ON MULTILINEAR FRACTIONAL INTEGRALS

Loukas Grafakos
Yale University

Abstract

In \mathbf{R}^{n}, we prove $L^{p_{1}} \times \cdots \times L^{p_{K}}$ boundedness for the multilinear fractional integrals $I_{\alpha}\left(f_{1}, \ldots, f_{K}\right)(x)=\int f_{1}\left(x-\theta_{1} y\right) \ldots f_{K}\left(x-\theta_{K} y\right)|y|^{\alpha-n} d y$ where the θ_{j} 's are nonzero and distinct. We also prove multilinear versions of two inequalities about fractional integrals and a multilinear Lebesgue differentiation theorem.

1. Introduction. Although it is not known whether the bi(sub)linear maximal function

$$
M(f, g)(x)=\sup _{N>0} \frac{1}{2 N} \int_{-N}^{N}|f(x+t) g(x-t)| d t
$$

or the bilinear Hilbert transform

$$
H(f, g)(x)=\text { p.v. } \int f(x+t) g(x-t) \frac{d t}{t}
$$

$\operatorname{map} L^{p}\left(\mathbf{R}^{1}\right) \times L^{p^{\prime}}\left(\mathbf{R}^{1}\right) \rightarrow L^{1}\left(\mathbf{R}^{1}\right)$ boundedness into L^{1} for the correspoding multilinear fractional integrals can be obtained.

Throughout this note, K will denote an integer ≥ 2 and $\theta_{j}, j=1, \ldots, K$ will be fixed, distinct and nonzero real numbers. We are going to be working in \mathbf{R}^{n} and α will be a fixed real number number stricly between 0 and n. We denote by \mathbf{f} the K-tuple $\left(f_{1}, \ldots, f_{K}\right)$ and by I_{α} the K-linear fractional integral operator defined as follows:

$$
I_{\alpha}(\mathbf{f})(x)=\int f_{1}\left(x-\theta_{1} y\right) \ldots f_{K}\left(x-\theta_{K} y\right)|y|^{\alpha-n} d y
$$

When $K=1$ the operators I_{α} are the usual fractional integrals as studied in [ST]. We also denote by $M(\mathbf{f})$ the K-sublinear maximal function

$$
M(\mathbf{f})(x)=\sup _{N>0}\left(\Omega_{n} N^{n}\right)^{-1} \int\left|f_{1}\left(x-\theta_{1} y\right)\right| \ldots\left|f_{K}\left(x-\theta_{K} y\right)\right| d y
$$

where Ω_{n} is the volume of the unit ball in \mathbf{R}^{n}. It is trivial to check that for any positive p_{1}, \ldots, p_{K} with harmonic mean $s>1, M$ maps $L^{p_{1}} \times \cdots \times L^{p_{K}}$ into L^{s}. If we denote by f^{*} the Hardy-Littlewood maximal function of f, then $M(\mathbf{f})$ is dominated by the product $C_{\theta_{k}}\left(\left(f_{1}^{p_{1} / s}\right)^{*}\right)^{s / p_{1}} \ldots\left(\left(f_{1}^{p_{K} / s}\right)^{*}\right)^{s / p_{K}}$ and hence its boundedness follows from Hölder's inequality and the L^{s} boundedness of the Hardy-Littlewood maximal function. This argument breaks down when $s=1$ but a slight modification of it gives that M maps into weak L^{1} in this endpoint case. It is conceivable however that M map into L^{1} since it carries K-tuples of compactly supported functions into compactly supported functions. This problem remains unresolved. The $L^{p} \times L^{q} \rightarrow L^{r}$ boundedness of the bilinear Hilbert transform $H(f, g)$ is more subtle and it remains unresolved even in the case $r>1$.

In this note, we study the easier problem of the multilinear fractional integrals. Our first result concerns the $L^{p_{1}} \times \cdots \times L^{p_{K}} \rightarrow L^{r}$ boundedness of I_{α} for $r \geq 1$.

Theorem 1. Let s be the harmonic mean of $p_{1}, \ldots, p_{K}>1$ and let r be such that the identity $1 / r+\alpha / n=1 / s$ holds. Then I_{α} maps $L^{p_{1}} \times \cdots \times L^{p_{K}}$ into L^{r} for $n /(n+\alpha) \leq$ $s<n / \alpha$ (equivalently $1 \leq r<\infty$).

