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Abstract. We prove a version of a Lemma due to Mary Weiss on R
n equipped with the

family of dilations λα(x1, . . . , xn) = (λα1
1 x1, . . . , λ

αn
n xn). We consider both the case of a full

order derivative and of fractional derivatives.

If F is a function on Rn and |∇F | in Lp for some p > n, it can be shown that for fixed

y, the function Fy(x) = |F (x)−F (y)|
|x−y| is in Lp. A Lemma due to Mary Weiss [CaC] says that

the supremum of Fy over all y ∈ Rn − {x} is also in Lp.

We will generalize this Lemma for arbitrary dilations and fractional order differentiation.

We first introduce some notation. We let α = (α1, . . . , αn) denote a multiindex with real

entries such that 1 = α1 ≤ α2 ≤ · · · ≤ αn. Define k0 = max{j : αj = 1}, and for z ∈ Rn,
let z′ = (z1, . . . , zk0) and z′′ = (zk0+1, . . . , zn). We set

∇z′f = (
∂f

∂z1
, . . . ,

∂f

∂zk0
) and(0.1)

∇z′′f = (
∂f

∂zk0+1
, . . . ,

∂f

∂zn
).(0.2)

Let ‖ · ‖ denote the unique positive solution ρ of the equation

(0.3)
n∑
j=1

z2
j

ρ2αj
= 1.
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We call ‖ · ‖ the nonisotropic norm associated with the multiindex α. Note that ‖ · ‖ is

homogeneous of degree one with respect to the family of dilations

(0.4) z → λαz = (λα1z1, . . . , λ
αnzn).

We define the nonisotropic fractional differentiation operator Dβ by

(0.5) D̂βf(ζ) = ‖ζ‖β f̂(ζ).

We also define the nonisotropic Hardy-Littlewood maximal function associated with the

norm ‖ · ‖ by

(0.6) (Mf)(z) = sup
I

1
|I|

∫
I

|f(y)| dy,

where the supremum is taken over all sets I = {w : ‖w − z‖ ≤ N} with N > 0. Let

d = |α| =
∑n
j=1 αj be the homogeneous dimension of the norm ‖ · ‖. Below Lq will always

be Lq(Rn) for some fixed n ≥ 2. We have the following

Lemma. Let 0 < β ≤ 1 and d
β < r < ∞. Then for all p with d

β < p < r, there exists a

constant Cp,β > 0 such that for all A on Rn with DβA = a ∈ Lr, we have

(0.7) |A(u)−A(v)| ≤ Cp,β‖u− v‖β
{
[M(|a|p)(u)]

1
p +M(|a|)(u) + (R∗a)(u)

}
,

where R∗ denotes a “nice” nonisotropic maximal singular integral which is bounded on Lp

for all p > 1.

1. The case β = 1. By definition A = Jβa, where Jβ is the nonisotropic Riesz potential

defined by

(1.1) Ĵβf(ζ) = ‖ζ‖−β f̂(ζ).

We set J1 = J . If J is the kernel of J , then by [FR], J is in C∞(Rn − {0}), and

(1.2) J(λαz) = λ(1−d)J(z).
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We introduce a smooth cutoff function η with η = 1 on [−10, 10] and η = 0 on the

complement of [−20, 20]. Set δ = ‖u− v‖. We have

A(u)−A(v) =
∫

[J(u− w)− J(v − w)]a(w) dw

=
∫

J1(u− w)a(w) dw −
∫

J1(v − w)a(w) dw +
∫

[J2(u− w)− J2(v − w)]a(w) dw

= I + II + III,

where J1(z) = J(z)η(‖z‖δ ) and J2(z) = J(z)[1− η(‖z‖δ )]. To estimate term I, we use (1.2)

and a routine modification of the argument in [St] pp 62-64. We obtain that

(1.3) |I| ≤ CδM(|a|)(u) = C‖u− v‖M(|a|)(u).

