THE MARCINKIEWICZ MULTIPLIER CONDITION FOR
BILINEAR OPERATORS
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ABSTRACT. This article is concerned with the question of whether Marcin-
kiewicz multipliers on R?" give rise to bilinear multipliers on R™ x R™. We
show that this is not always the case. Moreover we find necessary and
sufficient conditions for such bilinear multipliers to be bounded. These
conditions in particular imply that a slight logarithmic modification of the
Marcinkiewicz condition gives multipliers for which the corresponding bi-
linear operators are bounded on products of Lebesgue and Hardy spaces.

1. INTRODUCTION

In this article we study bilinear multipliers of Marcinkiewicz type. Recall
that a function o(¢,n) = (&1, ..., &, M, - - -, n) defined away from the coor-
dinate axes on R?", which satisfies the conditions

(1.1) 102050 (& m)] < Cagléat| ™ €al = m ™ . a7

for sufficiently large multi-indices o = (a1,...,q,) and 8 = (51,...,0,), is
called a Marcinkiewicz multiplier. It is a classical result, see for instance [18],
that Marcinkiewicz multipliers give rise to bounded linear operators M, from
L,(R®") into itself for 1 < p < oo. Here M, is the multiplier operator with
symbol o, that is

Mo(P)a) = [ Pla(ei9as

where F is a Schwartz function on R?" and F(¢) is the Fourier transform of
F, defined by F(¢) = Jgon F(2)e @8 dz. (We will use the notation (z,y) =
Yo oy for x = (z1,...,2,) and y = (Y1,...,Ym) clements of R™.) The
Marcinkiewicz condition (1.1) is less restrictive than the Hérmander-Mihlin
condition

(12) 02050 (§m)| < Coys(I€] + )17,
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which is also known to imply boundedness for the linear operator W, from
L,(R?") into itself when 1 < p < oo. The advantage of condition (1.2) is that
it is supposed to hold for multi-indices up to order ||+ |3| < n+ 1 versus up
to order |a| + |B| < 2n for condition (1.1).

In this paper we study bilinear multiplier operators whose symbols satisfy
similar conditions. More precisely, we are interested in boundedness properties
of bilinear operators

Wolf.9)@) = [ FOFmo(§,memeOemon dedy,

originally defined for f, g Schwartz functions on R™ and o a function on R?".
A well-known theorem of Coifman and Meyer [4] says that if the function ¢ on
R?" satisfies (1.2) for sufficiently large multi-indices o and 3, then the bilinear
map W,(f,g) extends to a bounded operator from L, (R™) x L,,(R™) into
Lpo,oo(]Rn) when 1 < D1,p2 < OO0, 1/pl + 1/p2 - 1/p0 and Po > L (Lpo,oo
here denotes the space weak L,,.) This result was later extended to the range
1 > po > 1/2 by Grafakos and Torres [9] and Kenig and Stein [11]. The
extension into L,, for py < 1 was stimulated by the recent work of Lacey and
Thiele [12] who showed that the discontinuous symbol ¢(&,n) = —isgn (£ —n)
on R? gives rise to a bounded bilinear operator W, from L,, (R) x L,,(R) into
L,,(R) for 2/3 < py < oo when 1 < py,ps < 0o and 1/p; + 1/ps = 1/py.

In this article we address the question of whether the Marcinkiewicz condi-
tion (1.1) on R?" gives rise to a bounded bilinear operator W, on R™ x R".
We answer this question negatively. More precisely, we show that there exist
examples of bounded functions (&, 1) on R™ x R™ which satisfy the stronger
condition

(1.3) 1020, (€,m)| < Cayplé] ™7V

for all multi-indices v and 3, for which the corresponding bilinear operators
W, do not map L,, X L,, into L,, ~ for any triple of exponents satisfying

1/p1+1/pa =1/pg and 1 < py, py < 0.
We reduce this problem to the study of bilinear operators of the type

(1.4) (f,9) = Z Zajk: Zjf Axg,

jET kel

where a;;, is a bounded sequence of scalars depending on o and A; are the
Littlewood-Paley operators given by multiplication on the Fourier transform
side by a smooth bump supported near the frequency [£| ~ 27. In section 6,
in particular Theorem 6.5, we find a necessary and sufficient condition on the
infinite matrix A = (a;i);x so that the bilinear operator in (1.4) maps Ly, X Ly,
into Ly,.- This condition is expressed in terms of an Orlicz space norm of
the sequence (aji);x. It turns out that this condition is independent of the
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exponents pi, p2, po and depends only on quantities intrinsic to the matrix A,
(although the actual norm of the operator in (1.4) from L,, X L, into Ly, «
does depend on the indices p1, ps, po).

The results of section 6 are transferred to multiplier theorems for bilinear
operators in section 7. This transference is achieved using a Fourier expansion
of the symbol ¢ on products of dyadic cubes. Theorem 7.2 is the main result
of this section and Theorem 7.3 shows that this theorem is best possible.
Theorem 7.2 allows us to derive that the estimates

(1.5) 02080(&,m)| < Cagl€| 717 (log(1 + [log £1])) ™

do give rise to a bounded bilinear operator W, on products of L, spaces when

0 > 1, while we show that this is not the case when 0 < 6 < % We obtain

similar results when the expression (log(1 + |log % ))79 in (1.5) is replaced

by the expression (log(1+ |log %D)*l( log(1 +log(1+ |log %D))fe for 6 > 1.

We find more convenient to work with the martingale difference operators
Ay, associated with the o—algebra of all dyadic cubes of size 2% in R™ and later
transfer our results to the Littlewood-Paley operators A;. This point of view
is introduced in the next section.

We end this article with a short discussion on paraproducts, see section 8.
These are operators of the type (1.4) for specific sequences (aj);x of zeros and
ones.

2. A MAXIMAL OPERATOR

Let (€2,%X,P) be any probability space and let (X)g>o be a filtration i.e.
an increasing sequence of sub-oc—algebras of ¥. We say that (3j) is a dyadic
filtration if each ¥, is atomic and has precisely 2% atoms each with probability
27% We say () is a 2" —adic filtration if each Y is atomic with precisely 27%
atoms each with probability 27"

Associated to ¥, we define the conditional expectation operators &.f =
E(f|Xk) and the martingale difference operators Ay f = Ef —E,—1 f for k > 1,
and f € L1(Q).

Let A = (aji) be a complex M x N matrix, and let (€2, 3, P) be a probability
space with a dyadic filtration (X)g>0. For 1 < p < oo we define h,(A) to be
the least constant so that for all f € L,(£2) we have

1<j<M

N
(2.1) | max | apAifll, < hp(A)If ],
k=1
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We also define the corresponding weak constants, i.e. the least constants so
that for all f € L,(€2) we have

(2.2) | max |Z%kﬁkf|HL < hy (AN flz,

1<j<M

Finally for 0 < ¢ < p < oo we define the mixed constants hy,,(A) as the least
constants such that for all f € L,(£2) we have

1<j<M

N
(2.3) | max 1> apdiflll,, < hpa(ADIS ]z,
k=1

Note that these definitions are independent of the choice of the probability
space and of the dyadic filtration. Indeed if A is fixed, it suffices to take
f € L,(Zy) and hence we can consider a finite probability space with 2
points and a finite dyadic filtration (3;)_,. We also note that h,(A) is the
operator norm of the map T4 : L,(Q) — L,(2; ¢2) defined by

N

Taf = (ZajkAkf)inl

k=1

Similarly h¥(A) is the norm of the operator Ty : L, — Ly oo (Q; £1)).
Our first result is that all these constants are mutually equivalent, when
1<p<oo:

Theorem 2.1. If1 < p,q < oo then there is a constant 0 < C = C(p,q) < oo
such that for all complex M x N matrices A we have

() < RE(A) < hy(A) < Chy(A).

Proof. Tt suffices to prove an estimate of the type h,(A) < Chy(A) for any
choice of 1 < p,q < co. We first prove a weak type (1, 1) estimate for Ty, i.e.
that hi'(A) < Chy’(A). Suppose f € Ly with [|f||z, = 1. Then if A,y > 0, with
Ay > 1, we can use an appropriate Calderén-Zygmund decomposition to find
finite sets Dy, ---, D,, so that each D, is an atom of some ¥,

YASP(D)T [ [fldP = Ave f < 29),

Dy

and |f(w)] <yAif w ¢ U, D;. Let

Z Avef XD,
=1

and E = U, D;. Then Ta(fxg — g) is supported in E and thus
(2.4) P(|Ta(fxe — 9l > 2/2) <P(E) < (yA)7
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On the other hand ||f — fxe + gllz.. < 3yAand ||f — fxe + g|/r, < 1. Hence
1f = fxe+9gllz, <3Y7(yA)Y7 and so

(2.5) ITA(f = FxEB + Ol ng gy < BE(A)BYT (A NV,
which implies that

(2.6) P(|ITa(f — fxe +9)llen > A/2) < %

Selecting v = 1/hy'(A) and combining with (2.4) we obtain (for A > hy’(A))
2.7) AB(|Taflle > ) < Ch2(A)

(B (A))37 (),

where C' = C(p,q). This gives the weak-type (1,1) estimate for T4. Now
by the Marcinkiewicz interpolation theorem (applied to the sublinear map
= [ Taf(w)][ea) we obtain that h,(A) < C(p,q)hy(A) aslong as 1 < p < g.

We now prove that h,(A) < C(p,q)hy(A) when 1 < ¢ < p < oo. We
consider the dual map T% : Li(; M) — L, defined by

M N
TZf = Z Z ajkAkfj
j=1 k=1
where f(w) = (f;(w))}L,. We have that T : L,(Q; ¢}") — L, has norm bounded
by C(q,7)hy(A) aslongas 1 <1’ < gie. ¢ <r < oo. Using this r as a starting
point, we repeat the argument above to show that 7% : Li(Q; ¢3) — Ly o, has
norm bounded by Chy’(A). The Marcinkiewicz interpolation theorem can again
be used to show that T : Ly (€, £)') — L, has norm bounded by Ch¥(A) for

all 1 < p/ < r, and thus in particular when 1 < p’ < ¢/. Therefore we obtain
that h,(A) < Chy(A) when 1 < ¢ < p < 0. O

Remark. From now we will write h(A) = ho(A) so that each h,(A) for
1 < p < oo is equivalent to h(A).

It is of some interest to observe that even the corresponding mixed constants
are also equivalent to h(A).

Theorem 2.2. Suppose 0 < q < p and 1 < p < oo. Then there is a constant
C =C(p,q) so that

%h(A) < hyo(A) < Ch(A).

