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ABSTRACT. We use wavelets of tensor product type to obtain the boundedness of bi-
linear multiplier operators on Rn×Rn associated with Hörmander multipliers on R2n

with minimal smoothness. We focus on the local L2 case and we obtain boundedness
under the minimal smoothness assumption of n/2 derivatives. We also provide coun-
terexamples to obtain necessary conditions for all sets of indices.

1. INTRODUCTION

An m-linear (p1, . . . , pm, p) multiplier σ(ξ1, . . . ,ξm) is a function on Rn× ·· · ×Rn

such that the corresponding m-linear operator

Tσ ( f1, . . . , fm)(x) =
∫
Rmn

σ(ξ1, . . . ,ξm) f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm)dξ1 · · ·dξm,

initially defined on m-tuples of Schwartz functions, has a bounded extension from
Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn) for appropriate p1, . . . , pm, p.

It is known from the work in [2] for p > 1 and [12], [11] for p≤ 1, that the classical
Mihlin condition on σ in Rmn yields boundedness for Tσ from Lp1(Rn)×·· ·×Lpm(Rn)
to Lp(Rn) for all 1< p1, . . . pm≤∞, 1/m< p= (1/p1+ · · ·+1/pm)

−1 <∞. The Mihlin
condition in this setting is usually referred to as the Coifman-Meyer condition and the
associated multipliers bear the same names as well. The Coifman-Meyer condition
cannot be weakened to the Marcinkiewicz condition, as the latter fails in the multilinear
setting; see [8]. Related multilinear multiplier theorems with mixed smoothness (but
not necessarily minimal) can be found in [14], [15], [7].

A natural question on Hörmander type multipliers is how the minimal smoothness
s interplays with the range of p’s on which boundedness is expected. In the linear
case, this question was studied in [1], [16], and [6]. Let Lr

s(Rn) be the Sobolev space
consisting of all functions h such that (I−∆)s/2(h) ∈ Lr(Rn), where ∆ is the Laplacian.
In the first paper of this series [6], we showed that the conditions |1/2− 1/p| < s/n
and rs > n imply Lp(Rn) boundedness for 1 < p < ∞ for Tσ in the linear case m = 1,
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when the multiplier σ lies in the Sobolev space Lr
s(Rn) uniformly over all annuli. This

minimal smoothness problem in the bilinear setting was first studied in [17] and later in
[14] and [9]. These references contain necessary conditions on s when the multiplier in
the Sobolev space Lr

s with r = 2; other values of r were considered in [10].
Our goal here is to pursue the analogous bilinear question. In this paper we focus

on the boundedness of Tσ in the local L2 case, i.e., the situation where 1 ≤ p1, p2 ≤ 2
and 1 ≤ p = 1/(1/p1 +1/p2)≤ 2 under minimal smoothness conditions on s. It turns
out that to express our result in an optimal fashion, we need to work with r > 2. We
also work with the case L2×L2→ L1 as boundedness in the remaining local L2 indices
follows by duality and interpolation. We achieve our goal via new technique to study
boundedness for bilinear operators based on tensor product wavelet decomposition de-
veloped in [5].

The main result of this paper is the following theorem.

Theorem 1. Suppose ψ̂ ∈ C∞
0 (R2n) is positive and supported in the annulus

{(ξ ,η) : 1/2≤ |(ξ ,η)| ≤ 2}
such that ∑ j∈Z ψ̂ j(ξ ,η) = ∑ j ψ̂(2− j(ξ ,η)) = 1 for all (ξ ,η) 6= 0. Let 1 < r < ∞,
s > max{n/2,2n/r}, and suppose there is a constant A such that

(1) sup
j
‖σ(2 j·)ψ̂‖Lr

s(R2n) ≤ A < ∞.

Then there is a constant C =C(n,Ψ) such that the bilinear operator

Tσ ( f ,g)(x) =
∫
R2n

σ(ξ ,η) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη ,

initially defined on Schwartz functions f and g, satisfies

(2) ‖Tσ ( f ,g)‖L1(Rn) ≤CA‖ f‖L2(Rn)‖g‖L2(Rn).

The optimality of (1) in the preceding theorem is contained in the following result.

