MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

LOUKAS GRAFAKOS AND TERENCE TAO

Abstract

Multilinear interpolation is a powerful tool used in obtaining strong type boundedness for a variety of operators assuming only a finite set of restricted weak-type estimates. A typical situation occurs when one knows that a multilinear operator satisfies a weak L^{q} estimate for a single index q (which may be less than one) and that all the adjoints of the multilinear operator are of similar nature, and thus they also satisfy the same weak L^{q} estimate. Under this assumption, in this expository note we give a general multilinear interpolation theorem which allows one to obtain strong type boundedness for the operator (and all of its adjoints) for a large set of exponents. The key point in the applications we discuss is that the interpolation theorem can handle the case $q \leq 1$. When $q>1$, weak L^{q} has a predual, and such strong type boundedness can be easily obtained by duality and multilinear interpolation (c.f. [1], [5], [7], [12], [14]).

1. Multilinear operators

We begin by setting up some notation for multilinear operators. Let $m \geq 1$ be an integer. We suppose that for $0 \leq j \leq m,\left(X_{j}, \mu_{j}\right)$ are measure spaces endowed with positive measures μ_{j}. We assume that T is an m-linear operator of the form

$$
T\left(f_{1}, \ldots, f_{m}\right)\left(x_{0}\right):=\int \ldots \int K\left(x_{0}, \ldots, x_{m}\right) \prod_{i=1}^{m} f_{i}\left(x_{i}\right) d \mu_{i}\left(x_{i}\right)
$$

where K is a complex-valued locally integrable function on $X_{0} \times \ldots \times X_{m}$ and f_{j} are simple functions on X_{j}. We shall make the technical assumption that K is bounded and is supported on a product set $Y_{0} \times \ldots \times Y_{m}$ where each $Y_{j} \subseteq X_{j}$ has finite measure. Of course, most interesting operators (e.g. multilinear singular integral operators) do not obey this condition, but in practice one can truncate and/or mollify the kernel of a singular integral to obey this condition, apply the multilinear interpolation theorem to the truncated operator, and use a standard limiting argument to recover estimates for the untruncated operator.

One can rewrite T more symmetrically as an $m+1$-linear form Λ defined by

$$
\Lambda\left(f_{0}, f_{1}, \ldots, f_{m}\right):=\int \ldots \int K\left(x_{0}, \ldots, x_{m}\right) \prod_{i=0}^{m} f_{i}\left(x_{i}\right) d \mu_{i}\left(x_{i}\right)
$$

Date: November 27, 2001.
1991 Mathematics Subject Classification. Primary 46B70. Secondary 46E30, 42B99.
Key words and phrases. multilinear operators, interpolation.
Grafakos is supported by the NSF. Tao is a Clay Prize Fellow and is supported by a grant from the Packard Foundation.

One can then define the m adjoints $T^{* j}$ of T for $0 \leq j \leq m$ by duality as

$$
\int f_{j}\left(x_{j}\right) T^{* j}\left(f_{1}, \ldots, f_{j-1}, f_{0}, f_{j+1}, \ldots, f_{m}\right)\left(x_{j}\right) d \mu_{j}\left(x_{j}\right):=\Lambda\left(f_{0}, f_{1}, \ldots, f_{m}\right)
$$

Observe that $T=T^{* 0}$.
We are interested in the mapping properties of T from the product of spaces $L^{p_{1}}\left(X_{1}, \mu_{1}\right) \times \ldots \times L^{p_{m}}\left(X_{m}, \mu_{m}\right)$ into $L^{p_{0}}\left(X_{0}, \mu_{0}\right)$ for various exponents p_{j}, and more generally for the adjoints $T^{* j}$ of T. Actually, it will be more convenient to work with the $(m+1)$-linear form Λ, and with the tuple of reciprocals $\left(1 / p_{0}^{\prime}, 1 / p_{1}, \ldots, 1 / p_{m}\right)$ instead of the exponents p_{j} directly. (Here we adopt the usual convention that p^{\prime} is defined by $1 / p^{\prime}+1 / p:=1$ even when $0<p<1$; this notation is taken from Hardy, Littlewood and Pólya.)

