ON MULTILINEAR FRACTIONAL INTEGRALS

Loukas Grafakos

Yale University

ABSTRACT. In \mathbf{R}^n , we prove $L^{p_1} \times \cdots \times L^{p_K}$ boundedness for the multilinear fractional integrals $I_{\alpha}(f_1, \ldots, f_K)(x) = \int f_1(x - \theta_1 y) \ldots f_K(x - \theta_K y) |y|^{\alpha - n} dy$ where the θ_j 's are nonzero and distinct. We also prove multilinear versions of two inequalities about fractional integrals and a multilinear Lebesgue differentiation theorem.

1. Introduction. Although it is not known whether the bi(sub)linear maximal function

$$M(f,g)(x) = \sup_{N>0} \frac{1}{2N} \int_{-N}^{N} |f(x+t)g(x-t)| dt$$

or the bilinear Hilbert transform

$$H(f,g)(x) = \text{p.v.} \int f(x+t)g(x-t) \frac{dt}{t}$$

map $L^{p}(\mathbf{R}^{1}) \times L^{p'}(\mathbf{R}^{1}) \to L^{1}(\mathbf{R}^{1})$ boundedness into L^{1} for the corresponding multilinear fractional integrals can be obtained.

Throughout this note, K will denote an integer ≥ 2 and θ_j , $j = 1, \ldots, K$ will be fixed, distinct and nonzero real numbers. We are going to be working in \mathbb{R}^n and α will be a fixed real number number strictly between 0 and n. We denote by **f** the K-tuple (f_1, \ldots, f_K) and by I_{α} the K-linear fractional integral operator defined as follows:

$$I_{\alpha}(\mathbf{f})(x) = \int f_1(x - \theta_1 y) \dots f_K(x - \theta_K y) |y|^{\alpha - n} \, dy.$$

When K = 1 the operators I_{α} are the usual fractional integrals as studied in [ST]. We also denote by $M(\mathbf{f})$ the K-sublinear maximal function

$$M(\mathbf{f})(x) = \sup_{N>0} (\Omega_n N^n)^{-1} \int |f_1(x - \theta_1 y)| \dots |f_K(x - \theta_K y)| dy$$

Typeset by \mathcal{AMS} -T_EX

where Ω_n is the volume of the unit ball in \mathbb{R}^n . It is trivial to check that for any positive p_1, \ldots, p_K with harmonic mean s > 1, M maps $L^{p_1} \times \cdots \times L^{p_K}$ into L^s . If we denote by f^* the Hardy-Littlewood maximal function of f, then $M(\mathbf{f})$ is dominated by the product $C_{\theta_k}((f_1^{p_1/s})^*)^{s/p_1} \ldots ((f_1^{p_K/s})^*)^{s/p_K}$ and hence its boundedness follows from Hölder's inequality and the L^s boundedness of the Hardy-Littlewood maximal function. This argument breaks down when s = 1 but a slight modification of it gives that M maps into weak L^1 in this endpoint case. It is conceivable however that M map into L^1 since it carries K-tuples of compactly supported functions into compactly supported functions. This problem remains unresolved. The $L^p \times L^q \to L^r$ boundedness of the bilinear Hilbert transform H(f, g) is more subtle and it remains unresolved even in the case r > 1.

In this note, we study the easier problem of the multilinear fractional integrals. Our first result concerns the $L^{p_1} \times \cdots \times L^{p_K} \to L^r$ boundedness of I_{α} for $r \geq 1$.

Theorem 1. Let s be the harmonic mean of $p_1, \ldots, p_K > 1$ and let r be such that the identity $1/r + \alpha/n = 1/s$ holds. Then I_{α} maps $L^{p_1} \times \cdots \times L^{p_K}$ into L^r for $n/(n + \alpha) \leq s < n/\alpha$ (equivalently $1 \leq r < \infty$).

Note that in the case K = 1, the corresponding range of s is the smaller interval $1 < s < n/\alpha$ (equivalently $n/(n-\alpha) < r < \infty$).

When K = 1, the following theorem has been proved by Hirschman [HI] for periodic functions and by Hedberg [HE] for positive functions.

