
MAXIMAL OPERATOR AND WEIGHTED NORM INEQUALITIES
FOR MULTILINEAR SINGULAR INTEGRALS

LOUKAS GRAFAKOS AND RODOLFO H. TORRES

Abstract. The maximal operator associated with multilinear Calderón-Zygmund
singular integrals is introduced and shown to be bounded on product of Lebesgue
spaces. Moreover weighted norm inequalities are obtained for this maximal operator
as well as for the corresponding singular integrals.

1. Introduction

The analysis of multilinear singular integrals has much of its origins in several
works by Coifman and Meyer in the 70’s; see for example [3]. More recently, in [5]
and [6], an updated systematic treatment of multilinear singular integral operators
of Calderón-Zygmund type was presented in light of some new developments. See
also [7] and the references therein for a detailed description of previous work in the
subject. In this article we prove the boundedness of a maximal operator associated
to multilinear singular integrals and we use it to obtain multilinear weighted norm
inequalities.

We will consider multilinear operators T initially defined on the m-fold product of
Schwartz spaces and taking values into the space of tempered distributions,

T : S(Rn)× · · · × S(Rn)→ S ′(Rn).

Every such operator is associated with a distributional kernel on (Rn)m+1. We will
assume that this distributional kernel coincides with a function K defined away from
the diagonal y0 = y1 = y2 = · · · = ym in (Rn)m+1 which satisfies the size estimate

(1) |K(y0, y1, . . . , ym)| ≤ A

(
∑m

k,l=0 |yk − yl|)mn

and, for some ε > 0, the regularity condition

(2) |K(y0, . . . , yj, . . . , ym)−K(y0, . . . , y
′
j, . . . , ym)| ≤

A|yj − y′j|ε

(
∑m

k,l=0 |yk − yl|)mn+ε
,
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whenever 0 ≤ j ≤ m and |yj − y′j| ≤ 1
2

max 0≤k≤m|yj − yk|. Kernels K satisfying (1)
and (2) will be called of class m-CZK(A, ε). The association between T and K is
expressed via the representation

(3) T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym,

whenever f1, . . . , fm are C∞ functions with compact support and x /∈ ∩mj=1supp fj.
By homogeneity considerations, given exponents 1 ≤ q1, . . . , qm < ∞ and a mul-

tilinear operator T associated with a kernel in m-CZK(A, ε), it is meaningful to
consider boundedness properties of the form

T : Lq1 × · · · × Lqm → Lq,

only when

(4)
1

q1
+ · · ·+ 1

qm
=

1

q
.

It was shown in [6] that the boundedness of these general multilinear operators T
on just one such product of Lebesgue spaces implies the boundedness on all other
products of Lebesgue spaces with exponents 1 < qj ≤ ∞ satisfying (4) with q <∞.
A simple limiting argument then shows that the integral representation (3) still holds
for Lqj functions as long as x /∈ ∩mj=1supp fj. Moreover, there are endpoint weak-type
estimates when some of the exponents qj are equal to one. In particular,

(5) T : L1 × · · · × L1 → L1/m,∞.

For translation invariant operators similar results were obtained in [8].
When all the above continuity properties hold, we say that T is an m-linear

Calderón-Zygmund operator. Necessary and sufficient conditions for boundedness
of operators with kernels in m-CZK(A, ε) can be described in the form of multilin-
ear T1-Theorems, [1] and [6] .

In this article we study the maximal truncated operator

T∗(f1, . . . , fm)(x) = sup
δ>0
|Tδ(f1, . . . , fm)(x)|,

where, using the notation ~y = (y1, . . . , ym) and d~y = dy1 . . . dym, we set

Tδ(f1, . . . , fm)(x) =

∫
|x−y1|2+···+|x−ym|2>δ2

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) d~y.

We note that if fj ∈ Lqj(Rn) with 1 ≤ qj ≤ ∞, then Tδ(f1, . . . , fm) is given by
an absolutely convergent integral and thus is well defined. Indeed, if (y1, . . . , ym)
satisfies |x − y1|2 + · · · + |x − ym|2 > δ2, then for some j, say j = m, we have
|x − yj| = |x − ym| > δ/

√
n. Then, using Hölder’s inequality in each variable at a
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time, we obtain

|Tδ(f1, . . . , fm)(x)|

≤C1(n)‖f1‖Lq1
∫
|x−ym|> δ√

n

∫
(Rn)m−2

|f2(y2)| . . . |fm(ym)|dy2 . . . dym−1
(|x− y2|+ · · ·+ |x− ym|)

mn− n
q′1

dym

≤ . . .