Theorem 2. Suppose that for 0 < p1, . . . , pm < ∞, p = (1/p1 + · · ·+1/pm)
−1, we have

(3) ‖Tσ‖Lp1(Rn)×···×Lpm(Rn)→Lp(Rn) ≤C sup
j∈Z
‖σ(2 j·)Ψ̂‖Lr

s(Rmn)

for all bounded functions σ for which sup j∈Z ‖σ(2 j·)Ψ̂‖Lr
s(Rmn) < ∞ (for some fixed

r,s > 0). Then we must necessarily have s≥max{(m−1)n/2,mn/r}.

Finally, we have another set of necessary conditions for the boundedness of m-linear
multipliers. The sufficiency of these conditions is shown in the third paper of this series.

Theorem 3. Suppose there exists a constant C such that (3) holds for all σ such that
the right hand side is finite. Then we must necessarily have

1
p
− 1

2
≤ s

n
+∑

i∈I

( 1
pi
− 1

2

)
,
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where I is an arbitrary subset of {1,2, . . . , m} which may also be empty (in which case
the sum is supposed to be zero).

2. PRELIMINARIES

We utilize wavelets with compact supports. Their existence is due to Daubechies
[3] and their construction is contained in Meyer’s book [13] and Daubechies’ book [4].
For our purposes we need product type smooth wavelets with compact supports; the
construction of such objects we use here can be found in Triebel [18, Proposition 1.53].

Lemma 4. For any fixed k ∈N there exist real compactly supported functions ψF ,ψM ∈
Ck(R), the class of functions with continuous derivatives of order up to k, which satisfy
that ‖ψF‖L2(R) = ‖ψM‖L2(R) = 1 and

∫
R xαψM(x)dx = 0 for 0≤ α ≤ k, such that, if ΨG

is defined by
Ψ

G(~x) = ψG1(x1) · · ·ψG2n(x2n)

for G = (G1, . . . ,G2n) in the set

I :=
{
(G1, . . . ,G2n) : Gi ∈ {F,M}

}
,

then the family of functions⋃
~µ∈Z2n

[{
Ψ

(F,...,F)(~x−~µ)
}
∪

∞⋃
λ=0

{
2λn

Ψ
G(2λ~x−~µ) : G ∈ I \{(F, . . . ,F)}

}]
forms an orthonormal basis of L2(R2n), where~x = (x1, . . . ,x2n).

In order to prove our results, we use the wavelet characterization of Sobolev spaces,
following Triebel’s book [18]. Let us fix the smoothness s, for our purposes we always
have s ≤ n+1, since we are seeking for the minimal smoothness. Also, we only work
with spaces with the integrability index r > 1. Take ϕ as a smooth function defined
on R2n such that ϕ̂ is supported in the unit annulus such that ∑

∞
j=0 ϕ̂ j = 1, where ϕ̂ j =

ϕ̂(2− j·) for j≥ 1 and ϕ̂0 =∑k≤0 ϕ̂(2−k·). Then for a distribution f ∈S ′(R2n) we define
the Fs

r,q norm as follows:

‖ f |Fs
r,q(R2n)‖=

∥∥∥( ∞

∑
j=0

2 jsq|(ϕ j f̂ )∨(·)|q
)1/q

∥∥∥
Lr(R2n)

.

We then pick wavelets with smoothness and cancellation degrees k = 6n. This number
suffices for the purposes of the following lemma.

Lemma 5 ([18, Theorem 1.64]). Let 0 < r < ∞, 0 < q≤ ∞, s ∈ R, and for λ ∈ N and
~µ ∈ N2n let χλ~µ be the characteristic function of the cube Qλ~µ centered at 2−λ~µ with

length 21−λ . For a sequence γ = {γλ ,G
~µ
} define the norm

‖γ| f s
r,q‖=

∥∥∥( ∑
λ ,G,~µ

2λ sq|γλ ,G
~µ

χλ~µ(·)|q)1/q
∥∥∥

Lr(R2n)
.
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Let N 3 k > max{s, 4n
min(r,q) + n− s}. Let Ψ

λ ,G
~µ

be the 2n-dimensional Daubechies

wavelets with smoothness k according Lemma 4. Let f ∈ S ′(R2n). Then f ∈ Fs
r,q(R2n)

if and only if it can be represented as

f = ∑
λ ,G,~µ

γ
λ ,G
~µ

2−λn
Ψ

λ ,G
~µ

with ‖γ| f s
rq‖ < ∞ with unconditional convergence in S ′(Rn). Furthermore this repre-

sentation is unique,
γ

λ ,G
~µ

= 2λn〈 f ,Ψλ ,G
~µ
〉,

and
I : f →

{
2λn〈 f ,Ψλ ,G

~µ
〉
}

is an isomorphic map of Fs
r,q(R2n) onto f s

r,q.

