APPENDIX

THE MARY WEISS LEMMA

Loukas Grafakos* and Steve Hofmann**
University of Missouri

Abstract

We prove a version of a Lemma due to Mary Weiss on \mathbb{R}^{n} equipped with the family of dilations $\lambda^{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda_{1}^{\alpha_{1}} x_{1}, \ldots, \lambda_{n}^{\alpha_{n}} x_{n}\right)$. We consider both the case of a full order derivative and of fractional derivatives.

If F is a function on \mathbb{R}^{n} and $|\nabla F|$ in L^{p} for some $p>n$, it can be shown that for fixed y, the function $F_{y}(x)=\frac{|F(x)-F(y)|}{|x-y|}$ is in L^{p}. A Lemma due to Mary Weiss $[\mathrm{CaC}]$ says that the supremum of F_{y} over all $y \in \mathbb{R}^{n}-\{x\}$ is also in L^{p}.

We will generalize this Lemma for arbitrary dilations and fractional order differentiation. We first introduce some notation. We let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ denote a multiindex with real entries such that $1=\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$. Define $k_{0}=\max \left\{j: \alpha_{j}=1\right\}$, and for $z \in \mathbb{R}^{n}$, let $z^{\prime}=\left(z_{1}, \ldots, z_{k_{0}}\right)$ and $z^{\prime \prime}=\left(z_{k_{0}+1}, \ldots, z_{n}\right)$. We set

$$
\begin{align*}
\nabla_{z^{\prime}} f & =\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{k_{0}}}\right) \tag{0.1}\\
\nabla_{z^{\prime \prime}} f & =\left(\frac{\partial f}{\partial z_{k_{0}+1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right) \tag{0.2}
\end{align*}
$$

Let $\|\cdot\|$ denote the unique positive solution ρ of the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{z_{j}^{2}}{\rho^{2 \alpha_{j}}}=1 \tag{0.3}
\end{equation*}
$$

[^0]We call $\|\cdot\|$ the nonisotropic norm associated with the multiindex α. Note that $\|\cdot\|$ is homogeneous of degree one with respect to the family of dilations

$$
\begin{equation*}
z \rightarrow \lambda^{\alpha} z=\left(\lambda^{\alpha_{1}} z_{1}, \ldots, \lambda^{\alpha_{n}} z_{n}\right) \tag{0.4}
\end{equation*}
$$

We define the nonisotropic fractional differentiation operator \mathbb{D}^{β} by

$$
\begin{equation*}
\widehat{\mathbb{D}^{\beta}} f(\zeta)=\|\zeta\|^{\beta} \hat{f}(\zeta) . \tag{0.5}
\end{equation*}
$$

We also define the nonisotropic Hardy-Littlewood maximal function associated with the norm \|•\| by

$$
\begin{equation*}
(\mathbb{M} f)(z)=\sup _{I} \frac{1}{|I|} \int_{I}|f(y)| d y \tag{0.6}
\end{equation*}
$$

where the supremum is taken over all sets $I=\{w:\|w-z\| \leq N\}$ with $N>0$. Let $d=|\alpha|=\sum_{j=1}^{n} \alpha_{j}$ be the homogeneous dimension of the norm $\|\cdot\|$. Below L^{q} will always be $L^{q}\left(\mathbb{R}^{n}\right)$ for some fixed $n \geq 2$. We have the following

Lemma. Let $0<\beta \leq 1$ and $\frac{d}{\beta}<r<\infty$. Then for all p with $\frac{d}{\beta}<p<r$, there exists a constant $C_{p, \beta}>0$ such that for all A on \mathbb{R}^{n} with $\mathbb{D}^{\beta} A=a \in L^{r}$, we have

$$
\begin{equation*}
|A(u)-A(v)| \leq C_{p, \beta}\|u-v\|^{\beta}\left\{\left[\mathbb{M}\left(|a|^{p}\right)(u)\right]^{\frac{1}{p}}+\mathbb{M}(|a|)(u)+\left(R_{*} a\right)(u)\right\}, \tag{0.7}
\end{equation*}
$$

where \mathcal{R}_{*} denotes a "nice" nonisotropic maximal singular integral which is bounded on L^{p} for all $p>1$.

