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Abstract. In this article, we study bilinear operators given by inner products of finite
vectors of Calderón-Zygmund operators. We find that necessary and sufficient condition for

these operators to map products of Hardy spaces into Hardy spaces is to have a certain number

of moments vanishing and under these assumptions we prove a Hölder-type inequality in the
Hp space context.

0. Introduction

Probably, the most important example of a multilinear operator is the determinant of
the Jacobian of a map F : Rn → Rn. In two dimensions the determinant of the Jacobian
of a map (f, g) from R2 to R2 is the bilinear map

J(f, g) =
∂f

∂x1

∂g

∂x2
− ∂f

∂x2

∂g

∂x1

which has very interesting mapping properties. A theorem of P.L. Lions, says that J maps
the product of Sobolev spaces L2

1 × L2
1 into the Hardy space H1. This theorem has been

extended for Lp Sobolev spaces by [CMLS] as follows: The determinant of the Jacobian
maps Lp

1 × Lq
1 into Hγ as long as 1 ≥ γ > 2

3 , p, q > 1 and p−1 + q−1 = γ−1. The spaces
Hγ(Rn), γ ≤ 1 are the usual real variable Hardy spaces as defined in [S] or [SW]. The
result of [CMLS] is false when γ = 2/3 and leads naturally to the following question: Why
can’t the Jacobian-determinant map into some Hγ space for γ ≤ 2

3?
In these articles we prove that a more general class of bilinear operators map into Hr for

arbitrarily small r > 0 only when they have a certain number of moments vanishing. The
determinant of the Jacobian has always integral zero but it does not have higher moments
vanishing and this is the reason it cannot map into Hγ for γ ≤ 2

3 . Other bilinear operators
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on Rn have higher moments vanishing and they map into Hr for r < n
n+1 . (The index 2

3

corresponds to the case n = 2.)
A good example of an operator with integral and first moments vanishing in R2 is the

determinant of the Hessian of a map (f, g) : R2 → R2 given by

H(f, g) =
∂2f

∂x2

∂2g

∂y2
− ∂2f

∂x∂y

∂2g

∂y∂x
− ∂2f

∂y∂x

∂2g

∂x∂y
+

∂2f

∂y2

∂2g

∂x2
.

By introducing the Riesz transforms, R̂jf(ξ) = i
ξj

|ξ| f̂(ξ) the Jacobian-determinant J and

Hessian-determinant H can be studied through the bilinear maps J̃ and H̃ given by

J̃(f, g) = (R1f)(R2g)− (R2f)(R1g)

H̃(f, g) = (R2
1f)(R2

2g)− 2(R1R2f)(R2R1g) + (R2
2f)(R2

1g)

which are of the form

(0.1)
N∑

j=1

(T 1
j f)(T 2

j g)

for some Calderón-Zygmund operators {T 1
j }, {T 2

j }.
In part II of this work, we prove that H̃ maps Lp×Lq into Hr for p, q > 1, 1 ≥ r > 1/2

and r−1 = p−1 + q−1. We conclude that H maps functions with Laplacean in Lp×Lq into
Hr for the same p, q, r as above. r = 1/2 is a natural lower bound in this case since the
assumptions p, q > 1 imply that r = (p−1 + q−1)−1 > 1/2.

The question investigated in this article is under what conditions can we have bound-
edness into Hr for r ≤ 1/2. Since r = (p−1 + q−1)−1 we must have p ≤ 1 or q ≤ 1 and
obviously the Lp spaces are not a suitable starting point. If we replace the Lp spaces with
Hp for p ≤ 1 however, we get boundedness into Hr for arbitrarily small r. We treat general
bilinear operators of the form (0.1) and we assume that these operators have for a given
r > 0 a required number of moments vanishing to map into Hr.

1. Preliminaries
We are given two families of tempered distributions {K1

i }N
i=1, {K2

i }N
i=1, homogeneous of

degree 0 and we are assuming that:
1) The Fourier transforms of {K1

i }, {K2
i } are bounded functions.

2) {K1
i }, {K2

i } are sufficiently smooth away from the origin and | ∂γ

∂xγ Kj
i | ≤ C|x|−n−|γ|

for all sufficiently large γ (j = 0 or 1)
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3) For all sufficiently large multi indices α and γ the partial derivatives of {K1
i } and

{K2
i } satisfy:∣∣∣∣ ∂γ

∂yγ

∂α

∂xα

(
Kj

i (x− y)−Kj
i (x)

) ∣∣∣∣ ≤ A
|y|

|x|n+|α|+|γ|+1
for |x| > 2|y| (j = 0 or 1)

We call T 1
i the operator given by convoluting with K1

i and T 2
i the operator given

with convolution with K2
i . Theorem 12 in [FS] says that the operators {T 1

i }, {T 2
i } map

Hp → Hp. The main result in this article is the Hp boundedness of the bilinear product

B(f, g) =
∑

i

(T 1
i f)(T 2

i g)

where f, g lie in suitable Hardy spaces. We have the following theorem.

Theorem. Suppose {T 1
i }, {T 2

i }, i = 1, 2, . . . , N are Calderón-Zygmund operators on Rn

as above. Fix p, q ≤ 1 and let

B(f, g) =
N∑

i=1

(T 1
i f)(T 2

i g).

Assume that for some k ≥ 0 integer, for all multi indices |α| ≤ k and for all f Hp-atoms
and g Hq-atoms the moments∫

xαB(f, g)(x)dx = 0, |α| ≤ k.

Then B can be extended to a bounded operator from Hp × Hq → Hr where
n

n + k + 1
< r ≤ n

n + k
and

1
r

=
1
p

+
1
q
.

Remarks.

