 21/pj for j = 0, 1.

To conclude we apply Lemma 4.1(ii). We first assume that 1 < pj <∞ and 1 ≤ qj <∞
for j = 0, 1. Now observe that for any nonnegative and nonincreasing function g ∈ L1

loc(λ)

we have

g(t) ≤ 1

log 2

∫ t

t/2

g(s)

s
dλ ≤ 1

log 2
D2 ◦Qg(t), t > 0.

Since ‖D2‖Ej ≤ 21/pj , the aforementioned Hardy inequality shows that P := D2 ◦Q : Ej →
Ej for j = 0, 1 and

‖P‖Ej ≤
21/pjpj
log 2

.
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This in combination with (8) shows by Lp,q ⊂ Λ0 that an operator P satisfies all hypotheses

in (ii) of Lemma 4.1 and so(
E1−θ

0 Eθ1)(∗) ↪→ (Lp0,q0)1−θ(Lp1,q1)θ,

where the inclusion map id has norm

‖id‖ ≤ 21/p

log 2
p1−θ

0 pθ1

and consequently the required right hand estimate of quasi-norms follows by (8).

We now consider the general case. We use the easily-verified fact that for any couple

(X0, X1) of quasi-Banach lattices on a measure space and every s > 0,

(X1−θ
0 Xθ

1 )s = (Xs
0)1−θ(Xs

1)θ, θ ∈ (0, 1).

with equality of quasi-norms. In particular, for any s > maxj=0,1{1/pj , 1/qj} (note that s

can be taken to be equal to 1 when 1 < p0, p1 <∞ and 1 ≤ q0, q1 <∞) this yields that

Xs
θ := ((Lp0,q0)1−θ(Lp1,q1)θ)s = ((Lp0,q0)s)1−θ(Lp1,q1)s)θ = (Lsp0,sq0)1−θ(Lsp1,sq1)θ

with equality of quasi-norms.

The second part of the proof gives (Xθ)
s = Lsp,sq with equivalence of quasi-norms. As

an immediate consequence, we obtain (by (Xs)1/s = X with equality of quasi-norms) the

required equality of considered spaces. Furthermore, we have

‖f‖(Xθ)s ≤
Cs

log 2
‖f‖(Lp,q)s , f ∈ (Lp,q)

s,

where Cs = 21/pssp1−θ
0 pθ1.

Combining we obtain Xθ = Lp,q with

‖f‖Xθ ≤
21/p

(log 2)s
ss(p1−θ

0 pθ1)s ‖f‖Lp,q , f ∈ Lp,q.

and so this completes the proof.

Next, we have the following result on interpolation of analytic multilinear operators on

products of Lorentz spaces.

Theorem 4.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be measure spaces. For 1 ≤ i ≤ m, fix

0 < q0, q1, q0i, q1i <∞, 0 < r0, r1, r0i, r1i ≤ ∞ and for 0 < θ < 1, define q, r, qi, ri by setting

1

qi
=

1− θ
q0i

+
θ

q1i
,

1

ri
=

1− θ
r0i

+
θ

r1i
,

1

q
=

1− θ
q0

+
θ

q1
,

1

r
=

1− θ
r0

+
θ

r1
.
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Assume that Xi is a dense linear subspace of Lq0i,r0i(Ω1)∩Lq1i,r1i(Ω1) and that {Tz}z∈S is an

admissible analytic family of multilinear operators Tz : X1×···×Xm → Lq0,r0(Ω2)∩Lq1,r1(Ω2).

Suppose that for every (h1, ..., hm) ∈ X1 × · · · × Xm, t ∈ R and j = 0, 1, we have

‖Tj+it(h1, ..., hm)‖Lqj ,rj (Ω2) ≤ Kj(t)‖h1‖Lqj1,rj1 (Ω1) · · · ‖hm‖Lqjm,rjm (Ω1)

where Kj are Lebesgue measurable functions such that Kj ∈ Lpj (Pj(θ, ·) dt) for all θ ∈ (0, 1),

where pj is chosen so that 0 < pj < qj and pj ≤ rj for each j = 0, 1.

