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Abstract

We show that multilinear interpolation can be lifted to multilinear operators from spaces
generated by the minimal methods to spaces generated by the maximal methods of
interpolation defined on a class of couples of compatible p -Banach spaces. We also
prove mutlilinear interpolation theorem for operators on Calderón-Lozanovskii spaces
between Lp-spaces with 0 < p ≤ 1. As an application we obtain interpolation theorems
for multilinear operators on quasi-Banach Orlicz spaces.

1 Introduction

In the study of many problems which appear in various areas of analysis it is essential

to know whether important operators are bounded between certain quasi-Banach spaces.

Motivated in particular by applications in harmonic analysis, we are interested in proving

new abstract multilinear interpolation theorems for multilinear operators between quasi-

Banach spaces. Based on ideas from the theory of operators between Banach spaces, we use

the universal method of interpolation defined on proper classes of quasi-Banach spaces. It

should be pointed out that in general the interpolation methods used in the case of Banach

spaces do not apply in the setting of quasi-Banach spaces. The main reason is that the

topological dual spaces of quasi-Banach spaces could be trivial and the same may be true

for spaces of continuous linear operators between spaces from a wide class of quasi-Banach

spaces.

We introduce relevant notation and we recall some definitions. Let (X, ‖ · ‖) be a quasi-

normed space. A quasi-norm induces locally bounded topology. A complete quasi-normed

space is called quasi-Banach space. If in addition we have for some 0 < p ≤ 1

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, x, y ∈ X,
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then X is said to be a p-Banach space (or if p = 1 a Banach space). A theorem of Aoki and

Rolewicz (see [6]) states that every quasi-Banach space is p-normed for some p ∈ (0, 1].

Throughout the paper we use the standard notion from the Banach space theory and

interpolation theory. We refer to [2] and [3] for the fundamentals of interpolation theory

that will be of use.

A pair A = (A0, A1) of quasi-Banach (p-Banach) spaces is called a quasi-Banach (p-

Banach couple) if A0 and A1 are both algebraically and topologically embedded in some

Hausdorff topological vector space. For a quasi-Banach (p-Banach) couple A = (A0, A1) we

define quasi-Banach spaces A0∩A1 and A0 +A1 equipped with the natural norms. A quasi-

Banach space A is called intermediate with respect to A provided A0∩A1 ↪→ A ↪→ A0 +A1,

where ↪→ denotes the continuous inclusion map.

Let A = (A0, A1) and B = (B0, B1) be quasi-Banach couples. We denote by L(A,B)

the Banach space of all linear operators T : A0 + A1 → B0 + B1 such that the restrictions

of T to Ai are bounded operators from Ai to Bi for i = 0, 1. We equip L(A,B) with the

quasi-norm

‖T‖A→B = max{‖T‖A0→B0 , ‖T‖A1→B1}.

Let A and X be quasi-Banach couples. Following Aronszajn and Gagliardo [1], the orbit

of an element a ∈ A0 + A1 in X is the quasi-Banach space OA(a,X) = {Ta; T ∈ L(A,X)}
equipped with the norm

‖x‖ = inf{‖T‖A→X ; Ta = x}.

If we assume that A0 + A1 has a total dual space, then X0 ∩ X1 ↪→ OA(a,X) and so

F (·) := OA(a, ·) is an exact interpolation functor, i.e., for any quasi-Banach couples X and

Y and every operator T ∈ L(X,Y ) we have T : F (X)→ F (Y ) with

‖T‖F (X)→F (Y ) ≤ ‖T‖X→Y

Fix 0 < p ≤ 1. Let A = (A0, A1) be a quasi-Banach couple such that A0 +A1 has a total

dual space, and let A be an intermediate quasi-Banach space with respect to A. For any

quasi-Banach space X we define the p-interpolation orbit space GA
A,p

(X) as the space of all

x ∈ X0 +X1 such that

x =
∞∑
n=1

Tnan (convergence in X0 +X1),

where Tn ∈ L(A,X), an ∈ A, and
∑∞

n=1(‖Tn‖A→X‖an‖A)p <∞. We set

‖x‖Gp = inf
( ∞∑
n=1

(‖Tn‖A→X‖an‖A)p
)1/p

,

where the infimum is taken over all admissible representations of x as above.
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We notice here that if X is a p-Banach couple, then GA
A,p

(X) is a p-Banach space,

intermediate with respect to X. Moreover we have

GA
A,p

(X) ↪→ F (X)

for any interpolation functor F such that F (X) is p-normed space and A ↪→ F (A) (see [8,

Proposition 2.1]).