1. Note that if f is an Hp-atom and g is an Hq-atom the integral defining the moments
of B(f, g) is well defined, for (Tif)(x) is Lp for all p > 1 and decays like |x|−[n( 1

p−1)]−n−1

as |x| → ∞. Therefore, the functions xα(T 1
i f)(x)(T 2

i g)(x), |α| ≤ k are L1 around 0 and
decay like

|x|−[n( 1
p−1)]−[n( 1

q−1)]−2n−2+|α| as |x| → ∞

The exponent above is less than −n as long as |α| ≤ k and r ≤ n
n+k . The operator B(f, g)

is certainly well defined when f and g are finite sums of atoms and the assumptions
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make sense for the range of p, q and r as above. The conclusion is that B(f, g) maps
Hp ×Hq → Hr as long as it has r moments vanishing.

2. Our theorem is not vacuous if we assume that k ≥ n. Otherwise, k ≤ n− 1 implies
that n

n+k+1 ≥
1
2 and thus r > 1

2 which is impossible since r = ( 1
p + 1

q )−1 ≤ 1
2 .

Before we begin the proof of our theorem we state and prove a lemma that will be the
main tool in the treatment of all the terms that will appear in the decomposition of B(f, g)
except the main term.

Suppose φ is a smooth function and f an Hp distribution (p ≤ 1). We are interested in
computing the value of the constant Cφ in the following inequality∣∣∣∣ ∫ f(x)φ(x)dx

∣∣∣∣ ≤ Cφ

where, by
∫

f(x)φ(x)dx we denote the action of the distribution f on the test function φ.
We have the following

Lemma 1. Let φ be sufficiently smooth. For any f ∈ Hp, p ≤ 1 there exists an Lp

function f+ with ‖f+‖Lp 5 Cp‖f‖Hp such that∣∣∣∣ ∫ f(x)φ(x)dx

∣∣∣∣ ≤ Nx0(φ)f+(x0), all x0 ∈ Rn

where Nx0(φ) =
N∑

s=0

∫
|x− x0|2s|∆sφ|(x)dx for some N depending on n and p only.

Proof. We call Nx0(φ) the “norm” of φ.
To prove the lemma we use the atomic decomposition of f . Assume first that f = aQ0

is an atom supported in the unit cube Q0 of Rn. We will show that

(1.1)
∣∣∣∣ ∫ aQ0(x)φ(x)dx

∣∣∣∣ ≤ Nx0(φ)h(x0)

where h(x0) = c(3 + |x0|)−2s and s ∈ Z+ chosen such that 2s > n
p . We are assuming that

aQ0 has at least 2s− n moments vanishing.
To verify (1.1) we consider two cases

Case 1. x0 ∈ 3Q0 (triple of Q0). Then∣∣∣∣ ∫ aQ0(x)φ(x)dx

∣∣∣∣ ≤ C

∫
|φ|dx ≤ h(x0)Nx0(φ).
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Case 2. x0 /∈ 3Q0.
We choose a ζ(x) in C∞(Rn) function, supported in |x| < 1 and we call ζx0(x) =

ζ
(

2(x−x0)
|x0|

)
. Then ζx0(x) is supported in |x− x0| ≤ |x0|

2 . Note that for s > n/2p, ∆−saQ0

is defined because aQ0 has enough vanishing moments. We have∫
aQ0φdx =

∫
(∆−saQ0)(∆

sφ)dx

=
∫

ζx0(∆
−saQ0)(∆

sφ)dx +
∫

(1− ζx0)(∆
−saQ0)(∆

sφ)(x) dx = I + II.

Term II is the easiest to treat. First we claim that ‖∆−saQ0‖L∞ ≤ C. To check this,
write

∆−saQ0(x) = C

∫
Q0

|x− y|−n+2saQ0(y)dy.

Use the fact that aQ0(y) has at least −n+2s > 0 moments vanishing to subtract a suitable
polynomial

∑
|α|<−n+2s

Cα|x|−n+2s−|α|yα from |x− y|−n+2s so that

∣∣∣∣|x− y|−n+2s −
∑

|α|<−n+2s

Cα|x|−n+2s−|α|yα

∣∣∣∣ ≤ C|y|−n+2s

and thus get |∆−saQ0(x)| ≤ C
∫
Q0

|y|−n+2sdy ≤ C. Then we estimate term II by

II ≤
∫
|x−x0|≥ |x0|

2

‖∆−saQ0‖L∞ |∆sφ|dx

≤C|x0|−2s

∫
|x−x0|≥ |x0|

2

|x− x0|2s|∆sφ(x)|dx ≤ h(x0) Nx0(φ).

Term I can be handled with another integration by parts.

=
∫

∆s(ζx0∆
−saQ0)φdx

=
∫ 2s−1∑

j=0

cj(D2s−j
x ζx0)D

j
x(∆−saQ0) + ζx0aQ0

φ dx

where Dj
xF is a sum of derivatives of F in x of total order j. Since aQ0 and ζx0 have

disjoint supports their product is zero.
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Finally, we claim that Dj
x(∆−saQ0)(x) decays like |x0|−j as |x0| → ∞ for |x−x0| ≤ |x0|

2 .
We can see this by the following argument. We have

∆−saQ0(x) =
∫
|x− y|−n+2saQ0(y)dy

and therefore Dj
x(∆−saQ0)(x) =

∫
Dj

x(|x− y|−n+2s)aQ0(y)dy.