Recall the definition of the weak Lebesgue space $L^{p, \infty}\left(X_{i}, \mu_{i}\right)$ for $0<p<\infty$ by

$$
\|f\|_{L^{p, \infty}\left(X_{i}, \mu_{i}\right)}:=\sup _{\lambda>0} \lambda \mu_{i}\left(\left\{x_{i} \in X_{i}:\left|f\left(x_{i}\right)\right| \geq \lambda\right\}\right)^{1 / p} .
$$

We also define $L^{\infty, \infty}=L^{\infty}$. If $1<p<\infty$, we define the restricted Lebesgue space $L^{p, 1}\left(X_{i}, \mu_{i}\right)$ by duality as

$$
\|f\|_{L^{p, 1}\left(X_{i}, \mu_{i}\right)}:=\sup \left\{\left|\int f\left(x_{i}\right) g\left(x_{i}\right) d \mu_{i}\left(x_{i}\right)\right|: g \in L^{p, \infty}\left(X_{i}, \mu_{i}\right),\|g\|_{L^{p, \infty}\left(X_{i}, \mu_{i}\right)} \leq 1\right\} .
$$

We also define $L^{1,1}=L^{1}$. This definition is equivalent to the other standard definitions of $L^{p, 1}\left(X_{i}, \mu_{i}\right)$ up to a constant depending on p.

Definition 1. Define a tuple to be a collection of $m+1$ numbers $\alpha=\left(\alpha_{0}, \ldots, \alpha_{m}\right)$ such that $-\infty<\alpha_{i} \leq 1$ for all $0 \leq i \leq m$, such that such that $\alpha_{0}+\ldots+\alpha_{m}=1$, and such that at most one of the α_{i} is non-positive. If for all $j \in\{0,1,2, \ldots, m\}$ we have $0<\alpha_{j}<1$, we say that the tuple α is good. Otherwise there is exactly one a_{i} such that $a_{i} \leq 0$ and we say that the tuple α is bad. The smallest number j_{0} for which the $\min _{0 \leq j \leq m} \alpha_{j}$ is attained for a tuple α is called the bad index of the tuple.

If α is a good tuple and $B>0$, we say that Λ is of strong-type α with bound B if we have the multilinear form estimate

$$
\left|\Lambda\left(f_{0}, \ldots, f_{m}\right)\right| \leq B \prod_{i=0}^{m}\left\|f_{i}\right\|_{L^{1 / \alpha_{i}\left(X_{i}, \mu_{i}\right)}}
$$

for all simple functions f_{0}, \ldots, f_{m}. By duality, this is equivalent to the multilinear operator estimate

$$
\left\|T\left(f_{1}, \ldots, f_{m}\right)\right\|_{L^{1 /\left(1-\alpha_{0}\right)}\left(X_{0}, \mu_{0}\right)} \leq B \prod_{i=1}^{m}\left\|f_{i}\right\|_{L^{1 / \alpha_{i}}\left(X_{i}, \mu_{i}\right)}
$$

or more generally

$$
\left\|T^{* j}\left(f_{1}, f_{j-1}, f_{0}, f_{j+1}, \ldots, f_{m}\right)\right\|_{L^{1 /\left(1-\alpha_{j}\right)}\left(X_{j}, \mu_{j}\right)} \leq B \prod_{\substack{0 \leq i \leq m \\ i \neq j}}\left\|f_{i}\right\|_{L^{1 / \alpha_{i}\left(X_{i}, \mu_{i}\right)}}
$$

for $0 \leq j \leq m$.

If α is a tuple with bad index j, we say that Λ is of restricted weak-type α with bound B if we have the estimate

$$
\left\|T^{* j}\left(f_{1}, \ldots, f_{j-1}, f_{0}, f_{j+1}, \ldots, f_{m}\right)\right\|_{L^{1 /\left(1-\alpha_{j}\right), \infty}\left(X_{j}, \mu_{j}\right)} \leq B \prod_{\substack{0 \leq i \leq m \\ i \neq j}}\left\|f_{i}\right\|_{L^{1 / \alpha_{i}, 1}\left(X_{i}, \mu_{i}\right)}
$$

for all simple functions f_{i}. In view of duality, if α is a good index, then the choice of the index j above is irrelevant.