By Hölder’s inequality and (1.2), we have

(1.4)

|II| ≤
( ∫
‖u−w‖≤20δ

|a(w)|p dw
) 1
p
( ∫
‖u−w‖≤20δ

‖v − w‖(1−d)p′ dw
) 1
p′ ≤ Cδ [M(|a|p)(u)]

1
p ,

since ‖u − w‖ ≤ 20δ implies ‖v − w‖ ≤ 21δ and the required inequality (1 − d)p′ > −d
follows from p > d. This completes the estimate for term II. We now write term III as

follows: ∫ {
J2(u− w)− J2(v − w)− (u′ − v′) · (∇u′J2)(u− w)

}
a(w) dw

+ (u′ − v′)
∫

(∇u′J2)(u− w)a(w) dw

= III1 + III2.(1.5)

Note that J2(u − w) is supported where ‖u − w‖ ≥ 10δ. By Taylor’s Theorem and (1.2)

we have that the expression inside curly brackets in III1 is bounded in absolute value by

|(u′′ − v′′) · (∇u′′J2)(u− w)|+O

(
δ2

(δ + ‖u− w‖)d+1

)

≤C
n∑

j=k0+1

δαj

(δ + ‖u− w‖)d+αj−1
+O

(
δ2

(δ + ‖u− w‖)d+1

)

≤Cδ δε

(δ + ‖u− w‖)d+ε for some ε > 0.(1.6)
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Clearly the integral of (1.6) is bounded by CδM(|a|)(u).

Finally, let %R(z) = (∇z′J)(z). %R is a nonisotropic Calderón-Zygmund kernel, that is

homogeneous of degree of degree −d and C∞ away from the origin. We have (∇z′J2)(z) =

J2
1 +J2

2 , where J2
1 = [1−η(‖z‖δ )](∇z′J)(z) and J2

2 = −J(z)∇z′(η(‖z‖δ )). The operator with

kernel J2
2 can be shown as before to be pointwise bounded by CM(|a|)(u). The operator

with kernel J2
1 is dominated by

(1.7) R∗a(u) = sup
δ>0

∣∣∣∣
∫

%R(u− w)[1− η(‖u−w‖δ )]a(w) dw
∣∣∣∣,

and R∗ is a “nice” maximal singular integral which maps Lp to Lp for all p > 1. Since

‖u′ − v′‖ ≤ δ, it follows that term III2 satisfies the estimate (0.7).

2. The case of fractional differentiation. We now take up the case 0 < β < 1. As

before, we have

A(u)−A(v) =
∫

[Jβ(u− w)− Jβ(v − w)]a(w) dw

=
∫

J1
β(u− w)a(w) dw −

∫
J1
β(v − w)a(w) dw +

∫
[J2
β(u− w)a(w)− J2

β(v − w)]a(w) dw

= I + II + III,

where J1
β(z) = Jβ(z)η(

‖z‖
δ ), J2

β(z) = Jβ(z) − J1
β(z), δ = ‖u − v‖, and η is the bump

introduced in the previous section. It is easy to see that |Jβ(z)| ≤ C‖z‖β−d. We certainly

have that |I| ≤ CδβM(|a|)(u). Also, Hölder’s inequality gives

|II| ≤
( ∫
‖u−w‖≤20δ

|a(w)|p dw
) 1
p
( ∫
‖u−w‖≤20δ

‖v − w‖(β−d)p′ dw
) 1
p′ ≤ Cδ [M(|a|p)(u)]

1
p ,

if (β − d)p′ > −d, i.e. p > d
β . Finally in term III, ‖v − w‖ ∼ ‖u− w‖ >> δ, so

|Jβ(u− w)− Jβ(v − w)| ≤ C
‖u− v‖

‖u− w‖d+1−β χ‖u−w‖>δ ≤ C
δ1−β

(δ + ‖u− w‖)d+1−β .

4



Since 0 < 1− β < 1, integrating with respect to w, we obtain that

|III| ≤ CδβM(|a|)(u)

This concludes the proof of the Lemma.

3. Remarks and applications. The analogous formulation of (0.7) for 1 < β < n is

(3.1)

|A(y)−
∑
|γ|≤[β]

1
γ!
∂γA

∂xγ
(x) (y−x)γ | ≤ Cp,β‖x− y‖β

{
[M(|a|p)(x)]

1
p +M(|a|)(x)+ (R∗a)(x)

}
,

where n
β < p < r and a = DβA is in Lr. Here [β] is the greatest integer ≤ β.