Note that the function |x−y|−n+2s is smooth near x since y ∈ Q0 and |x| ∼ |x0| /∈ 3Q0.
Using the fact that aQ0 has −n + 2s moments vanishing we can subtract the Taylor
polynomial of degree −n + 2s of Dj

x(|x− y|−n−2s) at x to get

Dj
x(∆−saQ0(x) =

∫ Dj
x(|x− y|−n+2s)−

∑
|α|≤−n+2s

∂α

∂xα
(Dj

x|x|−n+2s)
yα

α!

 aQ0(y)dy

The expression inside the curly brackets above decays like |x− y|−n+2s−j−(−n+2s) ∼ |x|−j

as |x| → ∞. Since |x−x0| ≤ |x0|
2 we have |x| ∼ |x0| and thus we get the required estimate

|Dj
x(∆−saQ0)(x)| ≤ C|x0|−j as |x0| → ∞.

Clearly, we also have |D2s−j
x ζx0 | ≤ C|x0|−2s+j .

Summing on j we obtain∣∣∣∣ 2s−1∑
j=0

cj(∆2s−jζx0)D
j
x(∆−saQ0)

∣∣∣∣ ≤ C|x0|−2s

and thus
I ≤ C|x0|−2s

∫
|φ|dx ≤ ζ(x0)Nx0(φ).

Putting estimates I and II together we get the desired conclusion for Case 2. Our
lemma is now proved in the case where f = aQ0 = an atom supported in the unit cube
centered at the origin. To obtain an estimate for a general atom aQ we use translations
and dilations. Observe that the norm Nx0 satisfies the following properties:

Nx0

(
1
tn

φ
( ·

t

))
= N x0

t
(φ)

Nx0 (φ (·+ y)) = Nx0+y(φ).

For a general cube Q, the properties above and (1.1) give∣∣∣∣ ∫ aQ(x)φ(x)dx

∣∣∣∣ ≤ |Q|−
1
p Nx0(φ)h

(
x0

|Q|1/n

)
.
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Summing over all Q we obtain

∣∣∣∣ ∫ f(x)φ(x)dx

∣∣∣∣ ≤ Nx0(φ)f+(x0)

where f+(x0) =
∑

λQ|Q|−
1
p h
(

x0
|Q|1/n

)
. We easily check that ‖f+‖Lp ≤ C‖f‖Hp ,

(∫
f+(x0)pdx0

) 1
p

=
(∫ (∑

λQ|Q|−
1
p h

(
x0

|Q|1/n

))p

dx0

) 1
p

≤
(∑

λp
Q

∫
|Q|−1hp

(
x0

|Q|1/n

)
dx0

) 1
p

≤ ‖h‖Lp

(∑
λp

Q

) 1
p ≤ Cp‖f‖Hp .

Our lemma is now proved.

2. Begining of the Proof

Fix p, q, r as in the statement of the theorem. Fix a smooth compactly supported
function φ ≥ 0 in Rn and define φt,x0(x) = 1

tn φ
(

x0−x
t

)
where x0 ∈ Rn fixed. We will

show that

sup
t>0

∣∣∣∣ ∫ φt,x0(x)B(f, g)(x)dx

∣∣∣∣ ∈ Lr

for f, g finite sums of Hp and Hq atoms respectively.

Without loss of generality we may assume that support of φ ⊂ {x : |x| < 1}. Fix a
smooth cutoff η(x) supported in |x| < 4 such that η ≡ 1 on |x| < 2. Call for simplicity
η0(x) = η

(
x0−x

t

)
, η1(x) = 1− η0(x). The reader should remember the dependence of η0

and η1 on t. We write B(f, g) = B1 + B2 + B3 + B4 where

B1 = B(η0f, η0g)

B2 = B(η1f, g)

B3 = B(f, η1g)

B4 = −B(η1f, η1g)
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We treat term B4 first.

−
∫

φt,x0B4dx =

+
∑∫

φt,x0(x)(T 1
i (η1f)(x)− T 1

i (η1f)(x0))(T 2
i (η1g)(x)− T 2

i (η1g)(x0))dx

+
∑

i

T 2
i (η1g)(x0)

∫
φt,x0(x)(T 1

i (η1f)(x)− T 1
i (η1f)(x0))dx

+
∑

i

T 1
i (η1f)(x0)

∫
φt,x0(x)(T 2

i (η1g)(x)− T 2
i (η1g)(x0))dx

(2.1)

+
∑

i

T 1
i (η1f)(x0)T 2

i (η1g)(x0)
∫

φt,x0(x)dx

We claim that for any fixed x such that |x− x0| ≤ t we have that,

sup
t>0

|T 1
i (η1f)(x)− T 1

i (η1f)(x0)| ≤ Cf+(x0)

where f+(x0) is an Lp function of x0 with ‖f+‖Lp ≤ C‖f‖Hp .

We verify this last assertion. Fix an i and write

T 1
i (η1f)(x)− T 1

i (η1f)(x0) =
∫

(1− η(x0−y
t ))(K1

i (x− y)−K1
i (x0 − y))f(y)dy

Call Φ(y) = (1 − η(x0−y
t ))(K1

i (x − y) −K1
i (x0 − y)). Φ is a smooth function of y and by

Lemma 1 we get
|T 1

i (η1f)(x)− T 1
i (η1f)(x0))| ≤ Nx0(Φ)f+(x0).

It suffices to prove that sup
t>0

|Nx0(Φ)| ≤ C to verify our claim.