2. The interpolation theorem

We have the following interpolation theorem for restricted weak-type estimates, inspired by [12]:
Theorem 1. Let $\alpha^{(1)}, \ldots, \alpha^{(N)}$ be tuples for some $N>1$, and let α be a good tuple such that $\alpha=\theta_{1} \alpha^{(1)}+\ldots+\theta_{N} \alpha^{(N)}$, where $0 \leq \theta_{s} \leq 1$ for all $1 \leq s \leq N$ and $\theta_{1}+\ldots+\theta_{N}=1$.

Suppose that Λ is of restricted weak-type $\alpha^{(s)}$ with bound $B_{s}>0$ for all $1 \leq s \leq N$. Then Λ is of restricted weak-type α with bound $C \prod_{s=1}^{N} B_{s}^{\theta_{s}}$, where $C>0$ is a constant depending on $\alpha^{(1)}, \ldots, \alpha^{(N)}, \theta_{1}, \ldots, \theta_{N}$.

Proof. Since α is a good tuple, it suffices by duality to prove the multilinear form estimate

$$
\left|\Lambda\left(f_{0}, \ldots, f_{m}\right)\right| \leq C\left(\prod_{s=1}^{N} B_{s}^{\theta_{s}}\right) \prod_{i=0}^{m}\left\|f_{i}\right\|_{L^{1 / \alpha_{i}, 1}\left(X_{i}, \mu_{i}\right)}
$$

We will let the constant C vary from line to line. For $1<p<\infty$, the unit ball of $L^{p, 1}\left(X_{i}, \mu_{i}\right)$ is contained in a constant multiple of the convex hull of the normalized characteristic functions $\mu_{i}(E)^{1 / p} \chi_{E}$ (see e.g. [13]) it suffices to prove the above estimate for characteristic functions:

$$
\left|\Lambda\left(\chi_{E_{0}}, \ldots, \chi_{E_{m}}\right)\right| \leq C\left(\prod_{s=1}^{N} B_{s}^{\theta_{s}}\right) \prod_{i=0}^{m} \mu_{i}\left(E_{i}\right)^{\alpha_{i}} .
$$

We may of course assume that all the E_{i} have positive finite measure. Let A be the best constant such that

$$
\begin{equation*}
\left|\Lambda\left(\chi_{E_{0}}, \ldots, \chi_{E_{m}}\right)\right| \leq A\left(\prod_{s=1}^{N} B_{s}^{\theta_{s}}\right) \prod_{i=0}^{m} \mu_{i}\left(E_{i}\right)^{\alpha_{i}} \tag{1}
\end{equation*}
$$

for all such E_{j}; by our technical assumption on the kernel K we see that A is finite. Our task is to show that $A \leq C$.

Let $\varepsilon>0$ be chosen later. We may find E_{0}, \ldots, E_{m} of positive finite measure such that

$$
\begin{equation*}
\left|\Lambda\left(\chi_{E_{0}}, \ldots, \chi_{E_{m}}\right)\right| \geq(A-\varepsilon) Q \tag{2}
\end{equation*}
$$

where we use $0<Q<\infty$ to denote the quantity

$$
Q:=\left(\prod_{s=1}^{N} B_{s}^{\theta_{s}}\right) \prod_{i=0}^{m} \mu_{i}\left(E_{i}\right)^{\alpha_{i}}=\prod_{s=1}^{N}\left(B_{s} \prod_{i=0}^{m} \mu_{i}\left(E_{i}\right)^{\alpha_{i}^{(s)}}\right)^{\theta_{s}} .
$$