Suppose we are given a quasi-Banach couple B and an intermediate quasi-Banach space

B with respect to the couple B. Following [1], we define for any Banach couple X the space

HB
B

(X) of all x ∈ X0 +X1 such that sup‖T‖X→B≤1 ‖Tx‖B <∞. The quasi-norm in HB
B

(X)

is given by

‖x‖HB
B

(X) = sup
{
‖Tx‖B; ‖T‖X→B ≤ 1

}
.

Note that if F is an interpolation method, then F (X) ↪→ HB
B

(X) for any quasi-Banach

couple provided F (B) ↪→ B. This property, according to Aronszajn and Gagliardo [1]

motivates calling HB
B

the maximal interpolation functor.

2 Main results

For each m ∈ N the product X1 × · · · ×Xm =
∏m
i=1Xi of Banach spaces is equipped with

the norm ‖(x1, . . . , xm)‖ = max1≤i≤m ‖xi‖Xi . We denote by Lm(X1 × · · · × Xm, Y ) the

quasi-Banach space of all m-linear bounded operators defined on X1×· · ·×Xm with values

in a quasi-Banach space Y , equipped with the quasi-norm

‖T‖ = sup{‖T (x1, . . . , xm)‖Y ; ‖x1‖X1 ≤ 1, . . . , ‖xm‖Xm ≤ 1}.

As in the case where m = 1, we write L(X1, Y ) instead of L1(X1, Y ).

Let Y = (Y0, Y1) and Xi = (X0i, X1i) for each 1 ≤ i ≤ m be couples of quasi-Banach

spaces. If an operator T ∈ Lm(Πm
i=1(X0i + X1i), Y0 + Y1) is such the restriction of T is

bounded from Xj1 × · · · ×Xjm to Yj for j = 0, 1, then we write T ∈ Lm(Πm
i=1Xi, Y ).

Assume that Xi are quasi-Banach spaces intermediate with respect to Xi for 1 ≤ i ≤ m
and Y is a quasi-Banach intermediate with respect to Y . If there exists a finite constant

C > 0 such that for every T ∈ Lm(Πm
i=1Xi, Y ), the restriction of T is bounded from

X1 × · · · ×Xm to Y with ‖T‖ ≤ C, then X1, . . . , Xm and Y are called C-multilinear inter-

polation spaces with respect to (X1, . . . , Xm) and Y (we write for short (X1, . . . , Xm;Y ) ∈
MintC(X1, . . . , Xm;Y )).

Our first result is the following.

Theorem 2.1. Let GAi

Ai,p
be a p-interpolation orbit for each 1 ≤ i ≤ m and let HB

B
be

a maximal interpolation method. Assume that (A1, . . . , Am;B) ∈ MintC(A1, . . . , Am;B),

then for any p-Banach couples X1,. . . ,Xm and any quasi-Banach couple Y , we have(
GA1

A1,p
(X1), . . . , GAm

Am,p
(Xm);HB

B
(Y )
)
∈MintC(X1, . . . , Xm;Y ).
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Proof. Let Xi := GAi

Ai,p
(Xi) for each 1 ≤ i ≤ m and Y := HB

B
(Y ). For j = 0, 1 fix

T ∈ Lm(Πm
i=1(X0i +X1i), Y0 + Y1) such that ‖T‖Lm(Xj1,...,Xjn;Yj) ≤ 1. Assume that xi ∈ Xi

and xi = Siai with ai ∈ Ai, where Si : Ai → Xi. For a given R : Y → B with ‖R‖Y→B ≤ 1

define an operator UR : Πm
i=1(A0i +A1i)→ B0 +B1 by setting

UR(v1, . . . , vm) = RT (S1v1, . . . , Smvm), (v1, . . . , vm) ∈ Πm
i=1(A0i +A1i).

For j = 0, 1 we have

‖UR(u1, . . . , um)‖Bj ≤ ‖R‖Y→B‖T‖Lm(Xj1,...,Xjn;Yj)

m∏
i=1

‖Si‖Ai→Xi
‖vi‖Aji

and so UR ∈ Lm(A1 × · · · ×Am, B) with and its norm satisfies

‖UR‖ ≤
m∏
i=1

‖Si‖Ai→Xi
.