By the basic estimates for {K1
i } we get that∣∣∣∣∆α

y K1
i (x− y)−∆α

y K1
i (x0 − y)

∣∣∣∣ ≤ C|x− x0|
|x− y|n+2|α|

Since |x− y| ∼ |x0 − y| and |x− x0| ≤ t, we get

sup
t>0

|Nx0(Φ)| ≤ C sup
t>0

N∑
s=0

∫
|y−x0|>2t

|y − x0|2s |x− x0|
|x− y|n+2s+1

dy ≤ C.
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We denote by

(T 1
i )∗f(x0) = sup

t>0

∣∣∣∣ ∫ (1− η(x0−y
t ))K1

i (x0 − y)f(y)dy

∣∣∣∣
the smoothly truncated maximal singular integral of f . By [FS] we get that ‖(T 1

i )∗f‖Hp ≤
C‖f‖Hp . We now use (2.1) to estimate B4 as follows:

|
∫

φt,x0B4dx| 5
∑

i

f+(x0)g+(x0)
∫

φt,x0dx +

∑
i

f+(x0)(T 2
i )∗g(x0)

∫
φt,x0dx +

∑
i

(T 1
i )∗f(x0)g+(x0)

∫
φt,x0dx +

∑
i

(T 1
i )∗f(x0)(T 2

i )∗g(x0)
∫

φt,x0dx

Since the right hand side above is independent of t

sup
t>0

|
∫

φt,x0B4dx| ≤ (2.2) =∑
i

f+(x0)g+(x0) + (T 1
i )∗f(x0)g+(x0) + f+(x0)(T 2

i )∗g(x0) + (T 1
i )∗f(x0)(T 2

i )∗g(x0).

We raise (2.2) to the power r and we integrate with respect to x0. We then apply Hölder’s
inequality to the right hand side with exponents p/r and q/r. We finally get that

‖ sup
t>0

|
∫

φt,x0B4dx|‖Lr

5
∑

i

‖f+‖Lp‖g+‖Lq + ‖(T 1
i )∗f‖Lp‖g+‖Lq + ‖f+‖Lp‖(T 2

i )∗g‖Lq + ‖(T 1
i )∗f‖Lp‖(T 2

i )∗g‖Lq

5C‖f‖Hp‖g‖Hq

and this is the required estimate for term B4. We now estimate term B3. We have∫
φt,x0B3dx =

∫
φt,x0B(f, η1g)dx = I1 + I2 where
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I1 =
∑

i

∫
φt,x0(x)T 1

i (f)(x)(T 2
i (η1g)(x)− T 2

i (η1g)(x0))dx

I2 =
∑

i

T 2
i (η1g)(x0)

∫
φt,x0(x)T 1

i (f)(x)dx.

Let’s start with term I1. Fix an i and call Φ(x) = φt,x0(x)(T 2
i (η1g)(x)− T 2

i (η1g)(x0)).
Φ is a smooth function of x. We claim that Nx0(Φ) ≤ Cg+(x0). To prove the claim, we
first estimate ∣∣∣∣ ∂β

∂xβ
(T 2

i (η1g)(x)− T 2
i (η1g)(x0))

∣∣∣∣
=
∣∣∣∣ ∫ η1(y)

(
∂β

∂xβ

(
K2

i (x− y)−K2
i (x0 − y)

))
g(y)dy

∣∣∣∣
=
∣∣∣∣ ∫ Ψ(y)g(y)dy

∣∣∣∣ ≤ Nx0(Ψ)g+(x0).

where we set Ψ(y) = η1(y)
(

∂β

∂xβ

(
K2

i (x− y)−K2
i (x0 − y)

))
. An easy calculation using

the basic estimates for {K2
i }, shows that for |x− x0| ≤ t,

Nx0(Ψ) ≤
N∑

s=0

∫
|y−x0|>2t

|y − x0|2s

∣∣∣∣∆s

(
η1(y)

∂β

∂xβ
(K2

i (x− y)−K2
i (x0 − y))

) ∣∣∣∣dy ≤ Ct−|β|

Therefore ∣∣∣∣ ∂β

∂xβ

(
T 2

i (η1g)(x)− T 2
i (η1g)(x0)

) ∣∣∣∣ ≤ Ct−|β|g+(x0).

Now,

Nx0(Φ) ≤
N∑

s=0

∫
|x− x0|2s|∆s(φt,x0(T

2
i (η1g)(x)− T 2

i (η1g)(x0))|dx

≤ C
N∑

s=0

∫
|x−x0|<t

|x− x0|2s
2s∑

j=0

|D2s−j
x φt,x0 ||Dj

x(T 2
i (η1g)(x)− T 2

i (η1g)(x0))|dx

where by Dj
xF we denote any derivative of F in x of total order j.

The above can be dominated by

C
N∑

s=0

∫
|x−x0|<t

|x− x0|2s
2s∑

j=0

t−n−(2s−j)t−jdx g+(x0) ≤ Cg+(x0)
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This estimate finishes the proof of the claim.
An application of Lemma 1 gives that

|I1| ≤
∑

i

Nx0(Φ)(T 1
i f)+(x0) ≤ C

∑
i

g+(x0)(T 1
i f)+(x0)

Since the right hand side doesn’t depend on t, the sup
t>0

|I1| satisfies the same estimate

Hölder’s inequality will give that

‖ sup
t>0

|I1|‖Lr ≤ C
∑

i

‖g+‖Lq‖(T 1
i f)+‖Lp

≤ C
∑

i

‖g‖Hq‖T 1
i f‖Hp

≤ C‖f‖Hp‖g‖Hq

We now continue with term I2. Term I2 satisfies the estimate

|I2| ≤ C
∑

i

(T 2
i )∗g(x0)(T 1

i f)∗(x0)

where by (T 1
i f)∗ we denote some smooth maximal function of Tif and the same argument

as before will give that
‖ sup

t>0
|I2|‖Lr ≤ C‖g‖Hq‖f‖Hp

This estimate concludes the treatment of term B3. We deal similarly with term B2.