Proof. This will depend on the following Lemma:

Lemma 2.3. Suppose 1 < p < oo and 0 < q < p. Then there is a constant
C = C(p,q) so that if r = min(p,2) we have

(2.8) | Tall Ly= Ly oerry < Chyg(A).
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Proof. (Lemma 2.3) We may assume ¢ < r. This is a fairly standard application
of Nikishin’s theorem, see [16]. Here we use a version given in [17]. It is simplest
to consider the case when (2 is finite with || = 2V. Consider the map T :
L, — Lg(Q;€80). For each f € L, with ||f|z, < 1, let Fy(z) = ||Taf(x)]]en.
For || f;llz, < 1 with 1 < j < J, Z;’:l b;|" = 1, and (¢;)7_, a sequence of
independent Bernoulli random variables on some probability space, we have

1<5<J

J
| max \bj|FfjHLq < E(” ZejbjTAfjHLq(ggg)) < Chpq(A),
j=1
since L, has type r. It follows from [17] that there is a function w € Ly, with
fdeP’ =1, and w > 0 a.e such that for any set £ C ()

1 1

<[EFJ‘ZdIP’>; < ChM(A)(/EdeP)“.

Now consider the set S of all permutations of €2 which induce permutations
of the atoms of each X, for 1 < k < N; there are 22" ~! such permutations ¢.
For ¢ € S we have

1 1

1 1_1
( / Ff, dP)" < Clyo(A)( / wdp)"
E E
or equivalently

(/ FﬁdP)‘ll gCh,,,q(A)</ wo ! dIP’)‘lz_i.
E E

Raising to the power (% —

11
— . gives

(/IEF}’dIE”); < Chyy(A) (%Z (/Ewogp_l dIP))

p€eS

%)_1, averaging over S, and then raising to the power

Q=
3=

But this implies
1

( / FJ?dIP’); < Chy o (A)P(E)i™

which gives the required weak type estimate (2.8). O

We now return to the proof of Theorem 2.2. We first observe that we
always have hy,,(A) < Chy(A) since ¢ < p. If 1 < p <2, Lemma 2.3 gives
that hy'(A) < Chyq(A) and the required conclusion follows from Theorem
2.1. Assume therefore that p > 2 and that Tx maps L, — L,(¢*) with norm
h,q(A). Fix f with || f||z, = 1 and use the Calderén-Zygmund decomposition
of Theorem 2.1, to obtain (2.4) as before, but instead of (2.5) the estimate

(2.9) ITa(f = fxe+ 9)ln, < hpa(A)3Y7 (7)),
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which implies
2q / /
(2.10) PUTa(f = fxe + 9)llar > A/2) < E(hp,q(A))q?)q/p (YA

Selecting 7 = hyq(A) A~ with 1 = z% + % and combining with (2.4) we
obtain

(2.11) AP(|Taflloas > N)F < ChyglA).

This says that T4 maps L; into L (¢2) with norm at most Ch,,(A), in
particular that T4 maps L; into L;(¢¥) as long as 0 < t < s. Lemma 2.3
gives that T4 maps L, into Ly (¢2) and also Ly into Ly o (X)) with norms
at most a multiple of h,,(A). By interpolation it follows that T4 maps L,
into Lo oo (M) C Ly oo (02 for 1 < r < 2. We conclude that h¥(A) < Ch,, ,(A)
for 1 < r < 2 but since h’(A) is comparable to h,;'(A), we finally obtain
hy(A) < Chye(A). Since the converse inequality is always valid when ¢ < p,
we apply Theorem 2.1 to conclude the proof. O]

We next prove the elementary observation for 1 < p < oo, that h(A) remains
unchanged when interpolating extra columns or extra rows of zeros.

Lemma 2.4. Let A be a complex M x N matriz and (m,)*, (ns)™_, be two
increasing finite sequences of natural numbers. Suppose My > my; and Ny >
ny. Let B = (bj) be the My x Ny-matriz defined by bj, = a,s when j = m,
and k = ng, and by, = 0 otherwise. Then h(A) = h(B).

Proof. Interpolating extra rows of zeros is trivial, so we can assume m, = m
for all . For the case of columns, we only need to show that h(B) < h(A).
We may suppose that  is a finite set with 2™ points and that (Ek)g:lo is a
finite dyadic filtration of €2. It is then possible to write 2 = ; x 5 where
1] = 2M =N and |Q,] = 2%, and find a dyadic filtration (2,({”)5;0“ of Q; and
a dyadic filtration (Z,(f)){gv:o of 0 so that Zg) X Eff) =%, for0 <k <N
and o), x 2 =%, for 0 < k < N — 1 Then for f € Ly(€ x Q) let
g= Z/ngﬂ Ay f and note that

Ankf<w17 w2) = Al(f)gun (WQ)J

where g, (w2) = g(wy,wq). Hence

N
2
[ s | S i )| e < (4) [ oo e
k=1

2 J Qo

Integrating over €2y gives

N
[sup | ajneAn, fl]], < Bo(A)lgllz, < hp(A)flLs.
7 k=1
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This completes the proof. O

We can now extend our definitions, replacing dyadic filtrations by 2"-adic
filtrations:

Proposition 2.5. Suppose n € N and 1 < p < co. Then there is a constant
C(p,n) with the following property. Let (2,%,P) be a probability space and
suppose (Xg)2 is a 2"-adic filtration. Let A be any M x N matriz and let
h,(A;n) be the least constant so that

N
sup| " audefll,, < (Al
I k=1

and hy(A;n) be the least constant so that

N
| sup | ZajkAkﬂHme < hy(Asn)[| fllz,-
=1

J k=
Then hy(A) <hy(A;n), hy(A)<h,(A;n), and hy(A;n) <hy(A;n) <Ch(A).
Proof. This is essentially trivial; we need only to prove that h,(A;n) < Ch(A).
To do this note that h,(A;n) = h,(B) where B is obtained from A by repeating

each column n times. The proposition follows then by the triangle law from
Lemma 2.4. 0

3. ESTIMATES FOR h(A)

We next turn to the problem of estimating h(A). We shall assume that
(2,P) is a fixed probability space with a dyadic filtration (Xg)72,. Our first
estimate is trivial.

Proposition 3.1. There is a constant C' so that for any M x N matriz A =
(a;r) we have

N
h(A) < C sup Z laje — aj 1]
1<j<M 1=

where we set ajo = ajni1 =0 for all 1 < j < M.

Proof. Suppose f € Ly. Summation by parts gives
N

N
Z ajkAkf = Z(a]‘k - aj,k+1)€kfv

k=1 k=0
thus

N N
> apArfl < (sup > ag, — aj,k+1|)sgp Exfl,
k=1 k=0

1<G<M 4
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and the result follows because of the maximal estimate

Isup [Exflllz. < Cll Sl
proved in [§]. O

We next turn to the problem of getting a more delicate estimate. To do
this we need the theory of a certain Lorentz space. Let w = (wy)s2; be a
decreasing sequence of positive real numbers. We will consider the following
two conditions on w :

log(j + 1)

)
)wj when 1< j5 <k,

(where throughout this paper log denotes the logarithm with base 2) and
e’} wy
3.2 — < 00.

1

Roughly speaking (3.1) means that wy, decays logarithmically while (3.2) im-
plies that it decays reasonably fast. Note that wy = (log(k+1))~? satisfies (3.1)
if # > 0 and (3.2) if # > 1. The sequence wy, = (log(k + 1))~ (loglog(k + 2))~%
satisfies both (3.1) and (3.2) when 6 > 1.

Now let d = d(w, 1) be the Lorentz sequence space of all complex sequences
u = (ug)rez such that

[ufla = sup Y wagey|ux| < oo
T kez

where the supremum is taken over all one-one maps 7 : Z — N. The dual of
d(w, 1) can be naturally identified as the space d* = d*(w, 1) consisting of all
sequences (vg)gez SO that

vf + -+ up

sup ————— = ||v
keN W1 + -+ + Wy

ax < 00

where (v;)22, is the decreasing rearrangement of (|vg|)rez. We refer to [13] p.
175 for properties of Lorentz spaces. Note that under condition (3.1), d(w, 1)
is also an Orlicz sequence space (see [13] p. 176).

The following Lemma is surely well-known to specialists, but we include a
proof.

Lemma 3.2. Under condition (3.1), the Lorentz space d(w, 1) has cotype two.

Proof. By combining Proposition 1.f.3 (p.82) and Theorem 1.£.7 (p.84) of [14]
one sees that it is only necessary to show that d(w, 1) has a lower g-estimate
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for some ¢ < 2. To do this observe that if v{,--- , vy are disjointly supported

sequences, then
N
1l > inf —%
IIZ;VJIId ;?iflw ZIIVJIId
J:
Hence
N N
D Villagwy < Cog(N + 1)1 villa.
Jj=1 J=1

Now suppose 1 < ¢ < 2 and || Y v,||q = 1. Then for each s € N, let m, be the
number of j so that 27% < ||vi]|¢ < 27°TL. Then
ms2™° < C(log(ms + 1))°.

This in turn implies that
ml=r < C2°
where p > 0 is chosen so that (1 — p)~! < g. Then we obtain an estimate

N o]
Sl oY marr<c
j=1 s=1

This establishes a lower g-estimate. 0

The norms || - || and || - |4« are of course defined for finite sequences with M

elements and thus can be thought as norms on C*. We denote these spaces
d(w,1)™) and d*(w, 1)),

Proposition 3.3. If (w,,) satisfies both (3.1) and (3.2) then given 2 < p < 0o
there is a constant C so that for any sequence €, = £1 and any M, N € N we
have the estimate

D=

(E HZekAkfm ) < (e

for any £ € L,(; d*(w, 1) M)y,

Proof. We start by using an argument due to Muckenhoupt [15], see also [20].
For any fixed €1, -+, ex let S = Zgzl exAg. Now fix f € L. Then by a result
of Burkholder [2], [|S]|z,~z, = p —1if 2 < p < co. Then for any o > 0 we
have

)"

2m

(3.3) B(cosh(a[SF]) €1+ ) o (2

— ™I, -

Since || f[|#™ < || fI12,lfII7"* and since for m > 1 we have
_ 2m 2m
2m)! = (2m)! —
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it follows from (3.3) that

E(cosh(alSf|) = 1) < (ae)?|[ flI7, Y (ae)* | FIIZ.-
k=0
In particular if cel|f|o < 5 we have
(3.4) E(cosh(a|Sf]) — 1) < 2e*a?(| f|17,-

At this point we return to the Lorentz space d(w,1). Let us define 75 = 0,
v =1, and v, = 22" for k > 2. Let W, = w.,. It will be convenient to
normalize condition (3.2) so that we have

(3.5) Z%Wk =1
k=1
We also note that (3.1) implies the existence of a constant C' so that we have
(3.6) |wy + -+ + wi| < Chuwy,
for k > 1.

