APPENDIX

THE MARY WEISS LEMMA

LOUKAS GRAFAKOS* AND STEVE HOFMANN**

University of Missouri

ABSTRACT. We prove a version of a Lemma due to Mary Weiss on \mathbb{R}^n equipped with the family of dilations $\lambda^{\alpha}(x_1, \ldots, x_n) = (\lambda_1^{\alpha_1} x_1, \ldots, \lambda_n^{\alpha_n} x_n)$. We consider both the case of a full order derivative and of fractional derivatives.

If F is a function on \mathbb{R}^n and $|\nabla F|$ in L^p for some p > n, it can be shown that for fixed y, the function $F_y(x) = \frac{|F(x) - F(y)|}{|x-y|}$ is in L^p . A Lemma due to Mary Weiss [CaC] says that the supremum of F_y over all $y \in \mathbb{R}^n - \{x\}$ is also in L^p .

We will generalize this Lemma for arbitrary dilations and fractional order differentiation. We first introduce some notation. We let $\alpha = (\alpha_1, \ldots, \alpha_n)$ denote a multiindex with real entries such that $1 = \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$. Define $k_0 = \max\{j : \alpha_j = 1\}$, and for $z \in \mathbb{R}^n$, let $z' = (z_1, \ldots, z_{k_0})$ and $z'' = (z_{k_0+1}, \ldots, z_n)$. We set

(0.1)
$$\nabla_{z'}f = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_{k_0}}\right) \quad \text{and}$$

(0.2)
$$\nabla_{z''}f = \left(\frac{\partial f}{\partial z_{k_0+1}}, \dots, \frac{\partial f}{\partial z_n}\right).$$

Let $\|\cdot\|$ denote the unique positive solution ρ of the equation

(0.3)
$$\sum_{j=1}^{n} \frac{z_j^2}{\rho^{2\alpha_j}} = 1$$

*Work partially supported by NSF grant # DMS-9302828

Typeset by \mathcal{AMS} -TEX

^{**}Work partially supported by NSF grant # DMS-9596112

We call $\|\cdot\|$ the nonisotropic norm associated with the multiindex α . Note that $\|\cdot\|$ is homogeneous of degree one with respect to the family of dilations

(0.4)
$$z \to \lambda^{\alpha} z = (\lambda^{\alpha_1} z_1, \dots, \lambda^{\alpha_n} z_n).$$

We define the nonisotropic fractional differentiation operator \mathbb{D}^{β} by

(0.5)
$$\widehat{\mathbb{D}^{\beta}f}(\zeta) = \|\zeta\|^{\beta}\hat{f}(\zeta).$$

We also define the nonisotropic Hardy-Littlewood maximal function associated with the norm $\|\cdot\|$ by

(0.6)
$$(\mathbb{M}f)(z) = \sup_{I} \frac{1}{|I|} \int_{I} |f(y)| \, dy,$$

where the supremum is taken over all sets $I = \{w : ||w - z|| \le N\}$ with N > 0. Let $d = |\alpha| = \sum_{j=1}^{n} \alpha_j$ be the homogeneous dimension of the norm $|| \cdot ||$. Below L^q will always be $L^q(\mathbb{R}^n)$ for some fixed $n \ge 2$. We have the following

Lemma. Let $0 < \beta \leq 1$ and $\frac{d}{\beta} < r < \infty$. Then for all p with $\frac{d}{\beta} , there exists a constant <math>C_{p,\beta} > 0$ such that for all A on \mathbb{R}^n with $\mathbb{D}^{\beta}A = a \in L^r$, we have

(0.7)
$$|A(u) - A(v)| \le C_{p,\beta} ||u - v||^{\beta} \{ [\mathbb{M}(|a|^{p})(u)]^{\frac{1}{p}} + \mathbb{M}(|a|)(u) + (R_{*}a)(u) \},$$

where \mathcal{R}_* denotes a "nice" nonisotropic maximal singular integral which is bounded on L^p for all p > 1.

