SHARP INEQUALITIES FOR MAXIMAL FUNCTIONS ASSOCIATED WITH GENERAL MEASURES

L. Grafakos*
Department of Mathematics, University of Missouri, Columbia, MO 65203, U.S.A.
(e-mail: loukas@math.missouri.edu)
AND
J. Kinnunen
Department of Mathematics, P.O. Box 4, FIN-00014 University of Helsinki, Finland
(e-mail: Juha.Kinnunen@Helsinki.Fi)

Abstract

Sharp weak type $(1,1)$ and L^{p} estimates in dimension one are obtained for uncentered maximal functions associated with Borel measures which do not necessarily satisfy a doubling condition. In higher dimensions uncentered maximal functions fail to satisfy such estimates. Analogous results for centered maximal functions are given in all dimensions.

1. Introduction

Let μ be a nonnegative Borel measure on \mathbf{R}^{n} and let $f: \mathbf{R}^{n} \rightarrow[0, \infty]$ be a μ locally integrable function. The uncentered maximal function of f with respect to μ is defined by

$$
\begin{equation*}
\widetilde{\mathcal{M}} f(x)=\sup _{B} \frac{1}{\mu(B)} \int_{B} f d \mu \tag{1.1}
\end{equation*}
$$

where the supremum is taken over all closed balls B containing x. Let $B(x, r)$ denote the closed ball with center x and radius $r>0$. The centered maximal function of f with respect to μ is defined by

$$
\begin{equation*}
\mathcal{M} f(x)=\sup _{r>0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)} f d \mu \tag{1.2}
\end{equation*}
$$

[^0]with the interpretation that the integral averages in (1.1) and (1.2) are equal to $f(x)$ if $\mu(B)=0$ or $\mu(B(x, r))=0$.

If μ is Lebesgue measure, these definitions give the usual uncentered and centered Hardy-Littlewood maximal operators. It is a classical result, see [9, p. 13], that if μ satisfies a doubling condition,

$$
\begin{equation*}
\mu(B(x, 2 r)) \leq C \mu(B(x, r)) \quad \text { for all } x \in \mathbf{R}^{n} \text { and } r>0 \tag{1.3}
\end{equation*}
$$

both of these operators are of weak type $(1,1)$ and they map $L^{p}\left(\mathbf{R}^{n}, \mu\right), p>1$, into itself.

Omitting the doubling requirement, it is still true that $\mathcal{M} \operatorname{maps} L^{p}\left(\mathbf{R}^{n}, \mu\right)$, $p>1$, into itself, but the corresponding result for $\widetilde{\mathcal{M}}$ is false if $n \geq 2$. An example indicating this statement is given in section 3. Examples showing that $\widetilde{\mathcal{M}}$ is not of weak type $(1,1)$ if $n \geq 2$ can be found in $[\mathbf{8}]$.

It is a geometrical phenomenon, however, that such counterexamples do not exist in dimension one. In fact in dimension one, $\widetilde{\mathcal{M}}$ maps $L^{p}\left(\mathbf{R}^{1}, \mu\right), p>1$, into itself without the doubling assumption about μ, see $[\mathbf{2}]$ and $[\mathbf{8}]$. This is a consequence of a special covering argument available only on the real line. In this article we give sharp L^{p} and weak type $(1,1)$ estimates for $\widetilde{\mathcal{M}}$ with constants independent of μ.

In higher dimensions we obtain an improvement of the known estimate

$$
\begin{equation*}
\mu(\{\mathcal{M} f>\lambda\}) \leq \frac{c_{n}}{\lambda} \int_{\{\mathcal{M} f>\lambda\}} f d \mu, \quad \lambda>0 \tag{1.4}
\end{equation*}
$$

where c_{n} is the Besicovitch constant. See section 3 for details.

2. The one-dimensional case

On \mathbf{R}^{1}, fix a nonnegative Borel measure μ. The inequality below was first proved
in $[7]$ when μ is the usual Lebesgue measure. The proof given there is different and doesn't generalize to this context.

