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cancellation conditions for a large class of multilinear operators that includes the Coifman–Meyer class, sums
of products of linear Calderón–Zygmund operators and combinations of these two types.
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1 Introduction

In this work, we obtain the boundedness of multilinear singular operators of various types from products of
Lebesgue or Hardy spaces into Hardy spaces, under suitable cancellation conditions. This particular line of
investigation was initiated in the work of Coifman, Lions, Meyer and Semmes [1] who showed that certain
bilinear operators with vanishing integral map Lq × Lq′ into the Hardy space H1 for 1 < q < ∞ with q′ =
q/(q − 1). This result was extended by Dobyinksi [5] for Coifman–Meyer multiplier operators and by Coifman
and Grafakos [4] for finite sums of products of Calderón–Zygmund operators. In [4] boundedness was extended
to Hp1 × Hp2 → Hp for the entire range 0 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2, under the necessary
cancellation conditions.

Additional approaches to these results were provided by Grafakos and Li [9], Hu and Meng [13], and Huang
and Liu [14]. In this work we investigate this topic via a new method based on (p,∞)-atomic decompositions.
Our approach is powerful enough to encompass many types of multilinear operators that include all the previously
studied (Coifman–Meyer type and finite sums of products of Calderón–Zygmund operators), as well as mixed
types. An alternative approach to Hardy space estimates for bilinear operators has appeared in the recent work of
Hart and Lu [12].

Recall that the Hardy space Hp with 0 < p < ∞ is given as the space of all tempered distributions f for
which

‖f‖Hp =
∥∥ sup
t>0
|et∆f |

∥∥
Lp

is finite, where et∆ denotes the heat semigroup for 0 < p ≤ ∞. Note that Hp and Lp are isomorphic with norm
equivalence when 1 < p ≤ ∞. See [18].

In this work we study the boundedness into Hp of the following three types of operators:

• multilinear singular integral operators of Coifman–Meyer type;
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• sums of m-fold products of linear Calderón–Zygmund singular integrals;

• multilinear singular integrals of mixed type (i.e., combinations of the previous two types).

Let m,n be positive integers, and let f1, . . . , fm ∈ S. For a bounded function σ on (Rn)m, we consider the
multilinear operator

Tσ(f1, . . . , fm)(x) =

∫
(Rn)m

σ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm) dξ1 · · · dξm

for x ∈ Rn. Here S is the space of Schwartz functions and f̂(ξ) =
∫
Rn f(x)e−2πix·ξdx is the Fourier transform

of a given Schwartz function f on Rn. The space of tempered distributions is denoted by S ′.
Certain conditions on σ imply that Tσ extends to a bounded linear operator from Lp1 × · · · × Lpm to Lp as

long as 1 < p1, . . . , pm ≤ ∞ and 0 < p <∞ satisfies

1

p
=

1

p1
+ · · ·+ 1

pm
. (1)

One of these, modeled after the classical Mikhlin linear multiplier condition, is the following Coifman–Meyer
condition, which says

|∂ασ(ξ1, . . . , ξm)| ≤ C(|ξ1|+ · · ·+ |ξm|)−|α|, (ξ1, . . . , ξm) ∈ (Rn)m \ {0} (2)

for α ∈ (N0
n)m satisfying |α| ≤ M for some large M . The associated operators are called m-linear Calderón–

Zygmund operators and there is a rich theory for them analogous to the linear one.
An m-linear Calderón–Zygmund operator associated with a Calderón–Zygmund kernel K on Rmn is defined

by

Tσ(f1, . . . , fm)(x) =

∫
(Rn)m

K(x− y1, . . . , x− ym)f1(y1) · · · fm(ym) dy1 · · · dym, (3)

where σ is the distributional Fourier transform of K on (Rn)m that satisfies (2). When m = 1, these operators
reduce to classical Calderón–Zygmund singular integral operators.

We also study another type of m-linear operators so called of product type. Before giving a general defini-
tion, we introduce two examples of such operators. Let σ1, σ2 be the classical Mihlin multipliers defined by
σ(ξ1, ξ2) = σ1(ξ1)σ2(ξ2). Then the first prominent example is

Tσ(f1, f2)(x) =

∫
Rn×Rn

σ1(ξ1)σ2(ξ2)f̂1(ξ1)f̂2(ξ2)e2πix·(ξ1+ξ2)dξ1dξ2 = Tσ1
(f1)(x)Tσ2

(f2)(x).

Secondly, let n = 2,m = 2 and for ξ = (η, ρ) ∈ R2, set σ1(ξ) = η
|(η,ρ)| , σ2(ξ) = ρ

|(η,ρ)| . Namely, these
are multipliers associated with Riesz transform on R2. Then we define for (ξ1, ξ2) ∈ R2 × R2, σ(ξ1, ξ2) =
σ1(ξ1)σ2(ξ2)− σ2(ξ1)σ1(ξ2) which implies

Tσ(f1, f2)(x) = Tσ1(f1)(x)Tσ2(f2)(x)− Tσ2(f1)(x)Tσ1(f2)(x). (4)

Clearly, example (4) does not satisfy the Coifman–Meyer type condition (2). The second example was motivated
by the determinant of the Jacobian of a map (f, g): J(f, g) = ∂x1

f∂x2
g − ∂x2

f∂x1
g, and its mapping property

into the Hardy space H1, which was studied in [4]. It would be crucial to notice that for the second example,∫
R2

Tσ(f1, f2)(x)dx =

∫
R2

(Tσ1
(f1)(x)Tσ2

(f2)(x)− Tσ2
(f1)(x)Tσ1

(f2)(x))dx = 0.

We now introduce operators of a more general form. An m-linear operator of product type on Rmn is defined
by

T∑
ρ=1

Tσρ1 (f1)(x) · · ·Tσρm(fm)(x) (x ∈ Rn), (5)
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where the Tσρj ’s are linear Calderón–Zygmund operators associated with the multipliers σρj . In terms of kernels
these operators can be expressed as

Tσ(f1, . . . , fm)(x) =

T∑
ρ=1

m∏
j=1

∫
Rn

Kρ
σj (x− yj)fj(yj)dyj ,

where Kρ
1 , . . . ,K

ρ
m are the Calderón–Zygmund kernels of the operator T ρσ1

, . . . , T ρσm , respectively for ρ =
1, . . . , T .

With these two types of multiplier operators, Coifman–Meyer type and product type in mind, it seems natural
to consider their mixed versions. For instance, to motivate the general case we consider the following example
of a 6-linear operator: Let I1 = {1, 2, 3}, I2 = {4, 5}, I3 = {6}. Also let TσI1 , TσI2 and TσI3 be respectively
3-linear, 2-linear and 1-linear Coifman–Meyer type operators-namely, all the multipliers σI1 , σI2 , σI3 satisfy (2).
Then we define σ(ξ1, . . . , ξ6) = σI1(ξ1, ξ2, ξ3)σI2(ξ4, ξ5)σI3(ξ6) and hence,

Tσ(f1, . . . , f6)(x) = TσI1 (f1, f2, f3)(x)TσI2 (f4, f5)(x)TσI3 (f6)(x).

More generally, we consider operators of mixed type, i.e., of the form

Tσ(f1, . . . , fm)(x) =

T∑
ρ=1

∑
Iρ1 ,...,I

ρ
G(ρ)

G(ρ)∏
g=1

TσIρg
({fl}l∈Iρg )(x), (6)

where for each ρ = 1, . . . , T , Iρ1 , . . . , I
ρ
G(ρ) is a partition of {1, . . . ,m} and each TσIρg is an |Iρg |-linear Coifman–

Meyer multiplier operator. We write Iρ1 + · · ·+ IρG(ρ) = {1, . . . ,m} to denote such partitions.
In this work, we study operators of the form (3), (5), and (6). We will be working with indices in the range

0 < p1, . . . , pm ≤ ∞, 0 < p <∞

that satisfy (1). Throughout this paper we reserve the letter s to denote the following index:

s = [n(1/p− 1)]+ (7)

and we fix N � s a sufficiently large integer, say N = m(n+ 1 + 2s).
We recall that a (p,∞)-atom is an L∞-function a that satisfies |a| ≤ χQ, where Q is a cube on Rn with sides

parallel to the axes and∫
Rn

xαa(x) dx = 0

for all α with |α| ≤ N . By convention, when p = ∞, a is called a (∞,∞)-atom if Q = Rn and ‖a‖L∞ ≤ 1.
No cancellation is required for (∞,∞)-atoms.

Before stating our main theorems, we compare the three aforementioned types of operators. One notices that
the singularity of the Coifman–Meyer type multiplier is just at one point-namely, at the origin. On the other
hand, the singularity of the product type multipliers sits on the axes. This difference creates a new difficulty in
handling the product type operator and hence, we need to establish a new technique (in general, more complicated
singularities require more delicate handling.) The special example of (bilinear) product type operator (4) was first
studied in [4]. However, it is not easy to extend the approach used in [4] to the m-linear setting. In fact, the
mapping properties of the product type operators into Hardy spaces in general m-linear setting were studied by
Miyachi [15], but the results in [15] imposed an additional assumption which we remove. Our method to handle
them-linear product type operator is quite far from the one in [4,15]. Furthermore, since the structure of the mixed
type multiplier is a mixture of the above two multipliers, the complexity of the problem increases. Nevertheless,
we establish mapping properties into Hardy spaces for these three types of operators and more importantly, we
provide an approach based on a unified strategy for these results.

Our main results are as follows:
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Theorem 1.1 Let Tσ be the operator defined in (3) and assume that it satisfies (2). Let 0 < p1, . . . , pm ≤ ∞
and 0 < p <∞ satisfy (1). Assume that∫

Rn

xαTσ(a1, . . . , am)(x) dx = 0, (8)

for all |α| ≤ s and all (pl,∞)-atoms al, or equivalently

∂αξmσ(ξ) = 0, ξ ∈ {(ξ1, . . . , ξn) ∈ Rn : ξ1 + · · ·+ ξn = 0} \ {0}. (9)

Then Tσ can be extended to a bounded map from Hp1 × · · · ×Hpm to Hp.