Note that in the case $K=1$, the corresponding range of s is the smaller interval $1<s<n / \alpha$ (equivalently $n /(n-\alpha)<r<\infty)$.

When $K=1$, the following theorem has been proved by Hirschman [HI] for periodic functions and by Hedberg [HE] for positive functions.

Theorem 2. Let p_{j} be positive real numbers and let $s>1$ be their harmonic mean. Then for $q, r>1$ and $0<\theta<1$, the following inequality is true:

$$
\left\|I_{\alpha \theta}(\mathbf{f})\right\|_{L^{r}} \leq C\left\|I_{\alpha}(\mathbf{f})\right\|_{L^{q}}^{\theta} \prod_{k}\left\|f_{k}\right\|_{L^{p_{k}}}^{1-\theta} \quad \text { where } \quad \frac{1}{r}=\frac{\theta}{q}+\frac{1-\theta}{s}
$$

In the endpoint case $s=n / \alpha$, Trudinger [T] for $\alpha=1$, and Strichartz [STR] for other α proved exponential integrability of I_{α} when $K=1$. Hedberg [HE] gave a simpler proof of theorem 3 below when $K=1$.

By ω_{n-1} we denote the area of the unit sphere \mathbf{S}^{n-1}. The factor L in the exponent below is a normalizing factor and should be there by homogeneity.

Theorem 3. Let $s=n / \alpha$ be the harmonic mean of $p_{1}, \ldots, p_{K}>1$. Let B be a ball of radius R in \mathbf{R}^{n} and let $f_{j} \in L^{p_{j}}(B)$ be supported in the ball B. Then for any $\gamma<1$, there exists a constant $C_{0}(\gamma)$ depending only on n, on α, on the θ_{j} 's and on γ, such that the following inequality is true:

$$
\begin{equation*}
\left.\int_{B} e^{\frac{n}{\omega_{n-1}} \gamma\left(\frac{L I_{\alpha}\left(f_{1}, \ldots, f_{K}\right)}{\left\|f_{1}\right\|_{L^{p}} \ldots \ldots f_{K} \|_{L^{p}}}\right.}\right)^{n /(n-\alpha)} d x \leq C_{0}(\gamma) R^{n} \quad \text { where } \quad L=\prod_{k}\left|\theta_{k}\right|^{n / p_{k}} \tag{1.1}
\end{equation*}
$$

All the comments in this paragraph refer to the case $K=1$. [HMT] (for $\alpha=1$) and later Adams [A] (for all α) showed that inequality (1.1) cannot hold if $\gamma>1$. Moser [M] showed exponential integrability of $n \omega_{n-1}^{1 / n-1}\left(|\phi(x)| /\|\nabla \phi\|_{L^{n}}\right)^{n / n-1}$ suggesting that theorem 3 be true in the endpoint case $\gamma=1$. (Use formula (18) page 125 in [ST] to show that Moser's result follows from an improved theorem 3 with $\gamma=1$.) In fact, Adams [A] proved inequality (1.1) in the endpoint case $\gamma=1$ and also deduced the sharp constants for Moser's exponential inequality for higher order derivatives. Chang and Marshall [CM] proved a similar sharp exponential inequality concerning the Dirichlet integral.
2. Proof of theorem 1. We denote by $|B|$ the measure of the set B and by χ_{A} the characteristic function of the set A. We also use the notation $s^{\prime}=s /(s-1)$ for $s \geq 1$.