1. The case $\beta=1$. By definition $A=\mathcal{J}_{\beta} a$, where \mathcal{J}_{β} is the nonisotropic Riesz potential defined by

$$
\begin{equation*}
\widehat{\mathcal{J}_{\beta} f}(\zeta)=\|\zeta\|^{-\beta} \hat{f}(\zeta) . \tag{1.1}
\end{equation*}
$$

We set $\mathcal{J}_{1}=\mathcal{J}$. If J is the kernel of \mathcal{J}, then by $[\mathrm{FR}], J$ is in $C^{\infty}\left(\mathbb{R}^{n}-\{0\}\right)$, and

$$
\begin{equation*}
J\left(\lambda^{\alpha} z\right)=\lambda^{(1-d)} J(z) \tag{1.2}
\end{equation*}
$$

We introduce a smooth cutoff function η with $\eta=1$ on $[-10,10]$ and $\eta=0$ on the complement of $[-20,20]$. Set $\delta=\|u-v\|$. We have

$$
\begin{aligned}
& A(u)-A(v)=\int[J(u-w)-J(v-w)] a(w) d w \\
= & \int J^{1}(u-w) a(w) d w-\int J^{1}(v-w) a(w) d w+\int\left[J^{2}(u-w)-J^{2}(v-w)\right] a(w) d w \\
= & I+I I+I I I,
\end{aligned}
$$

where $J^{1}(z)=J(z) \eta\left(\frac{\|z\|}{\delta}\right)$ and $J^{2}(z)=J(z)\left[1-\eta\left(\frac{\|z\|}{\delta}\right)\right]$. To estimate term I, we use (1.2) and a routine modification of the argument in [St] pp 62-64. We obtain that

$$
\begin{equation*}
|I| \leq C \delta \mathbb{M}(|a|)(u)=C\|u-v\| \mathbb{M}(|a|)(u) \tag{1.3}
\end{equation*}
$$

By Hölder's inequality and (1.2), we have

$$
\begin{equation*}
|I I| \leq\left(\int_{\|u-w\| \leq 20 \delta}|a(w)|^{p} d w\right)^{\frac{1}{p}}\left(\int_{\|u-w\| \leq 20 \delta}\|v-w\|^{(1-d) p^{\prime}} d w\right)^{\frac{1}{p^{\prime}}} \leq C \delta\left[\mathbb{M}\left(|a|^{p}\right)(u)\right]^{\frac{1}{p}}, \tag{1.4}
\end{equation*}
$$

since $\|u-w\| \leq 20 \delta$ implies $\|v-w\| \leq 21 \delta$ and the required inequality $(1-d) p^{\prime}>-d$ follows from $p>d$. This completes the estimate for term $I I$. We now write term $I I I$ as follows:

$$
\begin{align*}
& \quad \int\left\{J^{2}(u-w)-J^{2}(v-w)-\left(u^{\prime}-v^{\prime}\right) \cdot\left(\nabla_{u^{\prime}} J^{2}\right)(u-w)\right\} a(w) d w \\
& \quad+\left(u^{\prime}-v^{\prime}\right) \int\left(\nabla_{u^{\prime}} J^{2}\right)(u-w) a(w) d w \\
& = \tag{1.5}\\
& I I I_{1}+I I I_{2}
\end{align*}
$$

Note that $J^{2}(u-w)$ is supported where $\|u-w\| \geq 10 \delta$. By Taylor's Theorem and (1.2) we have that the expression inside curly brackets in $I I I_{1}$ is bounded in absolute value by

$$
\begin{align*}
& \left|\left(u^{\prime \prime}-v^{\prime \prime}\right) \cdot\left(\nabla_{u^{\prime \prime}} J^{2}\right)(u-w)\right|+O\left(\frac{\delta^{2}}{(\delta+\|u-w\|)^{d+1}}\right) \\
\leq & C \sum_{j=k_{0}+1}^{n} \frac{\delta^{\alpha_{j}}}{(\delta+\|u-w\|)^{d+\alpha_{j}-1}}+O\left(\frac{\delta^{2}}{(\delta+\|u-w\|)^{d+1}}\right) \\
\leq & C \delta \frac{\delta^{\varepsilon}}{(\delta+\|u-w\|)^{d+\varepsilon}} \quad \text { for some } \varepsilon>0 . \tag{1.6}
\end{align*}
$$