Theorem 1.2 Let Tσ be the operator defined in (5), 0 < p1, . . . , pm < ∞, and 0 < p < ∞ satisfies (1),
where each σρj satisfies (2) with m = 1. Assume that (8) holds for all |α| ≤ s, or equivalently (9). Then Tσ can
be extended to a bounded map from Hp1 × · · · ×Hpm to Hp.

Concerning Theorem 1.2, for a product type multiplier σ, it was proved that (8) is equivalent to the mapping
property of Tσ into Hardy spaces under the additional condition in [15]. So, our main progress is twofold: first to
generalize the result in [4] to the m-linear setting and remove the additional condition supposed in [15], secondly
to prove the mapping property of Tσ into Hardy spaces under the easier-to-verify condition (9), compared to (8).

Theorem 1.3 Let Tσ be the operator defined in (6), 0 < p1, . . . , pm ≤ ∞, and 0 < p < ∞ satisfies (1).
Suppose that each σIρg satisfies (2) with m = |Iρg |. Assume that (8) holds for all |α| ≤ s, or equivalently (9) and
assume also that

sup
ρ=1,...,T

sup
Iρ1 +···+Iρ

G(ρ)
={1,...,m}

inf
l∈Itg

pl <∞. (10)

Then Tσ can be extended to a bounded operator from Hp1 × · · · ×Hpm to Hp.

Remark 1.4 (1) In Theorem 1.2, we exclude the case pl =∞ for all l = 1, . . . ,m. In fact, one cannot expect
the mapping property of Tσ with (5) if pl = ∞ for some l = 1, . . . ,m. Likewise, in Theorem 1.3, we need to
make the stronger assumption (10) rather than assuming pl =∞ for some l = 1, . . . ,m.

(2) The convergence of the integral in (8) is a consequence of Lemma 3.1 for all x outside the union of a fixed
multiple of the supports of ai, while the function T (a1, . . . , am) is integrable over any compact set.

(3) The equivalence between (8) and (9) is not trivial; it needs to be verified in each case.
We make a few comments about the notation. For brevity we write d~y = dy1 · · · dym and we use the symbol

C to denote a nonessential constant, whose value may vary at different occurrences. For (k1, . . . , km) ∈ Zm, we
write ~k = (k1, . . . , km). We use the notation A ≤ CB to indicate that A ≤ C B for some constant C. We denote
the Hardy-Littlewood maximal operator by M :

Mf(x) = sup
r>0

1

rn

∫
B(x,r)

|f(y)| dy. (11)

We say that A ≈ B if both A ≤ CB and B ≤ CA hold for some constant C > 0 independent of main
parameters. The cardinality of a finite set J is denoted by either |J | or ]J .

A cube Q in Rn has sides parallel to the axes. We denote by Q∗ a centered-dilated cube of any cube Q with
the length scale factor 3

√
n; then

Q∗ = 3
√
nQ∗, Q∗∗ = 9nQ. (12)

2 Preliminary and related results

2.1 Equivalent definitions of Hardy spaces

We begin this section by recalling the definition of Hardy spaces. Let φ ∈ C∞c satisfy

supp(φ) ⊂ {x ∈ Rn : |x| ≤ 1} (13)
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and ∫
Rn

φ(y) dy = 1. (14)

For t > 0, we set φt(x) = t−nφ(t−1x). The maximal function Mφ associated with the smooth bump φ is given
by:

Mφ(f)(x) = sup
t>0

∣∣(φt ∗ f)(x)
∣∣ = sup

t>0

∣∣∣t−n ∫
Rn

φ
(
t−1y

)
f(x− y) dy

∣∣∣ (15)

for f ∈ S ′. For 0 < p <∞, the Hardy space Hp is characterized as the space of all tempered distributions f for
which Mφ(f) ∈ Lp; also the Hp quasinorm of a tempered distribution f in Hp satisfies

‖f‖Hp ≈ ‖Mφ(f)‖Lp .

We denote by C∞c the space of all smooth functions on Rn with compact support. The following density
property of Hardy spaces will be useful in the proof of the main theorems.

Proposition 2.1 ( [18, Chapter III, 5.2(b)]) Let N � s be fixed. Then the following space is dense in Hp:

ON =
⋂

α∈Nn
0 ,|α|≤N

{
f ∈ C∞c :

∫
Rn

xαf(x) dx = 0

}
,

where C∞c is the space of all smooth functions with compact supports in Rn.

Hardy spaces possess interesting properties; among them is the following atomic decomposition:
Theorem 2.2 ( [16]) Let 0 < p <∞.
If f ∈ Hp, then there exist a collection of (p,∞)-atoms {ak}∞k=1 and a nonnegative sequence {λk}∞k=1 such

that

f =

∞∑
k=1

λkak

in S ′ and that we have∥∥∥ ∞∑
k=1

λkχQk

∥∥∥
Lp
≤ C‖f‖Hp .

Moreover, if f ∈ C∞c and
∫
Rn

xαf(x) dx = 0 for all α with |α| ≤ [n(1/p − 1)]+, then we can arrange that

λk = 0 for all but finitely many k.
The following lemma, whose proof is just an application of the Fefferman-Stein vector-valued inequality for

the maximal function, will be used frequently in the sequel.
Lemma 2.3 If γ > max(1, 1

p ), 0 < p <∞, λk ≥ 0 and {Qk}k are sequence of cubes, then∥∥∥∑
k

λk(MχQk)γ
∥∥∥
Lp
≤ C

∥∥∥∑
k

λkχQk

∥∥∥
Lp
.

In particular,∥∥∥∑
k

λkχQ∗∗k

∥∥∥
Lp
≤ C

∥∥∥∑
k

λkχQk

∥∥∥
Lp
.

We will also make use of the following result:
Lemma 2.4 Let p ∈ (0,∞). Assume that q ∈ (p,∞]∩ [1,∞]. Suppose that we are given a sequence of cubes

{Qj}∞j=1 and a sequence of non-negative Lq-functions {Fj}∞j=1. Then

∥∥∥ ∞∑
j=1

χQjFj

∥∥∥
Lp
≤ C

∥∥∥ ∞∑
j=1

(
1

|Qj |

∫
Qj

Fj(y)q dy

)1/q

χQj

∥∥∥
Lp
.

P r o o f. See [13] for the case of 0 < p ≤ 1 and [16], [17] for the case of 1 < p <∞.

Copyright line will be provided by the publisher



6 L. Grafakos, S. Nakamura, H. V. Nguyen, and Y. Sawano: Conditions for Boundedness into Hardy spaces

2.2 Reductions in the proof of main results

To start the proof of the main results, let p1, . . . , pm and p be given as in Theorems 1.1, 1.2 or 1.3 and note that
Hpl ∩ ON is dense in Hpl for 1 ≤ l ≤ m and 0 < pl < ∞. Recall the integer N � s and fix fl ∈ Hpl ∩ ON
for which 0 < pl < ∞. By Theorem 2.2, we can decompose fl =

∑∞
kl=1 λl,klal,kl , where {λl,kl}∞kl=1 is a

non-negative finite sequence and al,kl ∈ L∞ is supported in a cube Ql,kl satisfying

|al,kl | ≤ χQl,kl ,
∫
Rn

xαal,kl(x) dx = 0, |α| ≤ N

and that ∥∥∥ ∞∑
kl=1

λl,klχQl,kl

∥∥∥
Lpl
≤ C‖fl‖Hpl . (16)

If pl = ∞ and fl ∈ L∞, then we can conventionally rewrite fl = λl,klal,kl where λl,kl = ‖fl‖L∞ and
al,kl = ‖f‖−1

L∞f is an (∞,∞)-atom supported in Ql,kl = Rn. In this case the summation in (16) is ignored
since there is only one summand.

By the multi-sublinearity of Mφ ◦ Tσ , we can estimate

Mφ ◦ Tσ(f1, . . . , fm) ≤
∞∑

k1,...,km=1

( m∏
l=1

λl,kl

)
Mφ ◦ Tσ(a1,k1 , . . . , am,km).

To prove Theorems 1.1, 1.2, and 1.3, it now suffices to establish the following result:

Proposition 2.5 Let Tσ be the operator defined in (3), (5) or (6). Let p1, . . . , pm and p be given as in
corresponding Theorems 1.1, 1.2 or 1.3. Then we have∥∥∥ ∞∑

k1,...,km=1

( m∏
l=1

λl,kl

)
Mφ ◦ Tσ(a1,k1

, . . . , am,km)
∥∥∥
Lp
≤ C

m∏
l=1

∥∥∥ ∞∑
kl=1

λl,klχQl,kl

∥∥∥
Lpl

. (17)

Combining (16) and Proposition 2.5, yield the required estimate

‖Tσ(f1, . . . , fm)‖Hp = ‖Mφ ◦ Tσ(f1, . . . , fm)‖Lp ≤ C‖f1‖Hp1 · · · ‖fm‖Hpm .

We may therefore focus on the proof of Proposition 2.5. In the sequel we focus on (17) whose proof depends
on whether Tσ is of type (3), (5) or (6). The detailed proof for each type is discussed in subsequent sections.

3 The Coifman–Meyer type

Throughout this section, Tσ denotes for the operator defined in (3). The main purpose of this section is to establish
(17) for Tσ . Note that the equivalence between (8) and (9) is proved in our paper [10]. So, we assume (8) below.

3.1 Fundamental estimates for the Coifman–Meyer type

We treat the case of Coifman–Meyer multiplier operators whose symbols satisfy (2). The study of such operators
was initiated by Coifman and Meyer [2], [3] and was later pursued by Grafakos and Torres [11]; see also [7] for
an account. Denoting by K the inverse Fourier transform of σ, in view of (2), we have

|∂βyK(y1, . . . , ym)| ≤ C
( m∑
i=1

|yi|
)−mn−|β|

, (y1, . . . , , ym) 6= (0, . . . , 0)

for all β = (β1, . . . , βm) ∈ N0
mn = (N0

n)m and |β| ≤ N .
Examining carefully the smoothness of the kernel, we obtain the following estimates:
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Lemma 3.1 Let ak be (pk,∞)-atoms supported in Qk for all 1 ≤ k ≤ m. Let Λ be a non-empty subset of
{1, . . . ,m}. Then we have

|Tσ(a1, . . . , am)(y)| ≤ min{`(Qk) : k ∈ Λ}n+N+1(∑
k∈Λ |y − ck|

)n+N+1

for all y /∈ ∪k∈ΛQ
∗
k.