We consider first the case $s \geq 1$. We will show that I_{α} maps $L^{p_{1}} \times \cdots \times L^{p_{K}} \rightarrow L^{r, \infty}$. The required result when $s>1$ is going to follow from an application of the Marcinkiewitz interpolation theorem. Without loss of generality we can assume that $f_{j} \geq 0$ and that $\left\|f_{j}\right\|_{L_{p_{j}}}=1$. Fix a $\lambda>0$ and define $\mu>0$ by $L^{-1}\left(\frac{\omega_{n-1}}{(\alpha-n) s^{\prime}+n}\right)^{1 / s^{\prime}} \mu^{-n / r}=\frac{\lambda}{2}$ where ω_{n-1} and L are as in theorem 3. Hölder's inequality and our choice of μ give that

$$
\begin{align*}
I_{\alpha}^{\infty}(\mathbf{f})(x) & =\int_{|y|>\mu} f_{1}\left(x-\theta_{1} y\right) \ldots f_{K}\left(x-\theta_{K} y\right)|y|^{\alpha-n} d y \\
& \leq\left\|\prod f_{k}\left(x-\theta_{k} y\right)\right\|_{L^{s}(y)}\left\||y|^{\alpha-n} \chi_{|y|>\mu}\right\|_{L^{s^{\prime}}} \\
& \leq \prod\left\|f_{k}\left(x-\theta_{k} y\right)\right\|_{L^{p_{k}}(y)}\left(\frac{\omega_{n-1}}{(\alpha-n) s^{\prime}+n}\right)^{1 / s^{\prime}} \mu^{n\left(\alpha / n-1+1 / s^{\prime}\right)}=\lambda / 2 \tag{2.1}
\end{align*}
$$

Let $I_{\alpha}^{0}(\mathbf{f})(x)=\int_{|y| \leq \mu} f_{1}\left(x-\theta_{1} y\right) \ldots f_{K}\left(x-\theta_{K} y\right)|y|^{\alpha-n} d y$. We compute its L^{s} norm:

$$
\begin{align*}
\left\|I_{\alpha}^{0}(\mathbf{f})\right\|_{L^{s}} & \leq\left\|\left(\int\left(\prod f_{k}\right)^{s}|y|^{\alpha-n} \chi_{|y| \leq \mu} d y\right)^{1 / s}\left(\int 1^{s^{\prime}}|y|^{\alpha-n} \chi_{|y| \leq \mu} d y\right)^{1 / s^{\prime}}\right\|_{L^{s}} \\
& \leq C \mu^{\alpha / s^{\prime}}\left(\iint\left(\prod f_{k}\right)^{s}|y|^{\alpha-n} \chi_{|y| \leq \mu} d x d y\right)^{1 / s} \\
& \leq C \mu^{\alpha / s^{\prime}}\left(\prod\left\|f_{k}\right\|_{L^{p_{k}}}^{s} \int_{|y| \leq \mu}|y|^{\alpha-n} d y\right)^{1 / s}=C \mu^{\alpha / s^{\prime}} \mu^{\alpha / s}=C \mu^{\alpha} \tag{2.2}
\end{align*}
$$

By (2.1) the set $\left\{x: I_{\alpha}^{\infty}(\mathbf{f})(x)>\lambda / 2\right\}$ is empty. This fact together with Chebychev's inequality and (2.2) gives us the following inequality:

$$
\left|\left\{x: I_{\alpha}(\mathbf{f})(x)>\lambda\right\}\right| \leq\left|\left\{x: I_{\alpha}^{0}(\mathbf{f})(x)>\lambda / 2\right\}\right| \leq 2^{s} \lambda^{-s}\left\|I_{\alpha}^{0}\right\|_{L^{s}}^{s} \leq C \lambda^{-s} \mu^{s \alpha}=C_{\theta_{k}} \lambda^{-r}
$$

which is the required weak type estimate for I_{α}.

We now do the case $n /(n+\alpha) \leq s \leq 1$. The corresponding range of r 's is $1 \leq r \leq$ $n /(n-\alpha)$. Assume that $K=2$ and that $p_{1} \geq p_{2}>1$. Also assume that $r=1$ first. Since $s<n / \alpha$ we must have that $p_{2}<n / \alpha$. We get

$$
\begin{align*}
\left\|I_{\alpha}\left(f_{1}, f_{2}\right)\right\|_{L^{1}} & =\iint f_{1}\left(x-\theta_{1} y\right) f_{2}\left(x-\theta_{2} y\right)|y|^{\alpha-n} d x d y \\
& =\int f_{1}(x) \int f_{2}\left(x-\left(\theta_{2}-\theta_{1}\right) y\right)|y|^{\alpha-n} d y d x \\
& =\left|\theta_{2}-\theta_{1}\right|^{-\alpha} \int f_{1}(x) I_{\alpha}\left(f_{2}\right)(x) d x \leq C_{\theta_{1}, \theta_{2}}\left\|f_{1}\right\|_{L^{p_{1}}}\left\|I_{\alpha}\left(f_{2}\right)\right\|_{L^{p_{1}^{\prime}}} . \tag{2.3}
\end{align*}
$$