Our hypothesis gives that UR ∈ Lm(A1, . . . , Am, B) and

‖UR‖Lm(A1,...,Am,B) ≤ C
m∏
i=1

‖Si‖Ai→Xi
.

Consequently, we obtain

‖T (x1, . . . , xm)‖Y ≤ sup{‖RT (S1v1, . . . , Smvm)‖B; ‖R‖Y→B ≤ 1}

= sup{‖UR(a1, . . . , am)‖B; ‖R‖Y→B ≤ 1}

≤ C

m∏
i=1

‖Si‖Ai→Xi
‖ai‖Ai .

(1)

Suppose now that for each 1 ≤ i ≤ m

xi =
∞∑
j=1

Sijaij (convergence in X0i +X1i),

where Sij : Ai → Xi, aij ∈ Ai are such that

∞∑
j=1

(‖Sij‖Aj→Xj
‖aij‖Ai)

p <∞.

Since T ∈ Lm(Πm
i=1(X0i +X1i), Y0 + Y1) we conclude that

T (x1, . . . , xm) =
∞∑
j1=1

· · ·
∞∑

jm=1

T (S1j1a1j1 , . . . , Smjmamjm) (convergence in Y0 + Y1).

Estimate (1) yields for each j1, . . . , jm

‖T (S1j1a1j1 , . . . , Smjmamjm)‖Y ≤ C
m∏
i=1

‖Siji‖Aji
→Xji

‖aji‖Aji
,
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and so

‖T (x1, . . . , xm)‖Y ≤ C
( ∞∑
j1=1

· · ·
∞∑

jm=1

‖T (S1j1a1j1 , . . . , Smjmamjm)‖pY
)1/p

≤ C
( ∞∑
j1=1

· · ·
∞∑

jm=1

m∏
i=1

(
‖Siji‖Ai→Xi

‖aij‖Ai

)p)1/p

= C

m∏
i=1

( ∞∑
j=1

(
‖Sij‖Aji

→Xj
‖aij‖Ai

)p)1/p
.

Combining the above estimates, we conclude that T ∈ Lm(X1×· · ·×Xm, Y ) with ‖T‖ ≤ C,

and this completes proof.

Our results could be applied to the real methods of interpolation. Let 0 < p ≤ 1.

Following [9], a quasi-Banach space E is said to be (p, J)-nontrivial, if

E ↪→ `p + `p(2−n).

Let E be a nontrivial (1, J) quasi-Banach lattice. For any quasi-Banach couple (X0, X1) we

denote by JE(X) the space of all x ∈ X0 +X1, which can be represented in the form

x =
∞∑

n=−∞
xn, xn ∈ X0 ∩X1 (convergence in X0 +X1),

with {J(2n, xn;X)} ∈ E where J(t, x;X) = max{‖x‖X0 , t‖x‖X1} for all x ∈ X0 ∩X1, t > 0.

The space JE(X) is said to be a J-space provided it is a quasi-Banach space under the

quasi-norm,

‖x‖ = inf ‖{J(2n, xn;X)}‖E ,

where the infimum is taken over all representations of x =
∑

n xn as above.

Theorem 2.2. For each 1 ≤ i ≤ m let Xi be p-Banach couples and let JEi(Xi) be J-spaces

generated by quasi-Banach lattices on Z intermediate between `p = (`p, `p(2−n)), and let HB
B

be a maximal interpolation method. Assume that (E1, . . . , Em;B) ∈ MintC(`p, . . . , `p;B).

Then for any quasi-Banach couple Y we have(
JE1(X1), . . . , JEm(Xm);HB

B
(Y )
)
∈MintC(X1, . . . , Xm;Y ).

Proof. It follows from [8, Theorem 3.2] that the continuous inclusion map

JEi(Xi) ↪→ GEi

`p,p
(Xi), 1 ≤ i ≤ m

has norm less or equal than 1. Thus the required statement follows from Theorem 2.1.