≤Cm−1(n)‖f1‖Lq1 . . . ‖fm−1‖Lqm−1

∫
|x−ym|> δ√

n

|fm(ym)|dym
|x− ym|

mn−( n
q′1

+···+ n
q′m−1

)

≤Cm(n)‖f1‖Lq1 . . . ‖fm‖Lqm
1

δ
mn−( n

q′1
+···+ n

q′m
)
<∞.

(q′ = q/(q − 1) here denotes the dual index of q.) Thus T∗(f1, . . . , fm)(x) is also
pointwise well-defined when fj ∈ Lqj(Rn) with 1 ≤ qj ≤ ∞. In Theorem 1 below we
prove a pointwise estimate for T∗ when the fj’s lie in suitable Lebesgue spaces.

An immediate consequence of the boundedness of T∗ is that if T is given by a
principal value integral of the form

(6) T (f1, . . . , fm)(x) = lim
δ→0

∫
|x−y1|2+···+|x−ym|2>δ2

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) d~y

when the functions fj are in the Schwartz class, then the integrals in (6) converge a.e.
for all fj in Lqj(Rn). We refer again to [6] where several examples of such operators
are given.

The A∞ estimate for T∗ obtained in Theorem 2, gives weighted norm inequalities
analogous to those in [2] for linear operators.

The authors announced some of the results proved here at the recent 6th Interna-
tional Conference on Harmonic Analysis and Partial Differential Equations held at
El Escorial, Spain. The authors would like to take this opportunity to thank their
colleagues in Spain for their hospitality during that conference. They would also like
to thank Carlos Pérez for some useful comments.

2. Cotlar’s Inequality for Multilinear Singular Integrals

The Hardy-Littlewood maximal function with respect to balls on Rn will be de-

noted by M . We will also use the notation ~f = (f1, . . . , fm) whenever it is convenient.
For a given x ∈ Rn we will denote by Sδ(x) the cube {~y : sup1≤j≤m |x − yj| ≤ δ}.
Throughout this paper we will let W be the norm of T in (5). Recall that A is the
constant that appears in the size and smoothness estimates (1) and (2) of the kernel
K associated with T .

Theorem 1. Let T be an m-linear Calderón-Zygmund operator. Then, for all η > 0,

there exists a constant Cη = Cη(n,m) < ∞ such that for all ~f in any product of
Lqj(Rn) spaces, with 1 ≤ qj <∞, the following inequality holds for all x in Rn

(7) T∗(~f )(x) ≤ Cη

(
(M(|T (~f )|η)(x))1/η + (A+W )

m∏
j=1

Mfj(x)

)
.
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Proof. It is clear that is enough to prove the theorem for η arbitrarily small, so we
provide an argument for 0 < η < 1/m. Fix x in Rn. Let Uδ = {~y ∈ Sδ(x) :
|x−y1|2 + · · ·+ |x−ym|2 > δ2}. It is easy to see that

(8) sup
δ>0

∣∣∣∣∫
Uδ

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) d~y

∣∣∣∣ ≤ CA

m∏
j=1

Mfj(x),

so it suffices to show (7) with T∗(~f )(x) replaced by

(9) T̃∗(~f )(x) = sup
δ>0
|T̃δ(f1, . . . , fm)(x)|,

where

T̃δ(f1, . . . , fm)(x) =

∫
~y/∈Sδ(x)

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) d~y.

Fix δ > 0 and let B(x, δ/2) be the ball of center x and radius δ/2. Note that, since
~f is in a product of Lebesgue spaces and T is a Calderón-Zygmund operator, T (~f) is
in some Lp space and hence it is finite almost everywhere. Moreover, using linearity
and (3), we have for z ∈ B(x, δ/2)

(10) T̃δ(~f )(z) = T (~f )(z)− T (~f0)(z),

where ~f0 = (f1χB(x,δ), . . . , fmχB(x,δ)). Also, using (2), we obtain

(11) |T̃δ(~f )(x)− T̃δ(~f )(z)| ≤
∫
~y/∈Sδ(x)

A|x− z|ε
∏m

j=1 |fj(yj)|
(|x− y1|+ · · ·+ |x− ym|)nm+ε

d~y.