1. The case $\beta = 1$. By definition $A = \mathcal{J}_{\beta}a$, where \mathcal{J}_{β} is the nonisotropic Riesz potential defined by

(1.1)
$$\widehat{\mathcal{J}}_{\beta}\widehat{f}(\zeta) = \|\zeta\|^{-\beta}\widehat{f}(\zeta).$$

We set $\mathcal{J}_1 = \mathcal{J}$. If J is the kernel of \mathcal{J} , then by [FR], J is in $C^{\infty}(\mathbb{R}^n - \{0\})$, and

(1.2)
$$J(\lambda^{\alpha} z) = \lambda^{(1-d)} J(z)$$

We introduce a smooth cutoff function η with $\eta = 1$ on [-10, 10] and $\eta = 0$ on the complement of [-20, 20]. Set $\delta = ||u - v||$. We have

$$\begin{aligned} A(u) - A(v) &= \int [J(u - w) - J(v - w)]a(w) \, dw \\ &= \int J^1(u - w)a(w) \, dw - \int J^1(v - w)a(w) \, dw + \int [J^2(u - w) - J^2(v - w)]a(w) \, dw \\ &= I + II + III, \end{aligned}$$

where $J^1(z) = J(z)\eta(\frac{\|z\|}{\delta})$ and $J^2(z) = J(z)[1 - \eta(\frac{\|z\|}{\delta})]$. To estimate term *I*, we use (1.2) and a routine modification of the argument in [St] pp 62-64. We obtain that

(1.3)
$$|I| \le C\delta \mathbb{M}(|a|)(u) = C||u-v|| \mathbb{M}(|a|)(u).$$

By Hölder's inequality and (1.2), we have

(1.5)

$$|II| \le \left(\int_{\|u-w\|\le 20\delta} |a(w)|^p \, dw\right)^{\frac{1}{p}} \left(\int_{\|u-w\|\le 20\delta} \|v-w\|^{(1-d)p'} \, dw\right)^{\frac{1}{p'}} \le C\delta \, \left[\mathbb{M}(|a|^p)(u)\right]^{\frac{1}{p}},$$

since $||u - w|| \le 20\delta$ implies $||v - w|| \le 21\delta$ and the required inequality (1 - d)p' > -d follows from p > d. This completes the estimate for term *II*. We now write term *III* as follows:

$$\int \left\{ J^2(u-w) - J^2(v-w) - (u'-v') \cdot (\nabla_{u'}J^2)(u-w) \right\} a(w) \, dw$$
$$+ (u'-v') \int (\nabla_{u'}J^2)(u-w)a(w) \, dw$$
$$= III_1 + III_2.$$

Note that $J^2(u-w)$ is supported where $||u-w|| \ge 10\delta$. By Taylor's Theorem and (1.2) we have that the expression inside curly brackets in III_1 is bounded in absolute value by

$$|(u'' - v'') \cdot (\nabla_{u''} J^2)(u - w)| + O\left(\frac{\delta^2}{(\delta + ||u - w||)^{d+1}}\right)$$

$$\leq C \sum_{j=k_0+1}^n \frac{\delta^{\alpha_j}}{(\delta + ||u - w||)^{d+\alpha_j - 1}} + O\left(\frac{\delta^2}{(\delta + ||u - w||)^{d+1}}\right)$$

$$\leq C\delta \frac{\delta^{\varepsilon}}{(\delta + ||u - w||)^{d+\varepsilon}} \quad \text{for some } \varepsilon > 0.$$

$$3$$

Clearly the integral of (1.6) is bounded by $C\delta \mathbb{M}(|a|)(u)$.

Finally, let $\vec{R}(z) = (\nabla_{z'}J)(z)$. \vec{R} is a nonisotropic Calderón-Zygmund kernel, that is homogeneous of degree of degree -d and C^{∞} away from the origin. We have $(\nabla_{z'}J^2)(z) = J_1^2 + J_2^2$, where $J_1^2 = [1 - \eta(\frac{\|z\|}{\delta})](\nabla_{z'}J)(z)$ and $J_2^2 = -J(z)\nabla_{z'}(\eta(\frac{\|z\|}{\delta}))$. The operator with kernel J_2^2 can be shown as before to be pointwise bounded by $C \mathbb{M}(|a|)(u)$. The operator with kernel J_1^2 is dominated by

(1.7)
$$\mathcal{R}_* a(u) = \sup_{\delta > 0} \left| \int \vec{R}(u-w) [1 - \eta(\frac{\|u-w\|}{\delta})] a(w) \, dw \right|,$$

and \mathcal{R}_* is a "nice" maximal singular integral which maps L^p to L^p for all p > 1. Since $||u' - v'|| \leq \delta$, it follows that term III_2 satisfies the estimate (0.7).

