
ON THE RESTRICTION CONJECTURE

LAURA DE CARLI AND LOUKAS GRAFAKOS

Abstract. We prove the restriction conjecture for the class of functions consisting of
products of radial functions and spherical harmonics Y (ω), when Y (ω) is a product of

factors of the form (sinω)s−jP
(s)
n (cos(ω)) and P

(s)
n (t) is an ultraspherical polynomial.

1. Introduction

The restriction conjecture is a challenging open problem in Fourier analysis. Denoting
by

f̂(ζ) =
∫
Rd

f(x)e−2πi〈x, ζ〉dx

the Fourier transform of C∞0 function on Rd and by Sd−1 = {x ∈ Rd : ‖x‖ = 1} the unit
sphere in Rd, the restriction conjecture, (RC henceforth), states that for every 1 ≤ p < 2d

d+1

and q ≥ d−1
d+1p

′ the following inequality holds

sup
F∈C∞0 (Rd)

‖F̂‖Lq(Sd−1, dσ)

‖F‖Lp(Rd)

≤ C(1.1)

where dσ(ζ) denotes surface measure on Sd−1 and R+ = (0, ∞). Here C is a constant that
depends only on p, q, and d, and p′ is the dual exponent of p, that is, 1

p + 1
p′ = 1.

The conditions on p and q are optimal, (see [10]). The RC has been proved in the case
d = 2 by C. Fefferman [6], and is still open in the other cases. When d > 2 only partial
results are known; one of these results is the Stein1 -Tomas restriction theorem [13], [9]
which asserts that the RC holds whenever 1 ≤ p < 2(d+1)

d+3 and every q ≥ d−1
d+1p

′. See also

[10]. When p = 2(d+1)
d+3 we have d−1

d+1p
′ = 2 and the exponent q = 2 plays a crucial role as it

allows a reduction of (1.1) to the equivalent “dual” inequality∥∥∥∥∫
Sd−1

F̂ (ζ)e2πi〈x, ζ〉dσ(ζ)
∥∥∥∥

Lp′ (Rn)

≤ C‖F‖Lp(Rn)

via a TT ∗ technique. The case q < 2 cannot be handled with the same technique, and
requires more work.

When 2(d+1)
d+3 < p < 2d

d+1 we can prove that the ratio in (1.1) is uniformly bounded on
special subspaces of Lp(Rd). For example, it easy to see that (1.1) holds for every q ≤ 2 and
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every p ≤ 2d
d+1 if Lp(Rd) is replaced by the Sobolev space W s,p0(Rd), where p0 = 2(d+1)

d+3 ,
s ≥ d−1

d(d+1) . By the Sobolev embedding theorem, the latter embeds in Lp(Rd) for every

p ≤ 2d
d+1 .

Another class of functions for which the conjecture is valid is the class of radial functions.
Let x = rω, with r = |x| and ω ∈ Sd−1. Let F (x) = f(|x|) ∈ C∞0 (Rd). The Fourier
transform of F (x) is

F̂ (ξ) = |ξ|− d2+1

∫ +∞

0
f(r)J d

2
−1(r|ξ|)r

d
2 dr = H̃ d

2
−1f(|ξ|),

where Jν(r), is the usual Bessel function of the first kind and H̃αf(ρ) is the Hankel-Fourier-
Bessel transform of f(r). See [11] for the definition and properties of the Bessel function
and [4] for the definition of the Hankel-Fourier-Bessel transform.

To see the validity of the RC for radial functions, we note that the Lp(Rd) norm of a
radial function F (x) = f(|x|) ∈ C∞0 (Rd) is

‖F‖Lp(Rd) = |Sd−1|
1
p ‖f(r)r

d−1
p ‖Lp(R+),

where |Sd−1| = 2π
d
2

Γ
(

d
2

) denotes the measure of the surface of Sd−1. We also have

(∫
Sd−1

|F̂ (ξ)|qdσ(ξ)
) 1
q

= |Sd−1|
1
q

∣∣∣∣∫ +∞

0
f(r)J d

2
−1(r)r

d
2 dr

∣∣∣∣ ,
and applying Hölder’s inequality, we obtain(∫

Sd−1

|F̂ (ξ)|qdσ(ξ)
) 1
q

= |Sd−1|
1
q ‖f(r)r

d−1
p ‖Lp(R+)‖r

d
2
− d−1

p J d
2
−1(r)‖Lp′ (R+)

= |Sd−1|
1
q
− 1
p ‖f‖Lp(Rd)‖r

d
2
− d−1

p J d
2
−1(r)‖Lp′ (R+).

Since J d
2
−1(r) is O(r−

1
2 ) when r → +∞ and is O(r

d
2
−1) when r → 0, we can easily check

that r
d
2
− d−1

p J d
2
−1(r) ∈ Lp′(R+) if and only if p < 2d

d+1 .