Since $1<p_{2}<n / \alpha$, we can apply theorem 1 , Ch . V on fractional integrals in [ST] to bound (2.3) by $C_{\theta_{2}, \theta_{1}}\left\|f_{1}\right\|_{L^{p_{1}}}\left\|f_{2}\right\|_{L^{p_{2}}}$. The case for a general $r>1$ follows by interpolating between the endpoint case $r=1$ and the case r close to ∞. Suppose now that the theorem is true for $K-1, K \geq 3$. We will show that it true for K. Again we first do the case $r=1$. We may assume without loss of generality that $p_{1} \geq \cdots \geq p_{K}>1$.

$$
\begin{aligned}
\left\|I_{\alpha}(\mathbf{f})\right\|_{L^{1}} & =\iint f_{1}\left(x-\theta_{1} y\right) \ldots f_{K}\left(x-\theta_{K} y\right)|y|^{\alpha-n} d x d y \\
& =\int f_{1}(x) \int f_{2}\left(x-\left(\theta_{2}-\theta_{1}\right) y\right) \ldots f_{K}\left(x-\left(\theta_{K}-\theta_{1}\right) y\right)|y|^{\alpha-n} d y d x \\
(2.4) & =\prod_{k \neq 1}\left|\theta_{k}-\theta_{1}\right|^{-\alpha} \int f_{1}(x) I_{\alpha}\left(f_{2}, \ldots, f_{K}\right)(x) d x \leq C_{\theta_{k}}\left\|f_{1}\right\|_{L^{p_{1}}}\left\|I_{\alpha}\left(f_{2}, \ldots, f_{K}\right)\right\|_{L^{p_{1}^{\prime}}}
\end{aligned}
$$

Define s_{1} by $1 / s_{1}=1 / s-1 / p_{1}$. Since $r=1$, we have that $1 / p_{1}^{\prime}+\alpha / n=1 / s_{1}$. We can apply the induction hypothesis only if we have that $n /(n+\alpha) \leq s_{1}<n / \alpha$. This inequality follows from the identity $1+\alpha / n=1 / s$ which relates s and $r=1$. From our induction hypothesis we get that (2.4) is bounded by $C_{\theta_{j}} \Pi\left\|f_{k}\right\|_{L^{p_{k}}}$ The case $r \geq 1$ follows by interpolation.

3. Proof of theorem 2.

As in the proof of theorem 1 , fix $f_{j} \geq 0$ such that $\left\|f_{j}\right\|_{L^{p_{j}}}=1$. Like [HE], split

$$
\begin{aligned}
& I_{\alpha \theta}(\mathbf{f})(x)=\int_{|y|<\delta} \prod f_{k}\left(x-\theta_{k} y\right)|y|^{\alpha \theta-n} d y+\int_{|y| \geq \delta} \prod f_{k}\left(x-\theta_{k} y\right)|y|^{\alpha \theta-n} d y \leq \\
& \sum_{m=1}^{\infty} \int_{|y| \sim \delta 2^{-m}} \prod f_{k}\left(x-\theta_{k} y\right)|y|^{\alpha \theta-n} d y+\int_{|y| \geq \delta} \prod f_{k}\left(x-\theta_{k} y\right)|y|^{\alpha-n}|y|^{(\theta-1) \alpha} d y \leq \\
& \sum_{m=1}^{\infty}\left(\delta 2^{-m}\right)^{\alpha \theta} \int_{|y| \sim \delta 2^{-m}} \prod f_{k}\left(x-\theta_{k} y\right)|y|^{-n} d y+\delta^{(\theta-1) \alpha} \int_{|y| \geq \delta} \prod f_{k}\left(x-\theta_{k} y\right)|y|^{\alpha-n} d y
\end{aligned}
$$

$$
\leq C \delta^{\alpha(\theta-\epsilon)} M(\mathbf{f})(x)+\delta^{\alpha(\theta-1)} I_{\alpha}(\mathbf{f})(x)
$$