Let us sketch the proof of (3.1) in the special case where αj = 1 for all j. Fix x and y

and let t = y− x. The left hand side of (3.1) is the sum of the following three expressions:∫
|z−x|≥10|t|

(
|y − z|−n+β −

∑
|γ|≤[β]

tγ

γ!
∂γ

∂xγ
(|x− z|−n+β)

)
a(z) dz(3.2)

−
∫
|z−x|≤10|t|

∑
|γ|≤[β]

tγ

γ!
∂γ

∂xγ
(|x− z|−n+β)a(z) dz(3.3)

∫
|z−x|≤10|t|

|y − z|−n+βa(z) dz.(3.4)

By Taylor’s theorem there exists a ξz on the line segment joining x− z to y − z such that

|y − z|−n+β −
∑
|γ|≤[β]

tγ

γ!
∂γ

∂xγ
(|x− z|−n+β) =

∑
|γ|=[β]+1

tγ

γ!
∂γ

∂xγ
(|x− z|−n+β)

∣∣
x=ξz

.

The γth derivative of |x−z|−n+β decays like |x−z|−n+β−|γ| near infinity and since |ξz−z|
is comparable to |z − x|, we estimate (3.2) by

(3.5)
∑

|γ|=[β]+1

Cγ |t||γ|
∫
|z−x|≥10|t|

|z − x|−n−(|γ|−β)|a(z)| dz ≤ C|t|βM(|a|)(x),

where we used that 1 + [β]− β > 0. To estimate (3.3) note that for any fixed |γ| ≤ [β], we

have ∣∣∣∣
∫
|z−x|≤10|t|

tγ
∂γ

∂xγ
(|z − x|−n+β)a(z) dz

∣∣∣∣
≤Cγ |t||γ|

∫
|z−x|≤10|t|

|z − x|−n+β−|γ||a(z)| dz ≤ Cγ |t|βM(|a|)(x),(3.6)
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provided that β− |γ| > 0, which certainly holds unless β is an integer and |γ| = β. In this

exceptional case we argue differently. Suppose that β is an integer and fix γ = (γ1, · · · , γn)
with |γ| = β. Let Rγ = Rγ11 Rγ22 . . . Rγnn , where Rj is the usual jth Riesz transform. Also

let (Rγ)∗ be the maximal truncated singular integral of Rγ . If Kγ is the kernel of the

operator Rγ , an easy calculation gives that ∂γ

∂xγ (|x|−n+β) = cγKγ(x). Therefore, when β

is an integer, we estimate the part of the sum in (3.3) with |γ| = β by∣∣∣∣tβ
(

(f ∗Kγ)(x)−
∫
|z−x|≥10|t|

Kγ(x− z)a(z) dz
)∣∣∣∣ ≤ C|t|β [(Rγ)∗(a)(x) + (Rγa)(x)].

Finally, note the the domain of integration of the integral in (3.4) is contained in the set

{z : |z − y| ≤ 11|t|}. We apply Hölder’s iequality to the functions |z − y|−n+βχ|z−y|≤11|t|

and a(z)χ|z−x|≤10|t| with exponents p′ and p respectively. Since n
β < p < r, the function

|z − y|−n+βχ|z−y|≤11|t| is in Lp
′
. We deduce that (3.4) is bounded by C|t|β [M(|a|p)] 1

p (x).

As a consequence, we obtain the following

Corollary. Let 0 < β < n and n
β < r <∞. Suppose that a = DβA is in Lr. Then

(3.7) A∗(u) = sup
v∈Rn−{u}

|A(v)−
∑
|γ|≤[β]

1
γ!
∂γA
∂uγ (u) (v − u)γ |

|u− v|β

is also in Lr (with norm ≤ Cr,β‖a‖Lr .)

Let A be a function as in the corollary. When β ≤ 1, (3.7) implies that for all ε > 0,

there exists a set SA, whose complement has measure less than ε, on which A is Hölder

continuous of order β in the following sense: there exists a constant C, which depends on

A, n, r and ε, such that

(3.8) for all u ∈ SA and all v ∈ Rn, we have |A(u)−A(v)| ≤ C|u− v|β .

When r = ∞, SA can be taken to be the whole space. For r < ∞, (3.8) gives a weaker

version of Hölder continuity.

One might guess that A∗ could be in weak Lr if r = n
β . This turns out to be false as

the example A(x) = (log log 1
|x| )χ|x|≤1 shows in R2 when r = 2 and β = 1.
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