Note that in this special case, |Sd−1|
1
q
− 1
p ‖r

d
2
− d−1

p J d
2
−1‖Lp′ (R+) is the best constant for

the restriction inequality (1.1), i.e.

sup
F radial

‖F̂‖Lq(Sd−1)

‖F‖p
= |Sd−1|

1
q
− 1
p ‖r

d
2
− d−1

p J d
2
−1(r)‖Lp′ (R+).

We also observe that in this case (1.1) holds for every q <∞.
More generally, let Hm be the subspace of L2(Sd−1) spanned by the products of spherical

harmonics of degree m, with m ≥ 0, and radial functions in C∞0 (Rd). If F (x) = F (rω) =
rmfm(r)Y (ω) ∈ Hm, where Y is a spherical harmonic, then

F̂ (ζ) = F̂ (ρσ) = ρmf̂m(ρ)Y (σ) ,(1.2)

where

f̂m(ρ) = imρ−
n
2
+1

∫ +∞

0
fm(r)J d

2
−1+m(rρ)r

d
2
+mdr = imH̃ d

2
−1+mfm(ρ).
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Let n be a nonnegative integer and let s > −1
2 . We denote by P

(s)
n the ultraspherical

polynomial of degree n and order s. This is defined by

P (s)
n (t) = Cs

nP
s− 1

2
,s− 1

2
n (t),

where P
(α,β)
n (t) is the usual Jacobi polynomial of degree n on [−1, 1] and Cs

n is a constant
of normalization. We refer the reader to the Appendix for the value of the constant Cs

n and
for the definition of Jacobi polynomials.

The spherical harmonics have an explicit expression in terms of the Jacobi (or ultras-
pherical) polynomials. Indeed, let m0 ≥ m1 ≥ · · ·md−2 ≥ 0 be integers and let

Y(mk)(z) = e±imd−2zd−1Πd−3
k=0(sin zk+1)mk+1P

(mk+1+ d−1−k
2

)
mk−mk+1

(cos zk+1) .(1.3)

Then every spherical harmonic Ym(ω) of degree m = m0 ≥ 0 can be written as a finite linear
combination of the Y(mk)’s, (see [5]). This may be proved using a dimension comparison
with space of the spherical harmonics of degree m which has dimension

δm,d = (2m + d− 2)
Γ(m + d− 2)

Γ(m + 1)Γ(d− 1)
.

In this paper we consider the following class of functions: products of radial functions in
C∞0 (Rd) and spherical harmonics which, in polar coordinates, can be expressed as products
of factors of the form of (sin z)s−jP

(s)
n (cos z). We denote this class of functions by L. It

is easy to verify that the space L is invariant under the action of the Fourier transform.
Moreover, one can easily see that the space

span(L) =

{
N∑

i=1

rmifi(r)Ymi(ω) : N > 0, fi(r) ∈ C∞0 (R+), and Ymi(ω) as in (1.3)

}
is dense in Lp(Rd) for every p ≤ 2. Therefore, the RC is equivalent to the estimate

sup
span(L)

‖
∑N

i=1 f̂i(1)Ymi‖Lq(Sd−1)

‖
∑N

i=1 r
mifi Ymi‖Lp(Rd)

≤ C,(1.4)

where C depends only on p, q, and d (and in particular is independent of N). This provides
a strong motivation for the consideration of the class L.

Our main result, Theorem 1.1 below, says that RC holds for the space L, i.e. (1.4) is
valid when N = 1.

Theorem 1.1. Let 1 ≤ p < 2d
d+1 and let q = d−1

d+1p
′. Then we have

sup
F∈L

‖F̂‖Lq(Sd−1)

‖F‖Lp(Rd)

≤ C(1.5)

where C depends only on p, q, and d.

The basic strategy in proving Theorem 1.1 is the following. Let F (x) ∈ L. Since
F (rω) = rmfm(r)Y (ω) and F̂ (ζ) is as in (1.2), then we have

‖F̂‖Lq(Sd−1)

‖F‖Lp(Rd)

=
‖f̂m(1)Y ‖Lq(Sd−1)

‖rmfmY ‖Lp(Rd)

.(1.6)
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We can therefore reduce matters to estimating the ratios of the radial parts and the angular
parts separately. Our main task is to obtain the appropriate estimates for these parts.
Finally, we show that the combined estimates for

|f̂m(1)|
‖rmfm‖Lp(R+, rd−1dr)

and
‖Y ‖Lq(Sd−1)

‖Y ‖Lp(Sd−1)

yield (1.5).

2. Four useful propositions

In what follows we will often denote by C a generic constant which is not necessarily the
same at each occurrence. The following results are ingredients of the proof of Theorem 1.1.

Proposition 1. Let Jν(x) be the usual Besel function of the first kind with ν ≥ 0. Then,
xαJν(x) ∈ Lq(R+) if and only if

−1
q
− ν < α <

1
2
− 1

q
,(2.1)

and for
1
4
− 1

q
< α <

1
2
− 1

q
, for 2 ≤ q <∞, and for ν sufficiently large, we have

‖xαJν(x)‖q ≤ Aν
α− 1

2
+ 1
q .(2.2)

where A depends only on α and q.