Clearly the integral of (1.6) is bounded by $C \delta \mathbb{M}(|a|)(u)$.
Finally, let $\vec{R}(z)=\left(\nabla_{z^{\prime}} J\right)(z) . \vec{R}$ is a nonisotropic Calderón-Zygmund kernel, that is homogeneous of degree of degree $-d$ and C^{∞} away from the origin. We have $\left(\nabla_{z^{\prime}} J^{2}\right)(z)=$ $J_{1}^{2}+J_{2}^{2}$, where $J_{1}^{2}=\left[1-\eta\left(\frac{\|z\|}{\delta}\right)\right]\left(\nabla_{z^{\prime}} J\right)(z)$ and $J_{2}^{2}=-J(z) \nabla_{z^{\prime}}\left(\eta\left(\frac{\|z\|}{\delta}\right)\right)$. The operator with kernel J_{2}^{2} can be shown as before to be pointwise bounded by $C \mathbb{M}(|a|)(u)$. The operator with kernel J_{1}^{2} is dominated by

$$
\begin{equation*}
\mathcal{R}_{*} a(u)=\sup _{\delta>0}\left|\int \vec{R}(u-w)\left[1-\eta\left(\frac{\|u-w\|}{\delta}\right)\right] a(w) d w\right|, \tag{1.7}
\end{equation*}
$$

and \mathcal{R}_{*} is a "nice" maximal singular integral which maps L^{p} to L^{p} for all $p>1$. Since $\left\|u^{\prime}-v^{\prime}\right\| \leq \delta$, it follows that term $I I I_{2}$ satisfies the estimate (0.7).
2. The case of fractional differentiation. We now take up the case $0<\beta<1$. As before, we have

$$
\begin{aligned}
& A(u)-A(v)=\int\left[J_{\beta}(u-w)-J_{\beta}(v-w)\right] a(w) d w \\
= & \int J_{\beta}^{1}(u-w) a(w) d w-\int J_{\beta}^{1}(v-w) a(w) d w+\int\left[J_{\beta}^{2}(u-w) a(w)-J_{\beta}^{2}(v-w)\right] a(w) d w \\
= & I+I I+I I I,
\end{aligned}
$$

where $J_{\beta}^{1}(z)=J_{\beta}(z) \eta\left(\frac{\|z\|}{\delta}\right), J_{\beta}^{2}(z)=J_{\beta}(z)-J_{\beta}^{1}(z), \delta=\|u-v\|$, and η is the bump introduced in the previous section. It is easy to see that $\left|J_{\beta}(z)\right| \leq C\|z\|^{\beta-d}$. We certainly have that $|I| \leq C \delta^{\beta} \mathbb{M}(|a|)(u)$. Also, Hölder's inequality gives

$$
|I I| \leq\left(\int_{\|u-w\| \leq 20 \delta}|a(w)|^{p} d w\right)^{\frac{1}{p}}\left(\int_{\|u-w\| \leq 20 \delta}\|v-w\|^{(\beta-d) p^{\prime}} d w\right)^{\frac{1}{p^{\prime}}} \leq C \delta\left[\mathbb{M}\left(|a|^{p}\right)(u)\right]^{\frac{1}{p}}
$$

if $(\beta-d) p^{\prime}>-d$, i.e. $p>\frac{d}{\beta}$. Finally in term III, $\|v-w\| \sim\|u-w\| \gg \delta$, so

$$
\left|J_{\beta}(u-w)-J_{\beta}(v-w)\right| \leq C \frac{\|u-v\|}{\|u-w\|^{d+1-\beta}} \chi_{\|u-w\|>\delta} \leq C \frac{\delta^{1-\beta}}{(\delta+\|u-w\|)^{d+1-\beta}}
$$