Now, the right hand side of (11) can be written as a sum of integrals over sets Rj1,...,jl

in (Rn)m for some {j1, . . . , jl} $ {1, . . . ,m} so that for ~y = (y1, . . . , ym) ∈ Rj1,...,jl we
have |x− yj| ≤ δ if and only if j ∈ {j1, . . . , jl}. Then l < m and it follows that∫

~y∈Rj1,...,jl

A|x− z|ε

(|x− y1|+ · · ·+ |x− ym|)nm+ε

m∏
j=1

|fj(yj)| d~y

≤Aδε
∏

j∈{j1,...,jl}

∫
|x−yj |≤δ

|fj(yj)| dyj
∏

j /∈{j1,...,jl}

∫
|x−yj |>δ

|fj(yj)|
|x− yj|

nm+ε
m−l

dyj

≤CA
∏

j∈{j1,...,jl}

Mfj(x)
∏

j /∈{j1,...,jl}

δ
n+ε
m−l

∫
|x−yj |>δ

|fj(yj)|
|x− yj|

nm+ε
m−l

dyj

≤CA
m∏
j=1

Mfj(x).

Using (10) and (11), we obtain for z in B(x, δ/2)

(12) |T̃δ(~f )(x)| ≤ CA

m∏
j=1

Mfj(x) + |T (~f )(z)− T (~f0)(z)|.
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Fix now 0 < η < 1/m. Raising (12) to the power η, integrating over z ∈ B =
B(x, δ/2), and dividing by |B| we obtain

|T̃δ(~f )(x)|η ≤
(
CA

m∏
j=1

Mfj(x)
)η

+M(|T (~f )|η)(x) +
1

|B|

∫
B

|T (~f0)(z)|η dz.(13)

We estimate the last term in (13) as follows∫
B

|T (~f0)(z)|η dz = mη

∫ ∞
0

λmη−1|{z ∈ B : |T (~f0)(z)|1/m > λ}| dλ

≤ mη

∫ ∞
0

λmη−1 min

(
|B|, W

1/m

λ
(
m∏
j=1

‖fjχB(x,δ)‖L1)1/m

)
dλ.

Letting

R = W 1/m(
m∏
j=1

‖fjχB(x,δ)‖L1)1/m,

we get∫
B

|T (~f0)(z)|η dz ≤ mη

∫ R/|B|

0

λmη−1|B| dλ+mη

∫ ∞
R/|B|

λmη−2Rdλ ≤ CηR
mη|B|1−mη,

where we have used that mη < 1. Finally

1

|B|

∫
B

|T (~f0)(z)|η dz≤CηW η|B|−mη(
m∏
j=1

‖fjχB(x,δ)‖L1)η≤CηW η

( m∏
j=1

Mfj(x)

)η
,

and if we insert this estimate in (13) and raise to the power 1/η we obtain (7). �

Remark 1. We note that if T satisfies any strong type estimate for some qj > 1
with norm ‖T‖ then W ≤ C(n,m, qj)(A+ ‖T‖). See [6].

We also note that a particular case of Theorem 1 for η = 1/m can be obtained
with rather different arguments which are of interest in their own but are not needed
in this article. For the linear case m = 1 see, for example, the book [4]. The point
here is to obtain the estimate for η sufficiently small so that the full range of q′s in
the next corollary can be achieved.

