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Abstract. Multilinear interpolation is a powerful tool used in obtaining strong
type boundedness for a variety of operators assuming only a finite set of restricted
weak-type estimates. A typical situation occurs when one knows that a multilinear
operator satisfies a weak Lq estimate for a single index q (which may be less than
one) and that all the adjoints of the multilinear operator are of similar nature, and
thus they also satisfy the same weak Lq estimate. Under this assumption, in this
expository note we give a general multilinear interpolation theorem which allows
one to obtain strong type boundedness for the operator (and all of its adjoints)
for a large set of exponents. The key point in the applications we discuss is that
the interpolation theorem can handle the case q ≤ 1. When q > 1, weak Lq has a
predual, and such strong type boundedness can be easily obtained by duality and
multilinear interpolation (c.f. [1], [5], [7], [12], [14]).

1. Multilinear operators

We begin by setting up some notation for multilinear operators. Let m ≥ 1 be an
integer. We suppose that for 0 ≤ j ≤ m, (Xj, µj) are measure spaces endowed with
positive measures µj. We assume that T is an m-linear operator of the form

T (f1, . . . , fm)(x0) :=

∫
. . .

∫
K(x0, . . . , xm)

m∏
i=1

fi(xi) dµi(xi)

where K is a complex-valued locally integrable function on X0× . . .×Xm and fj are
simple functions on Xj. We shall make the technical assumption that K is bounded
and is supported on a product set Y0×. . .×Ym where each Yj ⊆ Xj has finite measure.
Of course, most interesting operators (e.g. multilinear singular integral operators) do
not obey this condition, but in practice one can truncate and/or mollify the kernel of
a singular integral to obey this condition, apply the multilinear interpolation theorem
to the truncated operator, and use a standard limiting argument to recover estimates
for the untruncated operator.

One can rewrite T more symmetrically as an m+ 1-linear form Λ defined by

Λ(f0, f1, . . . , fm) :=

∫
. . .

∫
K(x0, . . . , xm)

m∏
i=0

fi(xi) dµi(xi).
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One can then define the m adjoints T ∗j of T for 0 ≤ j ≤ m by duality as∫
fj(xj)T

∗j(f1, . . . , fj−1, f0, fj+1, . . . , fm)(xj) dµj(xj) := Λ(f0, f1, . . . , fm).

Observe that T = T ∗0.
We are interested in the mapping properties of T from the product of spaces

Lp1(X1, µ1)× . . .×Lpm(Xm, µm) into Lp0(X0, µ0) for various exponents pj, and more
generally for the adjoints T ∗j of T . Actually, it will be more convenient to work with
the (m+1)-linear form Λ, and with the tuple of reciprocals (1/p′0, 1/p1, . . . , 1/pm)
instead of the exponents pj directly. (Here we adopt the usual convention that p′ is
defined by 1/p′ + 1/p := 1 even when 0 < p < 1; this notation is taken from Hardy,
Littlewood and Pólya.)

Recall the definition of the weak Lebesgue space Lp,∞(Xi, µi) for 0 < p <∞ by

‖f‖Lp,∞(Xi,µi) := sup
λ>0

λµi({xi ∈ Xi : |f(xi)| ≥ λ})1/p.

We also define L∞,∞ = L∞. If 1 < p < ∞, we define the restricted Lebesgue space
Lp,1(Xi, µi) by duality as

‖f‖Lp,1(Xi,µi) := sup{
∣∣ ∫

f(xi)g(xi) dµi(xi)
∣∣ : g ∈ Lp,∞(Xi, µi), ‖g‖Lp,∞(Xi,µi) ≤ 1}.

We also define L1,1 = L1. This definition is equivalent to the other standard defini-
tions of Lp,1(Xi, µi) up to a constant depending on p.

Definition 1. Define a tuple to be a collection of m+ 1 numbers α = (α0, . . . , αm)
such that −∞ < αi ≤ 1 for all 0 ≤ i ≤ m, such that such that α0 + . . . + αm = 1,
and such that at most one of the αi is non-positive. If for all j ∈ {0, 1, 2, . . . ,m} we
have 0 < αj < 1, we say that the tuple α is good. Otherwise there is exactly one
ai such that ai ≤ 0 and we say that the tuple α is bad. The smallest number j0 for
which the min

0≤j≤m
αj is attained for a tuple α is called the bad index of the tuple.