P r o o f. We may suppose that Λ = {1, . . . , r} for some 1 ≤ r ≤ m and that

`(Q1) = min{`(Qk) : k ∈ Λ}.

Let ck be the center of Qk and fix y /∈ ∪k∈ΛQ
∗
k. Using the cancellation of a1 we rewrite

Tσ(a1, . . . , am)(y)

=

∫
Rmn

K(y − y1, . . . , y − ym)a1(y1) · · · am(ym)d~y

=

∫
Rmn

[
K(y − y1, . . . , y − ym)− PN (y, y1, y2, . . . , ym)

]
a1(y1) · · · am(ym)d~y

=

∫
Rmn

K1(y, y1, y2, . . . , ym)a1(y1) · · · am(ym)d~y, (18)

where

PN (y, y1, y2, . . . , ym) =
∑
|α|≤N

1

α!
∂α1 K(y − c1, y − y2, . . . , y − ym)(c1 − y1)α

is the Taylor polynomial of degree N of K(y − ·, y − y2, . . . , y − ym) at c1 and

K1(y, y1, . . . , ym) = K(y − y1, . . . , y − ym)− PN (y, y1, y2, . . . , ym). (19)

By the smoothness condition of the kernel and the fact that

|y − yk| ≈ |y − ck|

for all k ∈ Λ and yk ∈ Qk, we can estimate∣∣K(y, y1, . . . , ym)− PN (y, c1, y2, . . . , ym)
∣∣

≤ C|y1 − c1|N+1
(∑
k∈Λ

|y − ck|+
m∑
j=2

|y − yj |
)−mn−N−1

.
(20)

Thus,

|Tσ(a1, . . . , am)(y)| ≤ C
∫
Rmn

|y1 − c1|N+1|a1(y1)| · · · |am(ym)|(∑
k∈Λ |y − ck|+

∑m
j=2 |y − yj |

)mn+N+1
d~y

≤ C
∫
R(m−1)n

`(Q1)n+N+1(∑
k∈Λ |y − ck|+

∑m
j=2 |yj |

)mn+N+1
dy2 · · · dym

≤ C `(Q1)n+N+1(∑
k∈Λ |y − ck|

)n+N+1
.
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Lemma 3.2 Let ak be (pk,∞)-atoms supported in Qk for all 1 ≤ k ≤ m. Suppose Q1 is the cube such that
`(Q1) = min{`(Qk) : 1 ≤ k ≤ m}. Then for fixed 1 ≤ r <∞ and j ∈ N, we have

‖Tσ(a1, . . . , am)χQ∗∗1 ‖Lr ≤ C|Q1|
1
r

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn , (21)

‖M ◦ Tσ(a1, . . . , am)χQ∗∗1 ‖Lr ≤ C|Q1|
1
r

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn , (22)

Furthermore, if Q0 is a cube such that `(Q0) ≤ `(Q1) and 2jQ∗∗0 ∩ 2jQ∗∗l = ∅ for some l, then

‖Tσ(a1, . . . , am)χ2jQ∗∗0
‖L∞ ≤ C

m∏
l=1

inf
z∈2jQ∗0

Mχ2jQ∗∗l
(z)

n+N+1
mn . (23)

In particular, under the above assumption on Q0,( 1

|2jQ∗∗0 |

∫
2jQ∗∗0

|Tσ(a1, . . . , am)(y)|rdy
) 1
r ≤ C

m∏
l=1

inf
z∈2jQ∗0

Mχ2jQ∗∗l
(z)

n+N+1
mn . (24)

P r o o f. To check (21), we only consider 1 < r <∞ and two following cases. First, if Q∗∗1 ∩Q∗∗k 6= ∅ for all
2 ≤ k ≤ m, then, by the assumption `(Q1) = min{`(Qk) : 1 ≤ k ≤ m}, Q∗∗1 ⊂ 3Q∗∗k for all 1 ≤ k ≤ m. This
implies

inf
z∈Q∗1

Mχ3Q∗∗k
(z) ≥ 1,

for all 1 ≤ k ≤ m. Now the boundedness of Tσ from Lr × L∞ × · · · × L∞ to Lr yields

‖Tσ(a1, . . . , am)χQ∗∗1 ‖Lr ≤‖Tσ(a1, . . . , am)‖Lr
≤ C‖a1‖Lr‖a2‖L∞ · · · ‖am‖L∞

≤ C|Q1|
1
r

m∏
k=1

inf
z∈Q∗1

Mχ3Q∗∗k
(z)

n+N+1
mn . (25)

Secondly, if Q∗∗1 ∩Q∗∗k = ∅ for some k, then the set

Λ = {2 ≤ k ≤ m : Q∗∗1 ∩Q∗∗k = ∅}

is a non-empty subset of {1, . . . ,m}. Fix an arbitrary y ∈ Rn. By the cancellation of a1, rewrite

Tσ(a1, . . . , am)(y) =

∫
Rmn

K1(y, y1, y2, . . . , ym)a1(y1) · · · am(ym)d~y,

where K1(y, y1, . . . , ym) is defined in (19). For y1 ∈ Q1 we estimate

∣∣K1(y, y1, . . . , ym)
∣∣ ≤C`(Q1)N+1

(
|y − ξ1|+

m∑
j=2

|y − yj |
)−mn−N−1

,

for some ξ1 ∈ Q1 and for all yl ∈ Ql.
Since Q∗∗1 ∩Q∗∗k = ∅ for all k ∈ Λ, |y − ξ1|+ |y − yk| ≥ |ξ1 − yk| ≥ C|c1 − ck| for all yk ∈ Qk and k ∈ Λ.

Therefore

∣∣K1(y, y1, . . . , ym)
∣∣ ≤ C`(Q1)N+1

(∑
k∈Λ

|c1 − ck|+
m∑
j=2

|y − yj |
)−mn−N−1

,
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for all y1 ∈ Q∗1 and yk ∈ Qk for k ∈ Λ. Insert the above inequality into (18) to obtain

|Tσ(a1, . . . , am)(y)| ≤ C`(Q1)n+N+1(∑
k∈Λ |c1 − ck|

)n+N+1
≤ C`(Q1)n+N+1∑

k∈Λ

[
`(Q1) + |c1 − ck|+ `(Qk)

]n+N+1
.

Noting that Q∗∗1 ⊂ 3Q∗∗l for l /∈ Λ, the last inequality gives

‖Tσ(a1, . . . , am)‖L∞ ≤ C
m∏
k=1

inf
z∈Q∗1

Mχ3Q∗∗k
(z)

n+N+1
mn , (26)

which yields

‖Tσ(a1, . . . , am)χQ∗∗1 ‖Lr ≤ C|Q1|
1
r

m∏
k=1

inf
z∈Q∗1

Mχ3Q∗∗k
(z)

n+N+1
mn . (27)

Combining (25) and (27) and noting that Mχ3Q ≤ CMχQ, we obtain (21).
Similarly, we can prove (22)–(23). For example, to show (22), we again consider the case whereQ∗∗1 ∩Q∗∗l 6= ∅

holds for all l and the case where this fails. In the first case, using the boundedness of M on Lr, we arrive at the
same situation as above. In the second case, we use the boundedness of M on L∞ to see

‖M ◦ Tσ(a1, . . . , am)χQ∗∗1 ‖Lr ≤ C|Q1|
1
r ‖Tσ(a1, . . . , am)‖L∞ .

Notice that the right-hand side is already treated in (26).

Lemma 3.2 will be used to study the behavior of the operator Mφ ◦ Tσ inside Q∗∗1 . For the region outside of
Q∗∗1 , we need the following estimates.

Lemma 3.3 Let ak be (pk,∞)-atoms supported in Qk for all 1 ≤ k ≤ m. If pk = ∞ then Qk = Rn.
Suppose that Q1 is the cube for which `(Q1) = min{`(Qk) : 1 ≤ k ≤ m}. Fix 0 < t <∞.

1. If x /∈ Q∗∗1 and c1 /∈ B(x, 100n2t), then

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy ≤ C
m∏
l=1

MχQl(x)
n+N+1
mn . (28)

2. If x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t), then

`(Q1)s+1

tn+s+1

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy ≤ CMχQ1
(x)

n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn , (29)

and

1

tn+s+1

∫
(Q∗1)c

|y−c1|s+1|Tσ(a1, . . . , am)(y)| dy ≤ CMχQ1
(x)

n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
N−s
mn . (30)

3. For all x /∈ Q∗∗1 , we have

Mφ ◦ Tσ(a1, . . . , am)(x)

≤ C
m∏
l=1

MχQl(x)
n+N+1
mn + CMχQ1

(x)
n+s+1
n

m∏
l=1

inf
z∈Q∗1

(
MχQl(z)

N−s
mn

)
. (31)
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P r o o f. Fix x /∈ Q∗∗1 and denote Λ = {1 ≤ k ≤ m : x /∈ Q∗∗k }.
(1) Suppose c1 /∈ B(x, 100n2t). For y ∈ B(x, t), from (18) we rewrite

Tσ(a1, . . . , am)(y) =

∫
Rmn

K1(y, y1, . . . , ym)a1(y1) · · · am(ym)d~y,

where K1 is defined in (19). Note that for y ∈ B(x, t), y1 ∈ Q1 and c1 /∈ B(x, 100n2t), we have

t ≤ C|x− c1| ≤ C|y − y1|.
Since x /∈ Q∗∗k for all k ∈ Λ,

|x− ck| ≤ C|x− yk| ≤ C(t+ |y − yk|) ≤ C(|y − y1|+ |y − yk|)
for all k ∈ Λ and yk ∈ Qk. Consequently,∣∣∣∣∣K1(y, y1, . . . , ym)

m∏
l=1

al(yl)

∣∣∣∣∣ ≤ C `(Q1)N+1χQ1
(y1)(

m∑
l=2

|y − yl|+
∑
k∈Λ

|x− ck|

)mn+N+1
. (32)

Integrating (32) over (Rn)m, and using that `(Q1) ≤ `(Ql) for all 2 ≤ l ≤ m, we obtain that

|Tσ(a1, . . . , am)(y)| ≤ C `(Q1)n+N+1(∑
l∈Λ

|x− cl|

)n+N+1

≤ C
∏
l∈Λ

`(Ql)
n+N+1
|Λ|

|x− cl|
n+N+1
|Λ|

χ(Q∗∗l )c(x) ·
∏
k/∈Λ

χQ∗∗k (x) ≤ C
m∏
l=1

MχQl(x)
n+N+1
mn .

