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We would like to give an elementary proof of Hilbert’s inequality
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where the a,,’s are real and square summable, and also prove that 7 cannot be replaced
by any smaller number.

Hilbert first proved a weaker version of inequality (1), where 7 was replaced by a larger
constant. The original proof used trigonometric series and first appeared in Weyl’s [W]
doctoral dissertation in 1908. Three years later, Schur [S] obtained a proof of (1), showing
that m was the best possible constant. In his proof, he used a version of what we today
refer to as Schur’s Lemma. This proof can be found in the book [HLP]. Many other proofs
and generalizations have been given since then.

The purpose of this note is to give an elementary proof of inequality (1). The proof uses
convergence of sequences; remarkably, only one inequality 2ab < a? + b?; and the identity
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Before we present the proof, we would like to clarify a point about (1). If (a,) is square
summable, it isn’t automatic that the left hand-side of (1) converges. Part of the inequality
is the statement that the left hand-side of (1) is finite whenever the right hand-side is.

Assume first that (a,) is compactly supported, i.e. a, = 0 except for finitely many n.
We show below that the left hand-side of (1) is finite and we prove the required inequality
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for such sequences. Expand the square of the left hand-side of (1). All indices m,n, j
below run from —oo to oo unless there is some restriction stated. We obtain
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Two out of the three sums above are over finite sets of indices and the interchange of
summations is justified. The sum over all m = n in (2) is clearly equal to
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Assume below that m # n. We calculate the sum over j in (2). We have
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since the expression inside brackets above has limit 0 as & — oo. Because of (4), the
off-diagonal terms in (2) are exactly equal to:

(5) 2D s
— TL)
n m#n
Using the inequality 20,0, < a? + a2, we bound (5) by:
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Combining (3) and and the estimate (6) for (5), we obtain inequality (1) for compactly
supported sequences. A simple limiting argument gives (1) for general square summable
sequences.

We now turn to the the fact that 7 is the best possible constant. We define by to be
(5) divided by >, a2, where (ay,) is the sequence 1 for [n| < N and 0 otherwise. Estimate

(6) shows that by < % A simple calculation gives
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Applying the squeeze law, we obtain that by tends to % as N — oo. Using (3) and (5),

we obtain that for this choice of (ay), the ratio of the left-hand side of (1) and (3, a2)*/?

converges to m as N — oo. This proves that 7 is the best possible constant in (1), Q.E.D.

Inequality (1) is known to be strict if (a,) is nonzero. To see this for compactly sup-
ported nonzero sequences, observe that (6) is a strict bound for (5) since for some m and n,
2a,a, < a2 + a?,. For general sequences, a further argument is needed since the passage
to the limit will destroy the strict inequality. See [HLP] for details on this.

To the best of my knowledge, the determination of the best constant for the (P in-
equality, 1 < p # 2 < oo remains unresolved. Pichorides [P] solves this problem for the
corresponding continuous operator.

We end this note by asking a question: Is there a constant C' such that for all square
summable sequences (a,) and all bounded sequences ()\,,), the following inequality holds?

1/2 1/2
™ (Z\Zmnj“%nlz) < O sup )| (Zw) .
J

JEZ niz neZ
nxj

If A, =1 for all n, then (7) reduces to (1) and one can take C' > 7.
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