In particular, the Sobolev space Lr
s(R2n) coincides with Fs

r,2(R2n). In the proof of our
results, we use for fixed λ the following estimate:

(4)
∥∥∥(∑

G,~µ

|〈σ ,Ψλ ,G
~µ
〉Ψλ ,G

~µ
|2
)1/2∥∥∥

Lr
≤C‖σ‖Lr

s 2
−sλ .

To verify this, by Lemma 5, we have∥∥∥∥∑
G,~µ

2λ s|γλ ,G
~µ

χQλ ,~µ
|
∥∥∥∥

Lr
≤C‖σ‖Lr

s ,

with γ
λ ,G
~µ

= 2λn〈σ ,Ψλ ,G
~µ
〉. Notice that 2−λnΨ

λ ,G
~µ

are L∞ normalized wavelets, and there

exists an absolute constant B such that the support of Ψ
λ ,G
~µ

is always contained in
∪|~ν |≤BQλ ,~µ+~ν . This then implies (4).

3. THE MAIN LEMMA

Let Q denote the cube [−2,2]2n in R2n, and consider a Sobolev space Lr
s(Q) as the

Sobolev space of distributions supported in Q which are in Lr
s(R2n).

Lemma 6. For r ∈ (1,∞) let s > max(n/2,2n/r) and suppose σ ∈ Lr
s(Q). Then σ is a

bilinear multiplier bounded from L2(Rn)×L2(Rn) to L1(Rn).

Proof. The important inequality is the one for a single generation of wavelets (with λ

fixed). For a fixed λ , by the uniform compact supports of the elements in the basis,
we can classify the wavelets into finitely many subclasses such that the supports of the
elements in each subclass are pairwise disjoint. We denote by Dλ ,κ such a subclass and
the related symbol

σλ ,κ = ∑
ω∈Dλ ,κ

aωω,
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where aω = 〈σ ,ω〉. The ω’s are L2 normalized, but we change the normalization to Lr,
i.e. we consider ω̃ = ω/‖ω‖Lr and bω = aω‖ω‖Lr . We have

σλ ,κ = ∑
ω∈Dλ ,κ

bω ω̃

and from the Sobolev smoothness and the fact that the supports of the wavelets do not
overlap, with the aid of (4) we obtain

B =

(
∑

ω∈Dλ ,κ

|bω |r
)1/r

=

(
∑
ω

∫ (
|aωω|2

)r/2
dx
)1/r

≤
∥∥∥(∑

ω

|aωω|2
)1/2∥∥∥

Lr

≤C‖σ‖Lr
s 2
−sλ .

Now, each ω in Dλ ,κ is of the form ω = ωkωl with ~µ = (k, l), where k and l both range
over index sets U1 and U2 of cardinality at most C2λn. Moreover we denote by bkl the
coefficient bω , and we have

σλ ,κ = ∑
k∈U1

ω̃k ∑
l∈U2

bklω̃l.

Set τmax to be the positive number such that 2nλ/r ≤ τmax < 1+2nλ/r. For a non-
negative number τ < 2nλ/r = τmax and a positive constant (depending on τ) K = 2τr/2

we introduce the following decomposition: We define the level set according to b as

Dτ

λ ,κ = {ω ∈ Dλ ,κ : B2−τ < |bω | ≤ B2−τ+1},

when τ < τmax. We also define the set

Dτmax
λ ,κ = {ω ∈ Dλ ,κ : |bω | ≤ B2−τmax+1}.

We now take the part with heavy columns

Dτ,1
λ ,κ = {ωkωl ∈ Dτ

λ ,κ : card{s : ωkωs ∈ Dτ

λ ,κ} ≥ K},

and the remainder
Dτ,2

λ ,κ = Dτ

λ ,κ \Dτ,1
λ ,κ .

We also use the following notations for the index sets: Uτ,1
1 is the set of k’s such that

ωkωl in Dτ,1
λ ,κ , and for each k ∈Uτ,1

1 we denote Uτ,1
2,k the set of corresponding second

indices l’s such that ωkωl ∈ Dτ,1
λ ,κ , whose cardinality is at least K. We also denote

σ
τ,1
λ ,κ = ∑

k∈Uτ,1
1

ω̃k ∑
l∈Uτ,1

2,k

bklω̃l,
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thus summing over the wavelets in the set Dτ,1
λ ,κ . The symbol σ

τ,2
λ ,κ is then defined by

summation over Dτ,2
λ ,κ .