If α is a good tuple and B > 0, we say that Λ is of strong-type α with bound B if
we have the multilinear form estimate

|Λ(f0, . . . , fm)| ≤ B
m∏
i=0

‖fi‖L1/αi (Xi,µi)

for all simple functions f0, . . . , fm. By duality, this is equivalent to the multilinear
operator estimate

‖T (f1, . . . , fm)‖L1/(1−α0)(X0,µ0) ≤ B
m∏
i=1

‖fi‖L1/αi (Xi,µi)

or more generally

‖T ∗j(f1, fj−1, f0, fj+1, . . . , fm)‖
L1/(1−αj)(Xj ,µj)

≤ B
∏

0≤i≤m
i�=j

‖fi‖L1/αi (Xi,µi)

for 0 ≤ j ≤ m.
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If α is a tuple with bad index j, we say that Λ is of restricted weak-type α with
bound B if we have the estimate

‖T ∗j(f1, . . . , fj−1, f0, fj+1, . . . , fm)‖
L1/(1−αj),∞(Xj ,µj)

≤ B
∏

0≤i≤m
i�=j

‖fi‖L1/αi,1(Xi,µi)

for all simple functions fi. In view of duality, if α is a good index, then the choice of
the index j above is irrelevant.

2. The interpolation theorem

We have the following interpolation theorem for restricted weak-type estimates,
inspired by [12]:

Theorem 1. Let α(1), . . . , α(N) be tuples for some N > 1, and let α be a good tuple
such that α = θ1α

(1) + . . . + θNα
(N), where 0 ≤ θs ≤ 1 for all 1 ≤ s ≤ N and

θ1 + . . .+ θN = 1.
Suppose that Λ is of restricted weak-type α(s) with bound Bs > 0 for all 1 ≤ s ≤ N .

Then Λ is of restricted weak-type α with bound C
∏N

s=1B
θs
s , where C > 0 is a constant

depending on α(1), . . . , α(N), θ1, . . . , θN .

Proof. Since α is a good tuple, it suffices by duality to prove the multilinear form
estimate

|Λ(f0, . . . , fm)| ≤ C(
N∏
s=1

Bθs
s )

m∏
i=0

‖fi‖L1/αi,1(Xi,µi)
.

We will let the constant C vary from line to line. For 1 < p < ∞, the unit ball
of Lp,1(Xi, µi) is contained in a constant multiple of the convex hull of the normal-
ized characteristic functions µi(E)1/pχE (see e.g. [13]) it suffices to prove the above
estimate for characteristic functions:

|Λ(χE0 , . . . , χEm)| ≤ C(
N∏
s=1

Bθs
s )

m∏
i=0

µi(Ei)
αi .

We may of course assume that all the Ei have positive finite measure. Let A be the
best constant such that

|Λ(χE0 , . . . , χEm)| ≤ A(
N∏
s=1

Bθs
s )

m∏
i=0

µi(Ei)
αi(1)

for all such Ej; by our technical assumption on the kernel K we see that A is finite.
Our task is to show that A ≤ C.

Let ε > 0 be chosen later. We may find E0, . . . , Em of positive finite measure such
that

|Λ(χE0 , . . . , χEm)| ≥ (A− ε)Q,(2)

where we use 0 < Q <∞ to denote the quantity

Q := (
N∏
s=1

Bθs
s )

m∏
i=0

µi(Ei)
αi =

N∏
s=1

(Bs

m∏
i=0

µi(Ei)
α

(s)
i )θs .
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Fix E0, . . . , Em. From the definition of Q we see that there exists 1 ≤ s0 ≤ N such
that

Bs0

m∏
i=0

µi(Ei)
α

(s0)
i ≤ Q.(3)

Fix this s0, and let j be the bad index of α(s0). Let F be the function

F := T ∗j(χE1 , . . . , χEj−1
, χE0 , χEj+1

, . . . , χEm).

Since Λ is of restricted weak-type α(s0) with bound Bs0 , we have from (3) that

‖F‖
L

1/(1−α(s0)
j

),∞
(Xj ,µj)

≤ Bs0
∏

0≤i≤m
i�=j

µi(Ei)
α

(s0)
i ≤ Qµj(Ej)−α

(s0)
j .(4)

In particular if we define the set

E ′j := {xj ∈ Ej : |F (xj)| ≥ 21−α(s0)
j Qµj(Ej)

−1}(5)

then (4) implies that

µj(E
′
j) ≤ 1

2
µj(Ej).(6)

By construction of E ′j we have |
∫
χEj\E′j(xj)F (xj) dµj(xj)| ≤ 21−α(s0)

j Q, or equiva-

lently that

|Λ(χE0 , . . . , χEj−1
, χEj\E′j , χEj+1

, . . . , χEm)| ≤ CQ.
On the other hand, from (1) and (6) we have

|Λ(χE0 , . . . , χEj−1
, χE′j , χEj+1

, . . . , χEm)| ≤ 2−αjAQ.

Adding the two estimates and using (2) we obtain CQ+ 2−αjAQ ≤ (A− ε)Q. Since
α is good, we have αj > 0. The claim A < C then follows by choosing ε sufficiently
small.