Now suppose f = (fj)j]‘il € Loo(£2;CM). Suppose that f is supported on a
measurable set F and satisfies ||f(w)]|4« < 1 everywhere. Then we can define
a measurable map 7 from € into the set of permutations of {1,2,---, M} so
that |fﬂ.(w)(1)(a))| > |fﬂ(w)(2) (w)| > > |fﬂ-(w)(M) (w)| for all w € Q. Thus

| frw)(i) ()| < Cw;

forall 1 <j < M. Let Ej, ={w € E: m(w)(k) =j} when j, ke {1,..., M}
and Ej, = () otherwise. Now for 1 < j < M and 1 =1,2,3,..., let

n—1
!
f;): Z [iXEy,
k

=V-1

so that f; =>",°, f](l). If0<ae< % we can estimate

E(cosh(a|Sf;]) — 1) = E( cosh (| Zan;l)D —1)

< E(max (cosh(owl_lwfl_lwf;l”) - 1))

I>1

_ — l
<oy W

=1
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in view of (3.4) since ||fj(l)||Loo < CW; and owl_lVVl_1||f;l)||Loo < 1. Thus

-1

E(cosh(a|Sf;]) — 1) < 2C%a? ifyfz Z P(E;L).

=1 k=11

It follows that

Y—1
E(cosh(a||Sf,.) — 1) < e2C%a 2227 > P(Ej).
=7-

]1[1 k= 1

Note that for each k € N, ZM P(E;;) < P(E). Hence we obtain that if f is
supported on F with ||f(w) then

a <1 everywhere and ae < 20,

(3.7) E(cosh(a||Sf||,.) — 1) < 2C%a? Z%_IIP’(E) = C10’P(E)
I=1
for a suitable constant C;. Let us next refine (3.7). For n > 0, let
Go={weE: 4" <||(we <47}
Then by (3.7) we have if a < (4Ce)™!
E(cosh(2"a||S(fxa,)|le.) — 1) < C1a?47"P(G,,)

and as
E(cosh(a|St|le,) — 1) < E(sup (cosh(2"*'al|S(fxa,)le.) — 1)),

n>0

4+ <1 everywhere and o< (4C)~!

).

we obtain, under the assumptions ||f(w)

(3.8) E(cosh(al|SFlle.) — 1) < C10” Y 47"P(G,) < CHE(||f

n=0
If we use a fixed value of o and the estimate 22 < 2(coshz — 1) we find that
E(||St)I7.) < CsE(|I£]la)
s < 1. This in turn gives us for every f € Lo (Q; d*(w, 1))
(3.9) E([|IS£17..) < Callllflla- oo ECII£]]a-)-

Now let 2 < p < oo and fix £ with E(||f||%.) = 1. We set Ey = {||f
and E, = {2"71 < ||[f||s+ < 2"} for n > 1. Applying (3.9) we obtain

if [[1[£]]a-

<1}

(E(ISEIIZ.))® 0322"IP’ E(|flla))* < C3 ) 25P(E,)>

-

222 Py Zz”PIP(En))% <y,
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which completes the proof under the assumption E(||f||%.) = 1. The general
case follows by scaling. O

We now establish our main estimate for h(A).

Theorem 3.4. Let w = (w,)2, be a sequence satisfying (3.1) and (3.2).
Then there is a constant C' so that for any M x N matriv A = (ay;);x we have

h(A) < C max |ag
1<k<N

d*

where ay = (a;)}L,. In particular we have

h(A) < C'max gl

Gk W)j—k|+1

Proof. We suppose p > 2 and that A is a matrix satisfying max;<x<n ||ag ||+ <
1. Consider the operator T4 : L,(Q) — La(;¢2). The adjoint operator is
Th 0 La(Q;047) — L,y (Q2) given by

Th(E) = S (Auf, ).

The dual statement of the result in Proposition 3.3 gives that for any sequence

of £1’s, €1, -+, enx we have the estimate
N
’ L/ 1
(3.10) (E(IY exdefllg))? < CE(IEIZ))?
k=1

where C' depends only on (w,,). Now let €1, - - - € be a sequence of independent
Bernoulli random variables on some probability space (2',P'). We use E’ to
denote expectations on €. Using Lemma 3.2 we obtain

!

1 IL
(E(|TAENE)7 < Co(E ZrAkfak )7

=

< oan(z 1ALE]2) %)

o=

<, (EE/( HZekAkap))

k=1

This gives hy,2(A) < Cy which completes the proof by using Theorem 2.2. [
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Remark. Theorem 3.4 implies that given any 6 > 1 there is a constant Cy so
that

(3.11) h(A) < Cy
whenever A = (ay;);x is a matrix satisfying
(3.12) Jajel < 2(log(2 + |j — k)~

We show that this is not the case when 0 < 0 < % Let N be any natural
number and define A = (a;x) to be a 2V x N matrix given by a;;, = by N7,
where bj, = £1 and the set (bjk)ﬁl runs through all 2V choices of signs.
Choose f real so that |A,f| =1 for 1 < k < N. Then ||f||z, = V/N. On the

other hand N
max_| Z apArf] = N7 xq,
k=1

1<j<2N

which implies that h(A) > N 2= However
Jaje] < N0 < 2N +1)7" < 2(log(2 + |j — k)™
but h(A) > N2~ — 00 as N — co. Thus (3.11) fails when 0 < 0 < 3

4. THE HARMONIC VERSION OF THE MAXIMAL OPERATOR

We shall now fix n € N and work with R™. Let Dy be the collection of all
unit cubes of the form []_, [m;,m; + 1] where m; € Z and let Dy be the set
of all cubes of the form [T7_,[27%m;,27"(m; 4 1)] where m; € Z. For k € Z,
let X; denote the o—algebra generated by the dyadic cubes Dy. We define the
corresponding conditional expectation operators

Ef =) (Agef)XQ
QEDy

for f € Li(R") and the martingale difference operators Ay f = Euf — Er_1f
for k € Z.

Now let A = (aji);kez be any infinite complex matrix. We shall call A a
coo—matrix if it has only finitely many non-zero entries. For a cop—matrix
define h,[A;n] to be the least constant such that for all f € L,(R™) we have

(4.1 I max | > adef e, < holAinll flL,.

kEZ

Also let ) [A;n] be the corresponding weak-type constant, i.e. the least con-
stant such that for all f € L,(R") we have

N
(4.2) I max | ;ajkﬁkfllle,w < b 1Az, -
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The following Lemma is easily verified and we omit its proof.

Lemma 4.1. Let hy(A;n) and h,(A;n) be as in Proposition 2.5. For any
1 < p < o0 and any infinite cop-matriz A we have hy[A;n] = h,(B;n) and
hy[A;n] = hy'(B;n), where B is any M x N matriz of the form bj, = aj iy pis
for some r,s € Z such that ajiypys =0 unless 1 < j <M and1 <k < N.

Now for any infinite matrix A we define
1<k<2N
h(A) = s1]\1[ph((aj Nk— N)1<]<2N)
The following is an immediate consequence of Lemma 4.1 and Proposition 2.5.

Corollary 4.2. For any 1 < p < oo and any n € N there is a constant
C = C(p,N) so that for any infinite cop-matriz we have

C'h(A) < h¥[A;n] < hylA;n] < Ch(A).

We now turn to the harmonic model of the maximal operator studied in
section 2. Let S(R™) denote the set of all Schwartz functions on R™ and for
f e SR let

F&) = f( Je 2mHET) gy

denote the Fourier transform of f We will denote by fY(§) = f( —&) the
inverse Fourier transform of f. We shall fix a radial function ¢ € S(R") Whose

Fourier transform is real-valued and satisfies 2/1(5 ) =1for|{] <1and w(ﬁ )=

for |£] > 2. We define a Schwartz function ¢ by setting ¢(&§) = (&) — w(2§).

Then ¢ is supported in the annulus 271 < [¢] < 2. We then define ¢;(x) =

2M4p(27z) and ¢j(x) = 2M¢p(27z) for j € Z. Note that ¢;(§) = ¢(277€) is

supported in the annulus 277! < [£] < 2771, We also define operators
§jf:1/1j*f and ij:qﬁj*f

for f € L1 + L. The ﬁj’s are called the Littlewood-Paley operators. Now if

A = (a;i)(jpezz 1s an infinite cpp-matrix and 1 < p < oo, we let EP(A) be the
least constant so that for all f € L, we have

(4.3) Hsup\zagkAkf{HL < hy(A)If1lz,-

keZ
We also define ﬁg’ (A) to be the least constant such that for all f € L, we have
(4.4) HS,HP‘ZGMARHHLP,OQ SEZ(AMJCHL;:-

IEE kez

We now have the following.
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Lemma 4.3. Suppose r € Z. Then if 1 < p < oo and A = (a;) is any
infinite coo-matriz, then hy(A) = hy(B) and hy(A) = hy)(B), where B = (bjx)
and bjk = Qj k+r-

Proof. Consider the dilation operator D, f(z) = f(2~"z). Then D;*A,D, f =
Ap_,f and we have

I sup | gamrﬁkf Iz, = | sue| ; andif[l,

=27 sup | Y aliDif ||, < 27 Py (AIDf 1z, = ho(AIF 2,
J k

which implies Ep(B) < EP(A). Likewise we obtain %p(A) < ﬁp(B). The corre-
sponding result for the weak type constants follows similarly. O

Next we prove that the Littlewood-Paley operators ﬁj and the martingale
difference operators Ay are essentially orthogonal on Ly when k # j.

Proposition 4.4. There exists a constant C' so that for every k,j in Z we
have the following estimate on the operator norm of AjAy : Ly(R™) — Lo(R™)

(4.5) 12541y, < C272007H,

Proof. By a simple dilation argument it suffices to prove (4.5) when k = 0. In
this case we have the estimate

1804|510 = 11E0A) — E1A| 111,
<N|E0Bj = Ajlliaszs + 162185 — Ajlliasis

and also by the self-adjointness of the A;’s and &j’s we have
180A | 2020 = [[8;D0ll a1, = [|A;E0 — AjE- 1| LaLe
<[[Aj€0llLa—srs + 1A5E1 ]|l LoLs-

The required estimate (4.5) (when k& = 0) will be a consequence of the pair of
inequalities

(4.6) €A — Ajlliassrs + €218 — Ajllrymz, < C27 when j <0,
@47) 18,8t rs + 181 |y, < C272 when j > 0.
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We start by proving (4.6). We only consider the term Eoﬁj - ﬁj since the
term £ 1A; — A, is similar. Let f € Ly(R™). Then

€A F = Ajfl7, = D IIf o5 — AV@( *0) 7.0

o=
<Q;O//| € 05)(w) = (f * 6;) (O dr
<>/, /|f Mo~ o)l dy)” d

+Q;// /\f N5t~ 9l dy) ded |

t 2 / / / )2V (€ — )| dy) dtda,

where £, ; lies on the line segment between z and ¢. It is now easy to see that
the sum of the last three expressions above is bounded by

o#n 3 Jroracea 5 [ wrane) *

QeDy QEDy

which is clearly controlled by C2%| f||7,. This estimate is useful when j < 0.