This pointwise estimate proves (28).
(2) Assume c1 ∈ B(x, 100n2t). Fix 1 < r <∞ and estimate the left-hand side of (29) by

`(Q1)s+1

tn+s+1
|Q1|1−

1
r ‖Tσ(a1, . . . , am)χQ∗∗1 ‖Lr ≤ C

`(Q1)n+s+1

tn+s+1

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn ,

where we used (21) in the above inequality. Since x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t), Q∗1 ⊂ B(x, 1000n2t) and
hence, `(Q1)/t ≤ CMχQ1(x). This combined with the last inequality implies (29).

To verify (30), we recall the expression of Tσ(a1, . . . , am)(y) in (18) and the pointwise estimate (20) for

K1(y, y1, . . . , ym),

defined in (19). Denote J = {2 ≤ k ≤ m : Q∗∗1 ∩Q∗∗k = ∅}. Using the facts that |y − y1| ∼ |y − c1| ≥ `(Q1)
for y /∈ Q∗1, y1 ∈ Q1 and C(|y− y1|+ |y− yl| ≥ |y1− yl|) ≥ |z− cl| for all z ∈ Q∗1 and l ∈ J , we now estimate

|Tσ(a1, . . . , am)(y)| ≤ C
∫

(Rn)m

`(Q1)N+1χQ1(y1) d~y(
`(Q1) + |y − c1|+

∑
l∈J

|z − cl|+
m∑
l=2

|y − yl|

)mn+N+1

for all y ∈ (Q∗1)c and z ∈ Q∗1. Thus,

1

tn+s+1

∫
(Q∗1)c

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ C

tn+s+1

∫
Rn×(Rn)m

|y − c1|s+1`(Q1)N+1χQ1
(y1) d~ydy(

`(Q1) + |y − c1|+
∑
l∈J

|c1 − cl|+
m∑
l=2

|y − yl|
)mn+N+1

≤ C
(
`(Q1)

t

)n+s+1∏
l∈J

(
`(Ql)

|z − cl|

)N−s
m

.
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Note that 1 ≤ C infz∈Q∗1 Mχ2Q∗∗l
(z) if Q∗∗1 ∩ Q∗∗l 6= ∅; otherwise, `(Ql)/|z − cl| ≤ CMχ2Q∗∗l

(z)
1
n for all

z ∈ Q∗1. Consequently,

1

tn+s+1

∫
(Q∗1)c

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy ≤ CMχQ1(x)
n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
N−s
mn ,

which yields (30).
(3) It remains to prove (31). Fix x /∈ Q∗∗1 . To calculate Mφ ◦ Tσ(a1, . . . , am)(x), we need to estimate∣∣∣ ∫

Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣

for each t ∈ (0,∞). We consider two cases: c1 /∈ B(x, 100n2t) and c1 ∈ B(x, 100n2t).
In the first case, since φ is supported in the unit ball, we obtain∣∣∣ ∫

Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣ ≤ C

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy.

Since c1 /∈ B(x, 100n2t), (28) implies that∣∣∣ ∫
Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣ ≤ C m∏

l=1

MχQl(x)
n+N+1
mn . (33)

In the second case, we exploit the moment condition of Tσ(a1, . . . , am). Denote

δs1(t;x, y) = φt(x− y)−
∑
|α|≤s

∂α[φt](x− c1)

α!
(c1 − y)α. (34)

Since |δs1(t;x, y)| ≤ Ct−n−s−1 for all x, y and (8),∣∣∣ ∫
Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣ =

∣∣∣ ∫
Rn

δs1(t;x, y)Tσ(a1, . . . , am)(y) dy
∣∣∣

≤ C

tn+s+1

∫
Rn

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

=
C

tn+s+1

∫
Q∗1

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

+
C

tn+s+1

∫
(Q∗1)c

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ C `(Q1)s+1

tn+s+1

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy (35)

+
C

tn+s+1

∫
(Q∗1)c

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy.

Invoking (29) and (30), we obtain∣∣∣ ∫
Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣

≤ CMχQ1(x)
n+s+1
n

m∏
l=1

inf
z∈Q∗1

[
MχQl(z)

n+N+1
mn +MχQl(z)

N−s
mn

]
≤ CMχQ1

(x)
n+s+1
n

m∏
l=1

inf
z∈Q∗1

(
MχQl(z)

N−s
mn

)
. (36)

Combining (33) and (36) yields the required estimate (31). The proof of Lemma 3.3 is now complete.
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3.2 The proof of Proposition 2.5 for Coifman–Meyer type operators

We now turn into the proof of (17), i.e., the estimate for

A =
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

)
Mφ ◦ Tσ(a1,k1

, . . . , am,km)
∥∥∥
Lp
. (37)

For each ~k = (k1, . . . , km), we denote by R~k the cube with smallest length among Q1,k1
, . . . , Qm,km . Then we

have A ≤ C(B +G), where

B =
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

)
Mφ ◦ Tσ(a1,k1

, . . . , am,km)χR∗∗
~k

∥∥∥
Lp

(38)

and

G =
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

)
Mφ ◦ Tσ(a1,k1

, . . . , am,km)χ(R∗∗
~k

)c

∥∥∥
Lp
. (39)

To estimate B, for some max(1, p) < r <∞ Lemma 2.4 and (22) imply

B ≤ C
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

) χR∗∗
~k

|χR∗∗
~k
| 1r
‖Mφ ◦ Tσ(a1,k1 , . . . , am,km)χR∗∗

~k
‖Lr
∥∥∥
Lp

≤ C
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

)( m∏
l=1

inf
z∈R∗

~k

MχQl,kl (z)
n+N+1
mn

)
χR∗∗

~k

∥∥∥
Lp

= C
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

inf
z∈R∗

~k

λl,klMχQl,kl (z)
n+N+1
mn

)
χR∗∗

~k

∥∥∥
Lp

≤ C
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

inf
z∈R∗

~k

λl,klMχQl,kl (z)
n+N+1
mn

)
χR∗

~k

∥∥∥
Lp
,

where we used Lemma 2.3 in the last inequality. Now we can remove the infimum and apply Hölder’s inequality
to obtain

B ≤ C
∥∥∥ ∞∑
k1,...,km=1

m∏
l=1

λl,kl

(
MχQl,kl

)n+N+1
mn

∥∥∥
Lp

= C
∥∥∥ m∏
l=1

∞∑
kl=1

λl,kl

(
MχQl,kl

)n+N+1
mn

∥∥∥
Lp

(40)

≤ C
m∏
l=1

∥∥∥ ∞∑
kl=1

λl,kl

(
MχQl,kl

)n+N+1
mn

∥∥∥
Lpl

≤ C
m∏
l=1

∥∥∥ ∞∑
kl=1

λl,klχQ∗∗l,kl

∥∥∥
Lpl

(41)

≤ C
m∏
l=1

∥∥∥ ∞∑
kl=1

λl,klχQl,kl

∥∥∥
Lpl

. (42)

Once again, Lemma 2.3 was used in the last two inequalities.
To deal with G, we use (31) and estimate G ≤ C(G1 +G2), where

G1 =
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

) m∏
l=1

(
MχQl,kl

)n+N+1
mn

∥∥∥
Lp
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and

G2 =
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

)( m∏
l=1

inf
z∈R∗

~k

MχQl,kl (z)
N−s
mn

)
(MχR∗

~k
)
n+s+1
n

∥∥∥
Lp
.

Repeating the argument in estimating for B, noting that (n+s+1)p
n > 1 and N � s, we obtain

G ≤ C(G1 +G2) ≤ C
m∏
l=1

∥∥∥ ∞∑
kl=1

λl,klχQl,kl

∥∥∥
Lpl

. (43)

Combining (42) and (43) yields (17). This completes the proof of Proposition 2.5 for the operator Tσ of type (3).
Remark 3.4 The techniques in this paper also work for Calderón–Zygmund operators of non-convolution

type; this recovers the results in [13].

4 The product type

In this entire section, we denote by Tσ the operator defined in (5) and prove Proposition 2.5 for this operator. We
need to establish some results analogous to Lemmas 3.2 and 3.3. Again note that for the product type multiplier,
the equivalence between (8) and (9) is proved in our paper [10]. So, we assume (8) below.

4.1 Fundamental estimates for product type operators

Let ak be (pk,∞)-atoms supported in Qk for all 1 ≤ k ≤ m. Here and below M (r) denotes the power-maximal
operator: M (r)f(x) = M(|f |r)(x)

1
r . Suppose Q1 is the cube such that `(Q1) = min{`(Qk) : 1 ≤ k ≤ m},

then we have the following lemmas.
Lemma 4.1 For all x ∈ Q∗∗1 , we have

Mφ ◦ Tσ(a1, . . . , am)(x)χQ∗∗1 (x) ≤ C
m∏
l=1

MχQl(x)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(x)

)
. (44)

P r o o f. Fix x ∈ Q∗∗1 . We need to estimate∣∣∣ ∫
Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy ≤ C

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy

for each t ∈ (0,∞). The proof of (44) is mainly based on the boundedness of Tσ and the smoothness condition
of each Calderón–Zygmund kernel in (5). Instead of considering the whole sum in (5), for notational simplicity,
it is convenient to consider one term, i.e.,

Tσ(f1, . . . , fm) = Tσ1(f1) · · ·Tσm(fm) (45)

keeping in mind that this term represents the entire sum when cancellation is needed. We consider two cases:
t ≤ `(Q1) and t > `(Q1).