Now choose $\delta=\left(I_{\alpha}(\mathbf{f})(x) / M(\mathbf{f})(x)\right)^{1 / \alpha}$ to get $I_{\alpha \theta}(\mathbf{f})(x) \leq C\left(I_{\alpha}(\mathbf{f})(x)\right)^{\theta}(M(\mathbf{f})(x))^{1-\theta}$. Hölder's inequality with exponents $1 / r=1 /\left(\frac{s}{1-\theta}\right)+1 /\left(\frac{q}{\theta}\right)$ will give $\left\|I_{\alpha \theta}(\mathbf{f})\right\|_{L^{r}} \leq$ $C\left\|I_{\alpha}^{\theta}(\mathbf{f})\right\|_{L^{q / \theta}}\|M(\mathbf{f})\|_{L^{s /(1-\theta)}}=C\left\|I_{\alpha}(\mathbf{f})\right\|_{L^{q}}^{\theta}\|M(\mathbf{f})\|_{L^{s}}^{1-\theta} \leq C\left\|I_{\alpha}(\mathbf{f})\right\|_{L^{q}}^{\theta}$ by the boundedness of the maximal function M on L^{q}. This concludes the proof of theorem 2.
4. Proof of theorem 3. A simple dilation argument shows that if we know theorem 3 for a specific value of $R=R_{0}$ with a constant $C_{0}^{\prime}(\gamma)$ on the right hand side of (1.1), then we also know it for all other values of R with constant $C_{0}^{\prime}(\gamma)\left(R / R_{0}\right)^{n}$. We select $R_{0}=1 / P$ where $P=2 \min \left|\theta_{k}\right|^{-1}$ and we will assume that the radius of B is R_{0}. Furthermore, we can assume that the f_{j} 's satisfy $f_{j} \geq 0$ and $\left\|f_{j}\right\|_{L^{p_{j}}}=1$. Now fix $x \in B$. The same argument as in theorem 2 with $\theta=1$ gives that

$$
\begin{equation*}
I_{\alpha}(\mathbf{f})(x) \leq C \delta^{\alpha} M(\mathbf{f})(x)+\int_{|y| \geq \delta} \prod f_{k}\left(x-\theta_{k} y\right)|y|^{\alpha-n} d y \tag{4.1}
\end{equation*}
$$

Since all f_{k} are supported in the ball B and $x \in B$ the integral in (4.1) is over the set $\left\{y: \delta \leq|y| \leq P R_{0}=1\right\}$. Hölder's inequality with exponents p_{1}, \ldots, p_{K} and $\frac{n}{n-\alpha}$ gives

$$
\begin{equation*}
\prod\left\|f_{k}\left(x-\theta_{k} y\right)\right\|_{L^{p_{k}}(y)}\left(\int_{\delta \leq|y| \leq 1}|y|^{-n} d y\right)^{(n-\alpha) / n}=L^{-1}\left(\omega_{n-1} \ln \frac{1}{\delta}\right)^{(n-\alpha) / n} \tag{4.2}
\end{equation*}
$$

Combining (4.1) and (4.2) we get:

$$
\begin{equation*}
I_{\alpha}(\mathbf{f})(x) \leq C \delta^{\alpha} M(\mathbf{f})(x)+L^{-1}\left(\frac{\omega_{n-1}}{n} \ln \left(\frac{1}{\delta}\right)^{n}\right)^{(n-\alpha) / n} \tag{4.3}
\end{equation*}
$$

The choice $\delta=1$ gives $I_{\alpha}(\mathbf{f})(x) \leq C M(\mathbf{f})(x)$ for all $x \in B$ and therefore the selection $\delta=\delta(x)=\epsilon\left(I_{\alpha}(\mathbf{f})(x)(C M(\mathbf{f})(x))^{-1}\right)^{1 / \alpha}$ will satisfy $\delta \leq 1$ for all $\epsilon \leq 1$. (4.3) now implies

$$
I_{\alpha}(\mathbf{f})(x) \leq \epsilon^{\alpha} I_{\alpha}(\mathbf{f})(x)+L^{-1}\left(\frac{\omega_{n-1}}{n} \ln \left(\frac{(C M(\mathbf{f})(x))^{n / \alpha}}{\epsilon^{n} I_{\alpha}(\mathbf{f})(x)^{n / \alpha}}\right)\right)^{(n-\alpha) / n}
$$