Since $0<1-\beta<1$, integrating with respect to w, we obtain that

$$
|I I I| \leq C \delta^{\beta} \mathbb{M}(|a|)(u)
$$

This concludes the proof of the Lemma.
3. Remarks and applications. The analogous formulation of (0.7) for $1<\beta<n$ is
$\left|A(y)-\sum_{|\gamma| \leq[\beta]} \frac{1}{\gamma!} \frac{\partial^{\gamma} A}{\partial x^{\gamma}}(x)(y-x)^{\gamma}\right| \leq C_{p, \beta}\|x-y\|^{\beta}\left\{\left[\mathbb{M}\left(|a|^{p}\right)(x)\right]^{\frac{1}{p}}+\mathbb{M}(|a|)(x)+\left(\mathcal{R}_{*} a\right)(x)\right\}$, where $\frac{n}{\beta}<p<r$ and $a=\mathbb{D}^{\beta} A$ is in L^{r}. Here $[\beta]$ is the greatest integer $\leq \beta$.

Let us sketch the proof of (3.1) in the special case where $\alpha_{j}=1$ for all j. Fix x and y and let $t=y-x$. The left hand side of (3.1) is the sum of the following three expressions:

$$
\begin{align*}
& \int_{|z-x| \geq 10|t|}\left(|y-z|^{-n+\beta}-\sum_{|\gamma| \leq[\beta]} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}}\left(|x-z|^{-n+\beta}\right)\right) a(z) d z \tag{3.2}\\
- & \int_{|z-x| \leq 10|t|} \sum_{|\gamma| \leq[\beta]} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}}\left(|x-z|^{-n+\beta}\right) a(z) d z \tag{3.3}\\
& \int_{|z-x| \leq 10|t|}|y-z|^{-n+\beta} a(z) d z \tag{3.4}
\end{align*}
$$

By Taylor's theorem there exists a ξ_{z} on the line segment joining $x-z$ to $y-z$ such that

$$
|y-z|^{-n+\beta}-\sum_{|\gamma| \leq[\beta]} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}}\left(|x-z|^{-n+\beta}\right)=\left.\sum_{|\gamma|=[\beta]+1} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}}\left(|x-z|^{-n+\beta}\right)\right|_{x=\xi_{z}}
$$

The $\gamma^{\text {th }}$ derivative of $|x-z|^{-n+\beta}$ decays like $|x-z|^{-n+\beta-|\gamma|}$ near infinity and since $\left|\xi_{z}-z\right|$ is comparable to $|z-x|$, we estimate (3.2) by

$$
\begin{equation*}
\sum_{|\gamma|=[\beta]+1} C_{\gamma}|t|^{|\gamma|} \int_{|z-x| \geq 10|t|}|z-x|^{-n-(|\gamma|-\beta)}|a(z)| d z \leq C|t|^{\beta} \mathbb{M}(|a|)(x) \tag{3.5}
\end{equation*}
$$

where we used that $1+[\beta]-\beta>0$. To estimate (3.3) note that for any fixed $|\gamma| \leq[\beta]$, we have

$$
\begin{align*}
& \left|\int_{|z-x| \leq 10|t|} t^{\gamma} \frac{\partial^{\gamma}}{\partial x^{\gamma}}\left(|z-x|^{-n+\beta}\right) a(z) d z\right| \\
\leq & C_{\gamma}|t|^{|\gamma|} \int_{|z-x| \leq 10|t|}|z-x|^{-n+\beta-|\gamma|}|a(z)| d z \leq C_{\gamma}|t|^{\beta} \mathbb{M}(|a|)(x) \tag{3.6}
\end{align*}
$$

