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Abstract. We continue the study of multilinear operators given by products of finite vectors
of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators

map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint
case r = n/n + m + 1, where m is the highest vanishing moment of the multilinear operator,

we prove a weak type result.

0. Introduction
A well known by now theorem of P.L. Lions says that the determinant of the Jacobian
of a function from Rn → Rn maps the product of Sobolev spaces Ln

1 × · · · × Ln
1 into

the Hardy space H1. Coifman, Lions, Meyer and Semmes, [CLMS], went below H1 by
showing that for p, q > 1, the Jacobian-determinant maps Lp

1(R2) × Lq
1(R2) into Hr(R2),

where r−1 = p−1 + q−1, as long as r > 2/3. Their result can be generalized to give the
n-dimensional version that the determinant of the Jacobian maps Lp1(Rn)×· · ·×Lpn(Rn)
into Hr(Rn), as long as the harmonic mean r of the pj ’s is strictly greater than n/n+ 1.
In this work we prove a positive result in the endpoint case r = n/n + 1. We treat more
general multilinear operators with vanishing integral since our methods show that this is
the only assumption needed. We also study the case of multilinear operators with higher
moments vanishing. The number of vanishing moments is related to the lowest r for which
these operators map products of Lebesgue spaces into Hr. If such an operator has all
moments of order ≤ m vanishing, then it maps products of Lebesgue spaces into Hr for
r > n/n+m+ 1. Also, a weak type estimate holds in the endpoint case r = n/n+m+ 1
and no boundedness result holds for r < n/n+m+ 1.

1. Statements of results
Throughout this article, N and K will denote fixed integers ≥ 2. We are given a matrix
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of convolution Calderón-Zygmund kernels {Kj
i }N K

i=1,j=1 on Rn. We call T j
i the associated

Calderón-Zygmund operator. We denote by L(f1, . . . , fK) the K-linear operator

(1.1) L(f1, . . . , fK) =
N∑

i=1

(T 1
i f1) . . . (T

K
i fK).

originally defined for smooth compactly supported functions f1, . . . , fK . For p ≤ 1, we
denote by Hp the usual real variable Hardy space as defined in [S] or [FST], i.e. the set of
all distributions f on Rn for which the maximal function supt>0 |φt ∗ f(x)| is in Lp, where
φt(x) = 1

tnφ( x
tn ) and φ is smooth, nonzero and compactly supported. We also denote by

Hp,∞ the weak Hp as defined in [FRS] (or [FSO] in the case p = 1), i.e. the set of all
f in Rn for which the maximal function supt>0 |φt ∗ f(x)| is in weak Lp. The weak Lp

(quasi)norm of this maximal function is by definition the ‖ ‖Hp,∞ (quasi)norm of f .

Our first result concerns the general multilinear operators L of the type above and it
presents very clearly the method that will be used in this article. Note however, that there
is an unpleasant restriction about the exponents that will be lifted later.

Theorem I . Assume that for all (f1, . . . , fK) ∈ (C∞0 )K , the K-linear operator L
satisfies: ∫

L(f1, . . . , fK) dx = 0.

Suppose that p1, . . . , pK > 1 are given and let r = (p−1
1 + · · · + p−1

K )−1 be their harmonic
mean. Assume that the harmonic mean of any proper subset of the pj’s is greater than 1.
Then
1) If r > 1, L maps Lp1 × · · · × LpK → Lr.
2) If 1 ≥ r > n/n+ 1, L maps Lp1 × · · · × LpK → Hr.
3) If r = n/n+ 1, L maps Lp1 × · · · × LpK → Hr,∞.

Next, we treat the case of multilinear operators with vanishing higher moments. The
significance of the number of vanishing moments is that it gives the lowest r for which such
operators map into Hr. We also get rid of the assumption that the harmonic mean of any
subset of the pj ’s is always greater than 1. We are assuming however, that the K-linear
operators L that have a special form.

When K = 2, we consider operators L of the general form (1.1), i.e. inner products
of two vectors of Calderón-Zygmund operators. For K ≥ 3, we consider operators built
inductively as follows:

We are assuming that for any j there exist Λj
i = Λj

i (f1, . . . , fj−1, fj+1, . . . , fK)
(K−1)-linear operators already defined by the induction hypothesis with the same number
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of vanishing moments, such that

(1.2) L(f1, . . . , fK) =
M∑
i=1

T j
i (fj) Λj

i (f1, . . . , fj−1, fj+1, . . . , fK)

Condition (1.2) essentially says that the multilinear operators L look like determinants of
matrices. They are built by induction starting from arbitrary bilinear operators as the ones
in theorem I (when K = 2) and at each stage they look like sums of products of multilinear
operators of one smaller degree multiplied by a Calderón-Zygmund operator. These sums
have a certain degree of symmetry because it follows from a repeated application of (1.2)
that for each j1, . . . , jl, there exist (K − l)-linear operators Λj1,...,jl

i with the same number
of vanishing moments such that

L(f1, . . . , fK) =
∑

i

(T j1
i fj1) . . . (T

jl

i fjl
) Λj1,...,jl

i (remaining fj ’s).

In most applications we have in mind, the multilinear operators have this form, for example
determinants of matrices.

In the case of bilinear operators, K = 2, there are no additional assumptions about the
operators L and this is why we state and prove this case separately. Also, this case is going
to serve as the first step of an inductive argument that will be used later.

Theorem IIa. Assume that for some m, 0 ≤ m ≤ n− 1 and for all f, g ∈ C∞0 (Rn)
the bilinear operator B(f, g) =

∑N
i=1(T

1
i f)(T 2

i g) satisfies:∫
xαB(f, g) dx = 0 for all multiindices α with |α| ≤ m.

Suppose that p, q > 1 are arbitrary and let r = (p−1 + q−1)−1 be their harmonic mean.
Then
1) If r > 1, B maps Lp × Lq → Lr.
2) If 1 ≥ r > n/n+m+ 1, B maps Lp × Lq → Hr.
3) If r = n/n+m+ 1, B maps Lp × Lq → Hr,∞.

