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Abstract. In Rn, we prove Lp1 ×· · ·×LpK boundedness for the multilinear fractional inte-

grals Iα(f1, . . . , fK)(x) =
R
f1(x− θ1y) . . . fK(x− θKy)|y|α−n dy where the θj ’s are nonzero

and distinct. We also prove multilinear versions of two inequalities about fractional integrals

and a multilinear Lebesgue differentiation theorem.

1. Introduction. Although it is not known whether the bi(sub)linear maximal function

M(f, g)(x) = sup
N>0

1
2N

∫ N

−N
|f(x+ t)g(x− t)| dt

or the bilinear Hilbert transform

H(f, g)(x) = p.v.
∫
f(x+ t)g(x− t)

dt

t

map Lp(R1) × Lp
′
(R1) → L1(R1) boundedness into L1 for the correspoding multilinear

fractional integrals can be obtained.
Throughout this note, K will denote an integer ≥ 2 and θj , j = 1, . . . ,K will be fixed,

distinct and nonzero real numbers. We are going to be working in Rn and α will be a fixed
real number number stricly between 0 and n. We denote by f the K-tuple (f1, . . . , fK)
and by Iα the K-linear fractional integral operator defined as follows:

Iα(f)(x) =
∫
f1(x− θ1y) . . . fK(x− θKy)|y|α−n dy.

When K = 1 the operators Iα are the usual fractional integrals as studied in [ST]. We also
denote by M(f) the K-sublinear maximal function

M(f)(x) = sup
N>0

(ΩnNn)−1

∫
|f1(x− θ1y)| . . . |fK(x− θKy)|dy
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where Ωn is the volume of the unit ball in Rn. It is trivial to check that for any pos-
itive p1, . . . , pK with harmonic mean s > 1, M maps Lp1 × · · · × LpK into Ls. If we
denote by f∗ the Hardy-Littlewood maximal function of f , then M(f) is dominated by
the product Cθk((f

p1/s
1 )∗)s/p1 . . . ((fpK/s1 )∗)s/pK and hence its boundedness follows from

Hölder’s inequality and the Ls boundedness of the Hardy-Littlewood maximal function.
This argument breaks down when s = 1 but a slight modification of it gives that M maps
into weak L1 in this endpoint case. It is conceivable however that M map into L1 since
it carries K-tuples of compactly supported functions into compactly supported functions.
This problem remains unresolved. The Lp × Lq → Lr boundedness of the bilinear Hilbert
transform H(f, g) is more subtle and it remains unresolved even in the case r > 1.

In this note, we study the easier problem of the multilinear fractional integrals. Our
first result concerns the Lp1 × · · · × LpK → Lr boundedness of Iα for r ≥ 1.

Theorem 1. Let s be the harmonic mean of p1, . . . , pK > 1 and let r be such that the
identity 1/r + α/n = 1/s holds. Then Iα maps Lp1 × · · · × LpK into Lr for n/(n + α) ≤
s < n/α (equivalently 1 ≤ r <∞).

Note that in the case K = 1, the corresponding range of s is the smaller interval
1 < s < n/α (equivalently n/(n− α) < r <∞).

When K = 1, the following theorem has been proved by Hirschman [HI] for periodic
functions and by Hedberg [HE] for positive functions.

Theorem 2. Let pj be positive real numbers and let s > 1 be their harmonic mean.
Then for q, r > 1 and 0 < θ < 1, the following inequality is true:

‖Iαθ(f)‖Lr ≤ C‖Iα(f)‖θLq
∏
k

‖fk‖1−θLpk where
1
r

=
θ

q
+

1− θ

s
.

In the endpoint case s = n/α, Trudinger [T] for α = 1, and Strichartz [STR] for other
α proved exponential integrability of Iα when K = 1. Hedberg [HE] gave a simpler proof
of theorem 3 below when K = 1.

By ωn−1 we denote the area of the unit sphere Sn−1. The factor L in the exponent
below is a normalizing factor and should be there by homogeneity.

