AN ELEMENTARY PROOF OF THE SQUARE SUMMABILITY OF THE DISCRETE HILBERT TRANSFORM

Loukas Grafakos

Washington University

We would like to give an elementary proof of Hilbert's inequality

$$
\begin{equation*}
\left(\sum_{j \in \mathbb{Z}}\left|\sum_{\substack{n \in \mathbb{Z} \\ n \neq j}} \frac{a_{n}}{j-n}\right|^{2}\right)^{1 / 2} \leq \pi\left(\sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where the a_{n} 's are real and square summable, and also prove that π cannot be replaced by any smaller number.

Hilbert first proved a weaker version of inequality (1), where π was replaced by a larger constant. The original proof used trigonometric series and first appeared in Weyl's [W] doctoral dissertation in 1908. Three years later, Schur [S] obtained a proof of (1), showing that π was the best possible constant. In his proof, he used a version of what we today refer to as Schur's Lemma. This proof can be found in the book [HLP]. Many other proofs and generalizations have been given since then.

The purpose of this note is to give an elementary proof of inequality (1). The proof uses convergence of sequences; remarkably, only one inequality $2 a b \leq a^{2}+b^{2}$; and the identity

$$
\sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \frac{1}{n^{2}}=\frac{\pi^{2}}{3}
$$

Before we present the proof, we would like to clarify a point about (1). If (a_{n}) is square summable, it isn't automatic that the left hand-side of (1) converges. Part of the inequality is the statement that the left hand-side of (1) is finite whenever the right hand-side is.

Assume first that $\left(a_{n}\right)$ is compactly supported, i.e. $a_{n}=0$ except for finitely many n. We show below that the left hand-side of (1) is finite and we prove the required inequality
for such sequences. Expand the square of the left hand-side of (1). All indices m, n, j below run from $-\infty$ to ∞ unless there is some restriction stated. We obtain

$$
\begin{align*}
& \sum_{j} \sum_{n \neq j} \sum_{m \neq j} a_{m} a_{n} \frac{1}{(j-n)(j-m)} \\
= & \sum_{n} \sum_{m} a_{m} a_{n} \sum_{j \neq n, m} \frac{1}{(j-n)(j-m)} . \tag{2}
\end{align*}
$$

Two out of the three sums above are over finite sets of indices and the interchange of summations is justified. The sum over all $m=n$ in (2) is clearly equal to

$$
\begin{equation*}
\sum_{n} a_{n}^{2} \sum_{j \neq n} \frac{1}{(j-n)^{2}}=\frac{\pi^{2}}{3} \sum_{n} a_{n}^{2} \tag{3}
\end{equation*}
$$

Assume below that $m \neq n$. We calculate the sum over j in (2). We have

$$
\begin{align*}
& \sum_{j \neq m, n} \frac{1}{(j-n)(j-m)}=\frac{1}{m-n} \sum_{j \neq m, n}\left(\frac{1}{j-m}-\frac{1}{j-n}\right) \\
= & \frac{1}{m-n} \lim _{k \rightarrow \infty} \sum_{\substack{j \neq m, n \\
|j| \leq k}}\left(\frac{1}{j-m}-\frac{1}{j-n}\right) \\
= & \frac{1}{m-n} \lim _{k \rightarrow \infty}\left[\left(\sum_{\substack{j \neq m \\
|j| \leq k}} \frac{1}{j-m}\right)-\frac{1}{n-m}-\left(\sum_{\substack{j \neq n \\
|j| \leq k}} \frac{1}{j-n}\right)+\frac{1}{m-n}\right] \\
= & \frac{2}{(m-n)^{2}}+\frac{1}{m-n} \lim _{k \rightarrow \infty}\left[\sum_{\substack{j \neq m \\
|j| \leq k}} \frac{1}{j-m}-\sum_{\substack{j \neq n \\
|j| \leq k}} \frac{1}{j-n}\right] \\
= & \frac{2}{(m-n)^{2}}, \tag{4}
\end{align*}
$$

since the expression inside brackets above has limit 0 as $k \rightarrow \infty$. Because of (4), the off-diagonal terms in (2) are exactly equal to:

$$
\begin{equation*}
\sum_{n} \sum_{m \neq n} a_{n} a_{m} \frac{2}{(m-n)^{2}} \tag{5}
\end{equation*}
$$