Theorem 2. Let p_j be positive real numbers and let s > 1 be their harmonic mean. Then for q, r > 1 and $0 < \theta < 1$, the following inequality is true:

$$\|I_{\alpha\theta}(\mathbf{f})\|_{L^r} \le C \|I_{\alpha}(\mathbf{f})\|_{L^q}^{\theta} \prod_k \|f_k\|_{L^{p_k}}^{1-\theta} \qquad where \qquad \frac{1}{r} = \frac{\theta}{q} + \frac{1-\theta}{s}.$$

In the endpoint case $s = n/\alpha$, Trudinger [T] for $\alpha = 1$, and Strichartz [STR] for other α proved exponential integrability of I_{α} when K = 1. Hedberg [HE] gave a simpler proof of theorem 3 below when K = 1.

By ω_{n-1} we denote the area of the unit sphere \mathbf{S}^{n-1} . The factor L in the exponent below is a normalizing factor and should be there by homogeneity.

Theorem 3. Let $s = n/\alpha$ be the harmonic mean of $p_1, \ldots, p_K > 1$. Let B be a ball of radius R in \mathbb{R}^n and let $f_j \in L^{p_j}(B)$ be supported in the ball B. Then for any $\gamma < 1$, there exists a constant $C_0(\gamma)$ depending only on n, on α , on the θ_j 's and on γ , such that the following inequality is true:

(1.1)
$$\int_{B} e^{\frac{n}{\omega_{n-1}}\gamma \left(\frac{LI_{\alpha}(f_{1},\dots,f_{K})}{\|f_{1}\|_{L^{p_{1}}\dots\|f_{K}\|_{L^{p_{K}}}}\right)^{n/(n-\alpha)}} dx \leq C_{0}(\gamma)R^{n} \quad where \quad L = \prod_{k} |\theta_{k}|^{n/p_{k}}.$$

All the comments in this paragraph refer to the case K = 1. [HMT] (for $\alpha = 1$) and later Adams [A] (for all α) showed that inequality (1.1) cannot hold if $\gamma > 1$. Moser [M] showed exponential integrability of $n\omega_{n-1}^{1/n-1} (|\phi(x)|/||\nabla\phi||_{L^n})^{n/n-1}$ suggesting that theorem 3 be true in the endpoint case $\gamma = 1$. (Use formula (18) page 125 in [ST] to show that Moser's result follows from an improved theorem 3 with $\gamma = 1$.) In fact, Adams [A] proved inequality (1.1) in the endpoint case $\gamma = 1$ and also deduced the sharp constants for Moser's exponential inequality for higher order derivatives. Chang and Marshall [CM] proved a similar sharp exponential inequality concerning the Dirichlet integral.

2. Proof of theorem 1. We denote by |B| the measure of the set B and by χ_A the characteristic function of the set A. We also use the notation s' = s/(s-1) for $s \ge 1$.

We consider first the case $s \ge 1$. We will show that I_{α} maps $L^{p_1} \times \cdots \times L^{p_K} \to L^{r,\infty}$. The required result when s > 1 is going to follow from an application of the Marcinkiewitz interpolation theorem. Without loss of generality we can assume that $f_j \ge 0$ and that $||f_j||_{L_{p_j}} = 1$. Fix a $\lambda > 0$ and define $\mu > 0$ by $L^{-1}(\frac{\omega_{n-1}}{(\alpha - n)s' + n})^{1/s'} \mu^{-n/r} = \frac{\lambda}{2}$ where ω_{n-1} and L are as in theorem 3. Hölder's inequality and our choice of μ give that

(2.1)

$$I_{\alpha}^{\infty}(\mathbf{f})(x) = \int_{|y|>\mu} f_{1}(x-\theta_{1}y)\dots f_{K}(x-\theta_{K}y)|y|^{\alpha-n} dy$$

$$\leq \|\prod f_{k}(x-\theta_{k}y)\|_{L^{s}(y)} \||y|^{\alpha-n}\chi_{|y|>\mu}\|_{L^{s'}}$$

$$\leq \prod \|f_{k}(x-\theta_{k}y)\|_{L^{p_{k}}(y)} \left(\frac{\omega_{n-1}}{(\alpha-n)s'+n}\right)^{1/s'} \mu^{n(\alpha/n-1+1/s')} = \lambda/2$$

