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ABsTrRACT In R"™, we prove LP1 X --- X LPK boundedness for the multilinear fractional inte-

grals In(f1,..., fx)(x) = [ fi(x —01y) ... fx(z — Oky)|y|* ™ dy where the 6;’s are nonzero
and distinct. We also prove multilinear versions of two inequalities about fractional integrals
and a multilinear Lebesgue differentiation theorem.

1. Introduction. Although it is not known whether the bi(sub)linear maximal function

M(f,9)(x) __§32N2/ f@+t)g(x —t)|dt

or the bilinear Hilbert transform
dt
H(f,g)(x —pV/fx+t x—ﬂt

map LP(R!) x 7 (R') — L'(R') boundedness into L' for the correspoding multilinear
fractional integrals can be obtained.

Throughout this note, K will denote an integer > 2 and 0;, j = 1,..., K will be fixed,
distinct and nonzero real numbers. We are going to be working in R™ and « will be a fixed
real number number stricly between 0 and n. We denote by f the K-tuple (f1,..., fk)
and by [, the K-linear fractional integral operator defined as follows:

1.(£)(z) = / i@ = 01y) . fre(z — By)lyl* ™ dy.

When K = 1 the operators I, are the usual fractional integrals as studied in [ST]. We also
denote by M (f) the K-sublinear maximal function

M(f)(z) = sup (2,37 / frle = 019)] . | frc (e — Oxcy)ldy
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where €2, is the volume of the unit ball in R". It is trivial to check that for any pos-
itive p1,...,px with harmonic mean s > 1, M maps LP* x --- x LPX into L*. If we
denote by f* the Hardy-Littlewood maximal function of f, then M(f) is dominated by

the product Cp, ((fF'/%)*)s/Pr .. ((f*/*)*)3/Px and hence its boundedness follows from
Holder’s inequality and the L® boundedness of the Hardy-Littlewood maximal function.
This argument breaks down when s = 1 but a slight modification of it gives that M maps
into weak L' in this endpoint case. It is conceivable however that M map into L' since
it carries K-tuples of compactly supported functions into compactly supported functions.
This problem remains unresolved. The LP x LY — L" boundedness of the bilinear Hilbert
transform H(f, g) is more subtle and it remains unresolved even in the case r > 1.

In this note, we study the easier problem of the multilinear fractional integrals. Our
first result concerns the LP* x --- x LPK — L" boundedness of I, for r > 1.

Theorem 1. Let s be the harmonic mean of p1,...,px > 1 and let r be such that the
identity 1/r + a/n = 1/s holds. Then I, maps LP* x --- x LPX into L" for n/(n + a) <
s < n/a (equivalently 1 <r < co).

Note that in the case K = 1, the corresponding range of s is the smaller interval
1 < s<n/a (equivalently n/(n —a) < r < o).

When K = 1, the following theorem has been proved by Hirschman [HI] for periodic
functions and by Hedberg [HE] for positive functions.

Theorem 2. Let p; be positive real numbers and let s > 1 be their harmonic mean.
Then for g,r > 1 and 0 < 0 < 1, the following inequality is true:
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oo ()llzr < ClLa(®)2e [T 1 fullzed  where o=
k
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In the endpoint case s = n/«a, Trudinger [T] for & = 1, and Strichartz [STR] for other
a proved exponential integrability of I, when K = 1. Hedberg [HE| gave a simpler proof
of theorem 3 below when K = 1.

By w,_1 we denote the area of the unit sphere S"~!. The factor L in the exponent
below is a normalizing factor and should be there by homogeneity.

Theorem 3. Let s = n/a be the harmonic mean of p1,...,px > 1. Let B be a ball of
radius R in R"™ and let f; € LPi(B) be supported in the ball B. Then for any v < 1, there
exists a constant Cy(7y) depending only on n, on «, on the 6;’s and on vy, such that the
following inequality is true:

n LIaq(f1, - fre) n/(n—a)
B k
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All the comments in this paragraph refer to the case K = 1. [HMT] (for @ = 1) and later

Adams [A] (for all &) showed that inequality (1.1) cannot hold if v > 1. Moser [M] showed

exponential integrability of nw,ll/_nl_l(|¢(a:)\/HV¢HLn)n/n71 suggesting that theorem 3 be

true in the endpoint case v = 1. (Use formula (18) page 125 in [ST] to show that Moser’s
result follows from an improved theorem 3 with v = 1.) In fact, Adams [A] proved
inequality (1.1) in the endpoint case v = 1 and also deduced the sharp constants for
Moser’s exponential inequality for higher order derivatives. Chang and Marshall [CM]
proved a similar sharp exponential inequality concerning the Dirichlet integral.