Theorem 3. Let s = n/α be the harmonic mean of p1, . . . , pK > 1. Let B be a ball of
radius R in Rn and let fj ∈ Lpj (B) be supported in the ball B. Then for any γ < 1, there
exists a constant C0(γ) depending only on n, on α, on the θj’s and on γ, such that the
following inequality is true:

(1.1)
∫
B

e
n

ωn−1
γ
�

L Iα(f1,...,fK )
‖f1‖Lp1 ...‖fK‖LpK

�n/(n−α)

dx ≤ C0(γ)Rn where L =
∏
k

|θk|n/pk .
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All the comments in this paragraph refer to the case K = 1. [HMT] (for α = 1) and later
Adams [A] (for all α) showed that inequality (1.1) cannot hold if γ > 1. Moser [M] showed
exponential integrability of nω1/n−1

n−1

(
|φ(x)|/‖∇φ‖Ln

)n/n−1 suggesting that theorem 3 be
true in the endpoint case γ = 1. (Use formula (18) page 125 in [ST] to show that Moser’s
result follows from an improved theorem 3 with γ = 1.) In fact, Adams [A] proved
inequality (1.1) in the endpoint case γ = 1 and also deduced the sharp constants for
Moser’s exponential inequality for higher order derivatives. Chang and Marshall [CM]
proved a similar sharp exponential inequality concerning the Dirichlet integral.

2. Proof of theorem 1. We denote by |B| the measure of the set B and by χA the
characteristic function of the set A. We also use the notation s

′
= s/(s− 1) for s ≥ 1.

We consider first the case s ≥ 1. We will show that Iα maps Lp1 × · · · × LpK → Lr,∞.
The required result when s > 1 is going to follow from an application of the Marcinkiewitz
interpolation theorem. Without loss of generality we can assume that fj ≥ 0 and that

‖fj‖Lpj = 1. Fix a λ > 0 and define µ > 0 by L−1( ωn−1

(α−n)s′+n
)1/s

′
µ−n/r = λ

2 where ωn−1

and L are as in theorem 3. Hölder’s inequality and our choice of µ give that

I∞α (f)(x) =
∫
|y|>µ

f1(x− θ1y) . . . fK(x− θKy)|y|α−n dy

≤ ‖
∏

fk(x− θky)‖Ls(y)‖|y|α−nχ|y|>µ‖Ls′

≤
∏
‖fk(x− θky)‖Lpk (y)

( ωn−1

(α−n)s′+n

)1/s
′

µn(α/n−1+1/s
′
) = λ/2(2.1)

Let I0
α(f)(x) =

∫
|y|≤µ f1(x− θ1y) . . . fK(x− θKy)|y|α−n dy. We compute its Ls norm:

‖I0
α(f)‖Ls ≤

∥∥∥∥
( ∫ ( ∏

fk
)s|y|α−nχ|y|≤µdy

)1/s( ∫
1s
′
|y|α−nχ|y|≤µdy

)1/s
′∥∥∥∥
Ls

≤Cµα/s
′
( ∫∫ ( ∏

fk
)s|y|α−nχ|y|≤µdxdy

)1/s

≤Cµα/s
′ ( ∏

‖fk‖sLpk
∫
|y|≤µ

|y|α−ndy
)1/s = Cµα/s

′
µα/s = Cµα(2.2)

By (2.1) the set {x : I∞α (f)(x) > λ/2} is empty. This fact together with Chebychev’s
inequality and (2.2) gives us the following inequality:

|{x : Iα(f)(x) > λ}| ≤ |{x : I0
α(f)(x) > λ/2}| ≤ 2sλ−s‖I0

α‖sLs ≤ Cλ−sµsα = Cθkλ
−r

which is the required weak type estimate for Iα.
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We now do the case n/(n + α) ≤ s ≤ 1. The corresponding range of r’s is 1 ≤ r ≤
n/(n− α). Assume that K = 2 and that p1 ≥ p2 > 1. Also assume that r = 1 first. Since
s < n/α we must have that p2 < n/α. We get

‖Iα(f1, f2)‖L1 =
∫∫

f1(x− θ1y)f2(x− θ2y)|y|α−ndxdy

=
∫
f1(x)

∫
f2(x− (θ2 − θ1)y)|y|α−ndy dx

=|θ2 − θ1|−α
∫
f1(x)Iα(f2)(x)dx ≤ Cθ1,θ2‖f1‖Lp1‖Iα(f2)‖

L
p
′
1
.(2.3)

Since 1 < p2 < n/α, we can apply theorem 1, Ch. V on fractional integrals in [ST] to
bound (2.3) by Cθ2,θ1‖f1‖Lp1‖f2‖Lp2 . The case for a general r > 1 follows by interpolating
between the endpoint case r = 1 and the case r close to∞. Suppose now that the theorem
is true for K − 1, K ≥ 3. We will show that it true for K. Again we first do the case
r = 1. We may assume without loss of generality that p1 ≥ · · · ≥ pK > 1.