We refer to [5] where interpolation of bilinear operators between quasi-Banach spaces

was studied by the method of means.
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3 Multilinear interpolation between Orlicz spaces

In what follows we let (Ω, µ) := (Ω,Σ, µ) be a complete σ-finite measure space and let

L0(Ω, µ) = L0(µ) denote the space of equivalence classes of real valued measurable functions

on Ω, equipped with the topology of convergence (in the measure µ) on sets of finite measure.

By a quasi-Banach lattice on Ω we mean a quasi-Banach space X which is a subspace of

L0(µ) such that there exists u ∈ X with u > 0 and if |f | ≤ |g| a.e., where g ∈ X and

f ∈ L0(µ), then f ∈ X and ‖f‖X ≤ ‖g‖X . A quasi-Banach lattice X is said to be maximal

if its unit ball BX = {x; ‖x‖ ≤ 1} is a closed subset in L0(µ).

In the special case when Ω = Z is the set of integers and µ is the counting measure then

a quasi-Banach lattice E on Ω is called a quasi-Banach sequence space on Z.

If X is a quasi-Banach lattice on (Ω, µ) and w ∈ L0(µ) with w > 0 a.e., we define the

weighted quasi-Banach lattice X(w) by ‖x‖X(w) = ‖xw‖X .

Throughout the rest of the paper for given measure spaces (Ωi,Σi, µi) 1 ≤ i ≤ m, we let

(Ω,Σ, µ) to be a product measure space with Ω := Ω1 × · · · ×Ωm, Σ := Σ1 × · · · ×Σm and

µ := µ1 × · · · × µm be a product measure space.

We define a map
⊗

: L0(µ1)× · · · × L0(µm)→ L0(µ) by⊗
(f1, . . . , fm) = f1 ⊗ · · · ⊗ fm, (f1, . . . , fm) ∈ L0(µ1)× · · · × L0(µm),

where f1 ⊗ · · · ⊗ fm(ω1, . . . , ωm) = f1(ω1) · · · fm(ωm) for all (ω1, . . . , ωm) ∈ Ω1 × · · · × Ωm.

Next we state a useful result in terms of applications.

Theorem 3.1. Let 0 < p0, p1 ≤ 1 and Xi be quasi-Banach lattices on (Ωi, µi) that are

intermediate with respect to (Lp0(µi), Lp1(µi)) for 1 ≤ i ≤ m and let Y be a quasi-Banach

space intermediate with respect to a quasi-Banach couple (Y0, Y1). Assume X is a quasi-

Banach function lattice on (Ω, µ) such that
⊗

: X1 × · · · ×Xm → X with
∥∥⊗∥∥ ≤ C1 and

(X,Y ) ∈ intC2((Lp0(µ), Lp1(µ); (Y0, Y1)). Then, with C = C1C2, we have

(X1, . . . , Xm;X) ∈MintC
(
(Lp0(µ1), Lp1(µ1))× · · · × (Lp0(µm), Lp1(µm)); (Y0, Y1)

)
.

Proof. In [13] Vogt identifies the tensor product

Lp(µ1)⊗̂p · · · ⊗̂pLp(µm) (2)

for m = 2, however the proof works for each positive integer m ≥ 2. In our setting this

implies that there are continuous linear operators T0 : Lp0(µ) → Y0 and T1 : Lp1(µ) → Y1

such that

T (f1, . . . , fm) = T0
⊗

(f1, . . . , fm), (f1, . . . , fm) ∈
m∏
i=1

Lp0(µi),
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and

T (g1, . . . , gm) = T1
⊗

(g1, . . . , gm), (g1, . . . , gm) ∈
m∏
j=1

Lp1(µi).

In particular this yields that for all (f1, . . . , fm) ∈
∏m
i=1(Lp0(µi) ∩ Lp1(µi)),

T (f1, . . . , fm) = T0(f1 ⊗ · · · ⊗ fm) = T1(f1 ⊗ · · · ⊗ fm).

The density argument (via (2)) implies that T0 = T1 on Lp0(µ)∩Lp1(µ). Consequently, the

operator T̃ : Lp0(µ) +Lp1(µ)→ Y0 +Y1 given by T̃ (f) = T0(f0) +T1(f1) for any f = f0 + f1

with fj ∈ Lpj (µ) for j = 0, 1 is well defined. Since T̃ = Tj on Lpj (µ), it follows

T̃ : (Lp0(µ), Lp1(µ))→ (Y0, Y1).