2. Proof of theorem 1. We denote by |B| the measure of the set B and by x4 the
characteristic function of the set A. We also use the notation s = s/(s — 1) for s > 1.
We consider first the case s > 1. We will show that I, maps LP* x --- x LPK — [,

The required result when s > 1 is going to follow from an application of the Marcinkiewitz
interpolation theorem. Without loss of generality we can assume that f; > 0 and that

Ifillz,, = 1. Fix a A > 0 and define 1 > 0 by L_l(L)l/s/,u_"/T = 2 where w;,_1

(a—n)s'+n
and L are as in theorem 3. Hélder’s inequality and our choice of u give that

Igo(f)($)=/||> filrx = 0wy) ... fr(x —O0ky)|y|* " dy
<[] fr(x = Oy)l L

Wn—1 1/3/ n(a/n— s/

o) Y " Xy 1>l

Let I(f)(z) = fly\Su fi(x —01y) ... fr(x — Oky)|ly|* ™ dy. We compute its L® norm:

1/s , 1/s/
ng<f)‘LS SH(/(HJCIC) |y|a_nX|y§udy) </ 17 |y|a_nX|y|§udy)
Ls
, 1/s
<cuels ( J[ (1 \y\a—"xmda:dy)
a s/ s a—n 1/s a s/ a/s a
(2:2) <Cu*/ (HkaHm/H< [yl "dy) ' = Cutls pt s = o
ARy

By (2.1) the set {z : I°(f)(z) > A/2} is empty. This fact together with Chebychev’s
inequality and (2.2) gives us the following inequality:

{o: L(B)(@) > A} < {a: Io(f)(x) > A/2} < 2°A7°| 1)

e S ON TS = Co AT

which is the required weak type estimate for 1.
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We now do the case n/(n + «) < s < 1. The corresponding range of r’s is 1 < r <
n/(n — «). Assume that K = 2 and that p; > ps > 1. Also assume that r» = 1 first. Since
s < n/a we must have that po < n/a. We get

Malfi, fo)lls = / f1(@ — 19) faa — Ba)ly|* " dcdy
- / fi(2) / fol — (62 — 01)y) |y "dy do
(2.3) 10y — 03] / R@) () @)z < Cop ol fillom 111,

Since 1 < ps < n/a, we can apply theorem 1, Ch. V on fractional integrals in [ST] to
bound (2.3) by Co, .0, || f1]|ze1 || f2]| Lr2. The case for a general r > 1 follows by interpolating
between the endpoint case » = 1 and the case r close to co. Suppose now that the theorem
is true for K — 1, K > 3. We will show that it true for K. Again we first do the case
r = 1. We may assume without loss of generality that p; > --- > pg > 1.

| 1o (£)]| 21 ://fl(ac —601y) ... fx(x—O0ky)|y|* "dzdy
/fl /fz r— (02 —01)y) ... fx(x — (0 —01)y)|y|* "dy dz

(2.4) =[] 16x— 611 /f1 alfas s fo)(@)dz < Cou[[ fill o [La(f2s -5 FRI Ly,
k#1

Define s; by 1/s; = 1/s — 1/p;. Since r = 1, we have that 1/p,1 +a/n = 1/s;. We
can apply the induction hypothesis only if we have that n/(n + a) < s; < n/a. This
inequality follows from the identity 1 + «/n = 1/s which relates s and » = 1. From our
induction hypothesis we get that (2.4) is bounded by Co, [] || fx| e+ The case r > 1 follows
by interpolation.

3. Proof of theorem 2.

As in the proof of theorem 1, fix f; > 0 such that || f;|| »; = 1. Like [HE], split
= / I el = Oyl "dy + / I fel@ = Oy y|**—"dy <
lyl<s ly|>6

Z/ 5 ka(w—eky)!ylae‘”dy+/l I fulx — Oum)lylo "1yl O~y <
~ 2 m y

|>6

(627™) / 1 e = x|yl "dy + 51 / I (e = 6xy)ly* " dy

ly|~62—m ly|=6
4
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< OO M (F)(x) + 64O~V I, (£)(x).

Now choose § = (Io(f)(x)/M(£f)(z))/ to get Ing(f)(z) < C(Io(F)(x))? (M(f)(z)) .
Holder’s inequality with exponents 1/r = 1/(7%5) + 1/(%) will give [[Ioo(f)|[z- <
CIIEE) | pare |ME)pera-o = CllLa(E)]1. M (£)]| 72" < C||Ia(£)[|74 by the boundedness
of the maximal function M on L?. This concludes the proof of theorem 2.

