APPENDIX

THE MARY WEISS LEMMA

LoukAS GRAFAKOS® AND STEVE HOFMANN**
University of Missouri
ABsTRACT We prove a version of a Lemma due to Mary Weiss on R™ equipped with the

family of dilations A¥(z1,...,zn) = (A['Z1,..., AR " @n). We consider both the case of a full
order derivative and of fractional derivatives.

If F is a function on R™ and |VF| in LP for some p > n, it can be shown that for fixed

— [F@)-F)]

y, the function F),(z) =

isin LP. A Lemma due to Mary Weiss [CaC] says that

the supremum of F), over all y € R” — {z} is also in LP.

We will generalize this Lemma for arbitrary dilations and fractional order differentiation.
We first introduce some notation. We let a = («y,. .., a;,) denote a multiindex with real

entries such that 1 = oy < ag < --- < . Define ky = max{j : o; = 1}, and for z € R",

let 2" = (21,...,2k,) and 2" = (zkg41,. .., 2n). We set

of of
0.1 Vo= (2L 9L d
0) F=(Geg)

of of

0.2 Vo f = L2,
0.2) F= (e )
Let || - || denote the unique positive solution p of the equation
(0.3) =1
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We call || - || the nonisotropic norm associated with the multiindex «. Note that || - || is

homogeneous of degree one with respect to the family of dilations
(0.4) 2= A% = A"z, A% z,).

We define the nonisotropic fractional differentiation operator D? by

(0.5) DP£(¢) = ll<lI” £(<).
We also define the nonisotropic Hardy-Littlewood maximal function associated with the
norm || - || by
1
(0.6) (Mf)(2) = sup — [ [f(y)]dy,
r [ J;

where the supremum is taken over all sets I = {w : ||lw — z|] < N} with N > 0. Let
d=|a|= Z?Il a; be the homogeneous dimension of the norm || - ||. Below L9 will always

be L1(R™) for some fixed n > 2. We have the following

Lemma. Let 0 < <1 and % < r < oo. Then for all p with % < p < r, there exists a
constant Cp 5 > 0 such that for all A on R™ withDPA =a € L", we have

(0.7)  |A(u) = A(v)] < Cppllu— v {M(la?)(@)]> +M(ja|)(w) + (R.a)(u)},

where R, denotes a “nice” nonisotropic maximal singular integral which is bounded on LP

for all p > 1.

1. The case 3 = 1. By definition A = J3a, where J3 is the nonisotropic Riesz potential
defined by

(L.1) To () = IEI77F(0)-
We set J; = J. If J is the kernel of 7, then by [FR], J is in C*°(R™ — {0}), and

(1.2) J(A%z) = A3=D g (2).
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We introduce a smooth cutoff function n with 7 = 1 on [—10,10] and n = 0 on the
complement of [—20,20]. Set § = ||u — v||. We have

0= (U= w) - I - w)o(w) du

:/Jl(u—w)a(w)dw—/Jl(v—w)a(w)dw+/[J2(u—w)—JQ(v—w)]a(w)dw
— [+ II+III

where J1(2) = J(2)n (H 1y and J2(2) = J(2)[1 — 77(@)] To estimate term I, we use (1.2)
and a routine modification of the argument in [St] pp 62-64. We obtain that

(1.3) 11| < CoM([a])(u) = Cllu —v][M([a])(w).

By Hélder’s inequality and (1.2), we have
(1.4)
1 ’ L/ 1
m ([ lawpae) ([ w0 dw)” < 06 paeP) W),
[[u—wl|| <208 [u—w]|| <205
since ||u — w| < 200 implies ||v — w|| < 21§ and the required inequality (1 — d)p’ > —d
follows from p > d. This completes the estimate for term 1. We now write term II] as

follows:
/{J2 C P —w) — (@ — ) - (Vi T (u — w) }a(w

+ (u' =) /(VUIJ2)(u —w)a(w) dw
(1.5) — I, + 1],

Note that J?(u — w) is supported where ||[u — w|| > 105. By Taylor’s Theorem and (1.2)

we have that the expression inside curly brackets in I11; is bounded in absolute value by
52
u' =" (Vur J?) (u — w +O( )
(" = ") (V) = )] + O G =

Oé .

52
<C @)
> +m—wm“%*+ <w+m—meJ

j= k+1
5

(1.6) <C9 0+ lu = wlie for some ¢ > 0.
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Clearly the integral of (1.6) is bounded by C'd M(|al)(u).

Finally, let B(z) = (V..J)(z). R is a nonisotropic Calderén-Zygmund kernel, that is
homogeneous of degree of degree —d and C'*° away from the origin. We have (V./J?)(z) =
J?+J2, where J? = [1 —n(@)](vzu])(z) and J3 = —J(Z)sz(n(@)). The operator with
kernel J3 can be shown as before to be pointwise bounded by C'M(|a|)(u). The operator
with kernel J# is dominated by

(1.7) R.a(u) = sup
6>0

(/ﬁw—uml—mk%ﬂﬂwwa,

and R, is a “nice” maximal singular integral which maps LP to L? for all p > 1. Since

|u" —v'|| <4, it follows that term I1I, satisfies the estimate (0.7).