Next, we generalize theorem IIa for K-linear operators of the form (1.2) and for these
type of operators we don’t have any additional assumption about the pj ’s

Theorem IIb. Assume that for some m, 0 ≤ m ≤ n(K − 1) − 1 and for all
fj ∈ C∞0 (Rn) the K-linear operator L(f1, . . . , fK) has the form (1.1), where each Λj

i satisfy∫
xαΛj

i dx = 0 for all multiindices α with |α| ≤ m.
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Suppose that p1, . . . , pK > 1 are arbitrary and let r = (
∑

k p
−1
k )−1 be their harmonic mean.

Then
1) If r > 1, L maps Lp1 × · · · × LpK → Lr.
2) If 1 ≥ r > n/n+m+ 1, L maps Lp1 × · · · × LpK → Hr.
3) If r = n/n+m+ 1, L maps Lp1 × · · · × LpK → Hr,∞.

Remarks:
a. The assumption m ≤ n(K − 1) − 1 is necessary in theorem II, since otherwise r =
n/n+m+ 1 < 1/K which would contradict that pj > 1.
b. The hypothesis that the harmonic mean of any subset of the pj ’s is greater than 1
seems to be necessary in conclusions 2) and 3) of theorem I. It is obviously not needed in
conclusion 1) of theorem I and it is always automatically satisfied when r = 1 or when
K = 2. This condition imposes an upper bound on the degree K of multilinearity of the
K-linear operator L. For, let pj = p > 1 and let r < 1 be the harmonic mean of the
pj ’s. Then Kr = p. The assumption on the harmonic mean of any subset of the pj ’s gives
p/(K − 1) > 1. We conclude that K < 1/(1 − r) which is a restriction on the size of K.
Note, however, that when r = 1 there is no upper bound on K nor any restriction about
the exponents and our theorem implies for example, that any K-linear operator as above
with mean value zero maps Lp1 × · · · × LpK → H1 when

∑
p−1

j = 1.
c. The vanishing integral hypothesis for L in theorem I can be relaxed to the milder
condition that for all f1 smooth with compact support and for some f2, . . . , fK in the
corresponding Lebesgue spaces the integrals

∫
L(f1, f2, . . . , fK) dx vanish. Then conclusion

2) of theorem I will be that the operator g → L(g, f2, . . . , fK) maps Lp1 to Hr with norm
no larger than a constant times the product of the Lpj norms of the fj ’s, j = 2, . . . ,K.
Conclusion 3) of theorem I will be similar.

2. Proof of theorem I
We fix p1, . . . , pK > 1 and we let r be their harmonic mean. Clearly only the case r ≤ 1 is
interesting because the case r > 1 is just Hölder’s inequality together with the Lp bound-
edness of Calderón - Zygmund operators. Fix a smooth compactly supported function φ in
Rn, an x0 ∈ Rn and define φt,x0(x) = 1

tnφ(x−x0
t ).Without loss of generality we may assume

that φ is supported in |x| ≤ 1. We need to show that supt>0 |
∫
φt,x0L(f1, . . . , fK) dx| is in

Lr when r > n/n+1 and in Lr,∞ when r = n/n+1. We also fix a smooth cutoff η(x) such
that η ≡ 1 on |x| < 2 and supported in |x| < 4. We call for simplicity η0(x) = η(x0−x

t )
and η1(x) = 1 − η0(x). The reader should remember the dependence of η0, η1 on t. We
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now decompose L(f1, . . . , fK) = L0 + L1 + · · ·+ LK+1, where

L0 = L(η0f1, η0f2, . . . , η0fK)

L1 =
K∑

j=1

L(f1, . . . , η1fj , . . . , fK)

L2 = −
∑

1≤j,l≤K
j<l

L(f1, . . . , η1fj , . . . , η1fl, . . . , fK)

etc

LK+1 = (−1)KL(η1f1, η1f2, . . . , η1fK)

In each Lu above exactly u functions among the fj ’s are multiplied by η1 and the remaining
are left intact. To get this decomposition of L we expand L(η0f1, . . . , η0fK) = L(f1 −
η1f1, . . . , fK − ηKfK) and then we solve for L(f1, . . . , fK).

Note that for any fixed i, k and any x such that |x− x0| ≤ t we have:

sup
t>0

|T k
i (η1f)(x)− T k

i (η1)(x0)|

≤ sup
t>0

∣∣∣∣ ∫ (Kk
i (x− y)−Kk

i (x0 − y)
)
η1(y)f(y) dy

∣∣∣∣
≤C sup

t>0

∫
|y−x0|≥t

|x− x0| |y − x0|−n−1|f(y)| dy ≤ C|f |∗(x0)

where by g∗(x0) we denote the Hardy-Littlewood maximal function of g at the point x0.
We also use the notation (T j

i )∗ for the maximal truncated operator of T j
i . The term L0 is

the main term term of the decomposition and is treated last. We begin with term L1. We
write it as

K∑
j=1

L(f1, . . . , (η1fj)(x)− (η1fj)(x0), . . . , fK) +
K∑

j=1

L (f1, . . . , (η1fj)(x0), . . . , fK) .