Algebraic manipulation of the above gives:

$$
\begin{equation*}
\frac{n}{\omega_{n-1}} \gamma\left(L I_{\alpha}(\mathbf{f})(x)\right)^{n /(n-\alpha)} \leq \ln \left(\frac{(C M(\mathbf{f})(x))^{n / \alpha}}{\epsilon^{n} I_{\alpha}(\mathbf{f})(x)^{n / \alpha}}\right) \tag{4.4}
\end{equation*}
$$

where we set $\gamma=\left(1-\epsilon^{\alpha}\right)^{n /(n-\alpha)}$. We exponentiate (4.4) and we integrate over the set $B_{1}=\left\{x \in B: I_{\alpha}(\mathbf{f})(x) \geq 1\right\}$ to obtain

$$
\int_{B_{1}} e^{\frac{n}{\omega_{n-1}} \gamma\left(L I_{\alpha}(\mathbf{f})(x)\right)^{n /(n-\alpha)}} d x \leq \frac{1}{\epsilon^{n}} \int_{B_{1}} \frac{(C M(\mathbf{f})(x))^{n / \alpha}}{I_{\alpha}(\mathbf{f})(x)^{n / \alpha}} d x \leq \frac{C_{1}}{\epsilon^{n}} \int M(\mathbf{f})(x)^{n / \alpha} d x \leq \frac{C_{2}}{\epsilon^{n}}
$$

The last inequality follows from the boundedness of the maximal function of \mathbf{f} on $L^{n / \alpha}$. The integral of the same exponential over the set $B_{2}=B-B_{1}$ is estimated trivially by

$$
\int_{B_{2}} e^{\frac{n}{\omega_{n-1}} \gamma\left(L I_{\alpha}(\mathbf{f})(x)\right)^{n /(n-\alpha)}} d x \leq e^{\frac{n}{\omega n-1} L^{n /(n-\alpha)}}\left|B_{2}\right| \leq C_{3} \Omega_{n} R_{0}^{n}=C_{4}
$$

Adding the integrals above over B_{1} and B_{2} we obtain the required inequality with a constant $C_{0}^{\prime}(\gamma)=\max \left(C_{2}, C_{4}\right)\left(1+\left(1-\gamma^{(n-\alpha) / n}\right)^{-n / \alpha}\right)$. The constant $C_{0}(\gamma)$ in the statement of theorem 3 is then $C_{0}^{\prime}(\gamma) R_{0}^{-n}=C_{0}^{\prime}(\gamma) P^{n}$.

We obtain the following
Corollary. Let B, f_{k}, p_{k}, and s as in theorem 3. Then $I_{\alpha}\left(f_{1}, \ldots, f_{K}\right)$ is in $L^{q}(B)$ for every $q>0$. In fact the following inequality is true:

$$
\left\|I_{\alpha}\left(f_{1}, \ldots, f_{K}\right)\right\|_{L^{q}(B)} \leq C \prod_{k}\left\|f_{k}\right\|_{L^{p_{k}}}
$$

for some constant C depending only on q on n on α and on the θ_{j} 's.
The corollary follows since exponential integrability of I_{α} implies integrability to any power q. (Here γ is fixed <1.)

5. A multilinear differentiation theorem.

We end this note by proving the following multilinear Lebesgue differentiation theorem. Let $f_{j} \in L^{p_{j}}\left(\mathbf{R}^{n}\right)$ and suppose that their harmonic mean is $s \geq 1$. Then

$$
\lim _{\epsilon \rightarrow 0} T_{\epsilon}(\mathbf{f})(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{\Omega_{n} \epsilon^{n}} \int_{|y| \leq \epsilon} f_{1}\left(x-\theta_{1} y\right) \ldots f_{K}\left(x-\theta_{K} y\right) d y=f_{1}(x) \ldots f_{K}(x) \quad \text { a.e. }
$$