Corollary 1. Let T be an m-linear Calderón-Zygmund operator. Then, for all ex-
ponents q1, . . . , qm and q satisfying (4), we have

T∗ : Lq1 × · · · × Lqm → Lq

when 1 < q1, . . . , qm ≤ ∞ and q <∞. We also have

T∗ : Lq1 × · · · × Lqm → Lq,∞

when at least one qj is equal to one. Moreover, in either case the norm of T∗ is
controlled by a constant multiple of A+W .
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Proof. The strong estimates follow directly from (7) with any η ≤ 1/m and the
boundedness properties of T (see [6]) and M . For the weak estimates we just observe,
for instance if q = 1/m, that by picking η < 1/m, we have

‖M(|T (~f )|η)1/η‖L1/m,∞ = ‖M(|T (~f )|η)‖1/η
L1/(mη),∞

≤C‖|T (~f )|η‖1/η
L1/(mη),∞ = C‖T (~f )‖L1/m,∞ ,

because M maps Lp,∞ into itself for all 1 < p <∞. �

3. Weighted Norm Inequalities

For simplicity in the proofs, in this section we use the uncentered Hardy-Littlewood
maximal function with respect to cubes in Rn which we denote by Mc. Recall that
a weight w is in the class A∞ if and only if there exist c, θ > 0 such that for every
cube Q and every measurable set E ⊂ Q,

(14)
w(E)

w(Q)
≤ c

(
|E|
|Q|

)θ
,

where, for a measurable set F , w(F ) =
∫
F
w(x) dx.

Recall the modified maximal truncated singular integral T̃∗ defined in (9).

Theorem 2. Let T be a m-linear Calderón-Zygmund operator and let W be the least

bound in (5). Let ~f be in any product of Lqj(Rn) spaces, with 1 ≤ qj < ∞. Also let
w ∈ A∞ and θ be as in (14). Then there exists a positive constant C such that for
all α > 0 and all γ > 0 sufficiently small we have

(15) w

({
T̃∗(~f ) > 2m+1α

}
∩
{ m∏
j=1

Mcfj ≤ γα
})
≤C(A+W )

θ
mγ

θ
mw
({
T̃∗(~f ) > α

})
.

Proof. Write

Ω = {x : T̃∗(~f )(x) > α} = ∪sQs,

where Qs are Whitney cubes. In view of (14), it suffices to show that for all Whitney
cubes Qs we have the estimate

(16) |Qs ∩ {T̃∗(~f ) > 2m+1α} ∩ {
m∏
j=1

Mcfj ≤ γα}| ≤ C(A+W )1/mγ1/m|Qs|,

where W is the bound for T in the weak estimate (5).
For each Whitney cube Qs fix a large multiple of it Q∗s and a point ys in cΩ ∩Q∗s

with the property that

(17) maxz∈Qs|ys − z| ≤
1

2
dist(ys,

c(Q∗s)).

In order to prove (16) for a given cube Qs we may assume that there exists a point
ξs in Qs such that

Mcf1(ξs) . . .Mcfm(ξs) ≤ γα,

otherwise there is nothing to prove.
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Given ~f = (f1, . . . , fm), define f 0
j = fjχQ∗s and f∞j = f − f 0

j for j = 1, . . . ,m. The
set

Qs ∩ {T̃∗(~f ) > 2m+1α} ∩ {
m∏
j=1

Mcfj ≤ γα}

is contained in the union of 2m sets of the form

(18) Qs ∩ {T̃∗(f r11 , . . . , f rmm ) > 2α} ∩ {
m∏
j=1

Mcfj ≤ γα},

where rj ∈ {0,∞} for all 1 ≤ j ≤ m. First we estimate the measure of the set
corresponding to r1 = · · · = rm = 0. We have

|Qs ∩ {T̃∗(f 0
1 , . . . , f

0
m)(x) > 2α} ∩ {

m∏
j=1

Mcfj(x) ≤ γα}|

≤C(A+W )1/m

α1/m

(∫
Rn

|f 0
1 (t1)|dt1 . . .

∫
Rn

|f 0
m(tm)|dtm

)1/m

≤C(A+W )1/m

α1/m

(
1

|Q∗s|

∫
Q∗s

|f1(t1)|dt1 . . .
1

|Q∗s|

∫
Q∗s

|fm(tm)|dtm
)1/m

|Qs|

≤C(A+W )1/m

α1/m

( m∏
j=1

Mcfj(ξs)
)1/m|Qs| ≤ C(A+W )1/mγ1/m|Qs|,

(19)

where we have used that T̃∗ maps L1 × · · · × L1 into weak L1/m with bound at most
C(A+W ), a consequence of Corollary 1.