We then have:

sup
t>0

∣∣∣∣ ∫ φt,x0L1 dx

∣∣∣∣
≤

K∑
j=1

N∑
i=1

sup
t>0

∫
|φt,x0 |

∏
1≤k≤K

k 6=j

|T k
i fk|

(
|T j

i (η1fj)(x)− T j
i (η1fj)(x0)|+ |T j

i (η1fj)(x0)|
)
dx

≤C
K∑

j=1

N∑
i=1

(
∏

1≤k≤K
k 6=j

|T k
i fk|)∗(x0) [|f∗j (x0)|+ (T j

i )∗fj(x0)] = (2.1)
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Define σj by σ−1
j +p−1

j = r−1. By Hölder’s inequality the Lr norm in x0 of (2.1) is bounded
by

C
K∑

j=1

N∑
i=1

[‖|fj |∗‖Lpj + ‖(T j
i fj)∗‖Lpj ] ‖(

∏
1≤k≤K

k 6=j

|T k
i fk|)∗‖Lσj

≤C
K∑

j=1

N∑
i=1

‖fj‖Lpj ‖
∏

1≤k≤K
k 6=j

|T k
i fk|‖Lσj

≤C
K∑

j=1

N∑
i=1

‖fj‖Lpj

∏
1≤k≤K

k 6=j

‖T k
i fk‖Lpk

≤C
K∑

j=1

‖fj‖Lpj

∏
1≤k≤K

k 6=j

‖fk‖Lpk = C
K∏

k=1

‖fk‖Lpk

We conclude that the Lr (quasi)norm in x0 of supt>0 |
∫
φt,x0L1 dx| is bounded by

C
∏K

k=1 ‖fk‖Lpk and that the measure of the set {x0 : supt>0 |
∫
φt,x0L1 dx| > λ} is

bounded by Cλ−r
∏K

k=1 ‖fk‖r
Lpk .

Term L2 is treated similarly. First write L2 = L21 + L22 + L23 + L24 where

L21 = −
∑

1≤j,l≤K
j<l

L(f1, . . . , (η1fj)(x)− (η1fj)(x0), . . . , (η1fl)(x)− (η1fl)(x0), . . . , fK)

L22 = −
∑

1≤j,l≤K
j<l

L(f1, . . . , (η1fj)(x0), . . . , (η1fl)(x)− (η1fl)(x0), . . . , fK)

L23 = −
∑

1≤j,l≤K
j<l

L(f1, . . . , (η1fj)(x)− (η1fj)(x0), . . . , (η1fl)(x0), . . . , fK)

L24 = −
∑

1≤j,l≤K
j<l

L(f1, . . . , (η1fj)(x0), . . . , (η1fl)(x0), . . . , fK)

Same reasoning as before will show that any term L2u, u = 1, 2, 3, 4 satisfies the following
estimate:

sup
t>0

∣∣∣∣ ∫ φt,x0L2u dx

∣∣∣∣ ≤ C
∑

1≤j,l≤K
j<l

K∑
i=1

(
∏

1≤k≤K
k 6=j,l

|T k
i fk|)∗(x0)[(Cjfj)(x0) (Clfl)(x0)]
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where each Cjfj is either |fj |∗ or (T j
i )∗f and therefore ‖Cjfj‖Lpj ≤ C‖fj‖Lpj . Now define

σjl by σ−1
jl + p−1

j + p−1
l = 1. Hölder’s inequality gives that for each u = 1, 2, 3, 4

‖ sup
t>0

|
∫
φt,x0L2u dx|‖Lr ≤C

∑
1≤j,l≤K

j<l

K∑
i=1

‖(
∏

1≤k≤K
k 6=j,l

|T k
i fk|)∗‖Lσjl [‖Cjfj‖Lpj ‖Clfl‖Lpl ]

≤C
∑

1≤j,l≤K
j<l

K∑
i=1

‖
∏

1≤k≤K
k 6=j,l

|T k
i fk|‖Lσjl [‖fj‖Lpj ‖fl‖Lpl ]

≤C
∑

1≤j,l≤K
j<l

K∑
i=1

∏
1≤k≤K

k 6=j,l

‖T k
i fk‖Lpk [‖fj‖Lpj ‖fl‖Lpl ]

≤C
∑

1≤j,l≤K
j<l

∏
1≤k≤K

k 6=j,l

‖fk‖Lpk [‖fj‖Lpj ‖fl‖Lpl ]

≤C
∏

1≤k≤K

‖fk‖Lpk

We conclude that the Lr (quasi)norm in x0 of supt>0 |
∫
φt,x0L2 dx| is bounded by

C
∏K

k=1 ‖fk‖Lpk and that the measure of the set {x0 : supt>0 |
∫
φt,x0L2 dx| > λ} is

bounded by Cλ−r
∏K

k=1 ‖fk‖r
Lpk .

We treat terms L3, L4, . . . , LK+1 in a similar way. In particular, we write term LK+1 as a
sum of 2K terms of the form A = L(g1, . . . , gK) where each gj is either (η1fj)(x)−(η1fj)(x0)
or (η1fj)(x0). Same reasoning as before will show that the maximal function of LK+1

satisfies

sup
t>0

|
∫
φt,x0A dx| ≤ C

N∑
i=1

(C1
i f1)(x0) . . . (CK

i fK)(x0)

where each Cj
i fj is |fj |∗+(T j

i )∗fj . Hölder’s inequality gives that ‖ supt>0 |
∫
φt,x0Adx|‖Lr

is bounded by C
∏
‖fk‖Lpk . Exactly the same estimate as above holds for the maximal

function of LK+1 and the weak type estimates follow from Chebychev’s inequality.
We are now left with term L0. This is where we are going to use the assumption that

L has mean value zero. We will show that for some 1 < sj < pj we have

When r > n/n+ 1 sup
t>0

|
∫
φt,x0L0 dx| ≤ C

K∏
k=1

((|fk|sk)∗(x0))
1/sk(2.2)

When r = n/n+ 1 sup
t>0

|
∫
φt,x0L0 dx| ≤ C

K∏
k=1

((|fk|pk)∗(x0))
1/pk(2.3)
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Let’s now indicate how (2.2) and (2.3) imply assertions 2) and 3) of theorem I. To get
assertion 2) observe that when r > n/n+ 1