3. The Main Term
We are now left with term B1 which is the main term of the bilinear operator B. We

start by introducing some notation. For 0 ≤ δ ≤ 1, we denote by Λδ the Lipschitz space
of all bounded functions f on Rn with

sup
x∈Rn

sup
h∈Rn

|h|−δ|f(x + h)− f(x)| = ‖f‖Λδ
< +∞

For m ∈ Z, m ≥ 1 and 0 ≤ δ ≤ 1, we denote by Λm
δ the space of all bounded functions

f on Rn whose partials of order m exist and are in Λδ and whose partials of order up to
m − 1 are bounded. The ‖ ‖Λm

δ
norm of a function is defined as the sum of the ‖ ‖Λδ

norms of its partials of order m. It is easy to see that functions in Λm
δ satisfy

|f(x + h)−
∑
|α|≤m

∂αf

∂xα
(x)

hα

α!
| ≤

‖f‖Λm
δ

m!
|h|m+δ for all x ∈ Rn , h ∈ Rn.
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For m, ` ∈ Z+ ∪ {0} and 0 ≤ γ, δ ≤ 1 we define the space Λm,`
γ,δ of all bounded functions

b(y, z) on Rn × Rn which are in Λm
γ as functions of y and in Λ`

δ as functions of z and
satisfy the condition:∣∣∣∣b(y + h, z + k)−

∑
|α|≤m

∂α

∂yα
b(y, z + k)

hα

α!
−
∑
|β|≤`

∂β

∂zβ
b(y + h, z)

kβ

β!

+
∑
|α|≤m

∑
|β|≤`

∂α

∂yα

∂β

∂zβ
b(y, z)

hα

α!
kβ

β!

∣∣∣∣ ≤ C|h|m+γ |k|`+δ(3.1)

for all y, z, k, h ∈ Rn.

This double Lipschitz condition above is equivalent to either one of the statements below

|h|−m−γ

b(y + h, z)−
∑
|α|≤m

∂α

∂yα
b(y, z)

hα

α!

 is in Λ`
δ as a function of z

(3.2)

|k|−`−δ

b(y, z + k)−
∑
|β|≤`

∂β

∂zβ
b(y, z)

kβ

β!

 is in Λm
γ as a function of y

(3.3)

for all y, z, h, k ∈ Rn, |h|, |k| ≤ C.

We will now state and prove the main lemma needed to estimate term B1.

Lemma 2. Suppose that p, q ≤ 1 and let m = [n( 1
p − 1)] , ` = [n( 1

q − 1)]. Suppose that

the compactly supported function b(y, z) is in Λm,`
γ,δ . For x0 ∈ Rn let

S(f, g)(x0) = sup
t>0

∣∣∣∣ ∫∫ f(y)g(z) 1
t2n b

(
x0−y

t , x0−z
t

)
dydz

∣∣∣∣
Then S(f, g) maps Hp ×Hq → Lr where

1
r

=
1
p

+
1
q

as long as

1 ≥ γ > n(
1
p
− 1)− [n(

1
p
− 1)] and

1 ≥ δ > n(
1
q
− 1)− [n(

1
q
− 1)].

12



Proof. Let aQ(y) be an Hp-atom and bR(z) be an Hq-atom. We will first estimate
S(aQ, bR)(x0). Let yQ be the center of the center of the cube Q and zR the center of the
cube R. We have the following four basic estimates:

Case 1: x0 ∈ 3Q and x0 ∈ 3R, then

S(aQ, bR)(x0) ≤ C|Q|−
1
p χ3Q(x0)|R|−

1
q χ3R(x0).

Case 2: x0 ∈ 3Q and x0 /∈ 3R, then

S(aQ, bR)(x0) 5 C|Q|−
1
p χ3Q(x0)

|R|−
1
q +1+ `+δ

n

dist(x0, R)n+`+δ
.

Case 3: x0 /∈ 3Q and x0 ∈ 3R, then

S(aQ, bR)(x0) ≤ C
|Q|−

1
p +1+ m+γ

n

dist(x0, Q)n+m+γ
|R|−

1
q χ3R(x0).

Case 4: x0 /∈ 3Q and x0 /∈ 3R, then

S(aQ, bR)(x0) ≤ C
|Q|−

1
p +1+ m+γ

n

dist(x0, Q)n+m+γ

|R|−
1
q +1+ `+δ

n

dist(x0, R)n+`+δ

We indicate how to prove the basic estimates.
In Case 1 we just use the L∞ bounds for atoms.
In Case 2 we need the following estimate which can be easily proved by integrating (3.3)

over the y-support of b.

(3.4)
∫
|b(y, z + k)−

∑
|β|≤`

∂βb

∂zβ
(y, z)

kβ

β!
|dy ≤ C|k|`+δfor all z,k in Rn.

Using the fact that bR has moments up to order ` vanishing we have∫∫
aQ(y)bR(z) 1

t2n b
(

x0−y
t , x0−z

t

)
dydz = (3.5)

∫
aQ(y)

∫
bR(z) 1

tn

b
(

x0−y
t , x0−z

t

)
−
∑
|β|≤`

∂βb

∂zβ

(
x0−y

t , x0−zR

t

)
1
β!

(
zR−z

t

)β dz

tn
dy

13



By (3.4) the above can be estimated by

C|Q|−
1
p χ3Q(x0)|R|−

1
q 1

tn

∫
R

∣∣∣∣ z−zR

t

∣∣∣∣`+δ

dz ≤ C|Q|−
1
p χ3Q(x0)

|R|−
1
q +1+ `+δ

n

tn+`+δ

Note that (3.5) is nonzero if t ≥ dist((x0, x0), Q × R) ∼ dist(x0, R), since x0 ∈ 3Q and
x0 /∈ 3R. The required estimate for S(aQ, bR) in Case 2 follows. Case 3 is similar.

