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Abstract. Sharp weak type (1, 1) and Lp estimates in dimension one are obtained

for uncentered maximal functions associated with Borel measures which do not nec-

essarily satisfy a doubling condition. In higher dimensions uncentered maximal func-

tions fail to satisfy such estimates. Analogous results for centered maximal functions

are given in all dimensions.

1. Introduction

Let µ be a nonnegative Borel measure on Rn and let f : Rn → [0,∞] be a µ-

locally integrable function. The uncentered maximal function of f with respect to

µ is defined by

M̃f(x) = sup
B

1
µ(B)

∫
B

f dµ, (1.1)

where the supremum is taken over all closed balls B containing x. Let B(x, r)

denote the closed ball with center x and radius r > 0. The centered maximal

function of f with respect to µ is defined by

Mf(x) = sup
r>0

1
µ(B(x, r))

∫
B(x,r)

f dµ, (1.2)
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with the interpretation that the integral averages in (1.1) and (1.2) are equal to

f(x) if µ(B) = 0 or µ(B(x, r)) = 0.

If µ is Lebesgue measure, these definitions give the usual uncentered and centered

Hardy–Littlewood maximal operators. It is a classical result, see [9, p. 13], that if

µ satisfies a doubling condition,

µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ Rn and r > 0, (1.3)

both of these operators are of weak type (1,1) and they map Lp(Rn, µ), p > 1, into

itself.

Omitting the doubling requirement, it is still true that M maps Lp(Rn, µ),

p > 1, into itself, but the corresponding result for M̃ is false if n ≥ 2. An example

indicating this statement is given in section 3. Examples showing that M̃ is not of

weak type (1,1) if n ≥ 2 can be found in [8].

It is a geometrical phenomenon, however, that such counterexamples do not exist

in dimension one. In fact in dimension one, M̃ maps Lp(R1, µ), p > 1, into itself

without the doubling assumption about µ, see [2] and [8]. This is a consequence of

a special covering argument available only on the real line. In this article we give

sharp Lp and weak type (1,1) estimates for M̃ with constants independent of µ.

In higher dimensions we obtain an improvement of the known estimate

µ({Mf > λ}) ≤ cn
λ

∫
{Mf>λ}

f dµ, λ > 0, (1.4)

where cn is the Besicovitch constant. See section 3 for details.

2. The one-dimensional case

On R1, fix a nonnegative Borel measure µ. The inequality below was first proved
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in [7] when µ is the usual Lebesgue measure. The proof given there is different and

doesn’t generalize to this context.

Theorem 2.1. For any λ > 0 and any µ-locally integrable function f : R1 → [0,∞]

we have

µ({M̃f > λ}) + µ({f > λ}) ≤ 1
λ

∫
{fMf>λ}

f dµ+
1
λ

∫
{f>λ}

f dµ. (2.1)

Proof. Fix λ > 0 and denote Eλ = {M̃f > λ}. If µ({f > λ}) = ∞, then

by Chebyshev’s inequality the right side of (2.1) is infinity and there is nothing to

prove. Hence we may assume that µ({f > λ}) <∞. For every x ∈ Eλ there is an

interval Ix containing x such that

1
µ(Ix)

∫
Ix

f dµ > λ. (2.2)

By Lindelöf’s theorem there is a countable subcollection Ij , j = 1, 2, . . . , such that

∞⋃
j=1

Ij =
⋃
x∈Eλ

Ix.

Let I = {Ij : j = 1, 2, ..., N} and write

FN =
⋃
I∈I

I.

By Lemma 4.4 in [6] we obtain two subcollections I1 and I2 of I so that the

intervals in each of these are pairwise disjoint and that

FN =
2⋃
i=1

⋃
I∈Ii

I.

We denote Fi =
⋃
I∈Ii I, i = 1, 2. Since the intervals in Ii, i = 1, 2, are pairwise

disjoint and (2.2) holds we obtain

µ(Fi) =
∑
I∈Ii

µ(I) <
1
λ

∑
I∈Ii

∫
I

f dµ =
1
λ

∫
Fi

f dµ for i = 1, 2. (2.3)
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Therefore
µ(FN ) + µ(F1 ∩ F2) = µ(F1) + µ(F2)

<
1
λ

∫
F1

f dµ+
1
λ

∫
F2

f dµ

=
1
λ

∫
FN

f dµ+
1
λ

∫
F1∩F2

f dµ.

(2.4)

For any µ-measurable set E such that µ(E) <∞ we have

1
λ

∫
E

f dµ+ µ({f > λ}) ≤ 1
λ

∫
{f>λ}

f dµ+ µ(E). (2.5)

To see this, we observe that∫
E

(f − λ) dµ =
∫
{f≤λ}∩E

(f − λ) dµ+
∫
{f>λ}∩E

(f − λ) dµ

≤
∫
{f>λ}

(f − λ) dµ.