Theorem 2.1. For any $\lambda>0$ and any μ-locally integrable function $f: \mathbf{R}^{1} \rightarrow[0, \infty]$ we have

$$
\begin{equation*}
\mu(\{\widetilde{\mathcal{M}} f>\lambda\})+\mu(\{f>\lambda\}) \leq \frac{1}{\lambda} \int_{\{\widetilde{\mathcal{M}} f>\lambda\}} f d \mu+\frac{1}{\lambda} \int_{\{f>\lambda\}} f d \mu \tag{2.1}
\end{equation*}
$$

Proof. Fix $\lambda>0$ and denote $E_{\lambda}=\{\widetilde{\mathcal{M}} f>\lambda\}$. If $\mu(\{f>\lambda\})=\infty$, then by Chebyshev's inequality the right side of (2.1) is infinity and there is nothing to prove. Hence we may assume that $\mu(\{f>\lambda\})<\infty$. For every $x \in E_{\lambda}$ there is an interval I_{x} containing x such that

$$
\begin{equation*}
\frac{1}{\mu\left(I_{x}\right)} \int_{I_{x}} f d \mu>\lambda \tag{2.2}
\end{equation*}
$$

By Lindelöf's theorem there is a countable subcollection $I_{j}, j=1,2, \ldots$, such that

$$
\bigcup_{j=1}^{\infty} I_{j}=\bigcup_{x \in E_{\lambda}} I_{x}
$$

Let $\mathcal{I}=\left\{I_{j}: j=1,2, \ldots, N\right\}$ and write

$$
F^{N}=\bigcup_{I \in \mathcal{I}} I
$$

By Lemma 4.4 in [6] we obtain two subcollections \mathcal{I}_{1} and \mathcal{I}_{2} of \mathcal{I} so that the intervals in each of these are pairwise disjoint and that

$$
F^{N}=\bigcup_{i=1}^{2} \bigcup_{I \in \mathcal{I}_{i}} I
$$

We denote $F_{i}=\bigcup_{I \in \mathcal{I}_{i}} I, i=1,2$. Since the intervals in $\mathcal{I}_{i}, i=1,2$, are pairwise disjoint and (2.2) holds we obtain

$$
\begin{equation*}
\mu\left(F_{i}\right)=\sum_{I \in \mathcal{I}_{i}} \mu(I)<\frac{1}{\lambda} \sum_{I \in \mathcal{I}_{i}} \int_{I} f d \mu=\frac{1}{\lambda} \int_{F_{i}} f d \mu \quad \text { for } i=1,2 . \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mu\left(F^{N}\right)+\mu\left(F_{1} \cap F_{2}\right) & =\mu\left(F_{1}\right)+\mu\left(F_{2}\right) \\
& <\frac{1}{\lambda} \int_{F_{1}} f d \mu+\frac{1}{\lambda} \int_{F_{2}} f d \mu \tag{2.4}\\
& =\frac{1}{\lambda} \int_{F^{N}} f d \mu+\frac{1}{\lambda} \int_{F_{1} \cap F_{2}} f d \mu
\end{align*}
$$

For any μ-measurable set E such that $\mu(E)<\infty$ we have

$$
\begin{equation*}
\frac{1}{\lambda} \int_{E} f d \mu+\mu(\{f>\lambda\}) \leq \frac{1}{\lambda} \int_{\{f>\lambda\}} f d \mu+\mu(E) \tag{2.5}
\end{equation*}
$$

To see this, we observe that

$$
\begin{aligned}
\int_{E}(f-\lambda) d \mu & =\int_{\{f \leq \lambda\} \cap E}(f-\lambda) d \mu+\int_{\{f>\lambda\} \cap E}(f-\lambda) d \mu \\
& \leq \int_{\{f>\lambda\}}(f-\lambda) d \mu
\end{aligned}
$$

Using (2.4) and (2.5) we deduce that

$$
\mu\left(F^{N}\right)+\mu(\{f>\lambda\}) \leq \frac{1}{\lambda} \int_{F^{N}} f d \mu+\frac{1}{\lambda} \int_{\{f>\lambda\}} f d \mu
$$

Since F^{N} is an increasing sequence of μ-measurable sets whose union is E_{λ}, inequality (2.1) follows by letting $N \rightarrow \infty$.