Next, we will show that all the remaining sets are empty if γ is chosen to be small.
When this is established, combining (19) with (14) and summing over all Whitney
cubes Qs yields (15). Consider first the case where exactly l of the rj are∞ for some
1 ≤ l < m. We give the arguments for one of these cases. The rest are similar and
can be easily obtained from the argument below by permuting the indices. We have∣∣∣∣ ∫

~y/∈Sδ(x)
K(x, ~y )f∞1 (y1) . . . f

∞
l (yl)f

0
l+1(yl+1) . . . f

0
m(ym) d~y

∣∣∣∣
≤CA

m∏
j=l+1

∫
Q∗s

|fj(yj)| dyj
l∏

k=1

∫
c(Q∗s)

|fk(yk)|
|x− yk|mn/l

dyk

≤CA
m∏

j=l+1

Mcfj(ξs)|Qs|m−l
l∏

k=1

∫
c(Q∗s)

|fk(yk)|
|ξs − yk|mn/l

dyk

≤CA
m∏
j=1

Mcfj(ξs) ≤ CAγα,

where we have used that m > l. By picking γ small enough, we can make the set in
(18) empty when r1 = · · · = rl = ∞ and rl+1 = · · · = rm = 0. Likewise with all the
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remaining sets where at least one rj is infinity. We are now left with the set in (18)
where all the rj’s are equal to infinity, that is, the set

(20) Qs ∩ {T̃∗(f∞1 , . . . , f∞m ) > 2α} ∩ {
m∏
j=1

Mcfj(x) ≤ γα}.

Set ~f∞ = (f∞1 , . . . , f
∞
m ). We claim that for x ∈ Qs we have

(21) |T̃δ(~f∞)(x)− T̃δ(~f∞)(ys)| ≤ CA

m∏
j=1

Mcfj(ξs).

We have

T̃δ(~f
∞)(x)− T̃δ(~f∞)(ys)

=

∫
~y/∈Sδ(x)

K(x, ~y )f∞1 (y1) . . . f
∞
m (ym) d~y −

∫
~y/∈Sδ(ys)

K(ys, ~y )f∞1 (y1) . . . f
∞
m (ym) d~y

=I − II
where

I =

∫(
cSδ(x)∩Sδ(ys)

)
∪
(
cSδ(ys)∩Sδ(x)

)K(x, ~y )f∞1 (y1) . . . f
∞
m (ym) d~y

II =

∫
~y/∈Sδ(ys)

[
K(x, ~y )−K(ys, ~y )

]
f∞1 (y1) . . . f

∞
m (ym) d~y

Since |x− ys| ≤ 1
2

max1≤j≤n |x− yj| when yj /∈ Q∗s, applying (2) we obtain

|II| ≤
∫
(Rn)m

A|x− ys|ε

(|x− y1|+ · · ·+ |x− ym|)nm+ε

m∏
j=1

|f∞j (yj)| d~y

≤CA|Qs|ε/n
m∏
j=1

∫
c(Q∗s)

|f(yj)|
|x− yj|

n+ε
m

dyj ≤ CA
m∏
j=1

Mcfj(ξs).

As far as I is concerned, we consider two cases:
(a) If ~y belongs to cSδ(x) ∩ Sδ(ys), then we have

|y1 − ys|2 + · · ·+ |ym − ys|2 ≤ nδ2, |y1 − x|2 + · · ·+ |ym − x|2 ≥ δ2 .

In this case, |yj − x|2 ≥ 1
2
|yj − x|2 + 1

4
`(Qs)

2 and summing over j = 1, . . . ,m yields

|y1 − x|+ · · ·+ |ym − x| ≥ c (δ + `(Qs)) ,

where `(Qs) is the length of the cube Qs. Under the assumptions in case (a), for a
given point ξ2 ∈ Qs we have

|yj − ξs| ≤ |yj − ys|+ |ys − ξs| ≤
√
n δ + c `(Qs)

and so the integral I in case (a) can be estimated by

A

(c (δ + `(Qs)))mn

m∏
j=1

∫
|yj−ξs|≤c′(δ+`(Qs))

|fj(yj)| dyj ≤ CA

m∏
j=1

Mcfj(ξs).
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(b) If ~y ∈ cSδ(ys) ∩ Sδ(x), then we have

|y1 − x|2 + · · ·+ |ym − x|2 ≤ nδ2, |y1 − ys|2 + · · ·+ |ym − ys|2 ≥ δ2 .