Let $I^0_{\alpha}(\mathbf{f})(x) = \int_{|y| \le \mu} f_1(x - \theta_1 y) \dots f_K(x - \theta_K y) |y|^{\alpha - n} dy$. We compute its L^s norm:

$$\|I_{\alpha}^{0}(\mathbf{f})\|_{L^{s}} \leq \left\| \left(\int \left(\prod f_{k}\right)^{s} |y|^{\alpha-n} \chi_{|y| \leq \mu} dy \right)^{1/s} \left(\int 1^{s'} |y|^{\alpha-n} \chi_{|y| \leq \mu} dy \right)^{1/s'} \right\|_{L^{s}}$$

$$\leq C \mu^{\alpha/s'} \left(\iint \left(\prod f_{k}\right)^{s} |y|^{\alpha-n} \chi_{|y| \leq \mu} dx dy \right)^{1/s}$$

$$\leq C \mu^{\alpha/s'} \left(\prod \|f_{k}\|_{L^{p_{k}}}^{s} \int_{|y| \leq \mu} |y|^{\alpha-n} dy \right)^{1/s} = C \mu^{\alpha/s'} \mu^{\alpha/s} = C \mu^{\alpha}$$

(2.2)

By (2.1) the set $\{x : I_{\alpha}^{\infty}(\mathbf{f})(x) > \lambda/2\}$ is empty. This fact together with Chebychev's inequality and (2.2) gives us the following inequality:

$$|\{x: I_{\alpha}(\mathbf{f})(x) > \lambda\}| \le |\{x: I_{\alpha}^{0}(\mathbf{f})(x) > \lambda/2\}| \le 2^{s} \lambda^{-s} ||I_{\alpha}^{0}||_{L^{s}}^{s} \le C \lambda^{-s} \mu^{s\alpha} = C_{\theta_{k}} \lambda^{-r}$$

which is the required weak type estimate for I_{α} .

We now do the case $n/(n + \alpha) \le s \le 1$. The corresponding range of r's is $1 \le r \le n/(n - \alpha)$. Assume that K = 2 and that $p_1 \ge p_2 > 1$. Also assume that r = 1 first. Since $s < n/\alpha$ we must have that $p_2 < n/\alpha$. We get

(2.3)
$$\begin{aligned} \|I_{\alpha}(f_{1},f_{2})\|_{L^{1}} &= \iint f_{1}(x-\theta_{1}y)f_{2}(x-\theta_{2}y)|y|^{\alpha-n}dxdy\\ &= \int f_{1}(x)\int f_{2}(x-(\theta_{2}-\theta_{1})y)|y|^{\alpha-n}dy\ dx\\ &= |\theta_{2}-\theta_{1}|^{-\alpha}\int f_{1}(x)I_{\alpha}(f_{2})(x)dx \leq C_{\theta_{1},\theta_{2}}\|f_{1}\|_{L^{p_{1}}}\|I_{\alpha}(f_{2})\|_{L^{p_{1}'}}.\end{aligned}$$

Since $1 < p_2 < n/\alpha$, we can apply theorem 1, Ch. V on fractional integrals in [ST] to bound (2.3) by $C_{\theta_2,\theta_1} ||f_1||_{L^{p_1}} ||f_2||_{L^{p_2}}$. The case for a general r > 1 follows by interpolating between the endpoint case r = 1 and the case r close to ∞ . Suppose now that the theorem is true for K - 1, $K \ge 3$. We will show that it true for K. Again we first do the case r = 1. We may assume without loss of generality that $p_1 \ge \cdots \ge p_K > 1$.

$$\|I_{\alpha}(\mathbf{f})\|_{L^{1}} = \iint f_{1}(x-\theta_{1}y)\dots f_{K}(x-\theta_{K}y)|y|^{\alpha-n}dxdy$$

$$= \int f_{1}(x)\int f_{2}(x-(\theta_{2}-\theta_{1})y)\dots f_{K}(x-(\theta_{K}-\theta_{1})y)|y|^{\alpha-n}dy dx$$

$$(2.4) \qquad = \prod_{k\neq 1} |\theta_{k}-\theta_{1}|^{-\alpha}\int f_{1}(x)I_{\alpha}(f_{2},\dots,f_{K})(x)dx \leq C_{\theta_{k}}\|f_{1}\|_{L^{p_{1}}}\|I_{\alpha}(f_{2},\dots,f_{K})\|_{L^{p_{1}'}}$$

Define s_1 by $1/s_1 = 1/s - 1/p_1$. Since r = 1, we have that $1/p'_1 + \alpha/n = 1/s_1$. We can apply the induction hypothesis only if we have that $n/(n + \alpha) \leq s_1 < n/\alpha$. This inequality follows from the identity $1 + \alpha/n = 1/s$ which relates s and r = 1. From our induction hypothesis we get that (2.4) is bounded by $C_{\theta_j} \prod ||f_k||_{L^{p_k}}$ The case $r \geq 1$ follows by interpolation.