To get the estimate in Case 4 we use the double Lipschitz estimate for b. We have

(3.6) =
∫∫

aQ(y)bR(z) 1
t2n b

(
x0−y

t , x0−z
t

)
dydz =∫∫

aQ(y)bR(z) 1
t2n

{
b
(

x0−y
t , x0−z

t

)
−
∑
|α|≤m

∂αb

∂yα

(
x0−yQ

t , x0−z
t

)
1
α!

(
yQ−y

t

)α

−
∑
|β|≤`

∂βb

∂zβ

(
x0−y

t , x0−zR

t

)
1
β!

(
zR−z

t

)β
+
∑
|α|≤m

∑
|β|≤`

∂α∂βb

∂yα∂zβ

(
x0−yQ

t , x0−zR

t

)
1
α!

(
yQ−y

t

)α
1
β!

(
zR−z

t

)β }
dydz

Apply (3.1) to bound the above by

C|Q|−
1
p |R|−

1
q 1

t2n

∫
Q

∫
R

∣∣∣∣y−yQ

t

∣∣∣∣m+γ∣∣∣∣ z−zR

t

∣∣∣∣`+δ

dydz

≤Ct−2n−m−`−γ−δ|Q|−
1
p +1+ m+γ

n |R|−
1
q +1+ `+δ

n

Note that (3.6) is nonzero as long as t ≥ dist((x0, x0), Q×R) ∼ dist(x0, Q)+ dist(x0, R),
because x0 /∈ 3Q and x0 /∈ 3R.

Since dist((x0, x0), Q×R)−2n−m−γ−`−δ 5 Cdist(x0, Q)−n−m−γdist(x0, R)−n−`−δ, the
required estimate for (3.6) follows immediately.

We have now proved our basic estimates and we continue with the proof of the lemma.
Let f ∈ Hp, g ∈ Hq be finite sums of atoms f =

∑
λQaQ , g =

∑
µRbR where

λQ > 0 , µR > 0 and

(
∑

λp
Q)

1
p ≈ ‖f‖Hp , (

∑
µq

R)
1
q ≈ ‖g‖Hq

Bound S(f, g)(x0) ≤
∑

Q

∑
R λQµRS(aQ, bR)(x0) by Σ1(x0) + Σ2(x0) + Σ3(x0) + Σ4(x0)

where
Σj(x0) =

∑
Q

∑
R

λQµRS(aQ, bR)(x0)

14



and the sum above is taken over all Q and R related to x0 as in case j above, 1 ≤ j ≤ 4.

We will show that each Σj is in Lr(dx0) with Lr quasinorm bounded by C‖f‖Hp‖g‖Hq .
Then we can sum on j, 1 ≤ j ≤ 4. Use Hölder’s inequality with exponents p/r, q/r to get

(∫
Σ1(x0)rdx0

) 1
r

≤C

(∫ (∑
λQ|Q|−

1
p χ3Q(x0)

)p

dx0

) 1
p
(∫ (∑

µR|R|−
1
q χ3R(x0)

)q

dx0

)− 1
q

≤C

(∫
3Q

∑
λp

Q|Q|
−1dx0

) 1
p
(∫

3R

∑
µq

R|R|
−1dx0

) 1
q

(since p, q ≤ 1)

≤ C
(∑

λp
Q

) 1
p
(∑

µq
R

) 1
q ≤ C‖f‖Hp‖g‖Hq

Similarly,

(∫
Σ4(x0)rdx0

) 1
r

≤C

 ∫
dist(x0,Q)≥C|Q|

1
n

(∑
λQ

|Q|−
1
p +1+ m+γ

n

dist(x0, Q)n+m+γ

)p

dx0


1
p

 ∫
dist(x0,R)≥C|R|

1
n

(∑
µR

|R|−
1
q +1+ `+δ

n

dist(x0, R)n+`+δ

)q

dx0


1
q

≤C

 ∫
dist(x0,Q)≥C|Q|

1
n

∑
λp

Q

|Q|−1+p+
(m+γ)p

n

dist(x0, Q)(n+m+γ)p
dx0


1
p

 ∫
dist(x0,R)≥C|R|

1
n

∑
µq

R

|R|−1+q+
(`+δ)q

n

dist(x0, R)(n+`+δ)q
dx0


1
q

≤C
(∑

λp
Q

) 1
p
(∑

µq
R

) 1
q ≤ C‖f‖Hp‖g‖Hq

15



where we used the fact that (n + m + γ)p > n and∫
dist(x0,Q)≥C|Q|

1
n

dist(x0, Q)−(n+m+γ)pdx0 ∼ |Q| 1n (n−(n+m+γ)p) ∼ |Q|1−p− (m+γ)p
n .

The same way we can prove that(∫
Σ2(x0)rdx0

) 1
r

≤ C‖f‖Hp‖g‖Hp and(∫
Σ3(x0)rdx0

) 1
r

≤ C‖f‖Hp‖g‖Hq

using a combination of the estimates above. Finally we approximate the general f ∈ Hp

and g ∈ Hq by finite sums of atoms to finish the proof of the lemma.

We now continue the proof of our theorem by estimatng term B1. We have∫
φt,x0B1dx =

∫∫
f(y)g(z) 1

t2n b
(

x0−y
t , x0−z

t

)
dydz

where we set b(y, z) =
∑

i η(y)η(z)
∫

φ(σ)K1
i (y − σ)K2

i (z − σ)dσ. To apply Lemma 2 we
need to prove that b(y, z) ∈ Λm,`

γ,δ where m, γ, `, δ as in Lemma 2.