provided that $\beta-|\gamma|>0$, which certainly holds unless β is an integer and $|\gamma|=\beta$. In this exceptional case we argue differently. Suppose that β is an integer and fix $\gamma=\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ with $|\gamma|=\beta$. Let $\mathcal{R}_{\gamma}=R_{1}^{\gamma_{1}} R_{2}^{\gamma_{2}} \ldots R_{n}^{\gamma_{n}}$, where R_{j} is the usual $j^{\text {th }}$ Riesz transform. Also let $\left(\mathcal{R}_{\gamma}\right)_{*}$ be the maximal truncated singular integral of \mathcal{R}_{γ}. If K_{γ} is the kernel of the operator \mathcal{R}_{γ}, an easy calculation gives that $\frac{\partial^{\gamma}}{\partial x^{\gamma}}\left(|x|^{-n+\beta}\right)=c_{\gamma} K_{\gamma}(x)$. Therefore, when β is an integer, we estimate the part of the sum in (3.3) with $|\gamma|=\beta$ by

$$
\left|t^{\beta}\left(\left(f * K_{\gamma}\right)(x)-\int_{|z-x| \geq 10|t|} K_{\gamma}(x-z) a(z) d z\right)\right| \leq C|t|^{\beta}\left[\left(\mathcal{R}_{\gamma}\right)_{*}(a)(x)+\left(\mathcal{R}_{\gamma} a\right)(x)\right]
$$

Finally, note the the domain of integration of the integral in (3.4) is contained in the set $\{z:|z-y| \leq 11|t|\}$. We apply Hölder's iequality to the functions $|z-y|^{-n+\beta} \chi_{|z-y| \leq 11|t|}$ and $a(z) \chi_{|z-x| \leq 10|t|}$ with exponents p^{\prime} and p respectively. Since $\frac{n}{\beta}<p<r$, the function $|z-y|^{-n+\beta} \chi_{|z-y| \leq 11|t|}$ is in $L^{p^{\prime}}$. We deduce that (3.4) is bounded by $C|t|^{\beta}\left[\mathbb{M}\left(|a|^{p}\right)\right]^{\frac{1}{p}}(x)$.

As a consequence, we obtain the following
Corollary. Let $0<\beta<n$ and $\frac{n}{\beta}<r<\infty$. Suppose that $a=\mathbb{D}^{\beta} A$ is in L^{r}. Then

$$
\begin{equation*}
A_{*}(u)=\sup _{v \in \mathbb{R}^{n}-\{u\}} \frac{\left|A(v)-\sum_{|\gamma| \leq[\beta]} \frac{1}{\gamma!} \frac{\partial^{\gamma} A}{\partial u^{\gamma}}(u)(v-u)^{\gamma}\right|}{|u-v|^{\beta}} \tag{3.7}
\end{equation*}
$$

is also in L^{r} (with norm $\leq C_{r, \beta}\|a\|_{L^{r}}$.)
Let A be a function as in the corollary. When $\beta \leq 1$, (3.7) implies that for all $\varepsilon>0$, there exists a set S_{A}, whose complement has measure less than ε, on which A is Hölder continuous of order β in the following sense: there exists a constant C, which depends on A, n, r and ε, such that

$$
\begin{equation*}
\text { for all } u \in S_{A} \text { and all } v \in \mathbb{R}^{n} \text {, we have }|A(u)-A(v)| \leq C|u-v|^{\beta} \text {. } \tag{3.8}
\end{equation*}
$$

When $r=\infty, S_{A}$ can be taken to be the whole space. For $r<\infty$, (3.8) gives a weaker version of Hölder continuity.

One might guess that A_{*} could be in weak L^{r} if $r=\frac{n}{\beta}$. This turns out to be false as the example $A(x)=\left(\log \log \frac{1}{|x|}\right) \chi_{|x| \leq 1}$ shows in \mathbb{R}^{2} when $r=2$ and $\beta=1$.

REFERENCES

[CaC] C. P. Calderón, On commutators of singular integrals, Studia Mathematica LIII (1975), 139-174.
[FR] E. Fabes and N. Riviere, Symbolic Calculus of kernels with mixed homogeneity, Proc. Symp. Pure Math, A. Calderón, editor, Amer. Math. Soc. X (1967).
[St] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
[SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1971.

Department of Mathematics, University of Missouri, Columbia, MO 65211-0001
E-mail address: loukas@math.missouri.edu, hofmann@math.missouri.edu

[^0]: *Work partially supported by NSF grant \# DMS-9302828
 **Work partially supported by NSF grant \# DMS-9596112