Hence we have T = T̃
⊗

with

T : (Lp0(µ1), Lp1(µ1))× · · · × (Lpm(µm), Lpm(µm))
⊗
−→ (Lp0(µ), Lp1(µ))

eT−→ (Y0, Y1).

Our interpolation hypotheses imply that

T : X1 × · · · ×Xm

⊗
−→ X

eT−→ Y.

with ‖T‖ ≤ ‖T̃‖ ‖
⊗
‖ ≤ C1C2, and this completes the proof.

To obtain a variety of applications we recall some interpolation constructions. Let Φ

denote the set of non-vanishing functions ϕ : [0,∞) × [0,∞) → [0,∞), which are non-

decreasing in each variable and positively homogeneous of degree one. We define Φ0 to be

a subset of all ϕ ∈ Φ such that ϕ(1, t)→ 0 and ϕ(t, 1)→ 0 as t→ 0.

We consider the Banach couples c0 = (c0, c0(2−n)) and `∞ := (`∞, `∞(2−n)) of sequences

on Z. If ϕ ∈ Φ (resp., ϕ ∈ Φ0), then aϕ ∈ c0 + c0(2−n) (resp., aϕ ∈ `∞ + `∞(2−n)).

For any ϕ ∈ Φ (resp., ϕ ∈ Φ0) and any quasi-Banach couple X, we denote by 〈X0, X1〉ϕ
(resp., ϕ`(X)) the interpolation orbit space Oc0(aϕ, X) (resp., O`∞(aϕ, X)). It was shown in

[10], [9] that for a large class of couples of quasi-Banach lattices these spaces are connected

with the Calderón-Lozanovskii spaces.

We recall that if X = (X0, X1) is a couple of quasi-Banach lattices on a measure space

(Ω, µ) and ϕ ∈ Φ, then the Calderón-Lozanovskii space ϕ(X) = ϕ(X0, X1) consists of all

x ∈ L0(µ) such that |x| = ϕ(|x0|, |x1|) µ-a.e. for some xj ∈ Xj with ‖xj‖Xj ≤ 1, j = 0, 1.

The space ϕ(X) is a quasi-Banach lattice equipped with the quasi-norm [7])

‖x‖ϕ(X) := inf
{

maxj=0,1‖xj‖Xj ; ϕ(|x0|, |x1|) = |x|
}
.

If ϕ is a concave function then ϕ(X0, X1) is a Banach lattice provided (X0, X1) is a Banach

couple (see [7]). In the case when ϕ(s, t) = s1−θtθ, ϕ(X) is the Calderón space (see [4]).
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We note that in analogy with the Banach case the following continuous inclusion

ϕ(X0, X1) ↪→ ϕ`(X0, X1)

holds for all couples (X0, X1) of quasi-Banach lattices and ϕ ∈ Φ. It was shown in [10, 11]

(see also [9]) that for any ϕ ∈ Φ0 the following continuous inclusions hold for a large class

C of couples (X0, X1) of quasi-Banach lattices,

ϕl(X0, X1) ↪→ 〈X0, X1〉ϕ ↪→ ϕ`(X0, X1)c, (3)

where ϕ(X0, X1) is a Calderón-Lozanovskii space and ϕ`(X0, X1)c is the Gagliardo comple-

tion of ϕ(X0, X1) with respect X0 +X1, i.e., the space of all limits in X0 +X1 of sequences

{xn} that are bounded in X = ϕ(X0, X1); this space is equipped with the quasi-norm

‖x‖Xc = inf
{xn}

sup
n≥1
‖xn‖X ,

where {xn} ⊂ X has the same meaning as above.

The class C contains p-convex quasi-Banach lattices with 1 ≤ p < ∞. Recall that

a quasi-Banach lattice X is called p-convex if there exists a constant C > 0 such that if

x1, . . . , xn ∈ X then ∥∥∥( n∑
i=1

|xi|p
)1/p∥∥∥

X
≤ C

( n∑
i=1

‖xi‖pX
)1/p

.