Then for all (f1, ..., fm) ∈ X1 × · · · × Xm, 0 < θ < 1, and s ∈ R we have

‖Tθ+is(f1, ..., fm)‖(Lq0,r0 ,Lq1,r1 )θ ≤
( q0

q0 − p0

) 1−θ
p0

( q1

q1 − p1

) θ
p1 Kθ(s)

m∏
i=1

‖fi‖(Lq0,r0 ,Lq1,r1 )θ ,

where

logKθ(s) =

∫
R
P0(θ, t) logK0(t+ s) dt+

∫
R
P1(θ, t) logK1(t+ s) dt.

If in addition the measures spaces are infinite and nonatomic, then for all (f1, ..., fm) in

X1 × · · · × Xm, and s ∈ R, and 0 < θ < 1 we have

‖Tθ+is(f1, ..., fm)‖Lq,r(Ω2) ≤ C
( q0

q0 − p0

) 1−θ
p0

( q1

q1 − p1

) θ
p1 Kθ(s)

m∏
i=1

‖fi‖Lqi,ri (Ω1),

where

C = 2
1
q

+
∑m
i=1

1
qi

(
u q1−θ

0 qθ1
log 2

)u
with u = 1 if 1 < q0, q1 < ∞ and 1 ≤ r0, r1 ≤ ∞, while u > max{1/q0, 1/q1, 1/r0, 1/r1}
otherwise.

Proof. We apply Theorem 1.1. At first we notice that for any 0 < p0 <∞ we have

‖f‖Lq0,r0 =
(∥∥|f |p0∥∥

L q0
p0
,
r0
p0

)1/p0
=
∥∥f∥∥(

L q0
p0
,
r0
p0

)p0 , f ∈ Lq0,r0

and the space E0 = L q0
p0
,
r0
p0

is normable as long as p0 < q0 and p0 ≤ r0. In fact, when

r0 <∞, the following norm on E0

|||g|||E0 =
(

1− p0

q0

)(∫ ∞
0

[
t
q0
r0 sup

B⊂Ω2
µ2(B)≥min{t,µ(Ω2)}

1

max{t, µ2(B)}

∫
B
|g| dµ2

] r0
p0 dt

) p0
r0

satisfies

|||h|||E0 ≤ ‖h‖L q0
p0
,
r0
p0

≤ q0

q0 − p0
|||h|||E0

(see [8, Exercise 1.4.3]) and hence (taking h = |f |p0) we have( q0

q0 − p0

)− 1
p0 ‖f‖Lq0,r0 ≤ |||f |||Ep00 ≤ ‖f‖Lq0,r0 . (9)
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When r0 =∞, we define

|||g|||E0 =
(

1− p0

q0

)
sup

0<µ2(B)<∞

1

µ2(B)
1− p0

q0

∫
B
|g| dµ2 .

By [8, Exercise 1.1.12], this is a norm on L q0
p0
,∞ that satisfies

|||g|||E0 ≤ ‖g‖L q0
p0
,∞
≤ q0

q0 − p0
|||g|||E0 ,

and thus (9) also holds in this case. This implies that M (p0)(Lq0,r0) ≤
( q0
q0−p0

)1/p0 and

analogously M (p1)(Lq1,r1) ≤
( q1
q1−p1

)1/p1 . Hence, the desired inequality

‖Tθ+is(f1, ..., fm)‖(Lq0,r0 ,Lq1,r1 )θ ≤
( q0

q0 − p0

) 1−θ
p0

( q1

q1 − p1

) θ
p1 Kθ(s)

m∏
i=1

‖fi‖(Lq0,r0 ,Lq1,r1 )θ ,

is a consequence of Theorem 1.1. The inequality with Lq,r in place of (Lq0,r0 , Lq1,r1)θ and

Lqi,ri in place of (Lq0i,r0i , Lq1i,r1i)θ follows from Corollary 4.1.

Next, we discuss an extension motivated by applications to Hardy spaces.

Under the hypotheses of Theorem 1.1, suppose additionally that: There is an operator

M defined on a linear subspace of L̃0(Ω,Σ, µ) and taking values in L̃0(Ω,Σ, µ) such that:

(i) For j = 0 and j = 1 the function (t, x) 7→ M(h(j + it, ·))(ω), (t, ω) ∈ R× Ω is L× Σ-

measurable for any function h : ∂S×Ω→ C such that ω 7→ h(j+it, ω) is Σ-measurable

for almost all t ∈ R.

(ii) M(λh)(ω) = |λ|M(h)(ω) for all λ ∈ C.