Fix E_{0}, \ldots, E_{m}. From the definition of Q we see that there exists $1 \leq s_{0} \leq N$ such that

$$
\begin{equation*}
B_{s_{0}} \prod_{i=0}^{m} \mu_{i}\left(E_{i}\right)^{\alpha_{i}^{\left(s_{0}\right)}} \leq Q \tag{3}
\end{equation*}
$$

Fix this s_{0}, and let j be the bad index of $\alpha^{\left(s_{0}\right)}$. Let F be the function

$$
F:=T^{* j}\left(\chi_{E_{1}}, \ldots, \chi_{E_{j-1}}, \chi_{E_{0}}, \chi_{E_{j+1}}, \ldots, \chi_{E_{m}}\right)
$$

Since Λ is of restricted weak-type $\alpha^{\left(s_{0}\right)}$ with bound $B_{s_{0}}$, we have from (3) that

$$
\begin{equation*}
\|F\|_{L^{1 /\left(1-\alpha_{j}^{\left(s_{0}\right)}\right), \infty}\left(X_{j}, \mu_{j}\right)} \leq B_{s_{0}} \prod_{\substack{0 \leq i \leq m \\ i \neq j}} \mu_{i}\left(E_{i}\right)^{\alpha_{i}^{\left(s_{0}\right)}} \leq Q \mu_{j}\left(E_{j}\right)^{-\alpha_{j}^{\left(s_{0}\right)}} \tag{4}
\end{equation*}
$$

In particular if we define the set

$$
\begin{equation*}
E_{j}^{\prime}:=\left\{x_{j} \in E_{j}:\left|F\left(x_{j}\right)\right| \geq 2^{1-\alpha_{j}^{\left(s_{0}\right)}} Q \mu_{j}\left(E_{j}\right)^{-1}\right\} \tag{5}
\end{equation*}
$$

then (4) implies that

$$
\begin{equation*}
\mu_{j}\left(E_{j}^{\prime}\right) \leq \frac{1}{2} \mu_{j}\left(E_{j}\right) \tag{6}
\end{equation*}
$$

By construction of E_{j}^{\prime} we have $\left|\int \chi_{E_{j} \backslash E_{j}^{\prime}}\left(x_{j}\right) F\left(x_{j}\right) d \mu_{j}\left(x_{j}\right)\right| \leq 2^{1-\alpha_{j}^{\left(s_{0}\right)}} Q$, or equivalently that

$$
\left|\Lambda\left(\chi_{E_{0}}, \ldots, \chi_{E_{j-1}}, \chi_{E_{j} \backslash E_{j}^{\prime}}, \chi_{E_{j+1}}, \ldots, \chi_{E_{m}}\right)\right| \leq C Q
$$

On the other hand, from (1) and (6) we have

$$
\left|\Lambda\left(\chi_{E_{0}}, \ldots, \chi_{E_{j-1}}, \chi_{E_{j}^{\prime}}, \chi_{E_{j+1}}, \ldots, \chi_{E_{m}}\right)\right| \leq 2^{-\alpha_{j}} A Q
$$

Adding the two estimates and using (2) we obtain $C Q+2^{-\alpha_{j}} A Q \leq(A-\varepsilon) Q$. Since α is good, we have $\alpha_{j}>0$. The claim $A<C$ then follows by choosing ε sufficiently small.

From the multilinear Marcinkiewicz interpolation theorem (see e.g. Theorem 4.6 of [5]) we can obtain strong-type estimates at a good tuple α if we know restricted weak-type estimates for all tuples in a neighborhood of α. From this and the previous theorem we obtain
Corollary 1. Let $\alpha^{(1)}, \ldots, \alpha^{(N)}$ be tuples for some $N>1$, and let α be a good tuple in the interior of the convex hull of $\alpha^{(1)}, \ldots, \alpha^{(N)}$. Suppose that Λ is of restricted weak-type $\alpha^{(s)}$ with bound $B>0$ for all $1 \leq s \leq N$. Then Λ is of strong-type α with bound $C B$, where $C>0$ is a constant depending on $\alpha, \alpha^{(1)}, \ldots, \alpha^{(N)}$.