Notice that if ϕ ∈ Φ then ϕ = ϕ0 + ϕ1, where ϕ1(s, t) := as + bt for all s, t ≥ 0 with

a = lims→0+ ϕ(1, s), b = lims→0+ ϕ(s, 1). Thus aϕ = aϕ0 + aϕ1 . Clearly that

ϕ(X) = ϕ0(X) + ϕ1(X)

for any couple X of quasi-Banach lattices. Since ϕ0 ∈ Φ, thus combining the above re-

marks and the mentioned inclusions (3), we can easily deduce that the following continuous

inclusions

ϕ(X0, X1) ↪→ ϕ`(X0, X1) ↪→ ϕ(X0, X1)c

are true every ϕ ∈ Φ and all quasi-Banach couples (X0, X1) ∈ C.

Theorem 3.2. Let Lp0w0i and Lp1w1i with 0 < p0, p1 ≤ 1 be weighted spaces on measure spaces

(Ωi, µi) for 1 ≤ i ≤ m, and let (Y0, Y1) be a couple of quasi-Banach spaces such that Y0

is p0-normed and Y1 is a p1-normed space. Assume that for some ϕ1, . . . , ϕm, ϕ ∈ Φ there

exists C > 0 such that ϕ(1, t1 · · · tm) ≤ Cϕ1(1, t1) · · · ϕm(1, tm) for all t1, . . . , tm ≥ 0. Then

any operator in Lm((Lp0(µ1), Lp1(µ1))× · · · × (Lp0(µm), Lp1(µm)), (Y0, Y1)) lies in

Lm(ϕ1(Lp0(µ1), Lp1(µ1))× · · · × ϕm(Lp0(µm), Lp1(µm)), ϕ`(Y0, Y1)).
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Proof. It is clear that the condition ϕ(1, t1 ···tm) ≤ Cϕ1(1, t1)···ϕm(1, tm) for all t1, . . . , tm ≥
0 is equivalent to

ϕ(s1 · · · sm, t1 · · · tm) ≤ Cϕ1(s1, t1) · · · ϕm(sm, tm), si, ti > 0, 1 ≤ i ≤ m.

This easily implies that for any measure space (Ωi, νi) with 1 ≤ i ≤ m and ν := ν1×···×νm,⊗
: ϕ1(Lp0(ν1), Lp1(ν1))× · · · × ϕm(Lp0(νm), Lp1(νm))→ ϕ(Lp0(ν), Lp1(ν))

with ‖
⊗
‖ ≤ C.

Without loss of the generality we my assume that 1/q := 1/p0 − 1/p1 > 0. Based on

ideas of Stein-Weiss [12], for each 1 ≤ i ≤ m set τi = (w1/p0
1i w

1/p1
0i ), σi = (w0i/τi)p0 and

dνi = σidµi. For f ∈ L0(νi) define Si(f) = τif and note that for each 1 ≤ i ≤ m and

j = 0, 1 we have

‖Sif‖Lpj (νi) = ‖f‖
L

pj
wji

, f ∈ Lpj
wji .

This shows that Si is a positive isometrical isomorphism between quasi-Banach couples

(Lp0w0i , L
p1
w1i) and (Lp0(νi), Lp1(νi)) for each 1 ≤ i ≤ m, and so

Si(ϕi(Lp0w0i
, Lp1w1i

)) = ϕi(Lp0(νi), Lp1(νi)), 1 ≤ i ≤ m.

This implies that the operator S given by

S(f1, . . . , fm) := T (S−1
1 f1, . . . , S

−1
m fm)

for all (f1, . . . , fm) ∈
∏m
i=1(Lp0(νi) + Lp1(νi)), satisfies

S ∈ Lm((Lp0(ν0), Lp1(ν0))× · · · × ((Lp0(νm), Lp1(νm)), (Y0, Y1)).

Applying Theorem 3.1, we conclude that S is bounded from
∏m
i=1 ϕi(L

pi(νi), Lp1(νi)) to

ϕ`(Y0, Y1). The above isometries yield that the operator

T : ϕ1(Lp0(ν0), Lp1(ν0))× · · · × ϕm(Lp0(νm), Lp1(νm))→ ϕ`(Y0, Y1)

is bounded, and this completes the proof.