(iii) For every function h as in above there is an exceptional set Eh ∈ Σ with µ(Eh) = 0

such that for j ∈ {0, 1}

M
(∫ ∞
−∞

h(t, ·)Pj(θ, t) dt
)

(ω) ≤
∫ ∞
−∞
M(h(t, ·))(ω)Pj(θ, t) dt

for all z ∈ C, all θ ∈ (0, 1), and all ω /∈ Eh. Moreover, Eψh = Eh for every analytic

function ψ on S which is bounded on S.

An example of this situation arises when Ω = Rn, µ is Lebesgue measure, and

M(h)(x) = sup
δ>0
|φδ ∗ h(x)| (10)

where φ is a Schwartz function on Rn with nonvanishing integral. Under assumptions (i),

(ii), (iii) Cwikel and Sagher [6] (page 981 estimate (5)) show that

log [M(Fθ)(x)] ≤
∫ ∞
−∞

log[M(Fit)(x)]P0(θ, t) dt+

∫ ∞
−∞

log[M(F1+it)(x)]P1(θ, t) dt (11)
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whenever Fz is an analytic function on S which is continuous and bounded on S and which

is of admissible growth. In our case, we take Fz as defined in (5). But in this case, (11)

serves as a substitute for (6) and thus the proof of (3) for Tz also works for M ◦ Tz. We

obtain the following result:

Theorem 4.2. For each 1 ≤ i ≤ m, let Xi = (X0i, X1i) be admissible couples of quasi-

Banach spaces, and let (Y0, Y1) be a couple of complex maximal quasi-Banach lattices on

a measure space (Ω,Σ, µ) such that each Yj is pj-convex for j = 0, 1. Assume that Xi is

a dense linear subspace of X0i ∩X1i for each 1 ≤ i ≤ m, and that {Tz}z∈S is an admissible

analytic family of multilinear operators Tz : X1 × · · · × Xm → Y0 ∩ Y1. Assume that M is

defined on the range of Tz, takes values in L0(Ω,Σ, µ), and satisfies (i), (ii), (iii). Suppose

that for every (x1, ..., xm) ∈ X1 × · · · × Xm, t ∈ R and j = 0, 1,

‖M(Tj+it(x1, ..., xm))‖Yj ≤ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm ,

where Kj are Lebesgue measurable functions such that Kj ∈ Lpj (Pj(θ, ·) dt) for all θ ∈ (0, 1).

Then for all (x1, ..., xm) ∈ X1 × · · · × Xm, s ∈ R, and 0 < θ < 1 we have

‖M(Tθ+is(x1, ..., xm))‖Y 1−θ
0 Y θ1

≤ (M (p0)(Y0))
1−θ

(M (p1)(Y1))
θ
Kθ(s)

m∏
i=1

‖xi‖(X0i,X1i)θ ,

where

logKθ(s) =

∫
R
P0(θ, t) logK0(t+ s) dt+

∫
R
P1(θ, t) logK1(t+ s) dt.

The preceding theorem has an important application to interpolation of multilinear

operators that take values in Hardy spaces.

Example 4.1. A particular case of Theorem 4.2 arises when Y0 = Lp0, Y1 = Lp1, in

which case Y 1−θ
0 Y θ

1 = Lp, where 1/p = (1 − θ)/p0 + θ/p1. If M is given by (10), then

‖M(h)‖Lp = ‖h‖Hp, where Hp is the classical Hardy space of Fefferman and Stein.

In this case, estimates of the form

‖Tj+it(x1, ..., xm)‖Hpj ≤ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm

for admissible analytic families Tz when j = 0, 1 imply the intermediate estimates

‖Tθ+s(x1, ..., xm)‖Hp ≤ Kθ(s)
m∏
i=1

‖xi‖(X0i,X1i)θ

for 0 < p0, p1 <∞, s ∈ R, and 0 < θ < 1. Analogous estimates hold for the Hardy-Lorentz

spaces Hq,r where estimates of the form

‖Tj+it(x1, ..., xm)‖Hqj ,rj ≤ Kj(t)‖x1‖Xj1 · · · ‖xm‖Xjm
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for admissible analytic families Tz when j = 0, 1 imply