4. Proof of theorem 3. A simple dilation argument shows that if we know theorem
3 for a specific value of R = Ry with a constant Cy(7) on the right hand side of (1.1), then
we also know it for all other values of R with constant Cy(7)(R/Ry)". We select Ry = 1/P
where P = 2min |0;|~! and we will assume that the radius of B is Ry. Furthermore, we
can assume that the f;’s satisfy f; > 0 and ||f;||z»s = 1. Now fix x € B. The same
argument as in theorem 2 with 6 = 1 gives that

(4.1) I (£)(z) < CO*M(f)(z) + / I (@ = 0y yl*"dy.

ly|>d

Since all fj are supported in the ball B and = € B the integral in (4.1) is over the set
{y 0 < |y| < PRy = 1}. Hélder’s inequality with exponents p1,...,px and —"— gives

/ I fe@ = Oy lyl*"dy <
§<]y|<1

(4.2)

(n—a)/n (n—a)/n
) = )

[0~ 0l |

Combining (4.1) and (4.2) we get:

<ly|<1

" (n—a)/n
(4.9 L@ £ MO@ + 1 (52w (E)")

The choice § = 1 gives I,(f)(x) < CM(f)(z) for all x € B and therefore the selection
d=46(z) = e([a(f)(a:)(CM(f)(x))_l)1/a will satisfy § <1 for all e < 1. (4.3) now implies

(n—a)/n
« - Wn— x))™/
L) < L@@ + 17 (22 m (G0 )

Algebraic manipulation of the above gives:

n n/(n—a) CM(f)(z))"/*
(4.4) 2L () (@) < In ({S3 )
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where we set 7 = (1 — ¢*)"/ (=% We exponentiate (4.4) and we integrate over the set
By={zeB:I,(f)(x )>1}toobta1n

/ S (Ea @) 1 [ (CM(f)() ”/O‘d < _/M oyfody < &2
B1 e B1 Ia(f)<x)n @ €"

The last inequality follows from the boundedness of the maximal function of £ on L™/,
The integral of the same exponential over the set B, = B — Bj is estimated trivially by

n/(n—a) n n/(n—a
/ e (B ®@) T S B 0 RE = Oy,
By

Adding the integrals above over By and By we obtain the required inequality with a con-
stant Cp () = max(Cy, Cy)(1+ (1 — y(n=@)/n)=n/a)  The constant Cy(7) in the statement
of theorem 3 is then Cy(7)R;™ = Cy(7)P

We obtain the following

Corollary. Let B, fi, pk, and s as in theorem 3. Then I,(f1,..., fx) is in LY(B) for
every q > 0. In fact the following inequality is true:

1Ta(fr s f)llLacsy < C T Il o
k

for some constant C' depending only on g on n on o and on the 0;’s.

The corollary follows since exponential integrability of I, implies integrability to any
power q. (Here ~ is fixed < 1.)

5. A multilinear differentiation theorem.

We end this note by proving the following multilinear Lebesgue differentiation theorem.
Let f; € LP/(R™) and suppose that their harmonic mean is s > 1. Then

/ . file =01y) ... fx(z —O0ky)dy = fi(x)... fx(z) a.e.

The case s = 1 is a consequence of the weak type inequality [{z € R™ : M(f)(z) >

AH < %HﬁHLm ... |Ifillerx which is easily obtained from |[{z € R"™ : M(f)(z) > A\}| <

S o € R (£)"(2) > (ej-1/€)PH < O (e5-1/€;) 7P || £l s after minimizing

over all €1,...,ex > 0. (Take ¢ = A.) The standard argument presented in [SWE], page

61, will prove that the sequence {T.(f)(x)}c>0 is Cauchy for almost all  and therefore it

converges. Since for continuous fi,..., fx it converges to the value of their product at the
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point z € R™, to deduce the general case it will suffice to show that {T,(f)}.~o converges
to the product of the f;’s in the L® norm as e — 0. (Then some subsequence will converge
to the product a.e.) Denoting by (7, f)(z) = f(x — y) the translation of f by —y, we get

1
16~ oot < o [ 1Tty = T15)

J

L=dy

K
1
= Q,en / Z HTejyfj — fillLes H | fillredy — 0
ly|<e j=1 Py

as |y| — 0 since the last integrand is a continous function of y which vanishes at the origin.
The last inequality above follows by adding and subtracting 2K — 2 suitable terms and
applying Holder’s inequality K times.
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