‖Iα(f)‖L1 =
∫∫

f1(x− θ1y) . . . fK(x− θKy)|y|α−ndxdy

=
∫
f1(x)

∫
f2(x− (θ2 − θ1)y) . . . fK(x− (θK − θ1)y)|y|α−ndy dx

=
∏
k �=1

|θk − θ1|−α
∫
f1(x)Iα(f2, . . . , fK)(x)dx ≤ Cθk‖f1‖Lp1‖Iα(f2, . . . , fK)‖

L
p
′
1

(2.4)

Define s1 by 1/s1 = 1/s − 1/p1. Since r = 1, we have that 1/p
′
1 + α/n = 1/s1. We

can apply the induction hypothesis only if we have that n/(n + α) ≤ s1 < n/α. This
inequality follows from the identity 1 + α/n = 1/s which relates s and r = 1. From our
induction hypothesis we get that (2.4) is bounded by Cθj

∏
‖fk‖Lpk The case r ≥ 1 follows

by interpolation.
3. Proof of theorem 2.
As in the proof of theorem 1, fix fj ≥ 0 such that ‖fj‖Lpj = 1. Like [HE], split

Iαθ(f)(x) =
∫
|y|<δ

∏
fk(x− θky)|y|αθ−ndy +

∫
|y|≥δ

∏
fk(x− θky)|y|αθ−ndy ≤

∞∑
m=1

∫
|y|∼δ2−m

∏
fk(x− θky)|y|αθ−ndy +

∫
|y|≥δ

∏
fk(x− θky)|y|α−n|y|(θ−1)αdy ≤

∞∑
m=1

(δ2−m)αθ
∫

|y|∼δ2−m

∏
fk(x− θky)|y|−ndy + δ(θ−1)α

∫
|y|≥δ

∏
fk(x− θky)|y|α−ndy
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≤ Cδα(θ−ε)M(f)(x) + δα(θ−1)Iα(f)(x).

Now choose δ = (Iα(f)(x)/M(f)(x))1/α to get Iαθ(f)(x) ≤ C(Iα(f)(x))θ (M(f)(x))1−θ.
Hölder’s inequality with exponents 1/r = 1/( s

1−θ ) + 1/( qθ ) will give ‖Iαθ(f)‖Lr ≤
C‖Iθα(f)‖Lq/θ ‖M(f)‖Ls/(1−θ) = C‖Iα(f)‖θLq‖M(f)‖1−θLs ≤ C‖Iα(f)‖θLq by the boundedness
of the maximal function M on Lq. This concludes the proof of theorem 2.

4. Proof of theorem 3. A simple dilation argument shows that if we know theorem
3 for a specific value of R = R0 with a constant C

′
0(γ) on the right hand side of (1.1), then

we also know it for all other values of R with constant C
′
0(γ)(R/R0)n. We select R0 = 1/P

where P = 2 min |θk|−1 and we will assume that the radius of B is R0. Furthermore, we
can assume that the fj ’s satisfy fj ≥ 0 and ‖fj‖Lpj = 1. Now fix x ∈ B. The same
argument as in theorem 2 with θ = 1 gives that

(4.1) Iα(f)(x) ≤ CδαM(f)(x) +
∫
|y|≥δ

∏
fk(x− θky)|y|α−ndy.

Since all fk are supported in the ball B and x ∈ B the integral in (4.1) is over the set
{y : δ ≤ |y| ≤ PR0 = 1}. Hölder’s inequality with exponents p1, . . . , pK and n

n−α gives

∫
δ≤|y|≤1

∏
fk(x− θky)|y|α−ndy ≤

∏
‖fk(x− θky)‖Lpk (y)

( ∫
δ≤|y|≤1

|y|−ndy
)(n−α)/n

= L−1
(
ωn−1 ln 1

δ

)(n−α)/n
.

(4.2)

Combining (4.1) and (4.2) we get:

(4.3) Iα(f)(x) ≤ CδαM(f)(x) + L−1

(
ωn−1
n ln

(
1
δ

)n)(n−α)/n

.