Using (2.4) and (2.5) we deduce that

µ(FN ) + µ({f > λ}) ≤ 1
λ

∫
FN

f dµ+
1
λ

∫
{f>λ}

f dµ.

Since FN is an increasing sequence of µ−measurable sets whose union is Eλ, in-

equality (2.1) follows by letting N →∞.

Remarks 2.2. (1) Inequality (2.1) is stronger than the standard weak type (1,1)

estimate obtained, for example, in [2]. In particular, estimate (2.1) implies that M̃

is of weak type (1,1) with constant 2.

(2) Equality can actually occur in (2.1). For instance this is the case when f

even, symmetrically decreasing about the origin and µ is Lebesgue measure, see [7].

Now we show that the sharp weak type estimate (2.1) implies a sharp version of

the Hardy–Littlewood Theorem.

Corollary 2.3. Let 1 < p < ∞ and let Ap be the unique positive solution of the

equation

(p− 1)xp − p xp−1 − 1 = 0. (2.6)
4



Then

‖M̃f‖p,µ ≤ Ap‖f‖p,µ. (2.7)

Proof. We may suppose that f is not zero µ-almost everywhere and that

f ∈ Lp(R1, µ) since otherwise there is nothing to prove. Fubini’s theorem and (2.1)

imply that

∫
R1

(M̃f)p dµ+
∫
R1
fp dµ = p

∫ ∞
0

λp−1µ({M̃f > λ}) dλ+ p

∫ ∞
0

λp−1µ({f > λ}) dλ

≤ p
∫ ∞

0

λp−2

∫
{fMf>λ}

f dµ dλ+ p

∫ ∞
0

λp−2

∫
{f>λ}

f dµ dλ

=
p

p− 1

∫
R1

(M̃f)p−1f dµ+
p

p− 1

∫
R1
fp dµ

and hence

∫
R1

(M̃f)p dµ ≤ p

p− 1

∫
R1

(M̃f)p−1f dµ+
1

p− 1

∫
R1
fp dµ.

Hölder’s inequality gives

∫
R1

(M̃f)p−1f dµ ≤
( ∫

R1
(M̃f)p dµ

)(p−1)/p( ∫
R1
fp dµ

)1/p

and hence

(p− 1)‖M̃f‖pp,µ ≤ p‖M̃f‖p−1
p,µ ‖f‖p,µ + ‖f‖pp,µ

or equivalently

(p− 1)
(‖M̃f‖p,µ
‖f‖p,µ

)p
− p

(‖M̃f‖p,µ
‖f‖p,µ

)p−1

− 1 ≤ 0.

The claim follows from this inequality.

Remarks 2.4. (1) When µ is Lebesgue measure, then the Lp-bound above is the

best possible, see [7].

(2) The bound Ap in (2.7) is independent of the measure µ.

We close this section by studying the reverse inequality to (2.1).
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Proposition 2.5. Suppose that f : R1 → [0,∞] is a locally µ-integrable function.

Then ∫
{fMf>λ}

f dµ ≤ λµ({M̃f > λ}) (2.8)

for every λ ≥ ess infR1 M̃f .

Proof. Let λ > ess infR1 M̃f and denote Eλ = {M̃f > λ}. Then R1 \ Eλ has

a positive measure. On the other hand, Eλ is an open set on the real line and hence

it is a union of countably many pairwise disjoint open intervals Eλ =
⋃∞
j=1 Ij . For

an interval I and σ > 0, let σI be the interval with the same center whose length

is multiplied by σ. Since every σIj intersects R1 \ Eλ when σ > 1, we see that

1
µ(σIj)

∫
σIj

f dµ ≤ λ, for j = 1, 2, . . .

By letting σ → 1 we obtain

1
µ(Ij)

∫
Ij

f dµ ≤ λ, for j = 1, 2, . . . ,

and hence by summing up we deduce that

∫
Eλ

f dµ ≤
∞∑
j=1

∫
Ij

f dµ ≤ λ
∞∑
j=1

µ(Ij) = λµ(Eλ).

This implies that (2.8) is true for every λ ≥ ess infR1 M̃f and the proof is now

complete.

Remark 2.6. Suppose that f ∈ L1(R1, µ). If λ < ess infR1 M̃f , then µ(Eλ) =

µ(R1) and (2.8) holds for every

λ ≥ 1
µ(R1)

∫
R1
f dµ.

In particular, if µ(R1) =∞, then (2.8) holds for every λ > 0.
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3. The higher dimensional case

If n ≥ 2, the uncentered maximal function associated to a general measure is

not bounded on Lp(Rn) for 1 < p <∞. To see this, select closed balls B1, B2, . . .

so that the origin is on the boundary of each ball and such that for every Bi,

i = 1, 2, . . . , there is a point xi ∈ Bi \ ∪j �=iBj . Set

µ =
∞∑
i=0

δxi ,

where x0 = 0 and δxi denotes Dirac mass at xi. Let f be the characteristic function

of B1. Clearly ‖f‖p,µ ≤ 21/p, but

M̃f(xi) ≥
1

µ(Bi)

∫
Bi

f dµ ≥ 1
2

for all i = 1, 2, . . . ,

and hence

‖M̃f‖p,µ ≥
1
2
µ(Rn)1/p =∞.