2. The case of fractional differentiation. We now take up the case $0 < \beta < 1$. As before, we have

$$\begin{aligned} A(u) - A(v) &= \int [J_{\beta}(u-w) - J_{\beta}(v-w)]a(w) \, dw \\ &= \int J_{\beta}^{1}(u-w)a(w) \, dw - \int J_{\beta}^{1}(v-w)a(w) \, dw + \int [J_{\beta}^{2}(u-w)a(w) - J_{\beta}^{2}(v-w)]a(w) \, dw \\ &= I + II + III, \end{aligned}$$

where $J_{\beta}^{1}(z) = J_{\beta}(z)\eta(\frac{\|z\|}{\delta}), \ J_{\beta}^{2}(z) = J_{\beta}(z) - J_{\beta}^{1}(z), \ \delta = \|u - v\|, \ \text{and} \ \eta \ \text{is the bump}$ introduced in the previous section. It is easy to see that $|J_{\beta}(z)| \leq C \|z\|^{\beta-d}$. We certainly have that $|I| \leq C\delta^{\beta} \mathbb{M}(|a|)(u)$. Also, Hölder's inequality gives

$$|II| \le \left(\int_{\|u-w\|\le 20\delta} |a(w)|^p \, dw\right)^{\frac{1}{p}} \left(\int_{\|u-w\|\le 20\delta} \|v-w\|^{(\beta-d)p'} \, dw\right)^{\frac{1}{p'}} \le C\delta \left[\mathbb{M}(|a|^p)(u)\right]^{\frac{1}{p}},$$

if $(\beta - d)p' > -d$, i.e. $p > \frac{d}{\beta}$. Finally in term III, $||v - w|| \sim ||u - w|| >> \delta$, so

$$|J_{\beta}(u-w) - J_{\beta}(v-w)| \le C \frac{\|u-v\|}{\|u-w\|^{d+1-\beta}} \chi_{\|u-w\|>\delta} \le C \frac{\delta^{1-\beta}}{(\delta+\|u-w\|)^{d+1-\beta}}.$$

Since $0 < 1 - \beta < 1$, integrating with respect to w, we obtain that

$$|III| \le C\delta^{\beta} \mathbb{M}(|a|)(u)$$

This concludes the proof of the Lemma.

3. Remarks and applications. The analogous formulation of (0.7) for $1 < \beta < n$ is (3.1)

$$|A(y) - \sum_{|\gamma| \le [\beta]} \frac{1}{\gamma!} \frac{\partial^{\gamma} A}{\partial x^{\gamma}}(x) (y - x)^{\gamma}| \le C_{p,\beta} ||x - y||^{\beta} \big\{ [\mathbb{M}(|a|^{p})(x)]^{\frac{1}{p}} + \mathbb{M}(|a|)(x) + (\mathcal{R}_{*}a)(x) \big\},$$

where $\frac{n}{\beta} and <math>a = \mathbb{D}^{\beta} A$ is in L^r . Here $[\beta]$ is the greatest integer $\leq \beta$.

Let us sketch the proof of (3.1) in the special case where $\alpha_j = 1$ for all j. Fix x and y and let t = y - x. The left hand side of (3.1) is the sum of the following three expressions:

(3.2)
$$\int_{|z-x|\ge 10|t|} \left(|y-z|^{-n+\beta} - \sum_{|\gamma|\le [\beta]} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}} (|x-z|^{-n+\beta}) \right) a(z) dz$$

(3.3)
$$-\int_{|z-x|\leq 10|t|} \sum_{|\gamma|\leq [\beta]} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}} (|x-z|^{-n+\beta}) a(z) dz$$

(3.4)
$$\int_{|z-x| \le 10|t|} |y-z|^{-n+\beta} a(z) \, dz.$$

By Taylor's theorem there exists a ξ_z on the line segment joining x - z to y - z such that

$$|y-z|^{-n+\beta} - \sum_{|\gamma| \le [\beta]} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}} (|x-z|^{-n+\beta}) = \sum_{|\gamma| = [\beta]+1} \frac{t^{\gamma}}{\gamma!} \frac{\partial^{\gamma}}{\partial x^{\gamma}} (|x-z|^{-n+\beta}) \Big|_{x=\xi_z}.$$

The γ^{th} derivative of $|x-z|^{-n+\beta}$ decays like $|x-z|^{-n+\beta-|\gamma|}$ near infinity and since $|\xi_z-z|$ is comparable to |z-x|, we estimate (3.2) by

(3.5)
$$\sum_{|\gamma|=[\beta]+1} C_{\gamma} |t|^{|\gamma|} \int_{|z-x|\ge 10|t|} |z-x|^{-n-(|\gamma|-\beta)} |a(z)| \, dz \le C|t|^{\beta} \mathbb{M}(|a|)(x),$$

where we used that $1 + [\beta] - \beta > 0$. To estimate (3.3) note that for any fixed $|\gamma| \le [\beta]$, we have