We give below applications of Theorem 3.2 to quasi-Banach Orlicz spaces. First we

recall that if ψ is an Orlicz function (i.e., ψ : [0,∞) → [0,∞) is an increasing, continuous

such that ψ(0) = 0), then the Orlicz space Lψ on a given measure space (Ω, µ) is defined

to be a subspace of L0(µ) consisting of all f ∈ L0(µ) such that for some λ > 0 we have∫
Ω ψ(λ|f |) dµ <∞. We set

‖f‖ψ = inf
{
λ > 0;

∫
Ω
ψ(|f |/λ) dµ ≤ 1

}
.
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If there exists C > 0 such that ψ(t/C) ≤ ψ(t)/2 for all t > 0, then

‖f + g‖ψ ≤ C(‖f‖ψ + ‖g‖ψ), f, g ∈ Lψ,

and so Lψ is a quasi-Banach space. In what follows we consider only Orlicz spaces Lψ

generated by Orlicz functions ψ which satisfy the above inequality.

It is well known (see [9], [11, pp. 460-461]) that for any ϕ ∈ Φ and any couple (Lp0w0 , L
p1
w1)

on a measure space (Ω, µ) with 0 < p0, p1 ≤ ∞ we have

ϕ(Lp0w0
, Lw1

w1
) = LM

with equivalence of the quasi-norms, where LM is the generalized Orlicz space generated

by the function M(u, t) = ψ((w1(t)1/p1w0(t)−1/p0)q)(w0(t)/w1(t))q for all u ≥ 0 and t ∈ Ω.

Here 1/q = 1/p0 − 1/p1 and ψ is an Orlicz function given by ψ−1(t) = ϕ(t1/p0 , t1/p1) for all

t > 0. LM is equipped with the quasi-norm

‖f‖Φ = inf
{
λ > 0;

∫
Ω
M(|f(t)|/λ, t) dµ ≤ 1

}
.

In particular we have

ϕ(Lp0 , Lp1) = Lψ.

We note also that a simple calculation shows (see [11, p. 459]) that in the case 0 < p0 =

p1 = p ≤ ∞,

ϕ(Lpw0
, Lpw1

) = Lp1/ϕ(w0,w1). (4)

Our final result is the following:

Theorem 3.3. Let Lψ(ν) and Lψi
(µi) for 1 ≤ i ≤ m be Orlicz spaces. Assume that there

is a constant C and 0 < p0 < p1 ≤ 1 so that ψ(t1 · · · tm) ≥ Cψ1(t1) · · · ψm(tm) for

all t1, . . . , tm > 0 and assume that the functions t 7→ ψ(t)/tp0, t 7→ ψi(t)/tp0 are non-

decreasing and t 7→ ψ(t)/tp1, t 7→ ψi(t)/tp1 (1 ≤ i ≤ m) are non-increasing. Then for every

T ∈ Lm((Lp0(µ1), Lp1(µ1))× · · · × (Lp0(µm), Lp1(µm)), (Lp0(ν), Lp1(ν)) we have that

T ∈ Lm(Lψ1(µ1)× · · · × Lψm(µm), Lψ(ν)).

Proof. First observe that if an Orlicz function φ is such that the function t 7→ φ(t)/tp0 is

non-decreasing and t 7→ φ(t)/tp1 is non-increasing, respectively. Then the function t 7→
φ−1(t)/t1/p0 and t 7→ φ−1(t)/t1/p1 is non-increasing and non-decreasing, respectively. This

implies that the function ρ : [0,∞)→ [0,∞) defined by ρ(0) = 0 and

φ−1(t) = t1/p1ρ(t1/p0−1/p1), t > 0,

is a quasi-concave, i.e., t 7→ ρ(t) is non-decreasing and t 7→ ρ(t)/t is non-increasing.
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Now define ϕ ∈ Φ by ϕ(s, t) = tρ(s/t) for t > 0 and 0 if t = 0. Then, we have

φ−1(t) � ϕ(t1/p0 , t1/p1), t ≥ 0.

Thus, it follows by (4) that for any measure space (Ω, ν) we have that

Lφ(ν) = ϕ(Lp0(ν), Lp1(ν)),

up to equivalence of quasi-norms.

Combining our hypotheses, we conclude that there exist ϕ,ϕi ∈ Φ such that

Lψ(ν) = ϕ(Lp0(ν), Lp1(ν)), Lψi
(µi) = ϕi(Lp0(µi)), Lp1(µi)), 1 ≤ i ≤ m

with ϕ(1, t1 · · · tm) ≤ Cϕ1(1, t1) · · ·ϕm(1, tm) for some C > 0 and for all t1, . . . , tm ≥ 0. An

application of Theorem 3.2 completes the proof.
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