Remarks 2.2. (1) Inequality (2.1) is stronger than the standard weak type $(1,1)$ estimate obtained, for example, in [2]. In particular, estimate (2.1) implies that $\widetilde{\mathcal{M}}$ is of weak type $(1,1)$ with constant 2 .
(2) Equality can actually occur in (2.1). For instance this is the case when f even, symmetrically decreasing about the origin and μ is Lebesgue measure, see [7].

Now we show that the sharp weak type estimate (2.1) implies a sharp version of the Hardy-Littlewood Theorem.

Corollary 2.3. Let $1<p<\infty$ and let A_{p} be the unique positive solution of the equation

$$
\begin{gather*}
(p-1) x^{p}-p x^{p-1}-1=0 \tag{2.6}
\end{gather*}
$$

Then

$$
\begin{equation*}
\|\widetilde{\mathcal{M}} f\|_{p, \mu} \leq A_{p}\|f\|_{p, \mu} \tag{2.7}
\end{equation*}
$$

Proof. We may suppose that f is not zero μ-almost everywhere and that $f \in L^{p}\left(\mathbf{R}^{1}, \mu\right)$ since otherwise there is nothing to prove. Fubini's theorem and (2.1) imply that

$$
\begin{aligned}
\int_{\mathbf{R}^{1}}(\widetilde{\mathcal{M}} f)^{p} d \mu+\int_{\mathbf{R}^{1}} f^{p} d \mu & =p \int_{0}^{\infty} \lambda^{p-1} \mu(\{\widetilde{\mathcal{M}} f>\lambda\}) d \lambda+p \int_{0}^{\infty} \lambda^{p-1} \mu(\{f>\lambda\}) d \lambda \\
& \leq p \int_{0}^{\infty} \lambda^{p-2} \int_{\{\widetilde{\mathcal{M}} f>\lambda\}} f d \mu d \lambda+p \int_{0}^{\infty} \lambda^{p-2} \int_{\{f>\lambda\}} f d \mu d \lambda \\
& =\frac{p}{p-1} \int_{\mathbf{R}^{1}}(\widetilde{\mathcal{M}} f)^{p-1} f d \mu+\frac{p}{p-1} \int_{\mathbf{R}^{1}} f^{p} d \mu
\end{aligned}
$$

and hence

$$
\int_{\mathbf{R}^{1}}(\widetilde{\mathcal{M}} f)^{p} d \mu \leq \frac{p}{p-1} \int_{\mathbf{R}^{1}}(\widetilde{\mathcal{M}} f)^{p-1} f d \mu+\frac{1}{p-1} \int_{\mathbf{R}^{1}} f^{p} d \mu .
$$

Hölder's inequality gives

$$
\int_{\mathbf{R}^{1}}(\widetilde{\mathcal{M}} f)^{p-1} f d \mu \leq\left(\int_{\mathbf{R}^{1}}(\widetilde{\mathcal{M}} f)^{p} d \mu\right)^{(p-1) / p}\left(\int_{\mathbf{R}^{1}} f^{p} d \mu\right)^{1 / p}
$$

and hence

$$
(p-1)\|\widetilde{\mathcal{M}} f\|_{p, \mu}^{p} \leq p\|\widetilde{\mathcal{M}} f\|_{p, \mu}^{p-1}\|f\|_{p, \mu}+\|f\|_{p, \mu}^{p}
$$

or equivalently

$$
(p-1)\left(\frac{\|\widetilde{\mathcal{M}} f\|_{p, \mu}}{\|f\|_{p, \mu}}\right)^{p}-p\left(\frac{\|\widetilde{\mathcal{M}} f\|_{p, \mu}}{\|f\|_{p, \mu}}\right)^{p-1}-1 \leq 0
$$

The claim follows from this inequality.

Remarks 2.4. (1) When μ is Lebesgue measure, then the L^{p}-bound above is the best possible, see [7].
(2) The bound A_{p} in (2.7) is independent of the measure μ.

We close this section by studying the reverse inequality to (2.1).

Proposition 2.5. Suppose that $f: \mathbf{R}^{1} \rightarrow[0, \infty]$ is a locally μ-integrable function.
Then

$$
\begin{equation*}
\int_{\left\{\widetilde{\mathcal{M}}_{f>\lambda\}}\right.} f d \mu \leq \lambda \mu(\{\widetilde{\mathcal{M}} f>\lambda\}) \tag{2.8}
\end{equation*}
$$

for every $\lambda \geq \operatorname{ess}_{\inf _{\mathbf{R}^{1}}} \widetilde{\mathcal{M}} f$.