‖Tθ+is(x1, ..., xm)‖Hq,r ≤ C Kθ(s)
m∏
i=1

‖xi‖(X0i,X1i)θ

with

C = 2
1
q

(
u q1−θ

0 qθ1
log 2

)u( q0

q0 − p0

) 1−θ
p0

( q1

q1 − p1

) θ
p1 ,

where 0 < pj < qj <∞, pj ≤ rj ≤ ∞ and 1/q = (1− θ)/q0 + θ/q1, 1/r = (1− θ)/r0 + θ/r1

while u = 1 if 1 < q0, q1 < ∞ and 1 ≤ r0, r1 ≤ ∞ and u > max{1/q0, 1/q1, 1/r0, 1/r1}
otherwise.

5 An application to the bilinear Bochner-Riesz operators

Stein’s [19] motivation to study analytic families of operators might have been the study of

the Bochner-Riesz operators

Bδ(f)(x) :=

∫
|ξ|≤1

(
1− |ξ|2

)δ
f̂(ξ)e2πix·ξdξ.

in which the “smoothness” variable δ affects the degree p of integrability of Bδ(f) on Lp(Rn).

Here f is a Schwartz function on Rn and f̂ is its Fourier transform defined by

f̂(ξ) =

∫
Rn
f(x)e−2πix·ξdx, ξ ∈ Rn.

Using interpolation for analytic families of operators, Stein showed that whenever δ >

(n− 1)|1/p− 1/2|, then Bδ maps Lp(Rn) to itself for 1 ≤ p ≤ ∞.

Recent interest in bilinear operator has led to the consideration of the bilinear Bochner-

Riesz operators. For Schwartz functions f, g on Rn these are defined as

Sδ(f, g)(x) :=

∫∫
|ξ|2+|η|2≤1

(
1− |ξ|2 − |η|2

)δ
f̂(ξ)ĝ(η)e2πix·(ξ+η)dξdη, (12)

where the integral is over R2n. Several boundedness results concerning these means have

recently been obtained in [2]. Among them we state two:

• For any δ > 0, there is an estimate

‖Sδ(f, g)‖L1 ≤ Cδ ‖f‖L2‖g‖L2 . (13)

• For any δ > n− 1/2, there is an estimate

‖Sδ(f, g)‖L1/2 ≤ C ′δ ‖f‖L1‖g‖L1 . (14)
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Both estimates hold for all functions f , g in the corresponding spaces with constants Cδ, C
′
δ

only depending on δ and the dimension n.

We make some remarks about the extension of these estimates to the case where δ is

replaced by z = δ + it, where δ, t are real.

The bilinear Bochner-Riesz means Sz can also be written in the form

Sz(f, g)(x) =

∫ ∫
Kz(x− y1, x− y2)f(y1)g(y2)dy1 dy2

for some kernel Kz. A well-known calculation (see [8, Appendix B.5]) shows that the kernel

of Sδ+it is

Kδ+it(x1, x2) =
Γ(δ + 1 + it)

πδ+it
Jδ+it+n(2π|x|)
|x|δ+it+n

, x = (x1, x2) .

Consider the case where δ > n − 1/2. Then using known asymptotics for Bessel functions

([8] Appendix B.8) we have that this kernel satisfies an estimate of the form:

|Kδ+it(x1, x2)| ≤ C(n+ δ + it)

(1 + |x|)δ+n+1/2
.

where C(n+ δ + it) is a constant that satisfies

C(n+ δ + it) ≤ Cn+δe
B |t|2

for some B > 0. Then for δ > n− 1/2, we have

|Kδ+it(x1, x2)| ≤ Cn+δ e
B|t|2 1

(1 + |x1|)n+ε

1

(1 + |x2|)n+ε
,

with ε = 1
2(δ−n− 1/2). It follows that the bilinear operator Sδ+it is bounded by a product

of two linear operators, each of which has a good integrable kernel. It follows that Sδ+it

is bounded from L1 × L1 to L1/2 with constant K1(t) ≤ C ′n+δe
B|t|2 whenever δ > n − 1/2.

This yields an extension of (14) for complex values of δ.

To obtain the analogous extension of (13), we slightly modify the proof of Theorem 4.7

in [2]. This theorem claims that∥∥Sz∥∥
L2×L2→L1 ≤ C ′ sup

u∈[−1,1]
‖(1− u2 − | · |2)z+‖W 1+α,1(R), (15)

where W 1+α,1 is the Sobolev space of functions with 1 + α “derivatives” in L1 with α > 0.