3. Proof of theorem 2.

As in the proof of theorem 1, fix $f_j \ge 0$ such that $||f_j||_{L^{p_j}} = 1$. Like [HE], split

$$\begin{split} I_{\alpha\theta}(\mathbf{f})(x) &= \int_{|y|<\delta} \prod f_k(x-\theta_k y) |y|^{\alpha\theta-n} dy + \int_{|y|\geq\delta} \prod f_k(x-\theta_k y) |y|^{\alpha\theta-n} dy \leq \\ &\sum_{m=1}^{\infty} \int_{|y|\sim\delta2^{-m}} \prod f_k(x-\theta_k y) |y|^{\alpha\theta-n} dy + \int_{|y|\geq\delta} \prod f_k(x-\theta_k y) |y|^{\alpha-n} |y|^{(\theta-1)\alpha} dy \leq \\ &\sum_{m=1}^{\infty} (\delta2^{-m})^{\alpha\theta} \int_{|y|\sim\delta2^{-m}} \prod f_k(x-\theta_k y) |y|^{-n} dy + \delta^{(\theta-1)\alpha} \int_{|y|\geq\delta} \prod f_k(x-\theta_k y) |y|^{\alpha-n} dy \end{split}$$

$$\leq C\delta^{\alpha(\theta-\epsilon)}M(\mathbf{f})(x) + \delta^{\alpha(\theta-1)}I_{\alpha}(\mathbf{f})(x).$$

Now choose $\delta = (I_{\alpha}(\mathbf{f})(x)/M(\mathbf{f})(x))^{1/\alpha}$ to get $I_{\alpha\theta}(\mathbf{f})(x) \leq C(I_{\alpha}(\mathbf{f})(x))^{\theta} (M(\mathbf{f})(x))^{1-\theta}$. Hölder's inequality with exponents $1/r = 1/(\frac{s}{1-\theta}) + 1/(\frac{q}{\theta})$ will give $||I_{\alpha\theta}(\mathbf{f})||_{L^r} \leq C||I_{\alpha}(\mathbf{f})||_{L^{q/\theta}} ||M(\mathbf{f})||_{L^{s/(1-\theta)}} = C||I_{\alpha}(\mathbf{f})||_{L^q}^{\theta} ||M(\mathbf{f})||_{L^s}^{1-\theta} \leq C||I_{\alpha}(\mathbf{f})||_{L^q}^{\theta}$ by the boundedness of the maximal function M on L^q . This concludes the proof of theorem 2.

4. Proof of theorem 3. A simple dilation argument shows that if we know theorem 3 for a specific value of $R = R_0$ with a constant $C'_0(\gamma)$ on the right hand side of (1.1), then we also know it for all other values of R with constant $C'_0(\gamma)(R/R_0)^n$. We select $R_0 = 1/P$ where $P = 2 \min |\theta_k|^{-1}$ and we will assume that the radius of B is R_0 . Furthermore, we can assume that the f_j 's satisfy $f_j \ge 0$ and $||f_j||_{L^{p_j}} = 1$. Now fix $x \in B$. The same argument as in theorem 2 with $\theta = 1$ gives that

(4.1)
$$I_{\alpha}(\mathbf{f})(x) \le C\delta^{\alpha} M(\mathbf{f})(x) + \int_{|y| \ge \delta} \prod f_k(x - \theta_k y) |y|^{\alpha - n} dy$$

Since all f_k are supported in the ball B and $x \in B$ the integral in (4.1) is over the set $\{y : \delta \leq |y| \leq PR_0 = 1\}$. Hölder's inequality with exponents p_1, \ldots, p_K and $\frac{n}{n-\alpha}$ gives

$$\int_{\delta \le |y| \le 1} \prod f_k(x - \theta_k y) |y|^{\alpha - n} dy \le$$