We first treat the part σ
τ,1
λ ,κ . Denote γ = card Uτ,1

1 . For τ < τmax the `r-norm of the

part of the sequence {bkl} indexed by the set Dτ,1
λ ,κ is comparable to

C
(

∑
k∈Uτ,1

1

∑
l∈Uτ,1

2,k

(B2−τ)r
)1/r

which is at least as big as C(γK(B2−τ)r)1/r. However this `r-norm is smaller than B,
therefore we get γ ≤C2τr/K =C2τr/2. For τ = τmax we trivially have that γ ≤C2nλ =

C2τmaxr/2.
For f ,g ∈ S we estimate the multiplier norm of σ

τ,1
λ ,κ as follows:

‖F−1(σ τ,1
λ ,κ f̂ ĝ)‖L1 ≤ ∑

k∈Uτ,1
1

‖ f̂ ω̃k‖L2‖ ∑
l∈Uτ,1

2,k

bklω̃l ĝ‖L2

≤C ∑
k∈Uτ,1

1

‖ f̂ ω̃k‖L2 sup
l
|bkl|2λn/r‖g‖L2

≤C2λn/r‖g‖L2

(
∑
k

sup
l
|bkl|2

)1/2(
∑
k
‖ f̂ ω̃k‖2

L2

)1/2

.

In view of orthogonality and of the fact that ‖ω̃k‖L∞ ≈ 2λn/r we obtain the inequality(
∑
k
‖ f̂ ω̃k‖2

L2

)1/2

≤C2
λn
r ‖ f‖L2.

By the definition of Uτ,1
1 we have also that(

∑
k

sup
l
|bkl|2

)1/2

≤ B2−τ
γ

1
2 .

Collecting these estimates, we deduce

(5) ‖F−1(σ τ,1
λ ,κ f̂ ĝ)‖L1 ≤C‖σ‖Lr

s γ
1
2 2λ ( 2n

r −s)2−τ‖ f‖L2‖g‖L2.

The set Dτ,2
λ ,κ has the property that in each column there are at most K elements. Let

us denote by V 2 the index set of all second indices such that ω̃kω̃l ∈ Dτ,2
λ ,κ , and for each

l ∈V 2 set V 1,l the corresponding sets of first indices. Thus

Dτ,2
λ ,κ = {ωkωl : l ∈V 2,k ∈V 1,l}.
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We then have

‖F−1(σ τ,2
λ ,κ f̂ ĝ)‖L1 ≤ ∑

l∈V 2

∥∥ ∑
k∈V 1,l

bklω̃k f̂
∥∥

L2‖ω̃l ĝ‖L2

≤
(

∑
l∈V 2

∥∥ ∑
k∈V 1,l

bklω̃k f̂
∥∥2

L2

)1/2(
∑

l∈V 2

‖ω̃l ĝ‖2
L2

)1/2

.

We need to estimate

∑
l∈V 2

∥∥∥ ∑
k∈V 1,l

bklω̃k f̂
∥∥∥2

L2
≤C

∫
Q

∑
l∈V 2

∑
k∈V 1,l

B22−2τ |ω̃k|2| f̂ (ξ1)|2dξ1

≤CK2
2nλ

r B22−2τ‖ f‖2
L2,

since, by the disjointness of the supports of ω̃k, ∑k |ω̃k|2 ≤C22nλ/r, and the cardinality
of V 2 is controlled by K.

Returning to our estimate, and using orthogonality, we obtain

(6) ‖F−1(σ τ,2
λ ,κ f̂ ĝ)‖L1 ≤C‖σ‖Lr

s K
1
2 2−sλ 2−τ2

2λn
r ‖ f‖L2‖g‖L2.

For any τ ≤ τmax the two inequalities (5) and (6) are the same due to γ ≤C2τr/K =

C2τr/2. Therefore, we have

(7) ‖F−1(σ τ

λ ,κ f̂ ĝ)‖L1 ≤C‖σ‖Lr
s 2

( r
4−1)τ2λ ( 2n

r −s)‖ f‖L2‖g‖L2.