The norm on the Sobolev space W s,p is defined via ‖v‖W s,p = ‖(I − ∆)s/2v‖Lp and is

comparable to the norm ‖v‖Lp + ‖v‖Ẇ s,p , where ‖v‖Ẇ s,p = ‖(−∆)s/2v‖Lp . In (15) the

constant C ′ depends only on the dimension and α. To estimate the Sobolev norm in (15)

when z = δ + it, δ > 0, we need Lemma 4.4. in [2] which claims that∥∥(1− | · |2)z+
∥∥
W s,q(Rn)

≤ C ec|Im z|2 (16)
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when 0 < s < Re z + 1
q , 1 ≤ q < ∞ with constants c, C depending only on n, q, s. Fixing

z = δ + it, δ > 0, we pick 0 < α < δ and we write:∥∥(1− u2 − | · |2)δ+it+

∥∥
Ẇ 1+α,1(R)

= (1− u2)δ
∥∥(1− | ·

(1−u2)1/2
|2)δ+it)

∥∥
Ẇ 1+α,1(R)

= (1− u2)δ−α
∥∥(1− | · |2)δ+it

∥∥
Ẇ 1+α,1(R)

≤ C(1− u2)δ−α ec|t|
2 ≤ C ec|t|2 ,

since δ−α > 0 and then (1−u2)δ−α ≤ 1 for u ∈ [−1, 1]. It follows that Sδ+it is bounded from

L2×L2 to L1 with constant K0(t) ≤ C ′n+δe
c|t|2 whenever δ > 0. This yields an extension of

(13) for complex values of δ.

In [2], intermediate results for Sδ are obtained rather indirectly via bilinear real interpo-

lation applied to operators appearing in a decomposition of Sδ. Here we provide intermediate

estimates via a direct proof based on complex interpolation for analytic families of bilinear

operators.

Theorem 5.1. Let 1 < p < 2. For any λ > (2n− 1)(1/p− 1/2), Sλ maps Lp(Rn)×Lp(Rn)

to Lp/2(Rn).

Proof. To apply Theorem 1.1 we set X01 = X02 = L2, X11 = X12 = L1, Y0 = L1,

Y1 = L1/2, Xi is the space of Schwartz functions on Rn, which is dense in L1 and L2.

We fix δ > 0 and we consider the bilinear analytic family {Tz}z∈S , where Tz := S(n− 1
2

)z+δ

for all z ∈ S. (Recall that S = (0, 1) × R is the unit strip). We claim that this family is

admissible. Indeed, for f , g Schwartz functions we have

Tz(f, g)(x) =

∫∫
|ξ|2+|η|2≤1

(
1− |ξ|2 − |η|2

)(n− 1
2

)z+δ
f̂(ξ)ĝ(η)e2πix·(ξ+η)dξdη, x ∈ Rn,

and the map z 7→ Tz(f, g) is analytic in S, continuous and bounded on S, and jointly

measurable in (t, x) when z = it or z = 1 + it. Moreover, for all x ∈ Rn we have

sup
z∈S

log |Tz(f, g)(x)|
eα|Im z| <∞

with α = 0 < π when f , g are Schwartz functions; in fact |Tz(f, g)(x)| ≤ ‖f̂ ‖L1‖ĝ ‖L1 .

Based on the preceding discussion, we have that when Re z = 0, Tz maps L2 ×L2 to L1

with constant K0(t) ≤ Cn,δec |t|
2

for some Cn,δ, c > 0. We also have that when Re z = 1, Tz

maps L1 × L1 to L1/2 with constant K1(t) ≤ C ′n,δe
B |t|2 for some C ′n,δ, B > 0. We notice

that for these functions Ki(t) we have that the constant K(θ, 1, 1/2) in (4) is finite; in this

case 1
p = 1−θ

2 + θ
1 , hence θ = 2(1

p −
1
2). An application of Theorem 1.1 yields that Sλ maps

Lp(Rn)× Lp(Rn) to Lp/2(Rn) when λ = 2(n− 1
2) (1

p −
1
2) + δ > (2n− 1)(1

p −
1
2).
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Poland

E-mail: mastylo@math.amu.edu.pl

25