(4.2)

$$\prod \|f_k(x-\theta_k y)\|_{L^{p_k}(y)} \left(\int_{\delta \le |y| \le 1} |y|^{-n} dy\right)^{(n-\alpha)/n} = L^{-1} \left(\omega_{n-1} \ln \frac{1}{\delta}\right)^{(n-\alpha)/n}$$

Combining (4.1) and (4.2) we get:

(4.3)
$$I_{\alpha}(\mathbf{f})(x) \le C\delta^{\alpha} M(\mathbf{f})(x) + L^{-1} \left(\frac{\omega_{n-1}}{n} \ln\left(\frac{1}{\delta}\right)^n\right)^{(n-\alpha)/n}$$

The choice $\delta = 1$ gives $I_{\alpha}(\mathbf{f})(x) \leq CM(\mathbf{f})(x)$ for all $x \in B$ and therefore the selection $\delta = \delta(x) = \epsilon \left(I_{\alpha}(\mathbf{f})(x)(CM(\mathbf{f})(x))^{-1}\right)^{1/\alpha}$ will satisfy $\delta \leq 1$ for all $\epsilon \leq 1$. (4.3) now implies

$$I_{\alpha}(\mathbf{f})(x) \leq \epsilon^{\alpha} I_{\alpha}(\mathbf{f})(x) + L^{-1} \left(\frac{\omega_{n-1}}{n} \ln \left(\frac{(CM(\mathbf{f})(x))^{n/\alpha}}{\epsilon^{n} I_{\alpha}(\mathbf{f})(x)^{n/\alpha}} \right) \right)^{(n-\alpha)/n}$$

Algebraic manipulation of the above gives:

(4.4)
$$\frac{n}{\omega_{n-1}} \gamma \left(LI_{\alpha}(\mathbf{f})(x) \right)^{n/(n-\alpha)} \leq \ln \left(\frac{(CM(\mathbf{f})(x))^{n/\alpha}}{\epsilon^{n} I_{\alpha}(\mathbf{f})(x)^{n/\alpha}} \right)$$

where we set $\gamma = (1 - \epsilon^{\alpha})^{n/(n-\alpha)}$. We exponentiate (4.4) and we integrate over the set $B_1 = \{x \in B : I_{\alpha}(\mathbf{f})(x) \ge 1\}$ to obtain

$$\int_{B_1} e^{\frac{n}{\omega_{n-1}}\gamma \left(LI_{\alpha}(\mathbf{f})(x)\right)^{n/(n-\alpha)}} dx \le \frac{1}{\epsilon^n} \int_{B_1} \frac{(CM(\mathbf{f})(x))^{n/\alpha}}{I_{\alpha}(\mathbf{f})(x)^{n/\alpha}} dx \le \frac{C_1}{\epsilon^n} \int M(\mathbf{f})(x)^{n/\alpha} dx \le \frac{C_2}{\epsilon^n}.$$

The last inequality follows from the boundedness of the maximal function of \mathbf{f} on $L^{n/\alpha}$. The integral of the same exponential over the set $B_2 = B - B_1$ is estimated trivially by

$$\int_{B_2} e^{\frac{n}{\omega_{n-1}}\gamma\left(LI_{\alpha}(\mathbf{f})(x)\right)^{n/(n-\alpha)}} dx \le e^{\frac{n}{\omega_{n-1}}L^{n/(n-\alpha)}} |B_2| \le C_3 \Omega_n R_0^n = C_4.$$

Adding the integrals above over B_1 and B_2 we obtain the required inequality with a constant $C'_0(\gamma) = \max(C_2, C_4)(1 + (1 - \gamma^{(n-\alpha)/n})^{-n/\alpha})$. The constant $C_0(\gamma)$ in the statement of theorem 3 is then $C'_0(\gamma)R_0^{-n} = C'_0(\gamma)P^n$.

We obtain the following

Corollary. Let B, f_k , p_k , and s as in theorem 3. Then $I_{\alpha}(f_1, \ldots, f_K)$ is in $L^q(B)$ for every q > 0. In fact the following inequality is true:

$$||I_{\alpha}(f_1,\ldots,f_K)||_{L^q(B)} \le C \prod_k ||f_k||_{L^{p_k}}$$

for some constant C depending only on q on n on α and on the θ_j 's.

The corollary follows since exponential integrability of I_{α} implies integrability to any power q. (Here γ is fixed < 1.)