Using the inequality $2 a_{m} a_{n} \leq a_{n}^{2}+a_{m}^{2}$ we bound (5) by:

$$
\begin{equation*}
\sum_{n} \sum_{m \neq n} \frac{a_{n}^{2}}{(m-n)^{2}}+\sum_{m} \sum_{n \neq m} \frac{a_{m}^{2}}{(m-n)^{2}}=\frac{\pi^{2}}{3} \sum_{n} a_{n}^{2}+\frac{\pi^{2}}{3} \sum_{m} a_{m}^{2}=\frac{2 \pi^{2}}{3} \sum_{n} a_{n}^{2} . \tag{6}
\end{equation*}
$$

Combining (3) and and the estimate (6) for (5), we obtain inequality (1) for compactly supported sequences. A simple limiting argument gives (1) for general square summable sequences.

We now turn to the the fact that π is the best possible constant. We define b_{N} to be (5) divided by $\sum_{n} a_{n}^{2}$, where $\left(a_{n}\right)$ is the sequence 1 for $|n| \leq N$ and 0 otherwise. Estimate (6) shows that $b_{N} \leq \frac{2 \pi^{2}}{3}$. A simple calculation gives

$$
b_{N} \geq \frac{4 N}{2 N+1}\left[\sum_{k=1}^{N+1} \frac{1}{k^{2}}\right]+\frac{4(N-1)}{2 N+1}\left[\frac{\frac{1}{1^{2}}+\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}\right)+\cdots+\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{(N-1)^{2}}\right)}{N-1}\right]
$$

Applying the squeeze law, we obtain that b_{N} tends to $\frac{2 \pi^{2}}{3}$ as $N \rightarrow \infty$. Using (3) and (5), we obtain that for this choice of $\left(a_{n}\right)$, the ratio of the left-hand side of (1) and $\left(\sum_{n} a_{n}^{2}\right)^{1 / 2}$ converges to π as $N \rightarrow \infty$. This proves that π is the best possible constant in (1), Q.E.D.

Inequality (1) is known to be strict if $\left(a_{n}\right)$ is nonzero. To see this for compactly supported nonzero sequences, observe that (6) is a strict bound for (5) since for some m and n, $2 a_{n} a_{m}<a_{n}^{2}+a_{m}^{2}$. For general sequences, a further argument is needed since the passage to the limit will destroy the strict inequality. See [HLP] for details on this.

To the best of my knowledge, the determination of the best constant for the l^{p} inequality, $1<p \neq 2<\infty$ remains unresolved. Pichorides $[\mathrm{P}]$ solves this problem for the corresponding continuous operator.

We end this note by asking a question: Is there a constant C such that for all square summable sequences $\left(a_{n}\right)$ and all bounded sequences $\left(\lambda_{n}\right)$, the following inequality holds?

$$
\begin{equation*}
\left(\sum_{j \in \mathbb{Z}}\left|\sum_{\substack{n \in \mathbb{Z} \\ n \neq j}} \lambda_{j+n} \frac{a_{n}}{j-n}\right|^{2}\right)^{1 / 2} \leq C \sup _{j}\left|\lambda_{j}\right|\left(\sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

If $\lambda_{n}=1$ for all n, then (7) reduces to (1) and one can take $C \geq \pi$.

References

[HLP] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press (1934).
[P] S. Pichorides, On the best values of the constants in the Theorems of M. Riesz, Zygmund and Kolmogorov, Studia Mathematica 46 (1972), 164-179.
[S] I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, Journal f. Math. 140 (1911), 1-28.
[W] H. Weyl, Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems, Doctoral Dissertation, University of Göttingen (1908).

Department of Mathematics, Washington University, Campus Box 1146, One Brookings Drive, St Louis, MO 63130-4899

E-mail address: grafakos@math.wustl.edu