‖ sup
t>0

|
∫
φt,x0L0 dx|‖Lr ≤ C‖

K∏
k=1

((|fk|sk)∗(x0))
1/sk ‖Lr

≤C
K∏

k=1

‖ ((|fk|sk)∗(x0))
1/sk ‖Lpk ≤ C

K∏
k=1

‖fk‖Lpk

where we used above that pk/sk > 1. We denote by |A| the measure of the set A. To
derive conclusion 3) of theorem I , let ε0 = λ/C, εK+1 = 1 and ε1, . . . , εK > 0 be arbitrary.
It follows from (2.3) that

|{x0 : sup
t>0

|
∫
φt,x0L0 dx| > λ}| ≤

K∑
j=1

|{x0 : (|fj |pj )∗(x0) > (
εj−1

εj
)pj}|

By the weak type (1,1) result for the Hardy-Littlewood maximal function we get that the
above is bounded by C

∑K
j=1(

εj−1
εj

)−pj
∫
|fj |pj dx. This expression minimizes in

ε1, . . . , εK > 0 when all the terms that appear in the sum are equal. This happens when

εj−1

εj
=
‖fj‖

pj

Lpj (λ/C)r∏
‖fj‖r

Lpj

for all j = 2, 3, . . . ,K.

With this choice of εj ’s we get the weak type estimate

|{x0 : sup
t>0

|
∫
φt,x0L0 dx| > λ}| ≤ Cλ−r

∏
‖fj‖r

Lpj .

It remains to prove (2.2) and (2.3). We denote by T ∗ the adjoint operator of T and by
[φt,x0 , (T 1

i )∗] the commutator of φt,x0 and (T 1
i )∗. Since φ is a Lipschitz function of order

1,it follows that

|[φt,x0 , (T 1
i )∗](f)| ≤ |

∫
K1

i (x− y)(φt,x0(x)− φt,x0(y))f(y) dy| ≤ C

tn+1

∫
|f(y)|

|x− y|n−1
dy

and by the Hardy-Littlewood-Sobolev fractional integral theorem we get

(2.4) ‖[φt,x0 , (T 1
i )∗](f)‖Lσ ≤ Ct−n−1‖f‖Lτ when 1/τ − 1/σ = 1/n.
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Since L(f1, . . . , fK) has integral zero for all sufficiently smooth functions f1, the identity∑N
i=1(T

1
i )∗(

∏K
k=2 T

k
i (η0fk)) ≡ 0 justifies the third equality below. We have∫

φt,x0L0 dx =
N∑

i=1

∫
φt,x0T

1
i (η0f1) . . . TK

i (η0fK) dx

=
N∑

i=1

∫
η0f1 (T 1

i )∗
(
φt,x0

K∏
k=2

T k
i (η0fk)

)
dx

=
N∑

i=1

∫
η0f1

(
(T 1

i )∗(φt,x0

K∏
k=2

T k
i (η0fk))− φt,x0(T

1
i )∗(

K∏
k=2

T k
i (η0fk))

)
dx

=
N∑

i=1

∫
η0f1 [φt,x0 , (T 1

i )∗](Fi) dx = (2.5)

where Fi =
∏K

k=2 T
k
i (η0fk). Apply first Hölder’s inequality with exponents p1 and

p
′

1 = p1/(p1 − 1) and then (2.4) with σ = p
′

1 and τ = s = (p−1
2 + · · · + p−1

K )−1 the
harmonic mean of p2, . . . , pK . This is where we use the assumption that s > 1. We get

|(2.5)| ≤‖η0f1‖Lp1

N∑
i=1

‖[φt,x0 , (T 1
i )∗](Fi)‖

L
p
′
1

≤Ct−n−1‖η0f1‖Lp1

N∑
i=1

‖Fi‖Ls

≤Ct−n−1‖η0f1‖Lp1

N∑
i=1

‖T 2
i (η0f2)‖Lp2 . . . ‖TK

i (η0fK)‖LpK

≤Ct−n−1‖η0f1‖Lp1 ‖η0f2‖Lp2 . . . ‖η0fK‖LpK

≤Ct−n−1
K∏

j=1

((|fj |pj )∗(x0))
1/pj tn/pj = C

K∏
j=1

((|fj |pj )∗(x0))
1/pj

This establishes (2.3). To prove (2.2) observe that the assumption r > n/n + 1 gives
s−1− (p

′

1)
−1 = p−1

2 + · · ·+p−1
K − (p

′

1)
−1 = r−1−1 < n−1. Therefore for a suitable selection

of sj < pj we can make the expression (s2)−1 + · · ·+ (sK)−1− (s1
′
)−1 equal to n−1. Then

the same argument as before will give that

|(2.5)| ≤ Ct−n−1
K∏

j=1

((|fj |sj )∗(x0))
1/sj tn/sj = C

K∏
j=1

((|fj |sj )∗(x0))
1/sj
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The exponent of t above is zero because of the choice of the sj ’s . Taking the supremum
over all t > 0 we obtain (2.2). The proof of theorem I is now complete.
3. Proof of theorem IIa
Clearly, we only need to do the case r ≤ 1. Fix a φ and η as in Theorem I and split the
bilinear operator B(f, g) as the sum of B0 +B11 +B12 +B3 where

B0 = B(η0f, η0g)

B11 = B(f, η1g)

B12 = B(η1f, g)

B2 = −B(η1f, η1g)

The arguments presented in theorem I will give the required estimates for the terms B11,
B12 and B3. (Note the mean value zero assumption was only used in the treatment of
term L0.) It remains to get the required etimates for term B0 which is the main term of
the decomposition. We have∫

φt,x0B0 dx =
∫ ∫

f(y)g(z)bt(y, z) dydz

where bt(y, z) = η0(y)η0(z)
∫ ∑N

i=1K
1
i (x − y)K2

i (x − z)φt,x0 dx. The following lemma,
whose proof we postpone until the end of this section describes the behavior of bt(y, z).

Lemma 1. bt(y, z) is a smooth function off the diagonal y = z and satisfies the following

estimate |bt(y, z)| ≤ Ct−n−m−1 |y − z|m+1−n η(
x0 − y

t
)η(

x0 − z

t
) for |y − z| small.