Case 1: t ≤ `(Q1). By Hölder’s inequality and (24), we have

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy ≤ C
m∏
l=1

( 1

tn

∫
B(x,t)

|Tσlal(y)|mdy
) 1
m

.

We decompose the above product depending on two sub-cases; B(t, x) ∩Q∗∗l = ∅ or not. Then

m∏
l=1

( 1

tn

∫
B(x,t)

|Tσlal(y)|mdy
) 1
m

=
∏

l:B(t,x)∩Q∗∗l =∅

( 1

tn

∫
B(x,t)

|Tσlal(y)|mdy
) 1
m

∏
l:B(t,x)∩Q∗∗l 6=∅

( 1

tn

∫
B(x,t)

|Tσlal(y)|mdy
) 1
m

.
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In the first sub-case, we employ (24). In the second sub-case, we observe that the assumption t ≤ `(Q1) ≤ `(Ql)
implies B(x, t) ⊂ 3Q∗∗l . As a result,

m∏
l=1

( 1

tn

∫
B(x,t)

|Tσlal(y)|mdy
) 1
m

≤ C
∏

l:B(x,t)∩Q∗∗l 6=∅

χ3Q∗∗l
(x)M (m) ◦ Tσl(al)(x)

∏
l:B(x,t)∩Q∗∗l =∅

MχQl(x)
n+N+1
mn .

Thus ∣∣∣ ∫
Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣ ≤ C m∏

l=1

MχQl(x)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(x)

)
. (46)

Case 2: t > `(Q1). Now we can estimate

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy ≤ C

|Q∗1|

∫
Rn

|Tσ(a1, . . . , am)(y)| dy

=
C

|Q∗1|

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy

+
C

|Q∗1|

∫
Rn\Q∗1

|Tσ(a1, . . . , am)(y)| dy.

By Hölder’s inequality and (24), a similar technique to (46) yields

1

|Q∗1|

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤ C
m∏
l=1

( 1

|Q∗1|

∫
Q∗1

|Tσlal(y)|m dy
) 1
m

≤ C
m∏
l=1

(
inf
z∈Q∗1

MχQ∗∗l (z)
n+N+1
mn + inf

z∈Q∗1
M (m) ◦ Tσl(al)(z)χ3Q∗∗l

(z)
)

≤ C
m∏
l=1

MχQl(x)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(x)

)
, (47)

since x ∈ Q∗1. In the second term, using the decay of Tσ1
a1(y) when y /∈ Q∗1 as in Lemma 3.1, we obtain

1

|Q∗1|

∫
Rn\Q∗1

|Tσ(a1, . . . , am)(y)| dy ≤ C

|Q∗1|

∫
Rn\Q∗1

`(Q1)n+N+1

|y − c1|n+N+1

m∏
l=2

|Tσlal(y)| dy.

We decompose Rn \Q∗1 into dyadic annuli and estimate

1

|Q∗1|

∫
Rn\Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤ C
∞∑
j=1

2j(−N−1) 1

|2jQ∗1|

∫
2jQ∗1

χ2jQ∗1
(y)

m∏
l=2

|Tσlal(y)| dy

≤ C
∞∑
j=1

2j(−N−1)
m∏
l=2

( 1

|2jQ∗1|

∫
2jQ∗1

|Tσlal(y)|m dy
) 1
m

≤ C
∞∑
j=1

2j(−N−1)
m∏
l=2

(
inf

z∈2jQ∗1

(Mχ2jQ∗∗l
)(z)

n+N+1
mn + inf

z∈2jQ∗1

M (m) ◦ Tσl(al)(z)χ2j+1Q∗∗l
(z)
)
,
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where we used (24) in the last inequality.
Since Mχ2jQ ≤ C2jnMχQ,

χ2j+1Q∗∗l
(x) ≤ (Mχ2jQ∗∗l

)
n+N+1
mn ≤ C2

j(n+N+1)
m Mχ

n+N+1
mn

Ql
.

Inserting this inequality into the previous estimate, we deduce

1

|Q∗1|

∫
Rn\Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤ C
∞∑
j=1

2−j(
n+N+1
m −n)

m∏
l=1

(
MχQl(x)

n+N+1
mn +M (m) ◦ Tσl(al)(x)MχQl(x)

n+N+1
mn

)
≤ C

m∏
l=1

MχQl(x)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(x)

)
, (48)

since N � n. Combining (46)–(48) completes the proof of (44).

Lemma 4.2 Assume x /∈ Q∗∗1 and c1 /∈ B(x, 100n2t). Then we have

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy ≤ C
m∏
l=1

MχQl(x)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(x)

)
.

P r o o f. Fix any x /∈ Q∗∗1 and t > 0 such that c1 /∈ B(x, 100n2t). We denote

J = {2 ≤ l ≤ m : x /∈ Q∗∗l }, J0 = {l ∈ J : B(x, 2t) ∩Q∗l = ∅}, J1 = J \ J0. (49)

As in the previous lemma, we only consider the reduced form (45) of Tσ . From Hölder’s inequality, we have

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)|dy

≤ C‖Tσ1
a1χB(x,t)‖L∞

∏
l∈J0

‖TσlalχB(x,t)‖L∞

×
∏
l∈J1

(
1

|B(x, t)|

∫
B(x,t)

|Tσlal(y)|mdy

) 1
m ∏
l/∈J

(
1

|B(x, t)|

∫
B(x,t)

|Tσlal(y)|mdy

) 1
m

=: C (I× II× III× IV).

For I, we notice Q∗1 ∩B(x, 2t) = ∅ since we have x /∈ Q∗∗1 and c1 /∈ B(x, 100n2t). So, we have only to use the
decay estimate for Tσ1

a1 to get

I = ‖Tσ1a1χB(x,t)‖L∞ ≤ C
(

`(Q1)

|x− c1|+ `(Q1)

)n+N+1

.

For all l ∈ J1, since B(x, 2t) ∩Q∗l 6= ∅, Ct ≥ `(Ql); and hence, Q∗l ⊂ B(x, 100n2t). Therefore,(
1

|B(x, t)|

∫
B(x,t)

|Tσlal(y)|mdy

) 1
m

≤ C
(
|Ql|
|B(x, t)|

) 1
m

≤ C (50)

for all l ∈ J1. Now combining the above inequality with the estimates for I yields

I× III ≤ C
(

`(Q1)

|x− c1|+ `(Q1)

)n+N+1
m ∏

l∈J1

(
`(Q1)

|x− c1|+ `(Q1)

)n+N+1
m

. (51)
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As showed aboveQ∗l ⊂ B(x, 100n2t) for all l ∈ J1. This implies |x−cl| ≤ Ct. Furthermore, c1 /∈ B(x, 100n2t)
means t ≤ C|x− c1| which yields |x− cl| ≤ Ct ≤ C|x− c1|.

Recalling `(Q1) ≤ `(Ql), we see that

`(Q1)

|x− c1|+ `(Q1)
≤ C `(Ql)

|x− cl|+ `(Ql)
.

From (51), we obtain

I× III ≤ CMχQ∗∗1 (x)
n+N+1
mn

∏
l∈J1

MχQl(x)
n+N+1
mn . (52)

Now, we turn to the estimates for II and IV. For II, we have only to employ the moment condition of al to get

II =
∏
l∈J0

‖Tσlal · χB(x,t)‖L∞ ≤ C
∏
l∈J0

MχQl(x)
n+N+1

n . (53)

For IV, since x ∈ Q∗∗l , we can estimate

IV ≤ C
∏
l/∈J

M (m) ◦ Tσl(al)(x)χQ∗∗l (x) (54)

Putting (52)–(54) together, we conclude the proof of Lemma 4.2.

Lemma 4.3 Assume x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t). Then we have

`(Q1)s+1

tn+s+1

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤ CMχQ1
(x)

n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(z)

)
. (55)

P r o o f. It is enough to restrict Tσ to the form (45). By Hölder’s inequality we have

`(Q1)s+1

tn+s+1

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤`(Q1)n+s+1

tn+s+1

m∏
l=1

( 1

|Q∗1|

∫
Q∗1

|Tσlal(y)|mdy
) 1
m

≤C `(Q1)n+s+1

tn+s+1

m∏
l=1

(
inf
z∈Q∗1

MχQl(z)
n+N+1

n + inf
z∈Q∗1

M (m) ◦ Tσl(al)(z)χ2Q∗∗l
(z)
)
,

where the last inequality is deduced from (24).
Since x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t), Q1 ⊂ B(x, 10000n3t) which implies `(Q1)/t ≤ CMχQ1

(x)
1
n . As

a result,

`(Q1)s+1

tn+s+1

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤ CMχQ1
(x)

n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(z)

)
.

This proves (55).
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Lemma 4.4 Assume x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t). Then we have

1

tn+s+1

∫
Rn\Q∗1

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ CMχQ1(x)
n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(z)

)
.

P r o o f. Using the decay of Tσ1a1(y) when y /∈ Q∗1, we obtain

1

tn+s+1

∫
Rn\Q∗1

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ C

tn+s+1

∫
Rn\Q∗1

|y − c1|s+1 `(Q1)n+N+1

|y − c1|n+N+1

m∏
l=2

|Tσlal(y)| dy.

Using the dyadic decomposition of Rn \Q∗1 as in the proof of Lemma 4.1, we can estimate

1

tn+s+1

∫
Rn\Q∗1

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ C `(Q1)s+1

tn+s+1

∞∑
j=1

2j(s−N−n)

∫
2jQ∗1

χ2jQ∗1
(y)

m∏
l=2

|Tσlal(y)| dy

≤ C `(Q1)n+s+1

tn+s+1

∞∑
j=1

2j(s−N)
m∏
l=2

( 1

|2jQ∗1|

∫
2jQ∗1

|Tσlal(y)|m dy
) 1
m

≤ C `(Q1)n+s+1

tn+s+1

∞∑
j=1

2j(s−N)

×
m∏
l=2

(
inf

z∈2jQ∗1

Mχ2jQ∗∗l
(z)

n+N+1
mn + inf

z∈2jQ∗1

M (m) ◦ Tσl(al)(z)χ2j+1Q∗∗l
(z)
)
,

where we used (24) in the last inequality.
We now repeat the argument used in establishing (48) to obtain

1

tn+s+1

∫
Rn\Q∗1

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ C `(Q1)n+s+1

tn+s+1

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(z)

)
.