We now turn to the proof of (4.7). We work only with the term Kj&) as the
other one is similar.

|56 = | 2 (Aye ) (ve- j*X@H

QeDy

2
< QH > (Ave f) (- 7*XQ)X5\FQH

QeDy
2
+2H Z AVCf (Y2 * XQ)X 5y Q) H
QeDy

Since the functions appearing inside the sum in the first term above have
supports with bounded overlap we obtain

| > Avenws /*XQ)XS\/EQW <C Y (Avelf) v = xell,

QEDy QEDy

and the crucial observation is that for any ) € D, we have

< e — 17, = 1P e | < oo
HT/)Q J *XQHL2 = Z ‘2%55 |2 fr |271&; ’2 (&

|27
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which can be obtained by Plancherel’s identity and of the fact that in the region
where &, is the largest variable of £ = (§i,...,&,) we have |&.| = [£| = 27 on

the support of (/72:(5)
Putting these observations together, we deduce

H > Avef (125 *XQ)XsQH <C> AV@!fD 27167 < C'2° 1()JHfHL2

Q€Do Q€Dg
and the required conclusion will be proved if we can show that

(4.8) [ (Ave f) (¥ * X)X @ 1, < C2YIfIIL,

Q€Do

We prove (4.8) by using a purely size estimate. Let cg be the center of the
dyadic cube @. For x ¢ 3Q) we have the easy estimate

Chr2om Cpr2m 1
T+ 2l — gDV = 1+ 2072 (11 [o — cq) "7
since both 27 > 1, |z — ¢g| > 1. We now control the left hand side of (4.8) by
Cy dx
200 57 S (el ) (Age 1) [ ?f ;
QDo Qe < B (I4|r—col)2 (1+[r—cql)2
(Ave[f])(Ave[f])
ng(Qn—M) Z Q Q' _ / Cja/[ dx _
ey ey (1F |CQ —cl)v Jrr (It|z—col)+ (I+|z—co )™

<y > 1+|CQ_CQ/ (/\f !2dy+/!f de)

(% % x@)(2)] < =7

QeDo Q'€Do
<ci2 @ 3 [ 5 dy = 2O,
QeDo
By taking M large enough we obtain (4.8) and thus (4.7). O

We have the following result relating h(A) and EP(A).

Theorem 4.5. For every 1 < p < oo, there is a constant C' depending only
on ¥ and p so that for any coo—matrix A we have

h2(A) < hy(A) < Ch(A).

Moreover, there are three bumps ¢', ¢*, ¢* whose Fourier transforms are sup-

ported in the annuli 1/2 < |£| < 4 and which satisfy Zk&;@*"f) = 1 when
E#£0 forallt=1,2,3 such that

h(A) < Cht) (A) + B2, (A) + 13, (A)],

~

where hiZ(A) is the constant TL;)U(A) associated with ¢ in place of ¢.
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Proof. Consider the operators V., r € Z defined by
V.= Z A
JEZ
Then
= ZAjAj+rAk+rAk = Z AjAj-‘rTAk-f—?"Ak'

gk li—k|<1

Hence by splitting into 3 pieces and using Proposition 4.4 we obtain the esti-
mate

||V;“||L2—>L2 < 02_‘T|'

Next pick ¢ so that 1 < g < co and ]% = §+1%9 where 0 < 0 < 1. Let (¢;) ez

be a sequence of independent Bernoulli random variables on some probability
space (€2,P). Then for f € L,(92) we have

V. f = /Zze] w)ep—r(W)A;ALS dP.
JEZ keZ

Averaging now gives

||V"f||Lq — maXH ZGJ A ||Lq_>Lq ma’XH Zek 7" Ak||Lq_>Lq)||f||Lq

JEZ keZ

IN

Hence ||V;||z,~z, < C where C' depends only on g and +. Similarly ||V*||z -z,
C. By interpolation we obtain ||VT||L,,—>L,,7 ||‘/;«*||Lp_>[,p < 2 Irla-0),
Finally let us write

sup | >_ aulf] = sup| > _aud AurArf]

kEZ kEZ reZ
< E Sup| E ag,k+rAkAk+rf’ E bup’ E W O | E AAH;
reZ 1% kez rez I€% ke

Thus by Proposition 2.5,
|Sup|zagkﬁkf|||Lp < Ch(A)> Viflle, < Chy(A)l| £,

JEL ey, re’

This shows that EP(A) < Ch(A).

For 0 < § < 1/10, we let &j‘”"’] be a Littlewood-Paley operator associated
with a smooth bump whose Fourier transform is supported in the annulus
a <[] < b. (Here a > 0.) If this Fourier transform is equal to 1 on the

smaller annulus ¢ < |¢] < d, then we denote it by Agfl[f 4
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Pick a Littlewood-Paley operator such that ), A 11622]26] = [. For the
converse direction we use V' and Lemma 4.3. We have

1 6,2
sup | Z ajkAkf’ Z Sup ’ Z as, k+r 1,2 ]25 Ak+7’f|
I€L yew rez 1L ez,

The definitions of such bumps give
A [1-5,2] 1 26,246] X [1-5,2]
Z Wjgr Ay, 12— 25]Ak+rf Z @ k+r A J1-6,2] Ak 12— 25]Ak+rf
k

We will make use of the decomposition

N[1-20246] _ N[1-261+68] | X[1,2-28] | X [2-36,240
AE@,[l—éQ] = AL ] + A][{ } + AL :

In view of the orthogonality property:

&E,[_lisﬁ%}zz[m_%] =0 whenl #Fk,

we have

1 2—26] X [1-6,2] - X[1-6,2] N [1,2—26]
Z as, k+r Ak [1,2—26] AkJrrf - Z aj,kJrrAk J[1,2—26] Z Al AlJrrf} )
k l

so the required conclusion for this term follows by the boundedness of V,*. To
handle the part of the sum associated with A[k%’l”} we set

~[1-26,1+46]
X [1-26,146) X [1-6,2]
Ay A k,[1,2—25] — A

and we pick a Littlewood-Paley operator such that
[1-38,2+28] _
ZAk [146,2-65] — 1.
This satisfies the orthogonality property:

o ~[1-26,1+9] 0 when [ # k,
Agcl,[lféy—zgg] A = § x[1-25,1+4]
Ay when [ = k,

and so
[1 26,14-4] ~[1-26,1+46]

Z 73 k+r AkJrrf Z A k+r k1[1T§22+2665] Z A AlJrrf} )

so the required estimate for this term also follows by the boundedness of V*.

322—35,2%]

Finally, for the part of the sum associated with we set

~[2-34,2]

A[2 30,2+  [1-62 — A,

k,[1,2—26]

Y
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and we pick a Littlewood-Paley operator such that

[1-352+25]
Z Ak J146,2-38] —
This satisfies the orthogonahty property:
R 859+26] ~[2 38,2] 0 . when [ # k,
bl ﬁk 7 when [ =k,
and so
~[2-36,2] 1—éaz+25] ~ [1-26,1+4)
Z aj.,k:Jr'r'Ak AlH»rf Z aj k+r 0, [146,2—36] Z A AlJr'r'f} )
k

so the required assertion follows as before. COHIleng these estimates we
obtain

Hsup}ZajkAkf‘HL < [hl (A)+f?Z(A)+i;5Z(A)] ZHV,*fHLP
keZ TEL
which leads to the claim h(A) < C[hl) (A) + h2, (A) + B3 (A)]. 0

We next extend the definition of %p(A) to the case when 0 < p < 1. For
such p’s we define h,(A) to be the least constant so that for f € S we have

(4.9) |Sup 1> apdiflllz, < Clfla,-

keZ

The space H, that appears on the right of (4.9) when 0 < p < 1 is the
classical real Hardy space of Fefferman and Stein [7] and the expression || | #,
is its quasi-norm.

Theorem 4.6. If 0 < p < 1 then there is constant C' = C(p,v) so that
C™h(A) < hy(A) < Ch(A).

Proof. First we show the estimate EP(A) < Ch(A). Using the atomic character-
ization of H,, [3], we note that it suffices to get an estimate for a function f € S
supported in a cube @ so that |f(z)| < |Q|7% for x € Q and [2*f(z) =0 if
la| < N = [n(% — 1)]. It is then easy to see that if z ¢ 2Q)

1> " apAif (@) < Ch(A)|z — cq| "N

keZ

since |ajz| < Ch(A) for each j, k. (Here 2() is the cube with twice the length
and the same center cg as usually.) This gives the estimate

/ sup | Z ajkAkf x)[Pdx < CPh(A)P.
R™M\2Q J
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On the other hand,

/ sup | s o) < QI >p( /Q |f(x)|2dw>2

2

and combining with the previous estimate we obtain %p(A) < Ch(A).
Complex interpolation gives that h,(A) < hy(A)?h,(A)' 7% when 1 < ¢ < 2
and % = L0 4+ 4 Since hy(A) > C7'h(A) we deduce the estimate hy,(A4) >

p

C-1h(A). O

5. BILINEAR OPERATORS

Let o be a bounded measurable function on R™ x R". For f,g € S(R") we
define a bilinear operator W, (f, g) with multiplier o by setting

(5.1 0= [ [ olenFieamene< de,

If (5.1) is satisfied we say that o is the bilinear symbol (or multiplier) of W,.
Now suppose 1 < p1, ps < oo and let pg be defined by pio = pil+ p%- We say that
W, is strongly (p1, p2)—bounded if W, extends to a bounded bilinear operator
from L, X Ly, = Lp,. In this case we denote its norm by [|W||L,, xz,, L,
(we define this be expression to be oo if W, is not bounded). Similarly we say
W, is weakly (p1, ps)—bounded if it extends to a bounded bilinear operator
from Ly, x Ly, = Ly, and its norm is then denoted ||[Wo||L, xL,, Ly -

We extend these definitions to the case 0 < p;,ps < 0o by replacing the L,
spaces by the corresponding Hardy spaces when 0 < p; < 1. In the definition
below We set H =L, for 1 <p < oo. Given 0 < py, < p2 < 0o and py defined
by L o= p_1 —|— = we say that W, is strongly (pi, p2)—bounded if it extends to a
bounded blhnear operator from H, x H,, — L,,, and we denote its norm by
Wollm,, x Hy, Ly, We say that W(, is Weakly (p1,p2)—bounded if it extends
to a bounded bilinear operator from H,, x H,, — L, ~, and in this case we
denote its norm by ||Wollm, xm,, 5L, .- Now for a bounded function o on
R” x R™ and 0 < py,ps < oo we define its corresponding strong and weak
(p1, p2)-multiplier norm by

oMy, = IWollbry, <y, and o lagg = IWolly, by, Ly 000

where 1/py = 1/p1 + 1/po.