Proof. Let $\lambda>\operatorname{ess}_{\inf }^{\mathbf{R}^{1}} \mid \widetilde{\mathcal{M}} f$ and denote $E_{\lambda}=\{\widetilde{\mathcal{M}} f>\lambda\}$. Then $\mathbf{R}^{1} \backslash E_{\lambda}$ has a positive measure. On the other hand, E_{λ} is an open set on the real line and hence it is a union of countably many pairwise disjoint open intervals $E_{\lambda}=\bigcup_{j=1}^{\infty} I_{j}$. For an interval I and $\sigma>0$, let σI be the interval with the same center whose length is multiplied by σ. Since every σI_{j} intersects $\mathbf{R}^{1} \backslash E_{\lambda}$ when $\sigma>1$, we see that

$$
\frac{1}{\mu\left(\sigma I_{j}\right)} \int_{\sigma I_{j}} f d \mu \leq \lambda, \quad \text { for } j=1,2, \ldots
$$

By letting $\sigma \rightarrow 1$ we obtain

$$
\frac{1}{\mu\left(I_{j}\right)} \int_{I_{j}} f d \mu \leq \lambda, \quad \text { for } j=1,2, \ldots
$$

and hence by summing up we deduce that

$$
\int_{E_{\lambda}} f d \mu \leq \sum_{j=1}^{\infty} \int_{I_{j}} f d \mu \leq \lambda \sum_{j=1}^{\infty} \mu\left(I_{j}\right)=\lambda \mu\left(E_{\lambda}\right)
$$

This implies that (2.8) is true for every $\lambda \geq \operatorname{essinf}_{\mathbf{R}^{1}} \widetilde{\mathcal{M}} f$ and the proof is now complete.

Remark 2.6. Suppose that $f \in L^{1}\left(\mathbf{R}^{1}, \mu\right)$. If $\lambda<\operatorname{essinf}_{\mathbf{R}^{1}} \widetilde{\mathcal{M}} f$, then $\mu\left(E_{\lambda}\right)=$ $\mu\left(\mathbf{R}^{1}\right)$ and (2.8) holds for every

$$
\lambda \geq \frac{1}{\mu\left(\mathbf{R}^{1}\right)} \int_{\mathbf{R}^{1}} f d \mu
$$

In particular, if $\mu\left(\mathbf{R}^{1}\right)=\infty$, then (2.8) holds for every $\lambda>0$.

3. The higher dimensional case

If $n \geq 2$, the uncentered maximal function associated to a general measure is not bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ for $1<p<\infty$. To see this, select closed balls B_{1}, B_{2}, \ldots so that the origin is on the boundary of each ball and such that for every B_{i}, $i=1,2, \ldots$, there is a point $x_{i} \in B_{i} \backslash \cup_{j \neq i} B_{j}$. Set

$$
\mu=\sum_{i=0}^{\infty} \delta_{x_{i}}
$$

where $x_{0}=0$ and $\delta_{x_{i}}$ denotes Dirac mass at x_{i}. Let f be the characteristic function of B_{1}. Clearly $\|f\|_{p, \mu} \leq 2^{1 / p}$, but

$$
\widetilde{\mathcal{M}} f\left(x_{i}\right) \geq \frac{1}{\mu\left(B_{i}\right)} \int_{B_{i}} f d \mu \geq \frac{1}{2} \quad \text { for all } i=1,2, \ldots
$$

and hence

$$
\|\widetilde{\mathcal{M}} f\|_{p, \mu} \geq \frac{1}{2} \mu\left(\mathbf{R}^{n}\right)^{1 / p}=\infty
$$

A similar counterexample for the strong maximal operator was given in [4].
Next we discuss an improvement of (1.4). Here we need the following Besicovitch's covering theorem.