Moreover, the assumption x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t) implies `(Q1)
t ≤ CMχQ1

(x)
1
n . Therefore,

1

tn+s+1

∫
Rn\Q∗1

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ CMχQ1
(x)

n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(z)

)
.

This proves Lemma 4.4.
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Lemma 4.5 For all x ∈ Rn, we have

Mφ ◦ Tσ(a1, . . . , am)(x)

≤ C
m∏
l=1

MχQl(x)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(x)

)
+ CMχQ1

(x)
n+s+1
n

m∏
l=1

inf
z∈Q∗1

MχQl(z)
n+N+1
mn

(
1 +M (m) ◦ Tσl(al)(z)

)
.

P r o o f. If x ∈ Q∗∗1 , the desired estimate is a consequence of Lemma 4.1. Fix x /∈ Q∗∗1 . To estimate
Mφ ◦ Tσ(a1, . . . , am)(x), we need to examine∣∣∣ ∫

Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣

for each t ∈ (0,∞). If c1 /∈ B(x, 100n2t), then we make use of Lemma 4.2; otherwise, when c1 ∈ B(x, 100n2t)
we recall (35) and then apply Lemma 4.3 and 4.4 to obtain the required estimate in Lemma 4.5. This completes
the proof of the lemma.

4.2 The proof of Proposition 2.5 for product type operators

For the purposes of the proof of (17), we set

A =
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

)
Mφ ◦ Tσ(a1,k1

, . . . , am,km)
∥∥∥
Lp
.

For each ~k = (k1, . . . , km), we recall R~k, the smallest-length cube among Q1,k1
, . . . , Qm,km .

In view of Lemma 4.5, we have

A ≤ CB := C

∥∥∥∥∥∥
∞∑

k1,...,km=1

m∏
l=1

λl,kl

(
MχQl,kl

)n+N+1
mn

(
1 +M (m) ◦ Tσl(al,kl)

)∥∥∥∥∥∥
Lp

. (56)

In fact, our assumption imposing on s means (n+ s+ 1)p/n > 1 and hence we may employ the boundedness of
M to obtain

A ≤ CB

+ C

∥∥∥∥∥∥
∞∑

k1,...,km=1

(
MχR∗

~k

)n+s+1
n

m∏
l=1

λl,kl inf
z∈R∗

~k

(
MχQl,kl

)n+N+1
mn (

1 +M (m) ◦ Tσl(al,kl)
)∥∥∥∥∥∥

Lp

≤ CB.

So, our task is to estimate B. For this, we make use of the following lemma.
Lemma 4.6 Let p ∈ (0,∞) and α > max (1, p−1). Assume that q ∈ (p,∞] ∩ [1,∞]. Suppose that we are

given a sequence of cubes {Qk}∞k=1 and a sequence of non-negative Lq-functions {Fk}∞k=1. Then∥∥∥ ∞∑
k=1

(MχQk)αFk

∥∥∥
Lp
≤ C

∥∥∥ ∞∑
k=1

χQkM
(q)Fk

∥∥∥
Lp
.

P r o o f. By Lemma 2.4 and the fact that MχQ ≤ CχQ + C
∑∞
j=1 2−jnχ2jQ\2j−1Q, we have∥∥∥∥∥

∞∑
k=1

(MχQk)αFk

∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥∥
∞∑
j=0

∞∑
k=1

2−αjnχ2jQkFk

∥∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥∥
∞∑
j=0

∞∑
k=1

2−αjnχ2jQk

(
1

|2jQk|

∫
2jQk

Fk(y)qdy

) 1
q

∥∥∥∥∥∥
Lp

.
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Choose α > β > max(1, 1
p ) and observe the trivial estimate

χ2jQk ≤ C
(
2jnMχQk

)β
.

Now, Lemma 2.3 gives∥∥∥∥∥
∞∑
k=1

(MχQk)αFk

∥∥∥∥∥
Lp

≤ C

∥∥∥∥∥∥
∞∑
j=0

∞∑
k=1

χQk

(
2(β−α)jqn

|2jQk|

∫
2jQk

Fk(y)qdy

) 1
q

∥∥∥∥∥∥
Lp

≤ C
∥∥∥ ∞∑
k=1

χQkM
(q)Fk

∥∥∥
Lp
,

which yields the desired estimate.

Lemma 4.6 can be regarded as a substitute for Lemma 2.4.
Before applying Lemma 4.6 to B, we observe

B ≤
m∏
l=1

∥∥∥∥∥
∞∑
kl=1

λl,kl

(
MχQl,kl

)n+N+1
mn

(
1 +M (m) ◦ Tσl(al,kl)

)∥∥∥∥∥
Lpl

.

Then applying Fefferman-Stein’s vector-valued inequality and Lemma 4.6, we obtain∥∥∥∥∥
∞∑
kl=1

λl,kl

(
MχQl,kl

)n+N+1
mn

(
1 +M (m) ◦ Tσl(al,kl)

)∥∥∥∥∥
Lpl

≤ C

∥∥∥∥∥
∞∑
kl=1

λl,klM
(
χQ∗∗l,kl

)n+N+1
mn

∥∥∥∥∥
Lpl

+ C

∥∥∥∥∥
∞∑
kl=1

λl,kl

(
MχQl,kl

)n+N+1
mn

M (m) ◦ Tσl(al,kl)

∥∥∥∥∥
Lpl

≤ C

∥∥∥∥∥
∞∑
kl=1

λl,klχQl,kl

∥∥∥∥∥
Lpl

+ C

∥∥∥∥∥
∞∑
kl=1

λl,klχQ∗∗l,kl
M ◦M (m) ◦ Tσl(al,kl)

∥∥∥∥∥
Lpl

.

In the second term, we choose q ∈ (m,∞) and employ Lemma 2.4, and the boundedness of M and Tσl to obtain∥∥∥∥∥
∞∑
kl=1

λl,klχQ∗∗l,kl
M ◦M (m) ◦ Tσl(al,kl)

∥∥∥∥∥
Lpl

≤ C

∥∥∥∥∥
∞∑
kl=1

λl,kl
χQ∗∗l,kl

|Ql,kl |
1
q

∥∥∥M ◦M (m) ◦ Tσl(al,kl)
∥∥∥q
Lq

∥∥∥∥∥
Lpl

≤ C

∥∥∥∥∥
∞∑
kl=1

λl,klχQl,kl

∥∥∥∥∥
Lpl

.

As a result,

A ≤ CB ≤ C
m∏
l=1

∥∥∥∥∥
∞∑
kl=1

λl,klχQl,kl

∥∥∥∥∥
Lpl

,

which completes the proof of Proposition 2.5.

5 The mixed type

In this section, we prove Proposition 2.5 for operators of type (6). The main technique to deal with an operator Tσ
of mixed type is to combine the two previous types. We now establish some necessary estimates for Tσ . Again
note that, we can apply the result in our paper [10, Theorem 1.4] to see the equivalence between (8) and (9) for
the mixed type multiplier operator. So, we assume (8) below. For the mixed type, we need the following lemma
which can be shown in a way similar to that of Lemma 3.1.
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Lemma 5.1 Let σ be a Coifman–Meyer multiplier, al be (pl,∞)-atoms supported on Ql for 1 ≤ l ≤ m.
Assume `(Q1) = min {`(Ql) : l = 1, . . . ,m} and write Λj = {l = 1, . . . ,m : 2jQ∗∗1 ∩ 2jQ∗∗l = ∅}. Then for
any y ∈ 2j+1Q∗1 \ 2jQ∗1 we have

|Tσ(a1, . . . , am)(y)| ≤ C

(
`(Q1)

|y − c1|+
∑
l∈Λj
|y − cl|

)n+N+1

.

P r o o f. The detailed proof is as follows. Fix any y ∈ 2j+1Q∗1\2jQ∗1. Let us use the notationK1(y, y1, . . . , ym)
as in the proof of Lemma 3.1. Then for any yl ∈ Ql, l = 1, . . . ,m, we have

|K1(y, y1, . . . , ym)| ≤ C

(
`(Q1)

|y − y1|+
∑
l∈Λj
|y − yl|+

∑
l≥2 |y − yl|

)n+N+1

≤ C

(
`(Q1)

|y − c1|+
∑
l∈Λj
|y − cl|+

∑
l≥2 |y − yl|

)n+N+1

.

In fact, if l ∈ Λj , 2jQ∗∗1 ∩ 2jQ∗∗l = ∅ and hence, y ∈ 2j+1Q∗1 means |y − yl| ∼ |y − cl| for all yl ∈ Ql for such
l. Of course, |y − y1| ∼ |y − c1| is clear since y /∈ 2jQ∗1. Using this kernel estimate, we may prove the desired
estimate.

5.1 Fundamental estimates for the mixed type operator

Let ak be (pk,∞)-atoms supported in Qk for all 1 ≤ k ≤ m. Suppose Q1 is the cube such that `(Q1) =
min{`(Qk) : 1 ≤ k ≤ m}. For each 1 ≤ g ≤ G, let Ql(g) be the smallest cube among {Ql}l∈Ig and let
mg = |Ig| be the cardinality of Ig . Then we have the following analogues to Lemmas 4.1–4.5. We write
mg = ]Ig for each g.

Lemma 5.2 For all x ∈ Q∗∗1 , we have

Mφ ◦ Tσ(a1, . . . , am)(x)χQ∗∗1 (x)

≤ C
G∏
g=1

MχQl(g)
(x)

(n+N+1)mg
nm M (G) ◦ TσIg ({al,kl}l∈Ig )(x) +

∏
l∈Ig

MχQl(x)
n+N+1
mn

 . (57)

P r o o f. Fix x ∈ Q∗∗1 . We need to estimate∣∣∣ ∫
Rn

φt(x− y)Tσ(a1, . . . , am)(y) dy
∣∣∣ ≤ C

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy

for each t ∈ (0,∞). As in the previous section, for simplicity, we only consider the following form:

Tσ(f1, . . . , fm) =

G∏
g=1

TσIg ({fl}l∈Ig ), (58)

where {Ig}Gg=1 is a partition of {1, . . . ,m} with 1 ∈ I1. By Hölder’s inequality, we have

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy ≤ C
G∏
g=1

( 1

tn

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy
) 1
G

. (59)

For each 1 ≤ g ≤ G, we need to examine( 1

tn

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy
) 1
G

.
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We consider two cases as in the proof of Lemma 4.1.
Case 1: t ≤ `(Q1). We observe that

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy ≤
∏

g:B(x,t)∩Q∗∗
l(g)
6=∅

( 1

tn

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy
) 1
G

×
∏

g:B(x,t)∩Q∗∗
l(g)

=∅

( 1

tn

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy
) 1
G

.