The choice δ = 1 gives Iα(f)(x) ≤ CM(f)(x) for all x ∈ B and therefore the selection
δ = δ(x) = ε

(
Iα(f)(x)(CM(f)(x))−1

)1/α will satisfy δ ≤ 1 for all ε ≤ 1. (4.3) now implies

Iα(f)(x) ≤ εαIα(f)(x) + L−1

(
ωn−1
n ln

( (CM(f)(x))n/α

εnIα(f)(x)n/α

))(n−α)/n

.

Algebraic manipulation of the above gives:

(4.4) n
ωn−1

γ
(
LIα(f)(x)

)n/(n−α) ≤ ln
( (CM(f)(x))n/α

εnIα(f)(x)n/α

)
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where we set γ = (1 − εα)n/(n−α). We exponentiate (4.4) and we integrate over the set
B1 = {x ∈ B : Iα(f)(x) ≥ 1} to obtain

∫
B1

e
n

ωn−1
γ
(
LIα(f)(x)

)n/(n−α)

dx ≤ 1
εn

∫
B1

(CM(f)(x))n/α

Iα(f)(x)n/α
dx ≤ C1

εn

∫
M(f)(x)n/αdx ≤ C2

εn
.

The last inequality follows from the boundedness of the maximal function of f on Ln/α.
The integral of the same exponential over the set B2 = B −B1 is estimated trivially by

∫
B2

e
n

ωn−1
γ
(
LIα(f)(x)

)n/(n−α)

dx ≤ e
n

ωn−1L
n/(n−α)

|B2| ≤ C3ΩnRn0 = C4.

Adding the integrals above over B1 and B2 we obtain the required inequality with a con-
stant C

′
0(γ) = max(C2, C4)(1 + (1− γ(n−α)/n)−n/α). The constant C0(γ) in the statement

of theorem 3 is then C
′
0(γ)R−n0 = C

′
0(γ)Pn.

We obtain the following

Corollary. Let B, fk, pk, and s as in theorem 3. Then Iα(f1, . . . , fK) is in Lq(B) for
every q > 0. In fact the following inequality is true:

‖Iα(f1, . . . , fK)‖Lq(B) ≤ C
∏
k

‖fk‖Lpk

for some constant C depending only on q on n on α and on the θj’s.

The corollary follows since exponential integrability of Iα implies integrability to any
power q. (Here γ is fixed < 1.)

5. A multilinear differentiation theorem.
We end this note by proving the following multilinear Lebesgue differentiation theorem.

Let fj ∈ Lpj (Rn) and suppose that their harmonic mean is s ≥ 1. Then

lim
ε→0

Tε(f)(x) = lim
ε→0

1
Ωnεn

∫
|y|≤ε

f1(x− θ1y) . . . fK(x− θKy)dy = f1(x) . . . fK(x) a.e.

The case s = 1 is a consequence of the weak type inequality |{x ∈ Rn : M(f)(x) >
λ}| ≤ C

λ ‖f1‖Lp1 . . . ‖f1‖LpK which is easily obtained from |{x ∈ Rn : M(f)(x) > λ}| ≤∑K
j=1 |{x ∈ Rn : (fj)∗(x) > (εj−1/εj)pj}| ≤ C

∑K
j=1(εj−1/εj)−pj‖fj‖Lpj after minimizing

over all ε1, . . . , εK > 0. (Take ε0 = λ.) The standard argument presented in [SWE], page
61, will prove that the sequence {Tε(f)(x)}ε>0 is Cauchy for almost all x and therefore it
converges. Since for continuous f1, . . . , fK it converges to the value of their product at the
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point x ∈ Rn, to deduce the general case it will suffice to show that {Tε(f)}ε>0 converges
to the product of the fj ’s in the Ls norm as ε→ 0. (Then some subsequence will converge
to the product a.e.) Denoting by (τyf)(x) = f(x− y) the translation of f by −y, we get

‖Tε(f)− f1 . . . fK‖Ls ≤
1

Ωnεn

∫
|y|≤ε

‖
∏
j

τθjyfj −
∏
j

fj‖Lsdy

≤ 1
Ωnεn

∫
|y|≤ε

K∑
j=1

‖τθjyfj − fj‖Lpj
∏
k �=j
‖fj‖Lpk dy → 0

as |y| → 0 since the last integrand is a continous function of y which vanishes at the origin.
The last inequality above follows by adding and subtracting 2K − 2 suitable terms and
applying Hölder’s inequality K times.
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