But in this case,

|yj − x| ≥
1

2
|yj − ys| − |ys − x|+

1

2
|yj − ys| ≥

1

2
|yj − ys| ≥

1

4
|yj − ys|+ `(Qs)

using the definition of ys in the second inequality. Squaring and summing over j
yields

|y1 − x|+ · · ·+ |ym − x| ≥ c (δ + `(Qs)) .

Under the assumptions in case (b), for a given point ξ2 ∈ Qs we have

|yj − ξs| ≤ |yj − x|+ |x− ξs| ≤
√
n δ + c `(Qs)

and so the integral I in case (b) can be estimated by

A

(c (δ + `(Qs)))mn

m∏
j=1

∫
|yj−ξs|≤c′(δ+`(Qs))

|fj(yj)| dyj ≤ CA
m∏
j=1

Mcfj(ξs).

as in the case (a). This proves (21). We also claim that for all δ > 0

(22) |T̃δ(~f∞)(ys)| ≤ T̃∗(~f )(ys) + CA
m∏
j=1

Mcfj(ξs).

Assuming (22) momentarily, observe that (21) and (22) imply

|T̃∗(~f∞)(x)| ≤ T̃∗(~f )(ys) + CA
m∏
j=1

Mcfj(ξs) ≤ α + CAγα ≤ 2α,

if γ is small enough because ys is in cΩ. For these γ’s the set (20) is then empty.
It suffices therefore to prove (22). Let

d1 = dist(ys,
c(Q∗s)) and d2 = maxz∈∂(c(Q∗s))|ys − z|.

Note that d1 ≈ d2 ≈ |Qs|1/n. For δ ≥ d2, (22) follows immediately because Q∗s ⊂
Sd2(ys) and f∞j agrees with fj in the complement of Q∗s. On the other hand, for
δ < d2 we have that

T̃δ(~f
∞)(ys) = T̃max(δ,d1)(

~f∞ )(ys)

and hence

(23) T̃δ~(f
∞)(ys) ≤ T̃∗(~f )(ys) + |T̃max(δ,d1)(

~f∞)(ys)− T̃d2(~f∞)(ys)|,
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since T̃d2(
~f∞)(ys) = T̃d2(

~f )(ys). To prove (22) it suffices to show that the second
term on the right of inequality (23) is controlled by CA

∏m
j=1Mcfj(ξs). We have

|T̃max(δ,d1)(
~f∞)(ys)− T̃d2(~f∞)(ys)|

≤
∫
~t∈Sd2 (ys)−Smax(δ,d1)

(ys)

A
∏m

j=1 |f∞j (tj)|
(|ys − t1|+ · · ·+ |ys − tm|)nm

d~t

≤
∫
~t∈S2d2

(ξs)−Sd1/2(ξs)

CA
∏m

j=1 |fj(tj)|
(|ξs − t1|+ · · ·+ |ξs − tm|)nm

d~t by (17)

≤
m∑
k=1

∫
1
2
d1<|ξs−tk|≤2

√
nd2

CA
∏m

j=1 |fj(tj)|
(|ξs − t1|+ · · ·+ |ξs − tm|)nm

d~t.

We estimate the term with k = m; the other are analogous. We have

A

∫
(Rn)m−1

∫
1
2
d1<|ξs−tm|≤2

√
nd2

∏m
j=1 |fj(tj)|dtmdtm−1 . . . dt1

(|ξs − t1|+ · · ·+ |ξs − tm|)nm

≤CAMcf1(ξs)

∫
(Rn)m−2

∫
1
2
d1<|ξs−tm|≤2

√
nd2

∏m
j=2 |fj(tj)|dtmdtm−1 . . . dt2

(|ξs − t2|+ · · ·+ |ξs − tm|)n(m−1)

≤ . . .

≤CA
m−1∏
j=1

Mcfj(ξs)

∫
1
2
d1<|ξs−tm|≤2

√
nd2

|fm(tm)|
|ξs − tm|n

dtm ≤ CA
m∏
j=1

Mcfj(ξs).