When B(x, t) ∩Q∗∗l(g) 6= ∅, we see that x ∈ 3Q∗∗l(g). This shows

∏
g:B(x,t)∩Q∗∗

l(g)
6=∅

( 1

tn

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy
) 1
G

(60)

≤ C
∏

g:B(x,t)∩Q∗∗
l(g)
6=∅

χ3Q∗∗
l(g)

(x)M (G) ◦ TσIg ({al}l∈Ig )(x).

When B(x, t) ∩Q∗∗l(g) = ∅, we may use (24) to have

∏
g:B(x,t)∩Q∗∗

l(g)
=∅

( 1

tn

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy
) 1
G

(61)

≤ C
∏

g:B(x,t)∩Q∗∗
l(g)

=∅

∏
l∈Ig

MχQl(x)
n+N+1
mn . (62)

These two estimates (60) and (61) yield the desired estimate in Case 1.
Case 2: t > `(Q1). We use the splitting

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy

≤ C

|Q∗1|

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy +
1

|Q∗1|

∫
(Q∗1)c

|Tσ(a1, . . . , am)(y)| dy.

For the first term, (61) yields

1

|Q∗1|

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤ C
G∏
g=1

∏
l∈Ig

MχQl(x)
n+N+1
mn + χQ∗∗

l(g)
(x)M (G) ◦ TσIg ({al}l∈Ig )(x)

 .

For the second term, we write

Ij :=
1

|Q∗1|

∫
2j+1Q∗1\2jQ∗1

|TσI1 ({al}l∈I1)(y)|
∏
g≥2

|TσIg ({al}l∈Ig )(y)|dy.

Then by a dyadic decomposition of (Q∗1)c, we obtain

1

|Q∗1|

∫
(Q∗1)c

|Tσ(a1, . . . , am)(y)| dy

=

∞∑
j=0

1

|Q∗1|

∫
2j+1Q∗1\2jQ∗1

|TσI1 ({al}l∈I1)(y)|
∏
g≥2

|TσIg ({al}l∈Ig )(y)|dy =

∞∑
j=0

Ij .
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Now, we fix any j and evaluate each Ij . Letting Λj = {l = 1, . . . ,m : 2jQ∗∗1 ∩ 2jQ∗∗l = ∅} and using Lemma
5.1, for y ∈ 2j+1Q∗1 \ 2jQ∗1 we obtain

|TσI1 ({al}l∈I1)(y)| ≤ C

(
`(Q1)

|y − c1|+
∑
l∈I1∩Λj

|y − cl|

)n+N+1

≤ C2−j(n+N+1)

(
2j`(Q1)

2j`(Q1) +
∑
l∈I1∩Λj

|c1 − cl|

)n+N+1

.

We further estimate this term. If l ∈ I1∩Λj , |c1− cl| ∼ |x− cl| since x ∈ Q∗∗1 . On the other hand, if l ∈ I1 \Λj ,
χ2jQ∗∗l

(x) = χQ∗∗1 (x) = 1 since x ∈ Q∗∗1 . So, we have

|TσI1 ({al}l∈I1)(y)| ≤ C2−j(n+N+1)
∏

l∈I1∩Λj

(
2j`(Ql)

|x− cl|

)n+N+1
m ∏

l∈I1\Λj

χ2jQ∗∗l
(x)

≤ C2−j(n+N+1)
∏

l∈I1\{1}

Mχ2jQ∗∗l
(x)

n+N+1
mn

≤ C2−j(n+N+1)2j
n+N+1
m (m1−1)

∏
l∈I1

MχQl(x)
n+N+1
mn .

This and Hölder’s inequality imply that

Ij (63)

≤ C2j
n+N+1
m (m1−1)−j(N+1)

∏
l∈I1

MχQl(x)
n+N+1
mn

∏
g≥2

(
1

|2jQ∗1|

∫
2jQ∗1

|TσIg ({al}l∈Ig )(y)|Gdy

) 1
G

.

In the usual way, we claim that

∏
g≥2

(
1

|2jQ∗1|

∫
2jQ∗1

|TσIg ({al}l∈Ig )(y)|Gdy

) 1
G

(64)

≤ C2j
n+N+1
m (m−m1)

×
∏
g≥2

MχQl(g)
(x)

(n+N+1)mg
nm M (G) ◦ TσIg ({al,kl}l∈Ig )(x) +

∏
l∈Ig

MχQl(x)
n+N+1
mn

 .

To see this, we again consider two possibilities of g for each j; 2jQ∗∗1 ∩ 2jQ∗∗l(g) 6= ∅ or not. In the first case, we
notice x ∈ Q∗1 ⊂ 2jQ∗∗l(g) and recalling mg = ]Ig , we obtain(

1

|2jQ∗1|

∫
2jQ∗1

|TσIg ({al}l∈Ig )(y)|Gdy

) 1
G

≤ Cχ2jQ∗∗
l(g)

(x)M (G) ◦ TσIg ({al}l∈Ig )(x)

≤ C2j
mg(n+N+1)

m MχQl(g)
(x)

mg(n+N+1)

mn M (G) ◦ TσIg ({al}l∈Ig )(x).

In the second case; 2jQ∗∗1 ∩ 2jQ∗∗l(g) = ∅, we use (24) to see(
1

|2jQ∗1|

∫
2jQ∗1

|TσIg ({al}l∈Ig )(y)|Gdy

) 1
G

≤ C
∏
l∈Ig

Mχ2jQ∗∗l
(x)

n+N+1
mn ≤ C2j

mg(n+N+1)

m

∏
l∈Ig

MχQl(x)
n+N+1
mn .
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These two estimates yield (64). Inserting (64) to (63), we arrive at

Ij ≤ C2−j(
n+N+1
m −n)

×
G∏
g=1

MχQl(g)
(x)

mg(n+N+1)

mn M (G) ◦ TσIg ({al}l∈Ig )(x) +
∏
l∈Ig

MχQl(x)
n+N+1
mn

 .

Taking N sufficiently large, we can sum over j ∈ N to deduce the desired estimate. This completes the proof of
Lemma 5.2

Lemma 5.3 Assume x /∈ Q∗∗1 and c1 /∈ B(x, 100n2t). Then we have

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy

≤ C
G∏
g=1

MχQl(g)
(x)

mg(n+N+1)

mn M (G) ◦ TσIg ({al}l∈Ig )(x) +
∏
l∈Ig

MχQl(x)
n+N+1
mn

 .

P r o o f. Fix x /∈ Q∗∗1 and t > 0 such that c1 /∈ B(x, 100n2t). Let Tσ be the operator of type (6). We may
consider the reduced form (58) of Tσ and start from (59). We define

J = {g = 2, . . . ,m : x /∈ Q∗∗l(g)}, J0 = {g ∈ J : B(x, 2t) ∩Q∗l(g) = ∅}, J1 = J \ J0

and split the product as follows:

1

tn

∫
B(x,t)

|Tσ(a1, . . . , am)(y)| dy

≤ C
∥∥TσI1 ({al}l∈I1)χB(x,t)

∥∥
L∞

∏
l∈J0

∥∥∥TσIg ({al}l∈Ig )χB(x,t)

∥∥∥
L∞

×
∏
g∈J1

(
1

|B(x, t)|

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy

) 1
G

×
∏

g∈{2,...,G}\J

(
1

|B(x, t)|

∫
B(x,t)

|TσIg ({al}l∈Ig )(y)|Gdy

) 1
G

= C(I× II× III× IV).

To estimate I, we further refine the partition of I1:

I0
1 = {l ∈ I1 : x /∈ Q∗∗l , B(x, 2t) ∩Q∗l = ∅}, I1

1 = {l ∈ I1 : x /∈ Q∗∗l , B(x, 2t) ∩Q∗l 6= ∅},
I2
1 = I1 \ (I0

1 ∪ I1
1 ).

Since x /∈ Q∗∗1 and c1 /∈ B(x, 100n2t), we can see that 1 ∈ I0
1 . From Lemma 3.1, we deduce

|TσI1 ({al}l∈I1)(y)|

≤ C `(Q1)n+N+1

(
∑
l∈I0

1
|y − cl|)n+N+1

≤ C `(Q1)n+N+1

(
∑
l∈I0

1
|x− cl|)n+N+1

≤ C
( `(Q1)

|x− c1|+ `(Q1)

)(m−m1)n+N+1
m

×
∏
l∈I0

1

( `(Ql)

|x− cl|+ `(Ql)

)n+N+1
m

∏
l∈I1

1

( `(Q1)

|x− c1|+ `(Q1)

)n+N+1
m
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for all y ∈ B(x, t), where m1 = |I1| is the cardinality of the set I1. As in the proof of Lemma 4.2 for the product
type, if x /∈ Q∗∗l and B(x, 2t) ∩Q∗l 6= ∅ then |x− cl| ≤ Ct ≤ C|x− c1|. This observation implies

`(Q1)

|x− c1|+ `(Q1)
≤ C `(Ql)

|x− cl|+ `(Ql)

for all l ∈ I1
1 . Therefore, we can estimate

|TσI1 ({al}l∈I1)(y)| ≤ C
( `(Q1)

|x− c1|+ `(Q1)

)(m−m1)n+N+1
m

∏
l∈I0

1∪I1
1

MχQl(x)
n+N+1
mn

for all y ∈ B(x, t). Obviously, 1 ≤ CMχQl(x) for all l ∈ I2
1 , and hence we have

|TσI1 ({al}l∈I1)(y)| ≤ C
( `(Q1)

|x− c1|+ `(Q1)

)(m−m1)n+N+1
m

∏
l∈I1

MχQl(x)
n+N+1
mn (65)

for all y ∈ B(x, t) which gives the estimate for I. In the third term III, we simply have

III ≤
∏
g∈J1

M (G) ◦ TσIg ({al}l∈Ig )(x).