The right hand side has a negative exponent in λ since s > 2n/r.
The behavior in τ depends on r. For 1 < r < 4 it is a geometric series in τ and hence

summing over 0 ≤ τ ≤ τmax and λ ≥ 0 is finite. However, if r ≥ 4, we need to use the
following observation:

(8)
τmax

∑
τ=0

2(
r
4−1)τ ≤Cτmax2(

r
4−1)τmax ≤C

(2nλ

r

)
2(

r
4−1) 2nλ

r .

Therefore, by summing over τ in (7) we obtain
τmax

∑
τ=0
‖F−1(σ τ

λ ,κ f̂ ĝ)‖L1 ≤C‖σ‖Lr
s

(2nλ

r

)
2(

r
4−1)(1+ 2nλ

r )2λ ( 2n
r −s)‖ f‖L2‖g‖L2.

Since (2nλ/r)2(r/4−1)2nλ/r2λ (2n/r−s) = (2nλ/r)2λ (n/2−s), these estimates form a sum-
mable series in λ only if s > n/2.

We have 1 ≤ κ ≤ Cn and σ = ∑
∞

λ=0 ∑κ σλ ,κ . Therefore for s and r related as in
s > max(2n/r,n/2) we have convergent series, and we obtain the result by summation
in τ first and then in λ . �

Remark 1. We see from the proof (or by an easy dilation argument) that the condition
Q is [−2,2]n is not essential and the statement keeps valid when Q is any fixed compact
set.
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Remark 2. In the case r < 4, the summation in (8) is finite even if τmax = ∞, which
means that the restriction that σ is compactly supported is unnecessary when r ∈ (1,4).

4. THE PROOF OF THEOREM 1

Proof. We use an idea developed in [5], where we consider off-diagonal and diagonal
cases separately. For the former we use the Hardy-Littlewood maximal function and a
“square” function, and for the latter we use use Lemma 6 in Section 3.

We introduce notations needed to study these cases appropriately. We define σ j(ξ ,η)=
σ(ξ ,η)ψ̂(2− j(ξ ,η)) and write m j(ξ ,η) = σ j(2 j(ξ ,η)). We note that all m j are sup-
ported in the unit annulus, the dyadic annulus centered at zero with radius comparable
to 1, and ‖m j‖Lr

s ≤ A uniformly in j by assumption (1).
By the discussion in the previous section, for each m j we have the decomposition

m j(ξ ,η) =∑κ ∑λ ∑k,l bk,lω̃k(ξ )ω̃l(η) =∑λ m j,λ with ω̃k ≈ 2λn/r and (∑k,l |bk,l|r)1/r ≤
CA2−λ s. Assume that both ΨF and ΨM are supported in B(0,N) for some large fixed
number N. We define the off-diagonal parts

(9) m2
j,λ (ξ ,η) = ∑

κ

∑
|l|≤2

√
nN

∑
k

bk,lω̃k(ξ )ω̃l(η)

and
m3

j,λ (ξ ,η) = ∑
κ

∑
|k|≤2

√
nN

∑
l

bk,lω̃k(ξ )ω̃l(η),

then the remainder in the λ level is m1
j,λ (ξ ,η) = [m j,λ −m2

j,λ −m3
j,λ ](ξ ,η) with each

wavelet involved away from the axes. Notice that since |η | is small, we have that
1
2 ≤ |ξ | ≤ 2 for large λ . Moreover for i= 1,2,3, we define mi

j =∑λ mi
j,λ , σ i

j =mi
j(2
− j·),

σ i = ∑ j σ i
j. Notice that σ is equal to the sum σ1 +σ2 +σ3.

(i) The Off-diagonal Cases
We consider the off-diagonal cases m2

j,λ and m3
j,λ first. By symmetry, it suffices to

consider
Tm2

j,λ
( f ,g)(x) =

∫
R2n

m2
j,λ (ξ ,η) f̂ (ξ )ĝ(η)e2πix(ξ+η)dξ dη .

By the definition ω̃l = 2λn/2Ψ(2λ x− l)/‖ωl‖Lr , we have |(ω̃l ĝ)∨(x)| ≤C2λn/rM(g)(x),
where M(g)(x) is the Hardy-Littlewood maximal function. Recall the boundedness of
bk,l and ω̃k, we therefore have

|(∑
k

bk,lω̃k f̂ )∨| ≤ 2λ (n/r−s)|(m f̂ χ1/2≤|ξ |≤2)
∨|

with ‖m‖L∞ ≤C, where the summation over k runs through allowed k’s in (9). In view
of the finiteness of N and the number of κ’s, we finally obtain a pointwise control

|Tm2
j,λ
( f ,g)(x)| ≤C2(2n/r−s)λ |Tm( f ′)(x)|M(g)(x),
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where f̂ ′ = f̂ χ1/2≤|ξ |≤2.
Observe that