This definition of multiplier norm is analogous to that in the linear case. If
v € Loo(R"), ||v]|sm, denotes the norm of v as a multiplier from H, into L,
that is

P1,P2

lvllag, = [IMollm,—z,,  where M, f = (vf)",
when 0 < p < co. Next we mention a few properties of multipliers.
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Proposition 5.1. Suppose 0 € Lo(R™ x R") and 0 < p1,ps < co. Then:
(i) If o'(&,n) =0 (§=Eo, n—10) for some fized &y, mo then HU/HMpl,pQ = HUHMpl,pQ-
(i7) If L : R™ — R™ is an invertible linear operator and op(&,m) = o(LE, Ln)

then [01)luty,, = 0111y,
(i) 1f 1,0 € Loo(R™) and 0'(€,1) = () (€, m)o(n), then

1 My < Nitllrty, Nty 1011 -

Proof. For (i) note that W, (f, g) = e¥m(@&o+m)|J/ (e=2mi(zLo) f e=2milm0) ) For
(ii) note that W,, (f,g)o (L")~ = W(fo(L")™, go(L")™1). (iii) is trivial. [

Lemma 5.2. Let 0 € Lo(R™ x R™). Suppose that either py > 1, or that o is
locally Riemann-integrable (i.e. continuous except on a set of measure zero).
Then ||o||L., < ||O_||MP1»P2 whenever py = pip2/(p1 + p2) and 0 < py,ps < oo,

Proof. Suppose that o is locally Riemann-integrable and let (&, 7) be a point
of continuity of o. Then if we put o} (&,n) = 0(§ + A, mo + An), Proposition
5.1 glVGS that HWG |’Hp1><Hp2—>Lp0 HWUHHp1><Hp2—>Lp0‘ Now if f,g € Sitis
easy to see that as \ = 0 we have convergence in Lo (and even pointwise) of
Wag\ (f7 g) to U(€0a Uo)f(l')g(l')

If po > 1 let Q) be a cube of side 27 centered at (0,0) in R” x R". Let

or(&,n) = o (& + &o,n + 10)déo dno.

|Qk| Qn
Proposition 5.1 and the fact that py > 1 easily imply that ||V, || Ly, XLpy—Lpy <
WollL,, X Lpy— Ly, - SiNCE 0% is continuous we have lorllLo < [[WollL,, X Ly —Lpg -
Taking limits as & — oo yields the conclusion.

Next we require a lemma on series in L,

Lemma 5.3. Let 0 < p < oo. Suppose that for some (fji)(jr)ez2 sequence of
Ly, functions and for all pairs of sequences (0;)jez, (03 )rez with sup;cz |6;] < 1
and sup,ez |05 < 1, we have

2 5 sl < v
IiI<N |kI<N

Then there is a constant C = C(p) such that
(i) supys, <1 | 22529 fislle, < CM (and the series converges unconditionally),

(ii) H(Zjez Zkez |fjk’2)%HLp < CM.

Proof. In fact (ii) follows immediately from Khintchine’s inequality by taking
€j, €, two mutually independent sequences of Bernoulli random variables. To
obtain (i), take €; be a sequence of Bernoulli random variables and for any
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finite subset F C Z write

(52) Z 5jfjj = Z Z (SjEijfjk - Z (Sjﬁjﬁkfjk.
JEF JEF keF j,'kiif
J

Now for all |0, < 1, (see also [10], proof of Theorem 4.6),

E(| Y Siejentulls, )P < ClIICY 165 fn + el ||,

J,keF J,keF

ik i<k
<C| QD 1Py, < oM

JET kEZ

by a generalization of Khintchine’s inequality due to Bonami [1] and part (ii).

The same estimate is also valid for > " d;€;€, fjx by our assumptions. These
JEF keF

estimates together with (5.2) give (i). O

We now introduce some notation that will be useful in the sequel. For
(j, k) € Z let Dy, = {(&,m) : 2771 < J¢] < 201 2F=1 < |p| < 28F1}. Also for
0 > 0let Djr(0) = {(&m): 2970 < |¢] <270 20 < || < 2FF0},

Proposition 5.4. For any 1 < py,ps < oo there is a constant C = C(py, p2)
so that whenever (oj);kez is a family of bilinear symbols with supp o, C Djy,

which satisfy
sup sup E E 80,0k || m M,
|6;1<1 |67 |<1 | : | e

then the following statements are valid:
i) For any scalar sequence (0;) with sup;|0:| <1 and any r € Z we have
y J 7 J y

1Y 650554l My, < CM.
jEz
(i1) For all v > 3 we have,
max L,l
12 D2 il + 102 D2 itllaty,,y < O+ ™00 )A
JELZ k<j—r keZ j<k—r
(iii) For every r >3, po < 1 and for all f,g € S, we have
max(-,1)
122 D0 Woully,, iy, < CA+™ 001

JEZ k<j—r

max i,
H Z Z WaijLmXLPzﬁHpo < C<1 +r ’ (po 1))M

k€Z j<k—r
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Proof. For simplicity we write Wy, = W, below. (i) follows directly from
Lemma 5.3. To prove (ii) and (iii) it is enough to consider the case r = 3,
since the other cases follow trivially by applying (i) and the known case r =
3. We therefore suppose r > 3 and establish both (ii) and (iii). An easy
calculation gives that for f,g Schwartz, the function W, (f,g) has Fourier
transform supported in the annulus 2772 < |¢| < 2972 when k < j — 3. Tt
follows that

1> > Wil 9l <12 > Wilf.9)la,

JEZ kE<j—3 JEZ k<j—3
(5.3) <1001 Y. Walf P2,
JEZ k<j-3

<CE(IY e Y Wilf.9)llz, )™

JjeZ  k<j—3

where as usual (¢;) ez is a sequence of independent Bernoulli random variables.
(If po > 1 then H,,, = L,,.) We need to control the last term in (5.3).
Our hypothesis gives the estimate

(5.4) E(I Y eWiklf 9l )7 < CM| f1,, l9]L,, .
JEZL k€EZ
while we can apply (i) to obtain
(5.5) E(DY > ¢Wilf 9l )P < OM| e, 9l -
JEZ |k—j|<2
It remains to estimate

E(Y. S eWalf ol )™ <EQS. S eWalf ol )™

JEZ k>j5+3 JEZ k>j5+3

<CE(I1Y (Y eWilf.g)ll )™

keZ j<k—3
1/
<CE(IY 6 > eWulfoln )"
kEZ 71<k-3

where €], is a second (independent) sequence of independent Bernoulli random
variables. Hence using again Khintchine’s inequality we have

E(IS" Y ewulf ol )™ <l S Wilf.9)P)z |,

JEZ k>j5+3 keZ j<k—3

(5.6) <Ol Wik £ 912 L,

ke€Z jEL
< OM||fl|z,, 191z,



26 LOUKAS GRAFAKOS AND NIGEL J. KALTON
in view of Lemma 5.3. Using (5.4), (5.5), and (5.6) we obtain
1/po
E(IY e > Wilf,9)ll, )™ < CM||flL,, g,

JEZ k<j—3

which combined with (5.3) gives the first of the assertions (ii) and (iii) for
r = 3. The second assertions are derived similarly by symmetry. ([l

We will need one further preliminary lemma.

Lemma 5.5. For any 1 < py,ps < oo there is a constant C' = C(py,p2) such
that for any family of symbols (0 i) ;kez with supp o C Dji and for any p,v
C*> functions on the annulus }l < €| <4 we have

D LTSI E ST 39 Lo P

1651 16,1<1 ez kez ’ 1051 195 1<1
where Tj(&,m) = M(Qijf)gjk(fﬂ?)v( ; 77)}
aau aaU
K, = sup ) Ky, = SUP 1 5ea |
" lor|<m S |a|<m oge
1<lgl<a $<lél<4

and m = [(n+1)/2].

Proof. Recalling the definition of ¢ from section 4 we note that the function

Z o€ ) ( Z &(U))

is compactly supported and is equal to 1 on the support of (£, n). For any
sequence 0; with sup|d;| <1 we observe that

Jj+2
(5.7) 13- 6m@7) (D ), < CK.
JEL l=j-2
' k+2
(5.8) 1D o m) (> am)ly,, < CK.
keZ I=k—2

by the Hormander multiplier theorem. Let Uj, j, k, k, be the bilinear operator
with symbol

J1+2 k142

(1279 D2 AO)osm(&n (S0 m) D2 dil).

l=j172 = kl 2
for some fixed |d;], |5'| < 1. Let

= sup sup H 225 0y O-JkHMplﬁpz

1651 103 |<1
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and let (¢;), (€;,) be two sequences of mutually independent Bernoulli random
variables. Then for f,g € S we have

1
E(H Z Z Z Z €j16j2€;91622Uj17j27k1,k2 (fa g)HIiOpO) "

JLEZ jo €L k1 €7 ko€

S CMKquHfHLm ||f||LP2

by our hypothesis, (5.7), and (5.8). We now use Lemma 5.3 twice to deduce
that

1D Usiwalf )l < CELEMI|fllz,, N9y,

JEZ keZ

This proves the required assertion. O

6. BILINEAR OPERATORS AND INFINITE MATRICES

Recall from section 4 that ¢;(z) = 2"¢(2/x) are smooth bumps whose
Fourier transforms are supported in the annuli 277! < |¢] < 2971 In this
section we will consider symbols ¢ of the form

(6.1) oal&n) =33 apdi(€)en(n)

JEZ kez

where A = (a;i)(jk)ez2 is a bounded infinite matrix. We let W4 = W, and
4] = sup, . lasel

If A is such an infinite matrix we define A; to be its lower-triangle and
Ay to be its upper-triangle i.e. A = (a;x0jk);kx and Ay = (a;ibk;);, Where
0, = 1if k < j and 0 otherwise. We let Ap be the diagonal A — Ay — Ap.
Now define

(6.2) H(A) = h(AL) + h(Ap) + [[A]l

Notice that H(A) > ||A|l« and that H is a norm on the space of {A : H(A) <
oo} which makes it a Banach space.

Our objective will be to show that for any choice of 0 < p, ps < oo we have
IWallm,, x#,,~L,, = H(A). This will provide us with an equivalent expression
for the norm of the multiplier o4 defined in (6.1).

We start by proving the simple upper estimate below.

Lemma 6.1. If 0 < p1,p2 < 00 there is a constant C = C(py,p2) so that for
any matriz A we have ||oa|m,, ,, < CH(A).