Assuming the lemma we estimate |
∫
φt,x0B0 dx| by

(3.1) Ct−n−m−1

∫
|y−x0|≤2t

∫
|z−x0|≤2t

|f(y)||g(z)||y − z|−n+m+1 dydz

We denote by Im+1 the potential of order m+1, i.e. convolution with the kernel |x|−n+m+1

in Rn. Assume first that m+ 1 < n.
In the case r > n/n+m+1 select p1 < p and q1 < q such that 1/q1−1/p

′

1 = (m+1)/n.
This is always possible since the expression 1/q−1/p

′
= 1/r−1 is assumption strictly less

than (m+ 1)/n. Hölder’s inequality together with the Hardy-Littlewood-Sobolev theorem
on fractional integrals give that

|(3.1)| ≤Ct−n−m−1‖fχ|y−x0|≤2t‖Lp1‖Im+1(gχ|z−x0|≤2t)‖
L

p
′
1

≤Ct−n−m−1‖fχ|y−x0|≤2t‖Lp1‖gχ|z−x0|≤2t‖Lq1

≤Ct−n−m−1tn/p1+n/q1 ((|f |p1)∗(x0))
1/p1 ((|g|q1)∗(x0))

1/q1

10



where by χA we denote the characteristic function of the set A. By the choice of p1 and
q1, the exponent of t above is equal to zero and we conclude that

(3.2) if r > n/n+m+ 1 sup
t>0

|
∫
φt,x0B0 dx| ≤ C ((|f |p1)∗(x0))

1/p1 ((|g|q1)∗(x0))
1/q1 .

In the case r = n/n +m + 1 simply repeat the argument above with p = p1 and q = q1.
We get

(3.3) if r = n/n+m+ 1 sup
t>0

|
∫
φt,x0B0 dx| ≤ C ((|f |p)∗(x0))

1/p ((|g|q)∗(x0))
1/q

.

Conclusions 2) and 3) of theorem IIa follow as in theorem I. In fact (3.2) and (3.3) are
repetitions of (2.2) and (2.3) in section 2.

When m + 1 = n only the case r > n/n +m + 1 = 1/2 can occur. Then (3.2) follows
from (3.1) directly from Hölder’s inequality.

It remains to prove Lemma 1. We have that bt(y, z) =
1
t2n

b(
x0 − y

t
,
x0 − z

t
) where

b(y, z) = η(y)η(z)
∫ N∑

i=1

K1
i (y − σ)K2

i (z − σ)φ(σ) dσ.

The estimate for bt in Lemma 1 is then equivalent to the estimate

|b(y, z)| ≤ C|y − z|m+1−nη(y)η(z).

The vanishing moments assumptions for B(f, g) are equivalent to the conditions∫ ∑
i

K1
i (y − σ)K2

i (z − σ)σα dσ = 0 for all |α| ≤ m.

We can therefore write b(y, z) = η(y)η(z)d(y, z) where

d(y, z) =
∫ ∑

i

K1
i (y − σ)K2

i (z − σ)[φ(σ)−
∑
|α|≤m

∂αφ

∂yα
(y)(σ − y)α] dσ

It will suffice to show that for |y|, |z| ≤ 4, we have |d(y, z)| ≤ |y − z|m+1−n. Fix a smooth
function ζ(σ) on Rn, equal to 1 on |σ| ≤ 16 and supported in |σ| ≤ 32. Split d(y, z) = I1+I2
where

I1 =
∫ ∑

i

K1
i (σ)K2

i ((z − y)− σ)[φ(σ + y)−
∑
|α|≤m

∂αφ

∂yα
(y)σα]ζ(σ) dσ

I2 =
∫ ∑

i

K1
i (σ)K2

i ((z − y)− σ)[φ(σ + y)−
∑
|α|≤m

∂αφ

∂yα
(y)σα](1− ζ(σ)) dσ

11



Then φ(σ + y) = 0 in the integral I2 and |σ − (z − y)| ∼ |σ|. It follows that

|I2| ≤ C
∑

i

∫
|σ|≥16

|σ|−n|σ − (z − y)|−n
∑
|α|≤m

|∂
αφ

∂yα
(y)||σ|α|1− ζ(σ)| dσ

≤ C

∫
|σ|≥16

|σ|−n|σ|−n|σm| dσ

≤ C ≤ C|y − z|m+1−n

since |y − z| is small and m+ 1− n ≤ 0.
Finally we treat term I1. First fix an i and a y and let

ay(σ) = K1
i (σ) ζ(σ)

φ(σ + y)−
∑
|α|≤m

∂αφ

∂yα
(y)σα

 .

ay is a smooth function away from zero, has compact support and behaves like |σ|m+1−n

as |σ| → 0. To see this last assertion use the mean value theorem to write ay(σ) as

K1
i (σ)

∑
|α|=m+1

∂αφ

∂yα
(ξy,y+σ)σα for some ξy,y+σ between y and y + σ. It follows that

ay(σ) ∼ |σ|−n+m+1 as σ → 0.
Also note that I1 =

∑
i(T

2
i ay)(z−y). The required estimate for I1 will then follow from

the following lemma

Lemma 2. Let ψ(σ) be a compactly supported smooth function except at the origin such
that ψ(σ) ∼ B0|σ|l as |σ| → 0, for some −n < l < 0 and B0 constant. Then for any
Calderón-Zygmund operator T , there is a constant C such that the estimate |T (ψ)(w)| ≤
CB0|w|l holds as |w| → 0.