(3.6)
$$\begin{aligned} \left| \int_{|z-x| \le 10|t|} t^{\gamma} \frac{\partial^{\gamma}}{\partial x^{\gamma}} (|z-x|^{-n+\beta}) a(z) dz \right| \\ & \leq C_{\gamma} |t|^{|\gamma|} \int_{|z-x| \le 10|t|} |z-x|^{-n+\beta-|\gamma|} |a(z)| dz \le C_{\gamma} |t|^{\beta} \mathbb{M}(|a|)(x), \\ & 5 \end{aligned}$$

provided that $\beta - |\gamma| > 0$, which certainly holds unless β is an integer and $|\gamma| = \beta$. In this exceptional case we argue differently. Suppose that β is an integer and fix $\gamma = (\gamma_1, \dots, \gamma_n)$ with $|\gamma| = \beta$. Let $\mathcal{R}_{\gamma} = R_1^{\gamma_1} R_2^{\gamma_2} \dots R_n^{\gamma_n}$, where R_j is the usual j^{th} Riesz transform. Also let $(\mathcal{R}_{\gamma})_*$ be the maximal truncated singular integral of \mathcal{R}_{γ} . If K_{γ} is the kernel of the operator \mathcal{R}_{γ} , an easy calculation gives that $\frac{\partial^{\gamma}}{\partial x^{\gamma}}(|x|^{-n+\beta}) = c_{\gamma}K_{\gamma}(x)$. Therefore, when β is an integer, we estimate the part of the sum in (3.3) with $|\gamma| = \beta$ by

$$\left| t^{\beta} \left((f \ast K_{\gamma})(x) - \int_{|z-x| \ge 10|t|} K_{\gamma}(x-z)a(z) \, dz \right) \right| \le C |t|^{\beta} [(\mathcal{R}_{\gamma})_{\ast}(a)(x) + (\mathcal{R}_{\gamma}a)(x)].$$

Finally, note the domain of integration of the integral in (3.4) is contained in the set $\{z: |z-y| \leq 11|t|\}$. We apply Hölder's iequality to the functions $|z-y|^{-n+\beta}\chi_{|z-y|\leq 11|t|}$ and $a(z)\chi_{|z-x|\leq 10|t|}$ with exponents p' and p respectively. Since $\frac{n}{\beta} , the function <math>|z-y|^{-n+\beta}\chi_{|z-y|\leq 11|t|}$ is in $L^{p'}$. We deduce that (3.4) is bounded by $C|t|^{\beta}[\mathbb{M}(|a|^p)]^{\frac{1}{p}}(x)$.

As a consequence, we obtain the following

Corollary. Let $0 < \beta < n$ and $\frac{n}{\beta} < r < \infty$. Suppose that $a = \mathbb{D}^{\beta}A$ is in L^r . Then

(3.7)
$$A_*(u) = \sup_{v \in \mathbb{R}^n - \{u\}} \frac{|A(v) - \sum_{|\gamma| \le [\beta]} \frac{1}{\gamma!} \frac{\partial^{\gamma} A}{\partial u^{\gamma}} (u) (v - u)^{\gamma}}{|u - v|^{\beta}}$$

is also in L^r (with norm $\leq C_{r,\beta} \|a\|_{L^r}$.)

Let A be a function as in the corollary. When $\beta \leq 1$, (3.7) implies that for all $\varepsilon > 0$, there exists a set S_A , whose complement has measure less than ε , on which A is Hölder continuous of order β in the following sense: there exists a constant C, which depends on A, n, r and ε , such that

(3.8) for all
$$u \in S_A$$
 and all $v \in \mathbb{R}^n$, we have $|A(u) - A(v)| \le C|u - v|^{\beta}$.

When $r = \infty$, S_A can be taken to be the whole space. For $r < \infty$, (3.8) gives a weaker version of Hölder continuity.

One might guess that A_* could be in weak L^r if $r = \frac{n}{\beta}$. This turns out to be false as the example $A(x) = (\log \log \frac{1}{|x|})\chi_{|x|\leq 1}$ shows in \mathbb{R}^2 when r = 2 and $\beta = 1$.

References

- [CaC] C. P. Calderón, On commutators of singular integrals, Studia Mathematica LIII (1975), 139-174.
- [FR] E. Fabes and N. Riviere, Symbolic Calculus of kernels with mixed homogeneity, Proc. Symp. Pure Math, A. Calderón, editor, Amer. Math. Soc. X (1967).
- [St] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970.
- [SW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1971.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO 65211-0001 *E-mail address*: loukas@math.missouri.edu, hofmann@math.missouri.edu