Proof. We give the proof in the case p;,ps; > 1; the only real alteration for
the other cases would be to replace the appropriate L, —norm with the H, —
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norm and use Theorem 4.6. Suppose f,g € S and consider

Wal(f,9) ZZGJkAfAkQ-FZZ&]kAfAkQ

JEZ k<j-3 k€Z j<k—3
(6.3) 2
-+ Z Z CijAijkg.
JEZ k=j—2

We estimate the first term by noticing that for fixed j the Fourier transform
of A, if D oheo 3ajkAkg is contained in the set {¢ : 2772 < |¢| < 2772}, Hence
if po > 1 we have

~ ~ ~ 1 ~ 20l
D80 Y apbiglln,, < ONQ_ AP Y andil)z ],
JEL k<j-—3 JEZ k<j-3
If 0 < pg <1 we obtain the same estimate by noticing that
I A apdiglin, < 1D AF Y apliglln,
JEL k<j—3 JEL k<j-3
and using the corresponding square-function estimates in H,,. Now we have

IS 187D andegP)? ],

JEZL k<j—3

<[|OC14,£1) %sup|2 arduglll,, -

jez 2 h<i-3

(6.4)

If we let Ay, be the matrix with entries aj; if £ < j — 3 and 0 otherwise, then
h(ArL) < h(Ap) + h(B) where B is the matrix with entries aj; if j — 2 <
k < 7 —1 and 0 otherwise. It is trivial to see that one has the estimate
h(B) < 2||A||e so that h(ALrr) < Ch(AL). Hence (6.4) and Theorem 4.5 give

1Y > apwdifAvgln,, <CIO_Af)? HLPIHSHP|Z%I~:A1<9!HLM

JEL k<j—3 JEZ keZ
< CM(AL)| fllL,, 9Ly, -

The same argument shows that the third term in (6.3) is controlled by
Ch(A)|I fllz,, l9llz,,- The middle term in (6.3) is easy. For —2 < r < 2 we
have

H Z aj,j-i-rzjfzj-‘rrgHLpo

JEZL
<N lanel B P2, (O assrllBserg2 ],
JEZ keZ

SCm]aX |aj,j+7‘|||f||Lp1 ||9||Lp2'

< CH(A). O

Combining we obtain the required upper estimate: ||o4l|a1,, ,,
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To obtain the converse is somewhat more complicated. First we prove a
general result which we will use in other situations as well.

Proposition 6.2. For any 1 < py,ps < 0o with py = (1/p1+1/pa) "1 >1, there
is a constant C' = C(py, p2) with the following property. Whenever (oi)jxez2
is a family of symbols with supp o, C Dji which satisfy

sup sup ||ZZ§ O Wo il Ly, x Ly Ly < M,

[051<1 |87 |<1
then
||O—AHMp1,p2 S CM?

where A = (a;i);x and

o= [ [ ontietnican

Proof. As before we write Wy, = W, Let us consider first the case when
ojr = 0 unless £ < j — 5. Let v be a C*°—function on R" supported on
274 < |¢| < 2% and such that v(¢) = 1 on 273 < [¢] < 23. Fix & € R" and
consider the symbol

7}k(€0;57n):: U<2_j€)oﬁk<€'+'2j€0an)'
Note that 7 is supported in Dj,(4). Let Tj; be bilinear operator with symbol
7. For any sequences (0;);ez, (0} )kez With sup|d;|,sup|d;| <1 and f,g € S
we have
I 600 T £ 9l < U1 STl f )P 1,
JEZL kEL JEL ke

by considering the supports of the Fourier transforms. But then for fixed j,

> T f.g) (@) = e 2O N " 5 W (fL9) (2),

keZ keZ
hence
IS 60T )y < CNOD Y Wikl £, )P
JEZ k€EZ JEZ k€eZ
<D Wil 9,
JEZ kEZ

< CMHfHLpl ”g“Lpz

using Proposition 5.4.
Now note that if || > 18 then all T}, vanish. Since py > 1, we integrate
over [£| < 18 to obtain symbols

Ti(€,n) = / Tie(§,m) d§o = U(Q_jf)/ k(€ + 2780, n)dé
€ol<18 Rn
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with corresponding bilinear operators T}, satisfying

” Z Z 5j5;€TJ{k||LP1XLP2_>LPo <CM

JET keZ

whenever |§;], |6 | < 1.

Note that 7/, is supported on Djj(3). Also if 2773 < |¢] < 273 we have that
7i,(§,m) is constant in .

Next let O, be the orthogonal group of R™ and let dL denote the Haar
measure on this group. Define

4
Th(&n) = / A /O Th(ALE, ALn)dL d),
4 n

and let Yﬁ be the corresponding bilinear operator. If (£,7) € Dj; we can
compute that

T (€)= 2] "a
where ¢ is a constant depending only on dimension. On the other hand, since
po > 1, Proposition 5.1 (ii) gives that

| Z Z i T Ly % Ly sy < CM
JETL kEL
whenever |§;], |6 | < 1.
Note that supp Tﬁi C D;i(6). Let us take M; and M to be residue classes
modulo 10. Then if we replace 0, by d;xm, (j) and 9, by 9, xm, (k) we obtain
a bilinear operator whose symbol coincides with a;2"*|n|="§;6} on Dj; for

(7, k) E/I\\’[[l x Mly. Using Proposition 5.1 (iii) and the multipliers Zj cu, @5 and
ZkeMQ ¢, we obtain that the bilinear operator V' with symbol

> 2" Il gk (E)dk(n),

JEM; keMy

satisfies HV||Lp1x Ly,—Lp, < C'M. Summing over 100 different pairs of residue
classes gives a similar estimate for the symbol

D> 8552 0l "y (€)on(n).

JET kel

The last step is to remove the factor 2"%|n|~". But this can be done by using
Lemma 5.5 since ||~ is C* on § < |n| < 4. O

We will use this result to make an important estimate on the effect of trans-
lation in the computation of [|[Wal|r,, Ly, Ly, Let us define Al"sl t6 be the

matrix (@jir kts) k-
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Lemma 6.3. (i) There is a constant C' so that for all matrices A we have

Ma 2 < C‘r78| HUA HM2,2

|0 At

(ii) For all 1 < p1,py < 0o with pg = pip2/(p1 + p2) > 1, there is a constant
C = C(p1,p2) so that if |9;],|0] <1 then

1> 600027 )27 0) Ity 1y < Clloallsgy,
JEL ke
i.e. HUDHMPM,2 < CHJAHMMQ, where D = (d;i)jx = (6;0,,a5k) k-
Proof. 1t is clear from Proposition 5.1 that for any r € Z we have
Wt ox oy = |WallLyx£o—Ly -

Thus it suffices to consider the case r = 0 and s = £+1 and establish a bound
in this case. To do this we consider the symbols

O-jk(§7 77) = O-A<57 77)/1(2_%)“(2_1%7)95](f)ﬁbk(n)a
where p,v are C*°—functions satisfying |u(&)[, |v(n)] < 1 for all & n. Since
13 5e2051(277€)@5(€) | m, is bounded by 3 whenever sup; |d;| < 1, and there

is a similar bound for ), _, ,’ﬁv(2_kn)7¢;(n) we have an immediate estimate;

” Z Z 5j6;€W0'jk ||L2><L2—>L1 < 9||WA“L2><L2—>L1'

Je€ kel

bjr = /n /n ok(27€, 25n)d¢ dn.

Then we can compute

Now let

]k - g E CrsQjtr k+s

r=—1s=-—1

where

/ . / . &1 (E)d—s(m)do(€)do () dE dn.

Since the functions qST for —1 < r < 1 are linearly independent on the
support of (;0 we can use the above estimate for a linear combination of a
finite number of choices of v and & so that ¢,.s = 0 except when r = 0 and
s = 1, so that B = cAl%! for some fixed constant ¢ # 0. By Proposition 6.2
we have |Wg||Loxrs—»r: < ClIWallLyxn,—r,- This and the similar argument for
the case s = —1 gives the result (i).

For (ii) we observe that the above argument actually also yields a bound
on ||WpllLyxry,—r, When D = (dj;) = (0;0,.bjx) (since 6;0,0; also verifies the
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hypotheses of Proposition 6.2. By choosing a similar linear combination we
can then ensure that bj; = caj; and obtain the desired result. O

The next step is to consider a discrete model of the bilinear operator W, ,.
We restrict ourselves to p; = po = 2 for this, although our calculations can be
done in more generality. If A is a coo—matrix we define V, : Lo X Ly — Ly by

= Z Z ajkAjfAkg,
JEL k€L

where A; are the martingale difference operators as defined in section 4. We
then have

Lemma 6.4. There is a constant C' so that if A is a (strictly) lower-triangular
matriz we have h(A) < C|\VallLyxLo—L, -

Proof. This is a stopping time argument. Suppose f € Ly with || f||z, = 1.
Note that for each j the function f; = ZkeZ a;, Ay f is X;_j-measurable where
>;_1 is the o—algebra generated by the dyadic cubes in D;_;. Fix A > 0. For
each j let Q; be the collection of cubes @) € D;_; so that |f;| > X on @ and
for each j; < j we have |f;,| < X on Q. It is not difficult to see that

{z :max|fj \>)\}—UUQ
JEZ QEQ;

and this is a disjoint union. Also note the left-hand side has finite measure.
For each j be u; be a ¥;—measurable function such that |u;| = 1 everywhere

and &_ju; = 0. Let
9= Zuj Z XQ-

JEZ QeQ;
Then
lgll7, = = : max | f; ()]}
and
9) =Y _fiNig=> fiu; > xo
JEZ jEZ QEQ;
Hence

IVa(f, 9| = MX(max; 11,150
so that we have
)\|{m]a’x|f]| > )\} S ||VA||L2XL2—)L1'

This implies that hY (A) < ||Val||£,x1,—1, and the result follows from Theorem
2.1. 0

We are now ready for the main result:
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Theorem 6.5. Suppose 0 < pi,py < o0o. Then there is a constant C' =
C(p1,p2) so that for any infinite matriz A we have

1
SH(A) < oallmg,,,
Proof. The upper bound is proved in Lemma 6.1 so we only need to prove
the lower bound. It suffices to prove the results for the case when A is a
coo—matrix. We start by considering the case p; = po = 2, when A is strictly
lower-triangular.
In this case let us estimate the norm of the discrete model V4. In fact

Valf,9) =Y aid;fAvg

JET kez

=SSN S A A AL Arg

r€Z s€Z jEZ keZ

= Z Z aj+r’k+S£jAj+rfﬁkAk+sg

< lloallmy, ,, < CH(A).

rE€Z sc€Z

= Z Z WA[T’S] (Z szj—I—Tf? Z zkAk—I—sg)
re€Z s€Z JEL keZ

— Z Z W At (V_*,,f, V_*sg)a
r€L SEL

where V,. is defined in the proof of Theorem 4.5. Using Proposition 4.4 we
obtain
||VA||L2><L2—>L1 <C Z Z 2~ M=l HWA[T’S] ||L2><L2—>L1'
r€Z sEZ
(All these quantities are finite since A has only finitely many non-zero entries,
and so there is a uniform bound on W 4.4.)
It follows that we have an estimate (for a suitable Cj,)

(6.5) h(A) < 00222_M_|8|||WA[T,4

r€Z s€Z

LQXL2—>L1 .