The following short proof of Lemma 2 was suggested to me by Peter Jones. Fix a
smooth compactly supported function θ equal to 1 on half of its support so that |x|l ∼∑

j≥0 2−jlθ(2jx) as |x| → 0. Then T (ψ)(w) ∼
∑

j≥0B02−jlT (θ)(2jw). T (θ)(w) is
bounded near zero and has rapid decay as |w| → ∞. Therefore the terms in the sum
giving T (ψ) with 2j ≤ C

|w| contribute ≤ CB0

∑
j≤log C

|w|
2−jl ≤ CB0 ≤ CB0|w|l while

the terms with with 2j ≥ C
|w| contribute CNB0

∑
j≥log C

|w|
2−jl(2j |w|)−N ≤ CB0|w|l as

|w| → 0. This finishes the proof of Lemma 2.
We conclude that (T 2

i ay)(z − y) is O(|y − z|m+1−n) as |y − z| → 0. Since I1 =∑
i(T

2
i ay)(z − y) it follows that I1 satisfies the required estimate I1 ≤ C|y − z|m+1−n.

The proof of Lemma 1 and hence of theorem IIa are now complete.
12



5. Proof of theorem IIb
We will now combine some ideas from theorems I and IIa to prove theorem IIb. Again
we only need to do the case r ≤ 1. Fix φ and η as before and split the K-linear operator
L = L0 + L1 + · · · + LK+1 as in theorem I. Already the treatment of term L1 presents
some differences. First of all for a fixed j define sj by s−1

j + p−1
j = r−1. L1 is the sum of

K terms of the form

L(f1, . . . , (η1fj)(x)− (η1fj)(x0), . . . , fK) + L (f1, . . . , (η1fj)(x0), . . . , fK) .

By Lemma 1 in [CG], for any F in Hp and ψ sufficiently smooth we have that |
∫
Fψ dx| ≤

F+(x0)Nx0(ψ) for any x0 where Nx0(ψ) is the norm of ψ as defined in [CG] and F+ is
an Lp function with ‖F+‖Lp ≤ C‖F‖Hp . A computation after Lemma 1 shows that if
ψ(x) = T j

i (η1fj)(x) − T j
i (η1fj)(x0), then supt>0Nx0(ψ) ≤ C|fj |∗(x0). An application of

this fact with Λj
i = F gives that the maximal function of L2 satisfies

sup
t>0

∣∣∣∣ ∫ φt,x0L2 dx

∣∣∣∣
≤

K∑
j=1

M∑
i=1

sup
t>0

∣∣∣∣ ∫ φt,x0

(
T j

i (η1fj)(x)− T j
i (η1fj)(x0) + T j

i (η1fj)(x0)
)

Λj
i dx

∣∣∣∣
≤C

K∑
j=1

M∑
i=1

|fj |∗(x0)(Λ
j
i )

+(x0) + (T j
i )∗fj(x0)(Λ

j
i )
∗(x0) = (4.1)

If sj > 1, the argument in theorem I applies. Suppose then that sj ≤ 1. We can assume
by induction that ‖Λj

i‖Hsj = ‖(Λj
i )
∗‖Lsj ≤ C

∏
k 6=j ‖fk‖Lp . By Hölder’s inequality, the Lr

norm in x0 of (4.1) is bounded by

C
K∑

j=1

M∑
i=1

‖|fj |∗‖Lpj ‖(Λj
i )

+‖Lsj + ‖(T j
i )∗fj‖Lpj ‖(Λj

i )
∗‖Lsj

≤C
K∑

j=1

M∑
i=1

‖fj‖Lpj

∏
1≤k≤K

k 6=j

‖fk‖Lpk

=C
K∏

k=1

‖fk‖Lpk

Term L2 can be treated similarly. A simple computation shows that the Nx0 norm
of the function ψ = (T j

i (η1fj)(x) − T j
i (η1fj)(x0))(T l

i (η1fl)(x) − T l
i (η1fl)(x0)) satisfies

13



supt>0Nx0(ψ) ≤ C|fj |∗(x0)|fl|∗(x0). As in theorem I, we write term L2 as L2 = L21 +
L22 + L23 + L24. Since the Λj

i satisfy property (1.1), for each j, l we can write L =∑R
i=1(T

j
i fj)(T l

i fl)Λ
j,l
i , where each Λj,l

i is a (K−2)-linear operator of f1, . . . , fj−1, fj+1, . . . ,
fl−1, fl+1, . . . , fK . Another application of Lemma 1 in [CG] will give that the maximal
function of any term L2u, u = 1, 2, 3, 4 satisfies the following estimate:

sup
t>0

|
∫
φt,x0L2u dx| ≤ C

∑
1≤j,l≤K

j<l

M∑
i=1

(Cjfj)(x0) (Clfl)(x0)[(Λ
j,l
i )∗(x0)+(Λj,l

i )+(x0)] = (4.2)

where Cjfj = |fj |∗ + (T j
i )∗f and therefore ‖Cjfj‖Lpj ≤ C‖fj‖Lpj . Now define sjl by

s−1
jl + p−1

j + p−1
l = 1. If sjl > 1, the argument in theorem I establishes the result. If

sjl ≤ 1, we can assume by induction that ‖Λj,l
i ‖Hsjl = ‖(Λj,l

i )∗‖Lsjl ≤ C
∏

k 6=j,l ‖fk‖Lpk .
By Hölder’s inequality, the Lr norm in x0 of (4.2) is bounded by

‖ sup
t>0

|
∫
φt,x0L2u dx‖Lr

≤C
∑

1≤j,l≤K
j<l

M∑
i=1

‖Cjfj‖Lpj ‖Clfl‖Lpl [‖(Λj,l
i )∗‖Lsjl + ‖(Λj,l

i )+‖Lsjl ]

≤C
∑

1≤j,l≤K
j<l

M∑
i=1

[‖fj‖Lpj ‖fl‖Lpl ]
∏

1≤k≤K
k 6=j,l

‖fk‖Lpk

≤C
∏

1≤k≤K

‖fk‖Lpk

We conclude that the Lr (quasi)norm of the maximal function of L2 is bounded by a
constant multiple of the product of the Lpk norms of the fk’s.