Note that the assumption that B(f, g) has moments up to order k vanishing gives that
the kernel of xαB(f, g)(x) is identically zero for all |α| ≤ k, i.e.∑

i

∫
xαK1

i (y − x)K2
i (z − x)dx = 0 for all y, z ∈ Rn.

We can therefore write

b(y, z) = η(x)η(y)
∑

i

∫ φ(σ)−
∑
|α|≤k

∂αφ

∂yα
(y)

(σ − y)α

α!

K1
i (y − σ)K2

i (z − σ)dσ.

The fact that b(y, z) ∈ Λm,`
γ,δ where m, `, γ, δ as in Lemma 2, will be a consequence of the

following two lemmas.

Lemma 3. Let G be a function on Rn of class Λs
1 and let a(y, σ) = G(y − σ).

(a) If m, ` are non-negative integers such that m + ` = s and γ, δ > 0 such that γ + δ = 1,
then a(y, σ) is of class Λm,`

γ,δ .
(b) If m, ` are integers such that m + ` = s− 1 then a(y, σ) is of class Λm,`

1,1 .
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Lemma 4. Let K be a convolution Calderón-Zygmund kernel on Rn. If a(y, σ) ∈ Λm,`
γ,δ

then

b(y, z) =
∫

a(y, σ)K(z − σ)dσ ∈ Λm,`
γ,δ

Proofs. We denote by ∂αG the partial derivative of G of order α = (α1, . . . , αn). To
prove Lemma 3 (a), by (3.2), it suffices to show that the function

F (σ) =
1

|h|m+γ

a(y + h, σ)−
∑
|α|≤m

∂αa

∂yα
(y, σ)

hα

α!


=

1
|h|m+γ

G(y + h− σ)−
∑
|α|≤m

∂αG(y − σ)
hα

α!


is in Λ`

δ in the variable σ uniformly in y ∈ Rn. This will be a consequence of the following
two observations:

(1) F (σ) is in Λ`
0 with norm ≤ C|h|1−γ .

(2) F (σ) is in Λ`
1 with norm ≤ C|h|−γ .

Interpolation will then give that F (σ) is in Λ`
δ with norm ≤ C. (Recall γ + δ = 1.)

Both observations follow from Taylor’s theorem. For some ξy,h between y and y + h we

have that F (σ) = |h|−m−γ
(∑

|α|=m(∂αG(ξy,h − σ)− ∂αG(y − σ))hα

α!

)
and therefore for a

fixed β with |β| = ` we have

∂βF (σ) = |h|−m−γ

 ∑
|α|=m

(∂α+βG(ξy,h − σ)− ∂α+βG(y − σ))
hα

α!


Since |α+β| = m+` = s and since ∂σG is in Λ1 if |σ| = s it follows that ∂α+βG is in Λ1 and
thus (∂βF )(σ) is in Λ0 = L∞ with norm ≤ C|h|−γ

∑
|α|=s ‖∂αG‖Λ1 |ξy,h − y| ≤ C|h|1−γ .

Also, from the translation invariance of the Lipschitz norms it follows that ∂α+βG(ξy,h−σ)
and ∂α+βG(y − σ) are in Λ1 in σ, and therefore the function ∂βF (σ) is in Λ1 in σ with
norm ≤ C|h|−γ . We proved that the arbitrary partial derivative ∂βF of F of order ` is in
Λ0 with norm ≤ C|h|1−γ and in Λ1 with norm ≤ C|h|−γ . This concludes the proofs of the
observations. Note that both norm estimates are independent of y.
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Part (b) of lemma 3 follows by a similar argument. We need to show that the function

F (σ) =
1

|h|m+1

a(y + h, σ)−
∑
|α|≤m

∂αa

∂yα
(y, σ)

hα

α!


=

1
|h|m+1

G(y + h− σ)−
∑
|α|≤m

∂αG(y − σ)
hα

α!


is of class Λ`

1 in the variable σ uniformly in y ∈ Rn. For some ξ
′

y,h between y and y + h,

we have that F (σ) = |h|−m−1

(m+1)!

∑
|α|=m+1 ∂αG(ξ

′

y,h−σ)hα

α! . Fix a multiindex β with |β| = `.
Clearly

∂βF (σ) =
|h|−m−1

(m + 1)!

∑
|α|=m+1

∂α+βG(ξ
′

y,h − σ)
hα

α!
.

Since in this case |α + β| = m + 1 + ` = s and the partials of G of order s are in Λ1 it
follows that ∂βF is in Λ1 with norm independent of y. Therefore F is in Λ`

1 with norm
independent of y and this concludes the proof of Lemma 3.

We now indicate how to prove Lemma 4. It is a well known fact that convolution
Calderón-Zygmund operators map the Lipschitz spaces Λm

γ into themselves. If a(y, σ) ∈
Λm,`

γ,δ then by (3.2) the function |h|−m−γ{a(y + h, σ) −
∑

|α|≤m

∂αa
∂yα (y, σ)hα

α! } is in Λ`
δ in the

variable σ. Convolution with K in σ will give that

|h|−m−γ

b(y + h, z)−
∑
|α|≤m

∂αb

∂yα
(y, z)

hα

α!

 ∈ Λ`
δ in z

and by (3.2) again we get that b(y, z) ∈ Λm,`
γ,δ . This finishes the proof of Lemma 4.

To conclude the proof of our theorem, it suffices to check that the functions

ai(y, σ) =

φ(σ)−
∑
|α|≤k

∂αφ

∂yα
(y)

(σ − y)α

α!

K1
i (y − σ)

are in Λm,`
γ,δ . Then Lemma 4 will give that b(y, z) is in Λm,`

γ,δ also.

We write ai(y, σ) =
∑

|α|=k+1

φ(α)(ξσ,y) (σ−y)α

α! K1
i (y − σ). Fix i and α with |α| = k + 1.