Next we estimate H(Al). If s > r it is clear that A remains lower-
triangular and the invariance properties of h(A) imply that H(AM) < H(A).
If s < r then it is easy to estimate

W(ATT) < h(AL) + (r = 5)[| Allso
and
h(AG)) < (5 = 5)]| Al oo
We deduce that
H(AP) < h(A) + |r — s|[| Al
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for all r, s. Thus we have for a suitable constant Cj
(66) ||WA[T73] LQXLQ—)Ll S Ol(l + |T - S|)h<A)
Now we may pick an integer N large enough so that
1
Clco Z Z (1 + ’7" — S’)27|T|7|S| < 5
[r|>N |s|>N

Then we can combine (6.5) and (6.6) to obtain

(6.7) WA <C Y Y W

[r|<N [s|<N

LQ XLQ—)Ll .

At this point Lemma 6.3 gives the conclusion that
h(A) < CHWAHL2XL2‘>L1'

Now suppose A is arbitrary. If we let W), be the bilinear operator with
symbol ajkggj(ﬁ)g/b;(n), Lemma 6.3 (ii) implies that we can use Proposition
5.4 (ii) to deduce that [|[Wa, [|Loxresr, < ClWallLyxr,—r, for some abso-
lute constant C. Thus the above argument yields h(AL) < C||WallLyxro—L, -
Similarly h(A};) < C||Wallz,x1,—1, and Lemma 5.2 is enough to show that
|Allco < ClIWallLyxLy—1,- Combining these we have the estimate

H(A) < C”WAHL2><L2—>L1'

The proof is completed by a simple interpolation technique. We will argue
first that an estimate of the type

(6.8) H(A) < Cp1,p2)lloallm,,
for some fixed 1 < py, pa < oo implies the estimate
(6.9) H(A) < Clg,p2)lloall vy

P1.9

for every 1 < ¢ < 0o. We only need to consider the first case and g # p, (when
q = po one repeats the step). Then we may find 1 <7 < oocand 0 < 6 <1 so

that
1 1-6 0

Do q r
The Marcinkiewicz interpolation theorem yields

(6.10) ol Ay, y < C 1, 02,0)(loall g, )~ (loallan,,, )

p1.9

Since [|oallm,,, < C(p2;7)H(A), using (6.10), and (6.8) we obtain estimate
(6.9) as required (recall that we assume A is a co-matrix so that all these
quantities are finite).

Repeated use of this argument starting from p; = py = 2 gives the theorem

in the cases 1 < p1,ps < 00.
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Finally in the case where either p; < 1 or p; < 1 (or both) one can use
complex interpolation to deduce

loallag, ,, < Clloallag, ,,) " (loallre,)’

91,92 — P1,P
where ¢q1,q2 > 1 and
1 1-0 0 1 1-0 0

— + ,
9 p 2 4o P2 2
This clearly extends the lower estimate to the cases py,ps < 1. ([l

7. APPLICATIONS TO BILINEAR MULTIPLIERS

We will now consider the boundedness of the bilinear operator W, under
conditions of Marcinkiewicz type on the symbol 0. We will say that a symbol
o is OV if it is CN on the set {(£,7) = |€],|n] > 0}. We first give an example to
show that conditions (1.3) for a function o on R?*" do not imply boundedness
for the corresponding bilinear map on R™ x R".

Example. There is a C*°—symbol o so that for every pair of multi-indices
(e, 8) there is a constant C, g so that

(7.1) €1l ?ogago (e, m)] < Cayp

but W, is not of weak type (p1,p2) for any 0 < py, ps < 0.

Indeed if we let A be a bounded infinite matrix and o(&,n) = 04(&,n), then
o satisfies the condition (7.1). However W} is of weak type (p1, p2) if and only
if H(A) < oo by theorem 6.5. At the end of Section 3 we showed that there
are examples (with A lower-triangular) where H(A) = oo.

In fact more is true. It is shown that the condition 0 < § <  in (3.12) is
insufficient to give a bound on h(A) or H(A) when A is lower-triangular. This
means that if 0 < 0 < % we can construct a symbol ¢ which is C*°, with W,
not of weak type (p1,p2) for any 0 < p;,pa < oo and such that for each pair
of multi-indices (a, ) there is a constant C, g with

(7.2) €111 0¢850 (€, m)] < Ca s (log(1 + log 1)) )™

but W, is not of weak type (p1,p2) for any py, ps > 0.

These examples indicate that the Marcinkiewicz-type conditions (7.1) need
to be modified if they are to imply boundedness for bilinear operators on
R™ x R™.

In order to formulate some general results, let us introduce the following
notation. For o € L, we define
(7.3) lollz = sup sup H((a(27€,25n);r).

1<|gl<2 1< n|<2
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If o is of class CV we define
N al Qo
(7.4) oI5 = > gl ogallr + > llnl?0le]| .
la|<N |BI<N
It will also be useful to define in this case

N al na
(7.5) lolS) =3 el 02 o)y, + D nP050 ], .-

la]<N [BISN

Now consider an arbitrary L> symbol o of class C™*!. Let
(7.6) ok(&m) = o (&, M(277E)d(2 ).

Set C(€) = d_2(€) + d_3(6) + d_4(€). Then C is equal to 1 on the annulus
1/16 < €] < 1/4 and vanishes off the annulus 1/32 < [¢| < 1/2. Thus the

o~ o~

function ¢(£)((n) is supported in the unit cube [0, 1]*"* and is equal to one on
the support of

(€)= o (2717, 2%n)

which is also contained in [0,1]*". TInspired by [5], we expand the function
above in Fourier series on [0, 1]*". We have

Ujk(2j+3€,2k+377) — Z Z ar(v, p)e2ﬂi(<£,v>+<n,p>)g<5) (n),
VEL™ peEL™

where for (v, p) € Z" x Z" we set

10 anlp) = [ [ o@2 5055 O 0 ds

We will denote by A(v, p) the matrix with entries a;,(v, p). Now setting
(7.8) ™0 (Z > (v, p)e e P>>)E<2-f—35>72 ),
JEZ k€eZ
we can write a symbol o of class C"™ as
(7.9) o) =YY ).
VEZL™ pEL™

In the next lemma we obtain some elementary estimates based on this ex-
pansion.

Lemma 7.1. Suppose 0 < p1,py < o0 and %o = %1 + 1—1)2. Then:
(i) There is a constant C' = C(p1,ps) so that for any (v, p)

1772 Iatyy y < CQA+ ]+ [0])*™ H(A(v, p))
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where m = [(n+ 1)/2].
(ii) There is a constant C = C(N,p1,ps) such that if o is of class CV, and
|+ |p| >0, then

H(A(v,p)) < C(1+ V] + [p)) Mol

while
H(A(0,0)) < Cllo|n.

(iii) If po > 1 and o is of class CN then there is a constant C = C(N, py,p2)
such that

H(A(v,p)) < C(L+ o] + |0 o]l .

Proof. Observe that ((27973¢) = ¢(27971¢)+¢(277¢) +¢(27+1¢) and therefore
TVP(€,m) is the sum of nine terms of the form

ZZa]kl/p 642J5 5(2 j_rf))(ei $(ka))
JE€Z kez

where r, s € {—1,0,+1}. We now use Lemma 5.5, Lemma 6.3 (ii), and Lemma
6.1 in that order to obtain

17l atyy 1y < CCL+ )™ (L + )™ H(A(v, p))

where m = [(n + 1)/2]. This proves (i).
For (ii) note that if ||, || < N integration by parts gives

710) aptvp= [ [ oo 2 isd e

: jk v, P)— 3 (0<2 ga 2 77)¢(8f)¢(877)) ( I/)a dgdf'%
n ]Rn

111) anlvp)= [ [ 03(o(2i% P4 BB e iy

' T S ’ (—2mip)? !

provided v{" ... v% and p” ... pPr are nonzero.
Now using the fact that H is a norm it is easy to see that by choosing an
appropriate « or § for each pair (v, p) # (0,0) one obtains the estimate

H(A(v,p)) < C(N,p1,p2)(1+ [v| + [p]) V[ o |,

If (v,p) = (0,0) the same estimate follows directly from (7.7).
Finally we turn to (iii). For fixed d;, d;, with sup |d,|, sup |0;,| < 1 let us define

(&) =Xz (5@?(5) and v(n) = > ez (52(@(77) Then it follows from Lemma

5.5 that for any multi-indices «, o’ we have

el 1102 (&) o (&, v (M asy, , < Clevsa)ollNs)
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This implies that for fixed N and any a with |a| = N we have
(712)  sup sup [l Y Y 0;8,08054(6 1)ty < CIN) )

p1 P2
‘6j|§1 ‘5/;|§1 JEZ keZ

We now use either (7.7) if (v, p) = (0,0) or we refer back to Proposition 6.2
(7.10) or (7.11) according to the values of v or p, when (v, p) # (0,0). For
example when N = |v| > |p| and the lth entry of v has maximal size N, then

15" 4w, 0)6;(€)di()llasy o,

jEZ keZ
—2mi((279 W) H(27 % n,p))

€
<C Sup Sup || Z Z 0j 5k2]Na£N O-Jk’(g 77) (—27TiVl)N ||Mp1;172 )

!
18,1<110,I<1 527 ez

Now by Lemma 5.5 we can estimate the last expression side above by
1+ v+ |p)*™ N sup sup 55’£N akﬁnM
( ’ ’ ’ D \6 |<1 \6’|<1 H%kezz ’ ‘ agN J ( )H P1,P2 "
Using (7.12) we obtain (iii). O
Let us state the main result of this section.

Theorem 7.2. Suppose 0 < pi,ps < o0 and %0 = %1 + %2. Let N =2n+1
ifpo>1and N =n+2+ [pﬂo] if po < 1. Then for any o O —symbol such
that Ha||gv) < oo we have |[o||m,, ,, < 00. Furthermore, there is a constant
C' = C(p1,p2) s0 that ||o| s, ,, < Cllollh”.

Proof. This follows directly from Lemma 7.1 and (7.9). Indeed, we have

1771ty py < CL+ 1]+ [p])*™
If ¢ = min(po, 1) we have
ol atyy g < COZ DA+ W]+ o)™ oy
VEZ pEL

Since (N — 2m)t > n this gives the result. O
We next show that in a certain sense the preceding theorem is best possible.