T
σ2

j
( f ,g)(x) = 2 jnTm2

j
( f j,g j)(2 jx)

with f̂ j(ξ ) = 2 jn/2 f̂ (2 jξ )χ1/2≤|ξ |≤2 and ĝ j(ξ ) = 2 jn/2ĝ(2 jξ ). Note that we did not
define f j and g j in similar ways. By a standard argument using the square function
characterization of the Hardy space H1, we control ‖Tσ2( f ,g)‖L1 by∥∥∥(∑

j
|T

σ2
j
( f ,g)|2

)1/2∥∥∥
L1

=
∥∥∥(∑

j
|2 jnTm2

j
( f j,g j)(2 j·)|2

)1/2∥∥∥
L1

≤∑
λ

2(2n/r−s)λ‖g‖L2

(∫
∑

j
| f̂ j(ξ )|2dξ

)1/2
.

Because of the definition of f̂ j, we see that∫
∑

j
| f̂ j(ξ )|2dξ =

∫
∑

j
| f̂ (ξ )|2χ2 j−1≤|ξ |≤2 j+1dξ ≤C‖ f‖2

L2 .

The exponential decay in λ given by the condition rs > 2n then concludes the proof of
the off-diagonal cases.
(ii) The Diagonal Case

This case is relatively simple by an argument similar to the diagonal part in [5],
because we have dealt with the key ingredient in Lemma 6. We give a brief proof here
for completeness. By dilation we have that

‖Tσ1( f ,g)(x)‖L1 ≤ ‖∑
j
∑
λ

T
σ1

j,λ
( f ,g)‖L1 ≤∑

λ

∑
j
‖2 jnTm1

j,λ
( f j,g j)(2 j·)‖L1,

where f̂ j(ξ ) = 2 jn/2 f̂ (2 jnξ )χC2−λ≤|ξ |≤2(ξ ) because in the support of m1
j,λ we have

C2−λ ≤ |ξ | ≤ 2, and g j is defined similarly. For the last line we apply Lemma 6 and
obtain, when r ≥ 4, the estimate

∑
λ

C 2nλ

r 2λ (n/2−s)
∑

j
‖ f̂ j‖L2‖ĝ j‖L2 ≤∑

λ

C 2nλ

r 2λ (n/2−s)
(
∑

j
‖ f̂ j‖2

L2

)1/2(
∑

j
‖ĝ j‖2

L2

)1/2
.

And when r < 4, we have a similar control

∑
λ

C2λ (2n/r−s)
∑

j
‖ f̂ j‖L2‖ĝ j‖L2 ≤∑

λ

C2λ (2n/r−s)
(
∑

j
‖ f̂ j‖2

L2

)1/2(
∑

j
‖ĝ j‖2

L2

)1/2
.

Observe that

∑
j
‖ f̂ j‖2

L2 =
∫
| f̂ (ξ )|2 ∑

j
χ2−λ− j≤|ξ |≤21− j(ξ )dξ ≤Cλ‖ f‖2

L2,

so in either case with the restriction s > max{n/2,2n/r} the sum over λ is controlled
by ‖ f‖L2‖g‖L2 . Thus we conclude the proof of the diagonal case and of Theorem 1. �
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5. NECESSARY CONDITIONS

For a bounded function σ , let Tσ be the m-linear multiplier operator with symbol
σ . In this section we obtain examples for m-linear multiplier operators that impose
restrictions on the indices and the smoothness in order to have

(10) ‖Tσ‖Lp1(Rn)×···×Lpm(Rn)→Lp(Rn) ≤C sup
j∈Z
‖σ(2 j·)Ψ̂‖Lr

s(Rmn).

These conditions show in particular that the restriction on s in Theorem 1 is necessary.
We first prove Theorem 2 via two counterexamples; these are contained in Proposi-

tion 7 and Proposition 9, respectively.

Proposition 7. Under the hypothesis of Theorem 2 we must have s≥ (m−1)n/2.

Proof. We use the bilinear case with dimension one to demonstrate the idea first. Then
we easily extend the argument to higher dimensions.