It suffices to show that φ(α)(ξσ,y)(σ − y)αK1
i (y − σ) ∈ Λm,`

γ,δ . Since φ(α)(ξσ,y) is a smooth
18



function of y and σ it is enough to show that (σ − y)αK1
i (y − σ) ∈ Λm,`

γ,δ for suitable
m, `, γ, δ.

As a function of the variable x, the function xαK1
i (x) is smooth everywhere except

possibly at zero and it behaves like |x|k+1|x|−n = |x|k−n
1 as |x| → 0. Therefore, xαK1

i (x) ∈
Λk−n+1. We are going to apply Lemma 3 with G(x) = xαK1

i (x).

Let m = [n( 1
p − 1)] , ` = [n( 1

q − 1)]. Since n+k
n ≤ 1

r < n+k+1
n it follows that m + ` is

either k−n or k−n− 1. If m+ ` = k−n just pick γ > n( 1
p − 1)−m and δ > n( 1

q − 1)− `

such that γ + δ = 1 (this is possible since 1 > n( 1
r − 2) − m − `) and apply part (a) of

Lemma 3 with s = k − n. If m + ` = k − n− 1 = s− 1, apply part (b) of Lemma 3.

It follows that (σ − y)αK1
i (y − σ) is in Λm,`

γ,δ where γ and δ satisfy the hypotheses of
Lemma 1. The same is true for ai(y, σ) and therefore for b(y, z) by Lemma 4.

4. Applications and examples
The vanishing moments properties of the bilinear operators B(f, g) =

∑
j

(T 1
j f)(T 2

j g) can

be written in terms of relations involving multipliers. Let m1
j and m2

j be the multipliers
corresponding to the Calderón-Zygmund operators T 1

j and T 2
j . B(f, g) has mean value

zero if and only if B̂(f, g)(0) = 0, i.e.∑
j

(T̂ 1
j f ∗ T̂ 2

j g)(0).

This is equal to ∑
j

∫
m1

j (−ξ)f̂(−ξ)m2
j (ξ)ĝ(ξ)dξ = 0

and since f and g are arbitrary the above is equivalent to the statement∑
j

m1
j (−ξ)m2

j (ξ) = 0 for all ξ 6= 0

Similar reasoning shows that B has two moments zero if and only if the following
identities hold: ∑

j

m1
j (−ξ)m2

j (ξ) = 0 for all ξ 6= 0

∑
j

m1
j (−ξ)(

∂

∂ξi
m2

j )(ξ) = 0 for all ξ 6= 0 , i = 1, 2, . . . n.
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The second identity can be replaced by

∑
j

∂

∂ξi
m1

j (−ξ)m2
j (ξ) = 0

in view of the first identity and the product rule.
Generalizing the above, we get that B has all moments of order up to and including k

vanishing if and only if

(4.1)
∑

j

m1
j (−ξ)

(
∂m

∂ξm
i

m2
j

)
(ξ) = 0

holds for all ξ 6= 0, i = 1, 2, . . . n, m = 0, 1, . . . , k. The identities above give us an
easy way to decide whether a bilinear operator has vanishing moments. For example,
using (4.1), it is trivial to check that the bilinear operator J̃(f, g) = R1fR2g − R2fR1g

has integral zero. To include an example, we check that the bilinear operator H̃(f, g) =
(R2

1f)(R2
2g)− 2(R1R2f)(R2R1g) + (R2

2f)(R2
1g) has vanishing first moments. We calculate

(4.1) when m = 1 and i = 1. Let T 1
1 = R2

1, T 2
1 = R2

2, T 1
2 = −2R1R2, T 2

2 = R2R1,
T 1

3 = R2
2, T 2

3 = R2
1 and let m1

1(ξ) = −ξ2
1/|ξ|2, m2

1(ξ) = −ξ2
2/|ξ|2, m1

2(ξ) = 2ξ1ξ2/|ξ|2,
m2

2(ξ) = −ξ1ξ2/|ξ|2, m1
3(ξ) = −ξ2

2/|ξ|2, m2
3(ξ) = −ξ2

1/|ξ|2 be the corresponding multipliers.
Then

3∑
j=1

m1
j (−ξ)

∂

∂ξ1
m2

j (ξ) = (− ξ2
1

|ξ|2
)(

2ξ1ξ
2
2

|ξ|4
) + (

2ξ1ξ2

|ξ|2
)(
−ξ3

2 + ξ2
1ξ2

|ξ|4
) + (− ξ2

2

|ξ|2
)(−2ξ1ξ

2
2

|ξ|4
) = 0.

An example of an operator with two vanishing moments is given on R1 by the bilinear
map B(f, g) = fg− (Cf)(Cg) + (Sf)(Sg), where the operators Sf and Cf are defined on
the Fourier side by

Ŝf(ξ) = sin(log |ξ|)f̂(ξ) and Ĉf(ξ) = cos(log |ξ|)f̂(ξ).

One can easily check using (4.1) that B has integral and first moments zero and hence by
our theorem it maps Hp ×Hq → Hr for p, q > 1 and 1/2 ≥ r = (p−1 + q−1)−1 > 1/3.

Examples of bilinear operators with moments of all orders vanishing are given on R1

by the maps

D1(f, g) = fg − (Hf)(Hg)

D2(f, g) = f(Hg) + (Hf)g
20



where H is the usual Hilbert transform. It follows from our theorem that D1 and D2 map
Hp ×Hq → Hr for all p, q ≤ 1 and r their harmonic mean. D1 and D2 are the real and
imaginary parts of the holomorphic function (f + iHf)(g + iHg) and they can also be
studied through complex analysis.
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