Theorem 3.1. Suppose that E is a bounded subset of \mathbf{R}^{n} and that \mathcal{B} is a collection of of closed balls such that each point of E is a center of some ball in \mathcal{B}. Then there exists an integer $c_{n} \geq 2$ (depending only on the dimension) and subcollections $\mathcal{B}_{1}, \ldots, \mathcal{B}_{c_{n}} \subset \mathcal{B}$ of at most countably many balls such that the balls in each family \mathcal{B}_{i} are pairwise disjoint and such that

$$
E \subset \bigcup_{i=1}^{c_{n}} \bigcup_{B \in \mathcal{B}_{i}} B
$$

For the proof of Besicovitch's covering theorem we refer to [3, Theorem 1.1]. Some estimates for the constant c_{n} are obtained in [5].

Theorem 3.2. For any $\lambda>0$ and any μ-locally integrable function $f: \mathbf{R}^{n} \rightarrow[0, \infty]$ we have

$$
\begin{equation*}
\mu(\{\mathcal{M} f>\lambda\})+\left(c_{n}-1\right) \mu(\{f>\lambda\}) \leq \frac{1}{\lambda} \int_{\{\mathcal{M} f>\lambda\}} f d \mu+\left(c_{n}-1\right) \frac{1}{\lambda} \int_{\{f>\lambda\}} f d \mu \tag{3.1}
\end{equation*}
$$

Here c_{n} is the Besicovitch constant.

Proof. We fix $\lambda>0$ and denote $E_{\lambda}=\{\mathcal{M} f>\lambda\}$. We may assume that $\mu\left(E_{\lambda}\right)<\infty$, since otherwise by (1.4) the right side of (3.1) is infinity. For every $x \in E_{\lambda}$ there is a ball $B\left(x, r_{x}\right)$ so that

$$
\begin{equation*}
\frac{1}{\mu\left(B\left(x, r_{x}\right)\right)} \int_{B\left(x, r_{x}\right)} f d \mu>\lambda . \tag{3.2}
\end{equation*}
$$

We have that

$$
\begin{align*}
\int_{B\left(x, r_{x}\right)} f d \mu & =\int_{B\left(x, r_{x}\right) \cap\left(\mathbf{R}^{n} \backslash E_{\lambda}\right)} f d \mu+\int_{B\left(x, r_{x}\right) \cap E_{\lambda}} f d \mu \\
& \leq \lambda \mu\left(B\left(x, r_{x}\right) \cap\left(\mathbf{R}^{n} \backslash E_{\lambda}\right)\right)+\int_{B\left(x, r_{x}\right) \cap E_{\lambda}} f d \mu \tag{3.3}
\end{align*}
$$

and that

$$
\begin{equation*}
\mu\left(B\left(x, r_{x}\right)\right)=\mu\left(B\left(x, r_{x}\right) \cap\left(\mathbf{R}^{n} \backslash E_{\lambda}\right)\right)+\mu\left(B\left(x, r_{x}\right) \cap E_{\lambda}\right) . \tag{3.4}
\end{equation*}
$$

Combining (3.2), (3.3), and (3.4) we obtain

$$
\begin{equation*}
\int_{B\left(x, r_{x}\right) \cap E_{\lambda}} f d \mu>\lambda \mu\left(B\left(x, r_{x}\right) \cap E_{\lambda}\right) \tag{3.5}
\end{equation*}
$$

Let $B_{R}=B(0, R)$ be a fixed ball and denote $\mathcal{B}=\left\{B\left(x, r_{x}\right): x \in B_{R} \cap E_{\lambda}\right\}$. By Besicovitch's covering theorem there are subfamilies $\mathcal{B}_{1}, \ldots, \mathcal{B}_{c_{n}}$, of \mathcal{B} such that each of these subfamilies consists of at most countably many pairwise disjoint balls and that

$$
B_{R} \cap E_{\lambda} \subset \bigcup_{i=1}^{c_{n}} \bigcup_{B \in \mathcal{B}_{i}} B
$$

We denote $F_{i}=\bigcup_{B \in \mathcal{B}_{i}} B, i=1,2, \ldots, c_{n}$, and $F=\bigcup_{i=1}^{c_{n}} F_{i}$. Since the balls in each \mathcal{B}_{i} are pairwise disjoint, it follows from (3.5) that

$$
\begin{equation*}
\mu\left(F_{i} \cap E_{\lambda}\right)<\frac{1}{\lambda} \int_{F_{i} \cap E_{\lambda}} f d \mu, \quad \text { for } i=1,2, \ldots, c_{n} \tag{3.6}
\end{equation*}
$$