This proves (22) and the proof of the theorem is complete. �

Corollary 2. Let 1 ≤ p1, . . . , pm <∞, and p be such that 1/p1 + · · ·+ 1/pm = 1/p,
and w ∈ A∞. Let T be an m-linear Calderón-Zygmund operator. Then there is a

Cp,n <∞ so that for all ~f = (f1, . . . , fm) satisfying ‖T∗(~f )‖Lp(w) <∞ we have

(24) ‖T∗(~f )‖Lp(w) ≤ Cp,n(A+W )
m∏
j=1

‖Mcfj‖Lpj (w).

Moreover, if p0 = min(p1, . . . , pm) > 1, and w ∈ Ap0, then

(25) ‖T∗(~f )‖Lp(w) ≤ Cp,n(A+W )
m∏
j=1

‖fj‖Lpj (w).

Proof. The first part of the corollary with T∗ replaced by T̃∗ follows from Theorem 2
and standard estimates using distribution functions. For this we need the assumption

that ‖T∗(~f )‖Lp(w) < ∞. Estimate (24) then also follows for T∗ which is controlled

by T̃∗ and Mc. For (25), just observe that Ap0 ⊂ Apj and Mc is bounded on Lpj(w)
when w ∈ Apj . �

Remark 2. The hypothesis ‖T∗(~f )‖Lp(w) <∞ is always satisfied if each component

in ~f is a bounded function with compact support and w is in Ap0 , p0 > 1 as above. In
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fact, in this case, T∗(~f )(x) ∼ |x|−nm near infinity and thus T∗(~f ) is in Lp(w) outside
a compact set since mp ≥ p0 and w(x)|x|−np0 is integrable at infinity. Moreover inside

a compact set wq is integrable for some q > 1, and thus |T∗(~f )|p ∈ Lq′ as it easily
follows from T∗ : Lmpq

′ × · · · × Lmpq′ → Lpq
′
, a consequence of Corollary 1.

We can extend the weighted norm inequalities above to a Calderón-Zygmund op-
erator T itself. To do so we first need the following simple lemma.

Lemma 1. Let T be an m-linear pointwise multiplier operator of the form

T (f1, . . . , fm)(x) = b(x)f1(x) . . . fm(x),

where b is a measurable function. If T maps Lp1 × · · · × Lpm into Lp for some
1 < p1, . . . , pm <∞, 1/p1 + · · · + 1/pm = 1/p, then b is in L∞ with norm at most a
multiple of the norm of T .

Proof. We proceed by induction on m. In the linear case the statement is well-
known. Assume then that the result is true for (m−1)-linear pointwise multipliers.
Suppose that T (f1, . . . , fm) = bf1 . . . fm maps Lp1 × · · · × Lpm into Lp, for some
1 < p1, . . . , pm < ∞, 1/p1 + · · · + 1/pm = 1/p. Then, since T agrees with its
m-transposes, duality and interpolation gives that T is bounded on all product of
Lebesgue spaces with 1 < q1, . . . , qm < ∞ and 1/q1 + · · · + 1/qm = 1/q. See e.g. [6]
for details. In particular, T maps L2(m−1)×· · ·×L2(m−1)×L2 into L1. It follows that
Tm−1(f1, . . . , fm−1) = bf1 . . . fm−1 is an (m−1)-linear pointwise multiplier that maps
L2(m−1) × · · · × L2(m−1) into L2. The induction hypothesis gives that b is bounded
and the claimed estimate for ‖b‖L∞ follows. �

Corollary 3. Let T be an m-linear Calderón-Zygmund operator. Fix exponents 1 <
p1, . . . , pm < ∞, and p such that 1/p1 + · · · + 1/pm = 1/p, and let w be a weight in

A∞. Then, there is a constant Cp,n <∞ so that for all ~f = (f1, . . . , fm) with each fj
bounded and compactly supported we have

(26) ‖T (~f )‖Lp(w) ≤ Cp,n(A+W )
m∏
j=1

‖Mcfj‖Lpj (w).