2. The case of fractional differentiation. We now take up the case 0 < g < 1. As

before, we have

A(w) = A) = [0 = w) = Ja(w ~ w)lalw) du

:/Jé(u—w)a(w)dw—/J,é(v—w)a(w)dw+/[Jg(u—w)a(w)—Jg(v—w)]a(w)dw
— [+ I+ 111,

where J3(z) = Jg(z)n(@), J5(2) = Jp(2) = Jj(2), 6 = |lu — |, and 7 is the bump
introduced in the previous section. It is easy to see that |J5(2)| < C||z||?~¢. We certainly

have that |I| < C6°M(|a])(u). Also, Hélder’s inequality gives

s ([ tewra) ([ e el ) < csmager)al,

llu—wl]| <206 [[u—w]|| <205
if (B—d)p’ > —d,ie. p> %. Finally in term 11, ||v — w|| ~ ||lu — w| >> 6, so

o=l <o 0
R N R
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Since 0 < 1 — 8 < 1, integrating with respect to w, we obtain that
[111] < C6°M(Ja])(u)
This concludes the proof of the Lemma.

3. Remarks and applications. The analogous formulation of (0.7) for 1 < 8 < n is

(3.1)

1 07A
AW = 3 g @ W21 < Cnp
Iv1<[8]

where 5 <p <7 and a = DPA is in L". Here [A] is the greatest integer < /3.

@ = y|?{M(la?)(@)]7 +M(|a])(z) + (R.a)(z)},

Let us sketch the proof of (3.1) in the special case where a; = 1 for all j. Fix x and y
and let t = y — . The left hand side of (3.1) is the sum of the following three expressions:

32) [ Q=7 = S B s ate)

v 9z
hi<isn
t7 o7
(3.3) —/ ———(|lz — 2| 7" F)a(z) dz
|2—x|<10]¢] IWEB] glxZial
(3.4) / ly — 2| 7" Pa(z) dz.
|2—al<10]¢]

By Taylor’s theorem there exists a £, on the line segment joining x — z to y — z such that

. Y o7 n o .
ly — 2| — Z a%ﬂx—z\ +ﬁ): Z a@ﬂx—ﬂ +B)}
lvI<[B] IvI=[8]+1

The 4" derivative of |z — 2| =7 decays like |2 — z|~"+8~17| near infinity and since |¢, — 2|

T=E;"

is comparable to |z — x|, we estimate (3.2) by

E5) % Gl [ e )] ds < M) o),
yI=[81+1 |z |2 10[4
where we used that 1+ [3] — 5 > 0. To estimate (3.3) note that for any fixed |y| < [F], we
have
o7
‘/ ' =—(|z — z|7""P)a(z) dz
z—al<tof 027
(3.6) SCWW/ |z — 2|7 M a(2)| dz < O, 1P M(Jal) (@),
|z—=|<10]t]
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provided that 3 — |y| > 0, which certainly holds unless /3 is an integer and |y| = (. In this
exceptional case we argue differently. Suppose that /3 is an integer and fix v = (71, ,Yn)
with |y] = 3. Let R, = R]*R}*... R)", where R; is the usual j'" Riesz transform. Also
let (R+)« be the maximal truncated singular integral of R,. If K, is the kernel of the

operator R., an easy calculation gives that %(M"”B ) = ¢y K, (). Therefore, when

is an integer, we estimate the part of the sum in (3.3) with |y| = 3 by

(078 0) - [ ete =) )| < CP(R). @) + (Rya) (o)

Finally, note the the domain of integration of the integral in (3.4) is contained in the set
{z: |z —y| < 11|t|}. We apply Holder’s iequality to the functions |z — y|_”+5x|z_y|§11|t‘
and a(z)X|z—z|<10¢| With exponents p’ and p respectively. Since % <p <r, the function
|z =yl 7" P Xy i<i1pe 18 0 L?". We deduce that (3.4) is bounded by C’|t]ﬁ[M(]a|p)]%(a:).

As a consequence, we obtain the following

Corollary. Let 0 < 3 <n and % < r < o0o. Suppose that a =DPA is in L". Then

- LOZA () (v — u)?
(3.7) A(u) =  sup [AW) = 2o 1i<i8) 31 ur (W) (0 — )7

veR™ —{u} ’U—U’ﬁ

is also in L (with norm < C, glla||L-.)

Let A be a function as in the corollary. When # < 1, (3.7) implies that for all € > 0,
there exists a set S4, whose complement has measure less than ¢, on which A is Holder
continuous of order § in the following sense: there exists a constant C', which depends on

A, n, r and ¢, such that

(3.8) for all u € S and all v € R™, we have |A(u) — A(v)| < Clu —v|°.

When r = oo, S4 can be taken to be the whole space. For r < oo, (3.8) gives a weaker
version of Holder continuity.

One might guess that A, could be in weak L" if r = % This turns out to be false as

the example A(x) = (loglog ‘?1|)X|:r|§1 shows in R? when r = 2 and 3 = 1.
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