Clearly, this procedure can go on for terms L3,. . . ,LK−1. In the case of term LK−1, the
operators Λj1,...,jK−1

i are bilinear operators as those in theorem IIa. Finally, as in theorem
I, the terms LK and LK+1 satisfy the following estimate:

sup
t>0

|
∫
φt,x0LK dx|+ sup

t>0
|
∫
φt,x0LK+1 dx| ≤ C

∑
i

(C1
i f1)(x0) . . . (CK

i fK)(x0).

It follows that the Lr (quasi)norms of the maximal functions of LK and LK+1 are bounded
by constant multiples of the product of the ‖fk‖Lpk ’s.

14



We are now left with the main term of the decomposition, L0. We have

(4.3)
∫
φt,x0L0 dx =

∫
· · ·
∫ K∏

k=1

fk(yk)bt(y1, . . . , yK) dyK . . . dy1

where bt(y1, . . . , yK) =
∏K

k=1 η0(yk)
∫ ∑N

i=1

∏K
j=1K

j
i (yj − x)φt,x0 dx.

We first do the case r = n/n + m + 1. We find q2 > p2, . . . , qK > pK such that∑K
k=2

1
pk
− 1

qk
= m+1

n . Let δk = n
m+1 ( 1

pk
− 1

qk
). The δk’s are positive numbers and their

sum is 1. The following lemma describes the behavior of bt(y1, . . . , yK).

Lemma 3. bt(y1, . . . , yK)) is a smooth function off the planes yi = yj and the satisfies
the estimate |bt(y1, . . . , yK)| ≤ Ct−n−m−1

∏K
k=1 η0(yk)

∏K
j=2 |y1 − yj |−n+δj(m+1).

Assuming the lemma, we prove the theorem as follows. Hölder’s inequality with expo-
nents p−1

1 + q−1
2 + · · ·+ q−1

K = 1 together with (4.3) give the following

|
∫
φt,x0L0 dx| ≤ Ct−n−m−1‖f1χ|x0−y1|≤2t‖Lp1

K∏
j=2

‖I(m+1)δj
(fjχ|x0−yj |≤2t)‖Lqj

where by Ik we denote convolution with |x|−n+k on Rn. By the Hardy-Littlewood-Sobolev
fractional integral theorem we get that

sup
t>0

|
∫
φt,x0L0 dx|

≤C sup
t>0

t−n−m−1‖f1χ|x0−y1|≤2t‖Lp1

K∏
j=2

‖fjχ|x0−yj |≤2t‖Lpj

≤C sup
t>0

t−n−m−1
K∏

j=1

((|fj |pj )∗(x0))
1/pj tn/pj

=C
K∏

j=1

((|fj |pj )∗(x0))
1/pj

since we are assuming that r = n/n + m + 1. This estimate is the equivalent of (2.3) in
theorem I and the required weak type result follows as in theorem I.

In the case r > n/n+m+ 1, select sj < pj such that
∑K

j=1 s
−1
j = n/n+m+ 1. By the

previous result, we get that

sup
t>0

∫
φt,x0L0 dx ≤ C

K∏
j=1

((|fj |sj )∗(x0))
1/sj
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and this estimate is the equivalent of (2.2) in theorem I. The required result follows as
before.

It remains to prove Lemma 3. Note that bt(y1, . . . , yK) =
1
tKn

b(
x0 − y1

t
, . . . ,

x0 − yK

t
)

where

b(y1, . . . , yK) =
K∏

k=1

η(yk)
∫ N∑

i=1

K1
i (y1 − σ) . . .KK

i (yK − σ)φ(σ) dσ.

The estimate for bt in Lemma 3 is equivalent to the following estimate

|b(y1, . . . , yK)| ≤ C
K∏

k=1

η(yk)
K∏

j=2

|y1 − yj |−n+δj(m+1).

The vanishing moments assumptions for L are equivalent to the conditions∫ ∑
i

∏
j

Kj
i (yj − σ)σα dσ = 0 for all |α| ≤ m.

We can therefore write b(y1, . . . , yK) =
∏

k η(yk) d(y1, . . . , yK) where

d(y1, . . . , yK) =
∫ ∑

i

∏
j

Kj
i (yj − σ)[φ(σ)−

∑
|α|≤m

∂αφ

∂yα
1

(y1)(σ − y1)α] dσ

All we need to show is that for |y2|, . . . , |yK | ≤ 4, we have that |d(y1, . . . , yK)| ≤∏K
j=2 |y1 − yj |−n+δj(m+1). Fix a smooth function ζ(σ) on Rn, equal to 1 on |σ| ≤ 16

and supported in |σ| ≤ 32. Split d(y1, . . . , yK) = I1 + I2 where

I1 =
∫ ∑

i

K1
i (σ)

K∏
j=2

Kj
i ((yj − y1)− σ)[φ(σ + y1)−

∑
|α|≤m

∂αφ

∂xα
1

(y1)σα]ζ(σ) dσ

I2 =
∫ ∑

i

K1
i (σ)

K∏
j=2

Kj
i ((yj − y1)− σ)[φ(σ + y1)−

∑
|α|≤m

∂αφ

∂yα
1

(y1)σα](1− ζ(σ)) dσ

Then φ(σ+ y1) = 0 in the integral I2 and |σ− (yj − y1)| ∼ |σ| for all j ≥ 2. It follows that

|I2| ≤ C
∑

i

∫
|σ|≥16

|σ|−n
K∏

j=2

|σ − (yj − y1)|−n
∑
|α|≤m

|∂
αφ

∂yα
1

(y1)||σ|α|1− ζ(σ)| dσ

≤ C

∫
|σ|≥16

|σ|−n|σ|−(K−1)n|σ|m dσ

≤ C ≤ C
K∏

j=2

|y1 − yj |−n+δj(m+1)
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since |yj − y1| ≤ 8 and the numbers −n+ δj(m+ 1) are negative.
We now treat term I1. First fix an i and y1, y2, . . . , yK such that yj 6= y1 for j 6= 1 and

let

ay1(σ) = K1
i (σ)

K∏
j=3

Kj
i ((yj − y1)− σ) ζ(σ)

φ(σ + y1)−
∑
|α|≤m

∂αφ

∂yα
1

(y1)σα

 .

ay1 is a smooth function away from zero except possibly at the points yj − y1, it has
compact support and behaves like B0|σ|m+1−n as |σ| → 0, where the constant B0 ∼
|y3 − y1|−n · · · |yK − y1|−n. It follows that ay(σ) ∼ B0|σ|−n+m+1 as σ → 0.