We fix a Schwartz function ϕ with ϕ̂ supported in [−1/100,1/100]. Let {a j(t)} j be
a sequence of Rademacher functions indexed by positive integers, and for N > 1 define

f̂N(ξ1) =
N

∑
j=1

a j(t1)ϕ̂(Nξ1− j) , ĝN(ξ2) =
N

∑
k=1

ak(t2)ϕ̂(Nξ2− k).

Let φ be a smooth function φ supported in [− 1
10 ,

1
10 ] assuming value 1 in [− 1

20 ,
1

20 ]. We
construct the multiplier σN of the bilinear operator TN as follows,

(11) σN =
N

∑
j=1

N

∑
k=1

a j(t1)ak(t2)a j+k(t3)c j+kφ(Nξ1− j)φ(Nξ2− k),

where cl = 1 when 9N/10≤ l ≤ 11N/10 and 0 elsewhere. Hence

TN( fN ,gN)(x) =
N

∑
j=1

N

∑
k=1

a j+k(t3)c j+k
1

N2 ϕ(x/N)ϕ(x/N)e2πix( j+k)/N

=
2N

∑
l=2

Sl

∑
k=sl

al(t3)cl
1

N2 ϕ(x/N)ϕ(x/N)e2πixl/N ,

where sl = max(1, l−N) and Sl = min(N, l−1). We estimate ‖ fN‖Lp1(R), ‖gN‖Lp2(R),
‖σN‖Lr

s(R2) and ‖TN( fN ,gN)‖Lp(R).

First we prove that ‖ fN‖Lp1(R) ≈ N1− p1
2 . By Khinchine’s inequality we have∫ 1

0
‖ fN‖p1

Lp1 dt1 =
∫
R

∫ 1

0

∣∣ N

∑
j=1

a j(t1)
ϕ(x/N)

N
e2πix j/N∣∣p1dt1dx

≈
∫
R

( N

∑
j=1

∣∣∣ϕ(x/N)

N

∣∣∣2)p1/2
dx
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≈ N−p1/2
∫
R

∣∣ϕ(x/N)
∣∣p1dx

≈ N1− p1
2 .

Hence ‖ fN‖Lp1(R×[0,1], dxdt) ≈ N
1
p1
−1

2 . Similarly ‖gN‖Lp1(R×[0,1], dxdt) ≈ N
1
p2
−1

2 . The
same idea gives that∫ 1

0
‖TN( fN ,gN)‖p

Lpdt3 ≈
∫
R

( 2N

∑
l=2

∣∣cl(Sl− sl)
1

N2 ϕ
2(x/N)e2πixl/N∣∣2)p/2

dx

≈
∫
R

( 11N/10

∑
l=9N/10

(Sl− sl)
2
)p/2

1
N2p |ϕ(x/N)|2pdx

≈ N
3p
2 −2p

∫
R
|ϕ(x/N)|2pdx

≈ N1− p
2 .

In other words we showed that ‖TN( fN ,gN)‖Lp(R×[0,1], dxdt) ≈ N
1
p−

1
2 .

As for σN , we have the following result whose proof can be found in [6, Lemma 4.2].

Lemma 8. For the multiplier σN defined in (11) and any s ∈ (0,1), there exists a con-
stant Cs such that

(12) ‖σN‖Lr
s(R2) ≤CsNs.

Apply (3) to fN , gN and TN defined above and integrate with respect to t1, t2 and t3
on both sides, we have(∫ 1

0

∫ 1

0

∫ 1

0
‖TN( fN ,gN)‖p

Lpdt3dt1dt2

)1/p

≤CsNs
(∫ 1

0
‖ fN‖p

Lp1 dt1
∫ 1

0
‖gN‖p

Lp2 dt2

)1/p

,

which combining the estimates obtained on fN , gN and TN( fN ,gN) above implies

N
1
p−

1
2 ≤CsNsN

1
p1
−1

2 N
1
p2
−1

2 ,

so we automatically have N1/2 ≤CsNs, which is true when N goes to ∞ only if s≥ 1/2.
We now discuss the case m≥ 2 and n = 1. We use for 1≤ k ≤ m

f̂k(ξk) =
N

∑
j=1

a j(tk)ϕ̂(Nξk− j),

and

σN =
N

∑
j1=1
· · ·

N

∑
jm=1

a j1(t1) · · ·a jm(tm)a j1+···+ jm(tm+1)c j1+···+ jm

m

∏
k=1

φ(Nξk− jk).
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By an argument similar to the case m = 2 and n = 1, we have