So, we obtain

I× III ≤ C
∏
l∈I1

MχQl(x)
n+N+1
mn

∏
g∈J1

(
`(Q1)

`(Q1) + |x− c1|

)mg(n+N+1)

m

M (G) ◦ TσIg ({al}l∈Ig )(x)

≤ C
∏
l∈I1

MχQl(x)
n+N+1
mn

∏
g∈J1

MχQl(g)
(x)

mg(n+N+1)

mn M (G) ◦ TσIg ({al}l∈Ig )(x),

since g ∈ J1 implies |x − cl(g)| ≤ C|x − c1|. For the second term II, we use estimate (63) and an argument as
for estimate for I to get

II =
∏
l∈J0

∥∥∥TσIg ({al}l∈Ig )χB(x,t)

∥∥∥
L∞
≤ C

∏
g∈J0

∏
l∈Ig

MχQl(x)
n+N+1
mn .

In the last term IV, we recall g /∈ J means x ∈ Q∗∗l(g) and hence,

IV ≤ C
∏
g/∈J

MχQl(g)
(x)

mg(n+N+1)

mn M (G) ◦ TσIg ({al}l∈Ig )(x).

Combining the estimates for I, II, III and IV, we complete the proof of Lemma 5.3.

Lemma 5.4 Assume x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t). Write

Al(x) = MχQl(g)
(x)

mg(n+N+1)

mn M (G) ◦ TσIg ({al}l∈Ig )(x) +
∏
l∈Ig

MχQl(x)
n+N+1
mn

for x ∈ Rn. Then we have

`(Q1)s+1

tn+s+1

∫
Q∗1

|Tσ(a1, . . . , am)(y)| dy

≤ CMχQ1
(x)

n+s+1
n

G∏
g=1

inf
z∈Q∗1

Al(z).
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Lemma 5.5 Assume x /∈ Q∗∗1 and c1 ∈ B(x, 100n2t). Then we have

1

tn+s+1

∫
(Q∗1)c

|y − c1|s+1|Tσ(a1, . . . , am)(y)| dy

≤ CMχQ1(x)
n+s+1
n

G∏
g=1

inf
z∈Q∗1

Al(z),

where Al is as in Lemma 5.4.
The proof of Lemmas 5.4 and 5.5 are very similar to those of Lemma 5.2, so we omit the details here.

5.2 The proof of Proposition 2.5 for the mixed type operators

Employing the above lemmas, we complete the proof of (17). For each ~k = (k1, . . . , km), recall the smallest-
length cubeR~k amongQ1,k1

, . . . , Qm,km and writeQl(g),~k(g) for the cube of smallest-length among {Ql,kl}l∈Ig .
Combining Lemmas 5.2-5.5, we obtain the following pointwise estimate

Mφ ◦ Tσ(a1,k1 , . . . , am,km)(x) ≤ C
G∏
g=1

bg,~k(g)(x) + CMχR∗
~k
(x)

n+s+1
n

G∏
g=1

inf
z∈R∗

~k

bg,~k(g)(z),

bg,~k(g)(x) = MχQ∗
l(g),~k(g)

(x)
mg(n+N+1)

mn M (G) ◦ TσIg ({al,kl}l∈Ig )(x) +
∏
l∈Ig

MχQl,kl (x)
n+N+1
mn

for all x ∈ Rn. As in the proof for the product type operator, we let

A =
∥∥∥ ∞∑
k1,...,km=1

( m∏
l=1

λl,kl

)
Mφ ◦ Tσ(a1,k1

, . . . , am,km)
∥∥∥
Lp
.

In view of (n+ s+ 1)p/n > 1, using Lemma 2.3 and Hölder’s inequality, we see

A ≤ C
G∏
g=1

∥∥∥∥ ∑
kl≥1:l∈Ig

( ∏
l∈Ig

λl,kl

)((
MχQ∗

l(g),~k(g)

)mg(n+N+1)

mn

M (G) ◦ TσIg ({al,kl}l∈Ig )

+
∏
l∈Ig

(MχQl,kl )
n+N+1
mn

)∥∥∥∥
Lqg

≤ C
G∏
g=1

(
Ag,1 +Ag,2

)
,

where qg ∈ (0,∞) is defined by 1/qg =
∑
l∈Ig 1/pl and

Ag,1 =

∥∥∥∥∥∥
∑

kl≥1:l∈Ig

∏
l∈Ig

λl,kl

(MχQ∗
l(g),~k(g)

)mg(n+N+1)

mn

M (G) ◦ TσIg ({al,kl}l∈Ig )

∥∥∥∥∥∥
Lqg

,

Ag,2 =

∥∥∥∥∥∥
∑

kl≥1:l∈Ig

∏
l∈Ig

λl,kl(MχQl,kl )
n+N+1
mn

∥∥∥∥∥∥
Lqg

.

For Ag,2, we have only to employ Lemma 2.3 to get the desired estimate. For Ag,1, take large r and employ
Lemma 4.6 to obtain

Ag,1 ≤ C

∥∥∥∥∥∥
∑

kl≥1:l∈Ig

∏
l∈Ig

λl,kl

χQ∗
l(g),~k(g)

M (r) ◦M (G)[TσIg ({al,kl}l∈Ig )]

∥∥∥∥∥∥
Lqg

.
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Then it follows from Lemma 2.4 and (22) that

Ag,1 ≤ C

∥∥∥∥∥∥∥
∑

kl≥1:l∈Ig

∏
l∈Ig

λl,kl


∥∥∥χQ∗

l(g),~k(g)
M (r) ◦M (G)[TσIg ({al,kl}l∈Ig )]

∥∥∥
Lq
χQ∗

l(g),~k(g)

|Ql(g),~k(g)|1/q

∥∥∥∥∥∥∥
Lqg

≤ C

∥∥∥∥∥∥
∑

kl≥1:l∈Ig

∏
l∈Ig

λl,kl

χQ∗
l(g),~k(g)

inf
z∈Q∗

l(g),~k(g)

∏
l∈Ig

MχQl(z)
n+N+1
mn

∥∥∥∥∥∥
Lqg

≤ C
∏
l∈Ig

∥∥∥∥∥
∞∑
kl=1

λl,kl(MχQl)
n+N+1
mn

∥∥∥∥∥
Lpl

≤ C
∏
l∈Ig

∥∥∥∥∥
∞∑
kl=1

λl,klχQl

∥∥∥∥∥
Lpl

,

which completes the proof of Lemma 2.5 for operators of mixed type.

6 Examples

We provide examples of operators of the kinds discussed in this paper: All of the following are symbols of
trilinear operators acting on functions on the real line, thus they are functions on R3 = R×R×R.

The symbol

σ1(ξ1, ξ2, ξ3) =
(ξ1 + ξ2 + ξ3)2

ξ2
1 + ξ2

2 + ξ2
3

is associated with an operator of type (3).
The symbol

σ2(ξ1, ξ2, ξ3) =
ξ3
1

(1 + ξ2
1)

3
2

1

(1 + ξ2
2 + ξ2

3)
3
2

+
1

(1 + ξ2
1)

3
2

ξ3
2

(1 + ξ2
2 + ξ2

3)
3
2

+
1

(1 + ξ2
1)

3
2

ξ3
3

(1 + ξ2
2 + ξ2

3)
3
2

− 3ξ1

(1 + ξ2
1)

3
2

ξ2ξ3

(1 + ξ2
2 + ξ2

3)
3
2

=
(ξ1 + ξ2 + ξ3)(ξ2

1 + ξ2
2 + ξ2

3 − ξ1ξ2 − ξ2ξ3 − ξ3ξ1)

(1 + ξ2
1)

3
2 (1 + ξ2

2 + ξ2
3)

3
2

provides an example of an operator of type (6). Note that each term is given as a product of a multiplier of ξ1
times a multiplier of (ξ2, ξ3).

The symbol

σ3(ξ1, ξ2, ξ3) =
ξ4
1

(1 + ξ2
1)2

ξ2
2

(1 + ξ2
2)2

ξ3
(1 + ξ2

3)2
− ξ4

1

(1 + ξ2
1)2

ξ2
(1 + ξ2

2)2

ξ2
3

(1 + ξ2
3)2

− ξ2
1

(1 + ξ2
1)2

ξ4
2

(1 + ξ2
2)2

ξ3
(1 + ξ2

3)2
+

ξ1
(1 + ξ2

1)2

ξ4
2

(1 + ξ2
2)2

ξ2
3

(1 + ξ2
3)2

+
ξ2
1

(1 + ξ2
1)2

ξ2
(1 + ξ2

2)2

ξ4
3

(1 + ξ2
3)2
− ξ1

(1 + ξ2
1)2

ξ2
2

(1 + ξ2
1)2

ξ4
3

(1 + ξ2
3)2

= −ξ1ξ2ξ3(ξ1 − ξ2)(ξ2 − ξ3)(ξ3 − ξ1)(ξ1 + ξ2 + ξ3)

(1 + ξ2
1)2(1 + ξ2

2)2(1 + ξ2
3)2

yields an example of an operator of type (5). The next example:

σ4(ξ1, ξ2, ξ3) =
ξ1ξ2

ξ2
1 + ξ2

2 + (ξ1 + ξ2)2
· 1− ξ1ξ2

ξ2
1 + ξ2

2 + ξ2
3

shows that the integer G(ρ) varies according to ρ. Notice that all four examples satisfy

σ1(ξ1, ξ2, ξ3) = σ2(ξ1, ξ2, ξ3) = σ3(ξ1, ξ2, ξ3) = σ4(ξ1, ξ2, ξ3) = 0

when ξ1 + ξ2 + ξ3 = 0. This yields condition (8) when s = 0; see [10]. For higher order cancellation s ∈ Z+,
we consider σ1

s+1, σ2
s+1, σ3

s+1, for example.
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