Also note that I1 =
∑

i(T
2
i ay1)(y2 − y1). It follows from Lemma 2 that

|I1| ≤
∑

i

|(T 2
i ay1)(y2 − y1)| ≤ C|y2 − y1|−n+m+1

K∏
j=3

|yj − y1|−n.

The above is also true when y2 is replaced by ys, s = 3, . . . ,K. We get that

(4.4) |I1| ≤ C|ys − y1|−n+m+1
∏

3≤j≤K
j 6=s

|yj − y1|−n for s = 2, . . . ,K.

We raise (4.4) to the power δs, s = 2, . . . ,K and we multiply all the resulting inequalities.
We get the desired conclusion for |I1| and hence for b(y1, . . . , yK).
6. Examples and final remarks
In this section, we discuss examples of operators that satisfy the hypotheses of theorems I
and II. The determinant of the Jacobian of a map from R2 to R2 gives rise to the following
bilinear operator

J̃(f, g) = (R1f)(R2g)− (R2f)(R1g)

where Rj are the usual Riesz transforms. J̃ has always integral 0 but it doesn’t have any
other vanishing moments. It can be easily checked that for p, q > 1 with 1/p+ 1/q = 3/2,
J̃ never maps Lp×Lq to H2/3 and therefore our weak type result is sharp. In general, if a
bilinear operator has all moments up to and including order m vanishing and one moment
of orderm+1 nonzero, it doesn’t map Lp×Lq toHn/n+m+1 when 1/p+1/q = (n+m+1)/n.
Hence, the number of vanishing moments of the bilinear operator gives the lowest r for
which the operator maps products of Lebesgue spaces into Hr. The same is true for more
general multilinear operators.

We now discuss probably the most important example that satisfies the hypotheses of
our theorem II, a bilinear map that involves sums of products of derivatives of order 2 and

17



is the analogue of the determinant of the Jacobian. The Hessian of a map F = (f, g) :
R2 → R2 is the spacial 2× 2× 2 matrix which has on the top the 2× 2 matrix:(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

and on the bottom the 2× 2 matrix:(
∂2g
∂x2

∂2g
∂x∂y

∂2g
∂y∂x

∂2g
∂y2

)

We denote by H(f, g) the determinant of the 2 × 2 × 2 Hessian matrix above defined as
follows:

H(f, g) =
∂2f

∂x2

∂2g

∂y2
− ∂2f

∂x∂y

∂2g

∂y∂x
− ∂2f

∂y∂x

∂2g

∂x∂y
+
∂2f

∂y2

∂2g

∂x2
.

After formally replacing the partial derivatives of F with the corresponding Riesz trans-
forms we get the following bilinear operator

H̃(f, g) = (R2
1f)(R2

2g)− (R1R2f)(R2R1g)− (R2R1f)(R1R2g) + (R2
2f)(R2

1g).

It was shown in the last section of [CG], that H̃ has integral and first moments zero. By
theorem IIa it follows that H̃ maps Lp×Lq to Hr for all p, q > 1, where r is their harmonic
mean. It follows that the determinant of the Hessian H, of a map F : R2 → R2 maps pairs
of functions with Laplacean in Lp × Lq into Hr for all p, q > 1, where r is their harmonic
mean. This result generalizes the corresponding theorem about the Jacobian in the case
of second order derivatives and has analogues in higher dimensions.

We now discuss generalizations of H̃ in Rn. Let F = (F1, . . . , Fn) be a map from Rn to
Rn. Form the n×· · ·×nmatrixM by stacking the n×nmatrices

(
∂2Fk

∂xi∂xj

)
i,j

, k = 1, 2, . . . , n

on the top of each other. We call M the n-dimensional Hessian of F . The determinant of
this matrix is defined by induction on n as the sum of its n2 minor determinants suitably
signed. After formally replacing the ∂

∂xj
derivative of F by the jth Riesz transform, the n-

dimensional determinant of this matrix gives rise to an n-linear operator H̃n with vanishing
integral and first moments. When n = 2 the resulting bilinear operator H̃2 is the operator
H̃ defined above. When n = 3 the resulting trilinear operator H̃3(f, g, h) is the sum of the
nine terms (−1)i+j(RiRjh)H̃ij(f, g) where each H̃ij corresponds to the determinant of a
Hessian of a 2 × 2 × 2 minor. It is therefore clear that that H̃3 satisfies the hypotheses
of theorem IIb. Our result then says that that for p, q > 1, H̃3 maps Lp × Lq into Hr

when the harmonic mean r of p and q is > 3/5. In general the operator H̃n maps Lp ×Lq
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into Hr for 1 ≥ r > n/(n+ 2) since it follows by induction that H̃n has integral and first
moments zero. (k = 1.)

It is conceivable that determinants of matrices of higher order derivatives of maps from
Rn to Rn give rise to multilinear operators with higher moments vanishing but these cases
are not investigated in this article. Examples of bilinear operators with moments of all
orders vanishing in one dimension are D1(f, g) = fg− (Hf)(Hg) and D2(f, g) = f(Hg) +
(Hf)g, where H is the usual Hilbert transform. D1 and D2 are the real and imaginary
parts of holomorphic functions and their mapping properties are well understood. More
generally, examples of K-linear operators with all moments vanishing are given by the real
and imaginary parts of

∏K
k=1(fk + iHfk).
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