‖ fk‖Lpk (R×[0,1], dxdt) ≈ N
1
pk
−1

2 ,

‖σN‖Lr
s ≤CNs and

(13) ‖T ( f1, . . . , fm)‖Lp(R) ≈ N
1
p−

1
2 ,

hence we obtain that s≥ (m−1)/2.
For the higher dimensional cases, we define

Fk(x1, . . . ,xn) =
n

∏
τ=1

fk(xτ),

and σ(ξ1, . . . ,ξn) = ∏
n
τ=1 σN(ξτ), then ‖Fk‖Lpk ≈ N

n( 1
pk
−1

2 ), ‖σ‖Lr
s ≤CNs, and

‖T (F1, . . . ,Fm)‖ ≈ N
n( 1

p−
1
2 ).

We therefore obtain the restriction s≥ (m−1)n/2. �

Proposition 9. Under the hypothesis of Theorem 2 we must have s≥ mn/r.

Proof. Let ϕ and φ be as in Proposition 7. Define f̂ j(ξ j) = ϕ̂(N(ξ j−a)) with |a|= 1,
and σ(ξ , . . . ,ξm) = ∏

m
j=1 φ(N(ξ j − a)), then a direct calculation gives ‖ f j‖Lp j (Rn) ≈

N−n+n/p j and ‖σ‖Lr
s(Rmn) ≤CNsN−mn/r. Moreover,

Tσ ( f1, . . . , fm)(x) = N−mn(ϕ(x/N)e2πix·a)m.

We can therefore obtain that ‖Tσ ( f1, . . . , fm)‖Lp(Rn) ≈ N−mn+n/pCNsN−mn/r. Then we
come to the inequality N−mn+n/p≤CNsN−mn/r

∏ j N−n+n/p j , which forces s−mn/r≥ 0
by letting N go to infinity. �

Next, we obtain from (10) the restrictions for the indices p j claimed in Theorem 3.

Proof of Theorem 3. By symmetry it suffices to consider the case I = {1,2, . . . , k} with
k ∈ {0,1, . . . ,m} and the explanation I = /0 when k = 0. Define for ξ ∈ R

f̂N(ξ ) =
N

∑
j=−N

ϕ̂(Nξ − j)a j(t), ĝN(ξ ) =
N

∑
j=−N

ϕ̂(Nξ − j),

and

σN(ξ1, . . . ,ξm)

=
N

∑
j1=−N

· · ·
N

∑
jm=−N

a j1+···+ jm(t)c j1+···+ jma j1(t1) · · ·a jk(tk)φ(Nξ1− j1) · · ·φ(Nξm− jm).
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The idea is that in this setting if we take the first k functions as fN and the remaining as
gN , we have

TσN (

k terms︷ ︸︸ ︷
fN , . . . , fN ,

m− k terms︷ ︸︸ ︷
gN , . . . ,gN)(x)

=
N

∑
j1=−N

· · ·
N

∑
jm=−N

a j1+···+ jm(t)c j1+···+ jmN−m[ϕ(x/N)]me2πix( j1+···+ jm)/N .

This expression is independent of k and by (13) we know

‖TσN ( fN , . . . , fN ,gN , . . . ,gN)‖Lp ≈ N1/p−1/2.

Previous calculations show also ‖ fN‖Lpi ≈ CpiN
1/pi−1/2 and ‖σN‖Lr

s ≤ CNs. Lemma
4.3 in [6] gives that ‖gN‖Lpi ≤Cpi for pi ∈ (1,∞]. Consequently, we have

N
1
p−

1
2 ≤CN∑

k
i=1(

1
pi
− 1

2 )Ns

and this verifies our conclusion when n = 1.
For the higher dimensional case, we just use the tensor products and σ similar to

what we have in Proposition 7, and thus conclude the proof. �

Notice that when k = m, Theorem 3 coincides with Proposition 7.
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[13] Y. Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge
University Press, Cambridge, 1992.

[14] A. Miyachi, N. Tomita, Minimal smoothness conditions for bilinear Fourier multipliers, Rev. Mat.
Iberoam. 29 (2013), no. 2, 495–530.

[15] C. Muscalu, J. Pipher, T. Tao, C. Thiele, Bi-parameter paraproducts, Acta Math. 193 (2004), no. 2,
269–296.

[16] A. Seeger, Estimates near L1 for Fourier multipliers and maximal functions, Arch. Math. (Basel) 53
(1989), no. 2, 188–193.
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