Then we use the elementary fact that for any measure ν we have

$$
\begin{equation*}
\sum_{i=1}^{c_{n}} \nu\left(F_{i} \cap E_{\lambda}\right)=\nu\left(F \cap E_{\lambda}\right)+\sum_{j=2}^{c_{n}} \nu\left(G_{j} \cap E_{\lambda}\right) \tag{3.7}
\end{equation*}
$$

where

$$
G_{j}=\cup_{\left\{k_{1}, \ldots, k_{j}\right\} \subset\left\{1, \ldots, c_{n}\right\}}\left(F_{k_{1}} \cap \cdots \cap F_{k_{j}}\right), \quad j=2,3, \ldots, c_{n}
$$

Using (3.6) and (3.7) we deduce that

$$
\mu\left(F \cap E_{\lambda}\right)+\sum_{j=2}^{c_{n}} \mu\left(G_{j} \cap E_{\lambda}\right)<\frac{1}{\lambda} \int_{F \cap E_{\lambda}} f d \mu+\frac{1}{\lambda} \sum_{j=2}^{c_{n}} \int_{G_{j} \cap E_{\lambda}} f d \mu
$$

Inequality (2.5) then implies that

$$
\mu\left(B_{R} \cap E_{\lambda}\right)+\left(c_{n}-1\right) \mu(\{f>\lambda\}) \leq \frac{1}{\lambda} \int_{E_{\lambda}} f d \mu+\left(c_{n}-1\right) \frac{1}{\lambda} \int_{\{f>\lambda\}} f d \mu
$$

and by letting $R \rightarrow \infty$ we prove the desired conclusion.

As in Corollary 2.3 we obtain an estimate for the constant in the Hardy-Littlewood Theorem.

Corollary 3.3. Let $A_{p, n}$ be the unique positive solution of the equation

$$
\begin{equation*}
(p-1) x^{p}-p x^{p-1}-\left(c_{n}-1\right)=0 \tag{3.8}
\end{equation*}
$$

where c_{n} is the Besicovitch constant. Then the estimate

$$
\begin{equation*}
\|\mathcal{M} f\|_{p, \mu} \leq A_{p, n}\|f\|_{p, \mu} \tag{3.9}
\end{equation*}
$$

holds.

The constant $A_{p, n}$ given by (3.8) tends to one as p goes to infinity. This shows that it is asymptotically sharp near ∞. However, $A_{p, n}$ grows as $n \rightarrow \infty$. It is still unknown to us whether the constant $A_{p, n}$ in (3.9) can be replaced with a constant both independent of the measure μ and of the dimension n.

REFERENCES

1. K. F. Andersen, Weighted inequalities for maximal functions associated with general measures, Trans. Amer. Math. Soc. 326 (1991), 907-920.
2. A. Bernal, A note on the one-dimensional maximal function, Proc. Roy. Soc. Edinburgh 111A (1989), 325-328.
3. M. deGuzmán, Differentiation of integrals in \mathbf{R}^{n}, Lecture Notes in Mathematics 481, Springer-Verlag, 1975.
4. R. Fefferman, Strong differentiation with respect to measures, Amer. J. Math. 103 (1981), 33-40.
5. Z. Füredi and P.A. Loeb, On the best constant for the Besicovitch covering theorem, Proc. Amer. Math. Soc. 121 (1994), 1063-1073.
6. J. Garnett, Bounded analytic functions, Pure and Applied Mathematics, Academic Press, 1981.
7. L. Grafakos and S. Montgomery-Smith, Best constants for uncentered maximal functions, Bull. London Math. Soc. 29 (1996), 60-64.
8. P. Sjögren, A remark on the maximal function for measures in \mathbf{R}^{n}, Amer. J. Math. 105 (1983), 1231-1233.
9. E. M. Stein, Harmonic Analysis: Real-Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.

[^0]: 1991 Mathematics Subject Classification. 42B25.
 *Research partially supported by the National Science Foundation and by the University of Missouri Research Board.