The case $s=1$ is a consequence of the weak type inequality $\mid\left\{x \in \mathbf{R}^{n}: M(\mathbf{f})(x)>\right.$ $\lambda\} \left\lvert\, \leq \frac{C}{\lambda}\left\|f_{1}\right\|_{L^{p_{1}}} \ldots\left\|f_{1}\right\|_{L^{p_{K}}}\right.$ which is easily obtained from $\left|\left\{x \in \mathbf{R}^{n}: M(\mathbf{f})(x)>\lambda\right\}\right| \leq$ $\sum_{j=1}^{K}\left|\left\{x \in \mathbf{R}^{n}:\left(f_{j}\right)^{*}(x)>\left(\epsilon_{j-1} / \epsilon_{j}\right)^{p_{j}}\right\}\right| \leq C \sum_{j=1}^{K}\left(\epsilon_{j-1} / \epsilon_{j}\right)^{-p_{j}}\left\|f_{j}\right\|_{L^{p_{j}}}$ after minimizing over all $\epsilon_{1}, \ldots, \epsilon_{K}>0$. (Take $\epsilon_{0}=\lambda$.) The standard argument presented in [SWE], page 61, will prove that the sequence $\left\{T_{\epsilon}(\mathbf{f})(x)\right\}_{\epsilon>0}$ is Cauchy for almost all x and therefore it converges. Since for continuous f_{1}, \ldots, f_{K} it converges to the value of their product at the
point $x \in \mathbf{R}^{n}$, to deduce the general case it will suffice to show that $\left\{T_{\epsilon}(\mathbf{f})\right\}_{\epsilon>0}$ converges to the product of the f_{j} 's in the L^{s} norm as $\epsilon \rightarrow 0$. (Then some subsequence will converge to the product a.e.) Denoting by $\left(\tau_{y} f\right)(x)=f(x-y)$ the translation of f by $-y$, we get

$$
\begin{gathered}
\left\|T_{\epsilon}(\mathbf{f})-f_{1} \ldots f_{K}\right\|_{L^{s}} \leq \frac{1}{\Omega_{n} \epsilon^{n}} \int_{|y| \leq \epsilon}\left\|\prod_{j} \tau_{\theta_{j} y} f_{j}-\prod_{j} f_{j}\right\|_{L^{s}} d y \\
\quad \leq \frac{1}{\Omega_{n} \epsilon^{n}} \int_{|y| \leq \epsilon} \sum_{j=1}^{K}\left\|\tau_{\theta_{j} y} f_{j}-f_{j}\right\|_{L^{p_{j}}} \prod_{k \neq j}\left\|f_{j}\right\|_{L^{p_{k}}} d y \rightarrow 0
\end{gathered}
$$

as $|y| \rightarrow 0$ since the last integrand is a continous function of y which vanishes at the origin. The last inequality above follows by adding and subtracting $2 K-2$ suitable terms and applying Hölder's inequality K times.

REFERENCES

[A] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128 (1988), 385-398.
[CM] S.-Y. A. Chang and D. E. Marshall, On a sharp inequality concerning the Dirichlet integral, Amer. J. Math. 107 (1985), 1015-1033.
[CG] R. R. Coifman and L. Grafakos, Hardy space estimates for multilinear operators I, to appear in Revista Matematica Iberoamericana.
[G] L. Grafakos, Hardy space estimates for multilinear operators II, to appear in Revista Matematica Iberoamericana.
[HI] I. I. Hirschman Jr., A convexity theorem for certain groups of transformations, J. Analyse Math. 2 (1953), 209-218.
[HE] L. I. Hedberg, On certain Convolution Inequalities, Proceedings of the AMS, 36 (1972), 505-510.
[HMT] J. A. Hempel, G. R. Morris and N. S. Trudinger, On the sharpness of a limiting case of the Sobolev embedding theorem, Bull. Austr. Math. Soc. 3 (1970), 369-373.
[M] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
[ST] E. M. Stein, Singular Integrals and Differentiablity Properties of Functions, Princeton Univ. Press, Princeton, NJ 1970.
[SWE] E. M. Stein and G. Weiss, An introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ 1971.
[STR] R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842.
[T] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.

Department of Mathematics, Yale University, Box 2155 Yale Station, New Haven, Ct 06520-2155