By interpolating this result with the restricted weak-type estimates on the individual $T^{* j}$, one can obtain some strong-type estimates for $T^{* j}$ mapping onto spaces $L^{p}\left(X_{j}, \mu_{j}\right)$ where p is possibly less than or equal to 1 . By duality one can thus get some estimates where some of the functions are in L^{∞}. However it is still an open
question whether one can get the entire interior of the convex hull of $\alpha^{(1)}, \ldots, \alpha^{(N)}$ this way ${ }^{1}$.

3. Applications

We now pass to three applications. The first application is to re-prove an old result of Wolff [15]: if T is a linear operator such that T and its adjoint T^{*} both map L^{1} to $L^{1, \infty}$, then T is bounded on L^{p} for all $1<p<\infty$ (assuming that T can be approximated by truncated kernels as mentioned in the introduction). Indeed, in this case Λ is of restricted weak-type $(1,0)$ and $(0,1)$, and hence of strong-type $\left(1 / p, 1 / p^{\prime}\right)$ for all $1<p<\infty$ by Corollary 1 .

The next application involves the multilinear Calderón-Zygmund singular integral operators on $\mathbf{R}^{n} \times \cdots \times \mathbf{R}^{n}=\left(\mathbf{R}^{n}\right)^{m}$ defined by

$$
T\left(f_{1}, \ldots, f_{m}\right)\left(x_{0}\right):=\lim _{\varepsilon \rightarrow 0} \int_{\sum_{j, k}\left|x_{k}-x_{j}\right| \geq \varepsilon} \ldots \int_{1} K\left(x_{0}, x_{1}, \ldots, x_{m}\right) f_{1}\left(x_{1}\right) \ldots f_{m}\left(x_{m}\right) d x_{1} \ldots d x_{m}
$$

where $|K(\vec{x})| \leq C\left(\sum_{j, k=0}^{m}\left|x_{k}-x_{j}\right|\right)^{-n m},|\nabla K(\vec{x})| \leq C\left(\sum_{j, k=0}^{m}\left|x_{k}-x_{j}\right|\right)^{-n m-1}$, and $\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{m}\right)$. These integrals have been extensively studied by Coifman and Meyer [2],[3],[4] and recently by Grafakos and Torres [6]. It was shown in [6] and also by Kenig and Stein [8] (who considered the case $n=1, m=2$) that if such operators map $L^{q_{1}} \times \cdots \times L^{q_{m}}$ into $L^{q, \infty}$ for only one m-tuple of indices, then they must map $L^{1} \times \cdots \times L^{1}$ into $L^{1 / m, \infty}$. Since the adjoints of these operators satisfy similar boundedness properties, we see that the corresponding form Λ is of restricted weak-type $(1-m, 1, \ldots, 1)$, and similarly for permutations. It then follows ${ }^{2}$ from Corollary 1 that T maps $L^{p_{1}} \times \cdots \times L^{p_{m}}$ into L^{p} for all m-tuples of indices with ${ }^{3}$ $1<p_{j}<\infty$ with $\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{p}$ and $p>1$. The condition $p>1$ can be removed by further interpolation with the $L^{1} \times \ldots \times L^{1} \rightarrow L^{1 / m}$ estimate. This argument simplifies the interpolation proof used in [6].

Our third application involves the bilinear Hilbert transform $H_{\alpha, \beta}$ defined by

$$
\begin{equation*}
H_{\alpha, \beta}(f, g)(x)=\lim _{\varepsilon \rightarrow 0} \int_{|t| \geq \varepsilon} f(x-\alpha t) g(x-\beta t) \frac{d t}{t}, \quad x \in \mathbf{R} . \tag{7}
\end{equation*}
$$

The proof of boundedness of $H_{\alpha, \beta}$ from $L^{2} \times L^{2}$ into $L^{1, \infty}$ (for example see [9]) is technically simpler than that of $L^{p_{1}} \times L^{p_{2}}$ into L^{p} when $2<p_{1}, p_{2}, p^{\prime}<\infty$ given in Lacey and Thiele [10]. Since the adjoints of the operators $H_{\alpha, \beta}$ are $H_{\alpha, \beta}^{* 1}=H_{-\alpha, \beta-\alpha}$

