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We would like to give an elementary proof of Hilbert’s inequality

(1)
( ∑
j∈Z

∣∣ ∑
n∈Z
n �=j

an
j − n

∣∣2)1/2

≤ π
( ∑
n∈Z
|an|2

)1/2

,

where the an’s are real and square summable, and also prove that π cannot be replaced
by any smaller number.

Hilbert first proved a weaker version of inequality (1), where π was replaced by a larger
constant. The original proof used trigonometric series and first appeared in Weyl’s [W]
doctoral dissertation in 1908. Three years later, Schur [S] obtained a proof of (1), showing
that π was the best possible constant. In his proof, he used a version of what we today
refer to as Schur’s Lemma. This proof can be found in the book [HLP]. Many other proofs
and generalizations have been given since then.

The purpose of this note is to give an elementary proof of inequality (1). The proof uses
convergence of sequences; remarkably, only one inequality 2ab ≤ a2 + b2; and the identity

∑
n∈Z
n �=0

1
n2

=
π2

3
.

Before we present the proof, we would like to clarify a point about (1). If (an) is square
summable, it isn’t automatic that the left hand-side of (1) converges. Part of the inequality
is the statement that the left hand-side of (1) is finite whenever the right hand-side is.

Assume first that (an) is compactly supported, i.e. an = 0 except for finitely many n.
We show below that the left hand-side of (1) is finite and we prove the required inequality
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for such sequences. Expand the square of the left hand-side of (1). All indices m,n, j
below run from −∞ to ∞ unless there is some restriction stated. We obtain

∑
j

∑
n �=j

∑
m�=j

aman
1

(j − n)(j −m)

=
∑
n

∑
m

aman
∑
j �=n,m

1
(j − n)(j −m)

.(2)

Two out of the three sums above are over finite sets of indices and the interchange of
summations is justified. The sum over all m = n in (2) is clearly equal to

(3)
∑
n

a2
n

∑
j �=n

1
(j − n)2

=
π2

3

∑
n

a2
n.

Assume below that m �= n. We calculate the sum over j in (2). We have
∑
j �=m,n

1
(j − n)(j −m)

=
1

m− n
∑
j �=m,n

( 1
j −m −

1
j − n

)

=
1

m− n lim
k→∞

∑
j �=m,n
|j|≤k

( 1
j −m −

1
j − n

)

=
1

m− n lim
k→∞

[( ∑
j �=m
|j|≤k

1
j −m

)
− 1
n−m −

( ∑
j �=n
|j|≤k

1
j − n

)
+

1
m− n

]

=
2

(m− n)2
+

1
m− n lim

k→∞

[ ∑
j �=m
|j|≤k

1
j −m −

∑
j �=n
|j|≤k

1
j − n

]

=
2

(m− n)2
,(4)

since the expression inside brackets above has limit 0 as k → ∞. Because of (4), the
off-diagonal terms in (2) are exactly equal to:

(5)
∑
n

∑
m�=n

anam
2

(m− n)2
.

Using the inequality 2aman ≤ a2
n + a2

m we bound (5) by:

(6)
∑
n

∑
m�=n

a2
n

(m− n)2
+

∑
m

∑
n �=m

a2
m

(m− n)2
=
π2

3

∑
n

a2
n +

π2

3

∑
m

a2
m =

2π2

3

∑
n

a2
n.
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Combining (3) and and the estimate (6) for (5), we obtain inequality (1) for compactly
supported sequences. A simple limiting argument gives (1) for general square summable
sequences.

We now turn to the the fact that π is the best possible constant. We define bN to be
(5) divided by

∑
n a

2
n, where (an) is the sequence 1 for |n| ≤ N and 0 otherwise. Estimate

(6) shows that bN ≤ 2π2

3 . A simple calculation gives

bN ≥
4N

2N + 1

[N+1∑
k=1

1
k2

]
+

4(N − 1)
2N + 1

[ 1
12 +

(
1
12 + 1

22

)
+ · · ·+

(
1
12 + 1

22 + · · ·+ 1
(N−1)2

)
N − 1

]
.

Applying the squeeze law, we obtain that bN tends to 2π2

3 as N →∞. Using (3) and (5),
we obtain that for this choice of (an), the ratio of the left-hand side of (1) and (

∑
n a

2
n)

1/2

converges to π as N →∞. This proves that π is the best possible constant in (1), Q.E.D.

Inequality (1) is known to be strict if (an) is nonzero. To see this for compactly sup-
ported nonzero sequences, observe that (6) is a strict bound for (5) since for some m and n,
2anam < a2

n + a2
m. For general sequences, a further argument is needed since the passage

to the limit will destroy the strict inequality. See [HLP] for details on this.
To the best of my knowledge, the determination of the best constant for the lp in-

equality, 1 < p �= 2 < ∞ remains unresolved. Pichorides [P] solves this problem for the
corresponding continuous operator.

We end this note by asking a question: Is there a constant C such that for all square
summable sequences (an) and all bounded sequences (λn), the following inequality holds?

(7)
( ∑
j∈Z

∣∣ ∑
n∈Z
n �=j

λj+n
an
j − n

∣∣2)1/2

≤ C sup
j
|λj |

( ∑
n∈Z
|an|2

)1/2

.

If λn = 1 for all n, then (7) reduces to (1) and one can take C ≥ π.
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