Theorem 7.3. Suppose 1 < p1,ps < 0o and 1100 = %1 + %2 < 1. Suppose o is a
C>®—symbol. Then the following are equivalent:

: (N)
(i) ol ,, < oo for every N = 0.

(m)||0||gv) < 0o for every N > 0.
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Proof. Assume (i); then it follows from Lemma 7.1 that for any N > 0 we
have an estimate H(A(v,p)) < Cn(1+ |v| + |p|)™™. Now it is clear from the
definition and from Theorem 6.5 and Lemma 6.3 that we have an estimate

1€l g | g < Cal1 + v H(A(v, p)).
Hence we can deduce easily that
I1€]*0E o]l < o0

for each multi-index . Repeating the same reasoning with the second variable
n gives (ii).

Now assume (ii). Then for any multi-index « one can see easily by differen-
tiation that for any pair of multi-indices «, 5 we have that (ii) is satisfied by
the symbols |€ ||a|8§“<7 and |77||5|8f730 in place of 0. Applying Theorem 7.2 gives
(i). O

Now let us recast Theorem 7.2 in terms of estimates on the symbol o using
the results of Section 3.

Theorem 7.4. Suppose 0 < py,ps < 00 and 102%1 p2 Let N =2n+1
if po > 1andN—n+2+[ “] if po < 1. Suppose 6 > 1 Suppose o is a

CN —symbol such that for any pair of multi-indices o, 3 with 0 < |a| < N and
0 < |B| < N there exist constants C,, Cg, with

(7.13) €11*0g (€, m)] < Callog(1 + [log £H)) ™7
(7.14) 1?1020 (€, m)| < Cs(log(1 + |log £1])

7]

Then ||lo||pm,, ,, < 0o

Remark. We have already seen that in (7.2) that this is false when 0 < 6 < 3.
However the arguments of Section 3 shows that we can improve (7 13) and

14) somewhat. For examp e we can replace (log(1l + |log where
7.14 hat. F 1 lace (1 log I h
6 > 1 by (log(1+ [log &l D) " (log(1 + log(1 + | log \EI)) where v > 1.

Proof. This follows immediately from Theorem 7.2 and Theorem 3.4 which
yields the estimate
H(A) < Csup _lagel

with wy = log(1 + k)~°. O
It is possible to “mix and match” the estimates in Section 3: for example,

in the following theorem we remove the conditions for |a|,|3| = 0 but insist
on a stronger condition for |o| = |B] = 1:
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Theorem 7.5. Suppose 0 < p1,ps < o0 and 1170 = 1191 + %2. Let N =2n+1
if pop > 1 and N = n—|—2—+—[plo] if po < 1. Suppose 8 > 1 Suppose o is a

CYN —symbol which satisfies conditions (7.18) and (7.14) for 2 < |al,|8] < N
and if |o] = || = 1

(7.15) €108 a (€, m)] < Cal(l + | log 1)~

In]

(7.16) nl?[0%a (¢, m)] < Ca(1 +|log 1)),

Then |[o||ms, ,,, < 00

Proof. 1t is only necessary to show that ||o| g < co. Note first that Proposition
3.1 can be used to give the estimate for any infinite matrix:

H(A) < C(|Alloo +sup Y lajk — ajrsr| +5up Y laje — ajirsl).
J

k<j j<k
Now suppose 1 < [£],|n| < 2. Then if k < j,
|0(27€,2"n) — o(27¢, 2% )| < Ck ™7

by (7.16). Combining with a similar estimate from (7.15) gives the theorem.
U

We conclude this section with a theorem of the type of Theorem 7.2 for
operators on L.

Theorem 7.6. Suppose N = 2n+3 and that o is a CV -symbol with ||aH§§V) <
oo; then W, : Ly X Ly — L; 18 bounded.

[e.e]

Proof. Let @ be the cube {z : maxy |z;| < 1} and consider the bilinear op-
erator Wy 0(f,9) = xoWa(f,9). We will show that if r < 1 is such that
n+2+[3] = N, then W, : L1(2Q) x L1(2Q) — L,(Q) is bounded and
IWool <C ||0||%V) where C'is a constant depending only on dimension.

Suppose that f,g € S are functions with support contained in 2¢) and such
that [ f(z)dz = [ g(z)dx = 0. Then f,g € Hy, with [|f|| s, < C|f||r, and
gz, < CllgllL,- Applying Theorem 7.2 we obtain that

(7.17) IWo(f, D)o < CllolN 1 £ e gl 2

where C' is an absolute constant. It follows that W, extends unambiguously
to any f,g € L1(2Q) with [ f(z)dx = [ g(x)dz =0 and (7.17) holds.
Next fix ¢ € S so that [ (x)dx = 1 and ¢ has support contained in Q.

Now for any f,g € Li(3Q) let fo = f— ([ f(z) dw) and go — g ([ g(x) da)eb
Then (7.17) gives

N
1Wao(for g0) 2. < Clla 81z gl
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We also note that ||W,.o(¥, )1, < C’||0||gv). Now consider the linear map

Tf = W,(f,v). Since 1» € Ly we have that, if% = % + %, T : Hy — Ly is
bounded with norm controlled by C’||a||gv) (again using Theorem 7.2.) Hence
since r < s,

IWoo(for )z, < Cllalls 1 I, -
Similarly

N
IWao (16, 90)ll2, < Clloll% g1,

Combining these estimates gives

(7.18) Woa(f, )z, < ClollS N 1z llgll i,

We now use a Nikishin type argument as earlier in Lemma 2.3. Suppose
: J
(f3)i=1 and (g;)j—, satisty [ fillz,, [lgllz, <1 and that 377, [b;|'/? = 1. Then
if (¢;)7_, and (€;)7_; are two independent sequences of Bernoulli random vari-
ables we have

J J
1.1 Y- N
B D eerlbilz b2 Wao(fr. a0)ll7) " < Cllolls”.

j=1 k=1

Again by using the result of Bonami [1], we obtain an estimate

J J
IO b1l Woo (£ 9P 2 1e, < Cllolli”-

j=1 k=1

Extracting the diagonal gives

| max [, Woq(f5, )|, < Cllolly”.

1<j<J

We now use [17] as before. There is a weight function w € L;(Q) with w >0
a.e. and [w(z)dr =1 so that for any f,g € Li1(3Q) with ||f]z,,[lgll, <1
and any measurable F C ) we have

(/E e g”rd‘”)i < Cllo| & (/Ewm da:)h.

Now suppose f, g are supported in Q and A > 0. Let E = {x € Q : |[W,(f,g)| >
A. Then the above equation yields

1_9
(7.19) NEL < Clo] </ w(m)daz) |
E

On the other hand if we apply (7.19) to fi(z) = f(x —t) where t € @ and note
that W, (f:, 9) = (W5(f,g)): we also obtain that

1_9
+ < eV (/Ew(x—t) das) .

MEN(Q+1)
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Raising to the power (£ —2)~! and averaging gives:
1 NY| Lo
NE|» < Cllally”| B2

Thus W, ¢ maps L;(2Q) x L,(2Q) into L%W(Q) with norm at most CHUH%V).

Now let A > 1. If we define 0, (¢, ) = o(A~1¢, A7), then we have [|oy || =

HU,\H;]IV) and we can apply this result to o). Notice that W, (f,g)(z) =
W, (fxr, gn)(Ax) where fi(x) = f(Ax) and gx(x) = g(Ax). This implies that
for any A > 0 we have the estimate

N
el £, 91z, . < Cllal 3 Il gl

,00

for f, g supported in A\Q). Letting A — oo gives the result. O

8. DISCUSSION ON PARAPRODUCTS

Paraproducts are bilinear operators of the type o4 for some specific upper
(or lower) triangular matrices A of zeros and ones. Paraproducts are important
tools which have been used in several occasions in harmonic analysis, such as
in the proof of the T'1 theorem of David and Journé [6]. We define the lower
and upper paraproducts as the bilinear operators II; and Il with symbols

nEm =33 6(€enn

JEZ k<j—-3
and o
=" > (k)
keZ j<k—3

respectively. It is easy to see that ||7z||m,, ., [I7vllm,,,, < oo for all 0 <
p1,p2 < oo. This can be deduced in several ways, e.g. from Proposition
5.4 using Lemma 6.3 or directly from Theorem 7.2 and Proposition 3.1. We
conclude that for all 0 < p,q < oo II;, maps H,, x H,, — H,, when 1/p; +
1/ps = 1/po and H, = L, when 1 < ¢ < co. We now turn to some endpoint
cases regarding the paraproduct operator II,.

Proposition 8.1. Let 0 < q¢ < oo. Then the paraproduct operator 1l is
bounded on the following products of spaces.

(1) BMO x H,(R") — H,(R"), where H, = L, when 1 < g < c0.
BMO x Hi(R") = Ly (R").
BMO x Loo(R") — BMO.

«(R") X Loo(R™) — H,(R"™), where H, = L, when 1 < q < co.
Ll(R") X Loo(R™) — Ly oo(R™).
BMO x Ll(Rn> — Ly oo(]R )

(2)
(3)
(4) H,
(5)
(6)
(7) Li(R™) x Ly(R") = Lyj200(R").
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Proof. Statement (1) is a classical result on paraproducts when 1 < ¢ < oo and
we refer the reader to [19] p. 303 for a proof. Note that for a fixed f € BMO,
the map g — I, (f, g) is a Calder6n-Zygmund singular integral. The extension
of (1) to H, for ¢ <1, is consequence of the that if a convolution type singular
integral operator maps Ly — Lo with bound a multiple of || f||zmo, then it
also maps H, into itself with bound a multiple of this constant. (2) follows
from a similar observation while (3) is a dual statement to (2). To prove (4) set

Sig = D h<j 3 Akg. We have that II.(f,9) = >, A;fS;g and the Fourier

transform of A, fS;g is supported in the annulus 272 < |¢] < 27%2. Tt follows
that

X T 2\1/2
I (f. ) la, < CIH 1A SialP) 7, < W1l 1M
jez
where M is the Hardy-Littlewood maximal operator which is certainly bounded
on L. To prove (5) we freeze g and look at the linear operator f — II.(f, g)
whose kernel is K(z,y) = > ¢j(x —y)S;(g)(x). It is easy to see that
jez
VyK (@, 9)] < Cllgllzale =yl ™

This estimate together with the fact that the linear operator f — II.(f,g)
maps Ly — Lo gives that f — II.(f,g) maps L1 — L o using the Calderdn-
Zygmund decomposition. This proves (5). To obtain (6) we use (1) (with
q = 2) and we apply to the Calderén-Zygmund decomposition to the operator
g — 1L(f,g) for fixed f € BMO. Finally (7) is a consequence of Theorem
7.6. 0]
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