5. A multilinear differentiation theorem.

We end this note by proving the following multilinear Lebesgue differentiation theorem. Let $f_j \in L^{p_j}(\mathbf{R}^n)$ and suppose that their harmonic mean is $s \ge 1$. Then

$$\lim_{\epsilon \to 0} T_{\epsilon}(\mathbf{f})(x) = \lim_{\epsilon \to 0} \frac{1}{\Omega_n \epsilon^n} \int_{|y| \le \epsilon} f_1(x - \theta_1 y) \dots f_K(x - \theta_K y) dy = f_1(x) \dots f_K(x) \quad \text{a.e.}$$

The case s = 1 is a consequence of the weak type inequality $|\{x \in \mathbf{R}^n : M(\mathbf{f})(x) > \lambda\}| \leq \frac{C}{\lambda} ||f_1||_{L^{p_1}} \dots ||f_1||_{L^{p_K}}$ which is easily obtained from $|\{x \in \mathbf{R}^n : M(\mathbf{f})(x) > \lambda\}| \leq \sum_{j=1}^{K} |\{x \in \mathbf{R}^n : (f_j)^*(x) > (\epsilon_{j-1}/\epsilon_j)^{p_j}\}| \leq C \sum_{j=1}^{K} (\epsilon_{j-1}/\epsilon_j)^{-p_j} ||f_j||_{L^{p_j}}$ after minimizing over all $\epsilon_1, \dots, \epsilon_K > 0$. (Take $\epsilon_0 = \lambda$.) The standard argument presented in [SWE], page 61, will prove that the sequence $\{T_{\epsilon}(\mathbf{f})(x)\}_{\epsilon>0}$ is Cauchy for almost all x and therefore it converges. Since for continuous f_1, \dots, f_K it converges to the value of their product at the

point $x \in \mathbf{R}^n$, to deduce the general case it will suffice to show that $\{T_{\epsilon}(\mathbf{f})\}_{\epsilon>0}$ converges to the product of the f_j 's in the L^s norm as $\epsilon \to 0$. (Then some subsequence will converge to the product a.e.) Denoting by $(\tau_y f)(x) = f(x-y)$ the translation of f by -y, we get

$$\begin{aligned} \|T_{\epsilon}(\mathbf{f}) - f_1 \dots f_K\|_{L^s} &\leq \frac{1}{\Omega_n \epsilon^n} \int_{|y| \leq \epsilon} \|\prod_j \tau_{\theta_j y} f_j - \prod_j f_j\|_{L^s} dy \\ &\leq \frac{1}{\Omega_n \epsilon^n} \int_{|y| \leq \epsilon} \sum_{j=1}^K \|\tau_{\theta_j y} f_j - f_j\|_{L^{p_j}} \prod_{k \neq j} \|f_j\|_{L^{p_k}} dy \to 0 \end{aligned}$$

as $|y| \to 0$ since the last integrand is a continuus function of y which vanishes at the origin. The last inequality above follows by adding and subtracting 2K - 2 suitable terms and applying Hölder's inequality K times.

REFERENCES

- [A] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128 (1988), 385-398.
- [CM] S.-Y. A. Chang and D. E. Marshall, On a sharp inequality concerning the Dirichlet integral, Amer. J. Math. 107 (1985), 1015-1033.
- [CG] R. R. Coifman and L. Grafakos, *Hardy space estimates for multilinear operators I*, to appear in Revista Matematica Iberoamericana.
 - [G] L. Grafakos, *Hardy space estimates for multilinear operators II*, to appear in Revista Matematica Iberoamericana.
- [HI] I. I. Hirschman Jr., A convexity theorem for certain groups of transformations, J. Analyse Math. 2 (1953), 209-218.
- [HE] L. I. Hedberg, On certain Convolution Inequalities, Proceedings of the AMS, 36 (1972), 505-510.
- [HMT] J. A. Hempel, G. R. Morris and N. S. Trudinger, On the sharpness of a limiting case of the Sobolev embedding theorem, Bull. Austr. Math. Soc. 3 (1970), 369-373.
 - [M] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
 - [ST] E. M. Stein, Singular Integrals and Differentiablity Properties of Functions, Princeton Univ. Press, Princeton, NJ 1970.
- [SWE] E. M. Stein and G. Weiss, An introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ 1971.
- [STR] R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842.
 - [T] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.

Department of Mathematics, Yale University, Box 2155 Yale Station, New Haven, CT $06520\mathchar`-2155$