A similar counterexample for the strong maximal operator was given in [4].

Next we discuss an improvement of (1.4). Here we need the following Besicov-

itch’s covering theorem.

Theorem 3.1. Suppose that E is a bounded subset of Rn and that B is a collection

of of closed balls such that each point of E is a center of some ball in B. Then

there exists an integer cn ≥ 2 (depending only on the dimension) and subcollections

B1, . . . ,Bcn ⊂ B of at most countably many balls such that the balls in each family

Bi are pairwise disjoint and such that

E ⊂
cn⋃
i=1

⋃
B∈Bi

B.

For the proof of Besicovitch’s covering theorem we refer to [3, Theorem 1.1].

Some estimates for the constant cn are obtained in [5].
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Theorem 3.2. For any λ > 0 and any µ-locally integrable function f : Rn → [0,∞]

we have

µ({Mf > λ}) + (cn − 1)µ({f > λ}) ≤ 1
λ

∫
{Mf>λ}

f dµ+ (cn − 1)
1
λ

∫
{f>λ}

f dµ.

(3.1)

Here cn is the Besicovitch constant.

Proof. We fix λ > 0 and denote Eλ = {Mf > λ}. We may assume that

µ(Eλ) < ∞, since otherwise by (1.4) the right side of (3.1) is infinity. For every

x ∈ Eλ there is a ball B(x, rx) so that

1
µ(B(x, rx))

∫
B(x,rx)

f dµ > λ. (3.2)

We have that

∫
B(x,rx)

f dµ =
∫
B(x,rx)∩(Rn\Eλ)

f dµ+
∫
B(x,rx)∩Eλ

f dµ

≤ λµ(B(x, rx) ∩ (Rn \ Eλ)) +
∫
B(x,rx)∩Eλ

f dµ (3.3)

and that

µ(B(x, rx)) = µ(B(x, rx) ∩ (Rn \ Eλ)) + µ(B(x, rx) ∩ Eλ). (3.4)

Combining (3.2), (3.3), and (3.4) we obtain

∫
B(x,rx)∩Eλ

f dµ > λµ(B(x, rx) ∩ Eλ). (3.5)

Let BR = B(0, R) be a fixed ball and denote B = {B(x, rx) : x ∈ BR ∩ Eλ}. By

Besicovitch’s covering theorem there are subfamilies B1, . . . ,Bcn , of B such that

each of these subfamilies consists of at most countably many pairwise disjoint balls

and that

BR ∩ Eλ ⊂
cn⋃
i=1

⋃
B∈Bi

B.
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We denote Fi =
⋃
B∈Bi B, i = 1, 2, . . . , cn, and F =

⋃cn
i=1 Fi. Since the balls in

each Bi are pairwise disjoint, it follows from (3.5) that

µ(Fi ∩ Eλ) <
1
λ

∫
Fi∩Eλ

f dµ, for i = 1, 2, . . . , cn. (3.6)

Then we use the elementary fact that for any measure ν we have

cn∑
i=1

ν(Fi ∩ Eλ) = ν(F ∩ Eλ) +
cn∑
j=2

ν(Gj ∩ Eλ), (3.7)

where

Gj = ∪{k1,...,kj}⊂{1,...,cn}(Fk1 ∩ · · · ∩ Fkj ), j = 2, 3, . . . , cn.

Using (3.6) and (3.7) we deduce that

µ(F ∩ Eλ) +
cn∑
j=2

µ(Gj ∩ Eλ) <
1
λ

∫
F∩Eλ

f dµ+
1
λ

cn∑
j=2

∫
Gj∩Eλ

f dµ.

Inequality (2.5) then implies that

µ(BR ∩ Eλ) + (cn − 1)µ({f > λ}) ≤ 1
λ

∫
Eλ

f dµ+ (cn − 1)
1
λ

∫
{f>λ}

f dµ,

and by letting R→∞ we prove the desired conclusion.

As in Corollary 2.3 we obtain an estimate for the constant in the Hardy–Littlewood

Theorem.

Corollary 3.3. Let Ap,n be the unique positive solution of the equation

(p− 1)xp − p xp−1 − (cn − 1) = 0, (3.8)

where cn is the Besicovitch constant. Then the estimate

‖Mf‖p,µ ≤ Ap,n‖f‖p,µ, (3.9)
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holds.

The constant Ap,n given by (3.8) tends to one as p goes to infinity. This shows

that it is asymptotically sharp near ∞. However, Ap,n grows as n→∞. It is still

unknown to us whether the constant Ap,n in (3.9) can be replaced with a constant

both independent of the measure µ and of the dimension n.
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