[^0]and $H_{\alpha, \beta}^{* 2}=H_{\alpha-\beta,-\beta}$ which are "essentially" the same operators, we can use the single estimate $L^{2} \times L^{2} \rightarrow L^{1, \infty}$ for all of these operators to obtain the results in [10], since the corresponding form Λ is then of restricted weak-type $(0,1 / 2,1 / 2)$, ($1 / 2,0,1 / 2$), and $(1 / 2,1 / 2,0)$. (See also the similar argument in [12]).

The operator in (7) is in fact bounded in the larger range $1<p_{1}, p_{2}<\infty, p>2 / 3$ and similarly for adjoints, see [11]. The interpolation theorem given here allows for a slight simplification in the arguments in that paper (cf. [12]), although one cannot deduce all these estimates solely from the $L^{2} \times L^{2} \rightarrow L^{1, \infty}$ estimate.

References

[1] J. Bergh and J. Löfström, Interpolation spaces, An introduction, Springer-Verlag, New York, NY 1976.
[2] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315-331.
[3] R. R. Coifman and Y. Meyer, Commutateurs d' intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier, Grenoble 28 (1978), 177-202.
[4] R. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57, 1978.
[5] L. Grafakos and N. Kalton, Some remarks on multilinear maps and interpolation, Math. Ann. 319 (2001), 151-180.
[6] L. Grafakos and R. Torres, Multilinear Calderón-Zygmund theory, Advaces in Math., to appear.
[7] S. Janson, On interpolation of multilinear operators, in Function spaces and applications (Lund, 1986), Lecture Notes in Math. 1302, Springer-Verlag, Berlin-New York, 1988.
[8] C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), 1-15.
[9] M. T. Lacey, On the bilinear Hilbert transform, Doc. Math. 1998, Extra Vol. II, 647-656.
[10] M. T. Lacey and C. M. Thiele, L^{p} bounds for the bilinear Hilbert transform, $2<p<\infty$, Ann. Math. 146 (1997), 693-724.
[11] M. T. Lacey and C. M. Thiele, On Calderón's conjecture, Ann. Math. 149 (1999), 475-496.
[12] C. Muscalu, C. Thiele, and T. Tao, Multi-linear operators given by singular multipliers, J. Amer. Math. Soc., to appear.
[13] C. Sadosky, Interpolation of Operators and Singular Integrals, Marcel Dekker Inc., 1976.
[14] R. Strichartz, A multilinear version of the Marcinkiewicz interpolation theorem, Proc. Amer. Math. Soc. 21 (1969), 441-444.
[15] T. H. Wolff. A note on interpolation spaces. Harmonic analysis (Minneapolis, Minn., 1981), pp. 199-204, Lecture Notes in Math., 908, Springer, Berlin-New York, 1982.

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: loukas@math.missouri.edu
Terence Tao, Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90024, USA

E-mail address: tao@math.ucla.edu

[^0]: ${ }^{1}$ In [12] this was achieved, but only after strengthening the hypothesis of restricted weak-type to that of "positive type". Essentially, this requires the set E_{j}^{\prime} defined in (5) to be stable if one replaces the characteristic functions $\chi_{E_{i}}$ with arbitrary bounded functions on E_{i}.
 ${ }^{2}$ Strictly speaking, we have to first fix ε, and truncate the kernel K to a compact set, before applying the Theorem, and then take limits at the end. We leave the details of this standard argument to the reader. A similar approximation technique can be applied for the bilinear Hilbert transform below.
 ${ }^{3}$ The convex hull of the permutations of $(1-m, 1, \ldots, 1)$ is the tetrahedron of points $\left(x_{0}, \ldots, x_{m}\right)$ with $x_{0}+\ldots+x_{m}=1$ and $x_{i} \leq 1$ for all $0 \leq i \leq m$, so in particular the points $\left(1 / p_{1}, \ldots, 1 / p_{m}\right)$ described above fall into this category.