Moreover, if w ∈ Ap0, with p0 = min(p1, . . . , pm), then

(27) ‖T (~f )‖Lp(w) ≤ Cp,n(A+W )
m∏
j=1

‖fj‖Lpj (w)

and, in particular, T extends as a bounded operator from Lp1(w)× · · · ×Lpm(w) into
Lp(w)

Proof. We will control T by T∗. First we observe that since T∗ is bounded on products
of Lpj spaces, then the truncated singular integrals Tδ are uniformly bounded and
thus there is a subsequence Tδj which converges weakly in Lp to a limit T0. Next, we
claim that the given T differs from T0 by a pointwise multiplier. That is, for all fj
bounded and with compact support we have,

T (f1, . . . , fm)− T0(f1, . . . , fm) = bf1 . . . fm,
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where b is a well-defined measurable function. We just sketch the proof of this claim
following the arguments for the analogous linear case in [9] p. 34. We set

∆(g1, . . . gm) = T (g1, . . . , gm)− T0(g1, . . . , gm)

and we observe that for all gj ∈ Lqj we have

(28) ∆(g1, . . . gm)(x) = 0,

whenever x /∈ ∩mj=1suppgj. To see (28), note that if δ is smaller than the distance
from x to ∩mj=1suppgj, then T = Tδ. Next we observe that for all gj ∈ Lqj and all
cubes Qj we have

(29) ∆(χQ1g1, . . . χQmgm) = χQ1 . . . χQm∆(g1, . . . , gm).

Indeed, if x /∈ ∩mj=1Qj, then both terms in (29) are zero by (28). If x ∈ ∩mj=1Qj, then
we write each χQjgj as gj − χcQjgj and we use multilinearity and (28) to prove (29).

Once we know (29) we use linearity and density to obtain that

∆(f1g1, . . . fmgm) = f1 . . . fm∆(g1, . . . , gm)

for all gj ∈ Lqj and fj in L∞ with compact support. We now take Or = B(0, r). For
x ∈ Or (29) gives

∆(χOr , . . . , χOr) = ∆(χOrχOr+1 , . . . , χOrχOr+1) = χOr+1∆(χOr+1 , . . . , χOr+1)

and this identity implies that the function

b(x) = ∆(χOr , . . . , χOr)(x), when x ∈ Or

is well defined on Rn. Now take fj compactly supported and bounded. Then pick
an r > 0 so that ∪mj=1suppfj ⊂ B(0, r). Then

∆(f1, . . . , fm) = ∆(χOrf1, . . . , χOrfm) = bf1 . . . fm.

Finally, since both T and T0 are bounded, it follows from Lemma 1 that b is in L∞.
Then,

|T (~f )| ≤ |T0(~f )|+ ‖b‖L∞|f1 . . . fm| ≤ T∗(~f ) + ‖b‖L∞|f1 . . . fm|,
and all the estimates for T follow from the corresponding ones for T∗ once we observe
that

‖b‖L∞ ≤ ‖T − T0‖ ≤ ‖T‖+ ‖T∗‖ ≤ C(A+W ),

where ‖.‖ denotes the operator norm in the unweighted Lebesgue spaces. �

Remark 3. For ~f as in the corollary, we clearly also have the estimate

(30) ‖T (~f )‖L1/m,∞(w) ≤ Cm,n(A+W )
m∏
j=1

‖Mcfj‖L1,∞(w)

and, in particular, if w ∈ A1, then

(31) T : L1(w)× · · · × L1(w)→ L1/m,∞(w),

since the Hardy-Littlewood maximal function is of weak-type (1,1) if and only if w
is in A1.
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Remark 4. Using Corollary 3 we can now improve on Remark 2. Let p0 > 1

and w ∈ Ap0 . Then for all ~f in a product of Lpj spaces with 1 < p1, . . . , pm < ∞
and 1/p1 + · · · + 1/pm = 1/p, we have ‖T∗(~f )‖Lp(w) < ∞. In fact, we can use
Cotlar’s inequality (7) to control T∗ pointwise. Taking η = 1/m in (7) and using that
pm ≥ p0 > 1 we obtain

‖T∗(~f )‖Lp(w) ≤C
(
‖M(|T (~f )|1/m)‖mLpm(w) + ‖

m∏
j=1

Mfj‖Lp(w)
)

≤C
(
‖|T (~f )|1/m‖mLpm(w) +

m∏
j=1

‖Mfj‖Lpj (w)
)

≤C
(
‖T (~f )‖Lp(w) +

m∏
j=1

‖Mfj‖Lpj (w)
)

≤C
m∏
j=1

‖Mfj‖Lpj (w) <∞.
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