From the multilinear Marcinkiewicz interpolation theorem (see e.g. Theorem 4.6
of [5]) we can obtain strong-type estimates at a good tuple α if we know restricted
weak-type estimates for all tuples in a neighborhood of α. From this and the previous
theorem we obtain

Corollary 1. Let α(1), . . . , α(N) be tuples for some N > 1, and let α be a good tuple
in the interior of the convex hull of α(1), . . . , α(N). Suppose that Λ is of restricted
weak-type α(s) with bound B > 0 for all 1 ≤ s ≤ N . Then Λ is of strong-type α with
bound CB, where C > 0 is a constant depending on α, α(1), . . . , α(N).

By interpolating this result with the restricted weak-type estimates on the indi-
vidual T ∗j, one can obtain some strong-type estimates for T ∗j mapping onto spaces
Lp(Xj, µj) where p is possibly less than or equal to 1. By duality one can thus get
some estimates where some of the functions are in L∞. However it is still an open
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question whether one can get the entire interior of the convex hull of α(1), . . . , α(N)

this way1.

3. Applications

We now pass to three applications. The first application is to re-prove an old
result of Wolff [15]: if T is a linear operator such that T and its adjoint T ∗ both map
L1 to L1,∞, then T is bounded on Lp for all 1 < p < ∞ (assuming that T can be
approximated by truncated kernels as mentioned in the introduction). Indeed, in this
case Λ is of restricted weak-type (1, 0) and (0, 1), and hence of strong-type (1/p, 1/p′)
for all 1 < p <∞ by Corollary 1.

The next application involves the multilinear Calderón-Zygmund singular integral
operators on Rn × · · · ×Rn = (Rn)m defined by

T (f1, . . . , fm)(x0) := lim
ε→0

∫
· · ·

∫
P

j,k
|xk−xj |≥ε

K(x0, x1, . . . , xm)f1(x1) . . . fm(xm) dx1 . . . dxm,

where |K("x)| ≤ C(
∑m

j,k=0 |xk − xj|)−nm, |∇K("x)| ≤ C(
∑m

j,k=0 |xk − xj|)−nm−1, and

"x = (x0, x1, . . . , xm). These integrals have been extensively studied by Coifman and
Meyer [2],[3],[4] and recently by Grafakos and Torres [6]. It was shown in [6] and
also by Kenig and Stein [8] (who considered the case n = 1, m = 2) that if such
operators map Lq1 × · · · × Lqm into Lq,∞ for only one m-tuple of indices, then they
must map L1 × · · · × L1 into L1/m,∞. Since the adjoints of these operators satisfy
similar boundedness properties, we see that the corresponding form Λ is of restricted
weak-type (1 − m, 1, . . . , 1), and similarly for permutations. It then follows2 from
Corollary 1 that T maps Lp1 × · · · × Lpm into Lp for all m-tuples of indices with3

1 < pj <∞ with 1
p1

+ · · ·+ 1
pm

= 1
p

and p > 1. The condition p > 1 can be removed

by further interpolation with the L1 × . . . × L1 → L1/m estimate. This argument
simplifies the interpolation proof used in [6].

Our third application involves the bilinear Hilbert transform Hα,β defined by

Hα,β(f, g)(x) = lim
ε→0

∫
|t|≥ε

f(x− αt)g(x− βt) dt
t
, x ∈ R .(7)

The proof of boundedness of Hα,β from L2 × L2 into L1,∞ (for example see [9]) is
technically simpler than that of Lp1 × Lp2 into Lp when 2 < p1, p2, p

′ < ∞ given in
Lacey and Thiele [10]. Since the adjoints of the operators Hα,β are H∗1α,β = H−α,β−α

1In [12] this was achieved, but only after strengthening the hypothesis of restricted weak-type
to that of “positive type”. Essentially, this requires the set E′j defined in (5) to be stable if one
replaces the characteristic functions χEi with arbitrary bounded functions on Ei.

2Strictly speaking, we have to first fix ε, and truncate the kernel K to a compact set, before
applying the Theorem, and then take limits at the end. We leave the details of this standard
argument to the reader. A similar approximation technique can be applied for the bilinear Hilbert
transform below.

3The convex hull of the permutations of (1−m, 1, . . . , 1) is the tetrahedron of points (x0, . . . , xm)
with x0 + . . . + xm = 1 and xi ≤ 1 for all 0 ≤ i ≤ m, so in particular the points (1/p1, . . . , 1/pm)
described above fall into this category.
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and H∗2α,β = Hα−β,−β which are “essentially” the same operators, we can use the single

estimate L2×L2 → L1,∞ for all of these operators to obtain the results in [10], since
the corresponding form Λ is then of restricted weak-type (0, 1/2, 1/2), (1/2, 0, 1/2),
and (1/2, 1/2, 0). (See also the similar argument in [12]).

The operator in (7) is in fact bounded in the larger range 1 < p1, p2 <∞, p > 2/3
and similarly for adjoints, see [11]. The interpolation theorem given here allows for
a slight simplification in the arguments in that paper (cf. [12]), although one cannot
deduce all these estimates solely from the L2 × L2 → L1,∞ estimate.
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