Proposition 2. Let s ≥ j ≥ 0. Then

sup
0≤z≤π

2

|(sin z)s−jP (s)
n (cos z)| ≤ (P (s)

n (1))
j
s (cn, s)1−

j
s(2.3)

where P (s)
n (1) =

Γ(n + 2s)
Γ(n + 1)Γ(2s)

, and

cn, s =



Γ
(

n
2 + s

)
Γ

(
n
2 + 1

)
Γ(s)

if n is even,

(1 + n)
Γ(n+1

2
+s)

Γ(n+3
2 )Γ(s)√

(1− s) s + (n + s)2
if n is odd.

(2.4)

Moreover,

sup
0≤z≤π

2

|(sin z)s−jP (s)
n (cos z)| ≤ ej

(
1 +

n + 1
2s

)j

cn, s.(2.5)

Proposition 2 is a generalization of Theorem 7.33.2 in [12], where the same result is
proved for j = 0 and 0 < s < 1. Note that the inequality (2.3) is sharp in the case j = s.
Indeed, P (s)

n (t) ≤ P (s)
n (1) for every −1 ≤ t ≤ 1, (see (A.7)).
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Proposition 3. Let n ≥ 0 and let j ≤ s, with s ≥ 0. Then

sup
t∈[0, 1]

|(1− t2)
1
2
(s−j)P

(s)
n (t)|

(∫ 1

0

∣∣∣P (s)
n (t)

∣∣∣2 (1− t2)s+ 1
2dt

) 1
2

≤ C(s + n)
1
4(2.6)

where C is a constant that depends only on j.

The following proposition is as easy consequence of Proposition 3 using complex inter-
polation.

Proposition 4. Let 2 ≤ r ≤ q and let η(x) be an analytic function on [2, ∞)× iR which
is bounded on [2, ∞] and satisfies η(2) ≥ −1

2 . Then,(∫ 1

0

∣∣∣P (s)
n (t)

∣∣∣q (1− t2)q( s2−η(q))dt
) 1
q

(∫ 1

0

∣∣∣P (s)
n (t)

∣∣∣r (1− t2)r( s2−η(r))dt
) 1
r

≤ C(s + n)
1
2r
− 1

2q(2.7)

where C is a constant that depends only on r, q, and sup
x≥2
|η(x)|.

It is worthwhile comparing Proposition 4 with Theorem 3 in the recent article of Carbery
and Wright [3]. They prove that the following inequality is satisfied for all 0 ≤ p ≤ q ≤ ∞,
j ∈ N and λ ≥ 1, and every polynomial on R of degree at most n.

∫ 1

0
|p(t)|

q
n (λ− t)j−1dt∫ 1

0
(λ− t)n−1dt


1
q

≤ σ
(jB(j, q + 1))

1
q

(jB(j, r + 1))
1
r


∫ 1

0
|p(t)| rn (λ− t)j−1dt∫ 1

0
(λ− t)n−1dt


1
r

(2.8)

where σ is independent of the above parameters and B(a, b) is the Beta function. If we let
λ = 1, q = nq, r = nr, from (2.8) we obtain(∫ 1

0
|p(t)|q(1− t)j−1dt

) 1
q

≤ σn (B(j, nq + 1))
1
q

(B(j, nr + 1))
1
r

(∫ 1

0
|p(t)|r(1− t)j−1dt

) 1
r

It is not difficult to show, (see also Lemma 5), that

(B(j, nq + 1))
1
q

(B(j, nr + 1))
1
r

≈ CΓ(j)
1
q
− 1
r (n + 1)

j
r
− j
q

as n→∞ with the other parameters fixed. Therefore (2.8) is equivalent to(∫ 1

0
|p(t)|q(1− t)j−1dt

) 1
q

≤ CσnΓ(j)
1
q
− 1
r (n + 1)

j
r
− j
q

(∫ 1

0
|p(t)|r(1− t)j−1dt

) 1
r

,

which is weaker than (2.7) and moreover the constant σ is not explicit.
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3. Proof of Proposition 1.

In this section we prove Proposition 1 and we state some facts that we will need in the proof
of Theorem 1.1. To prove Proposition 1 we make use of the following precise asymptotics of
the Bessel functions for large values of the argument that J.A. Barceló proved in his thesis,
(see also [2]).

Theorem (B) There exists a universal constant C > 0 which is such that for all ν > 1
2

and for all r > ν + ν
1
3 we have

Jν(r) =

√
2
π

cos θ(r)

(r2 − ν2)
1
4

+ hν(r)

where
θ(r) = (r2 − ν2)

1
2 − ν arccos

(ν

r

)
− π

4
,

and

|hν(r)| ≤


C

(
ν2

(r2 − ν2)
7
4

+
1
r

)
if ν + ν

1
3 ≤ r ≤ 2ν,

C

r
if r > 2ν.

Proof. (Proposition 1.) The conditions (2.1) on α are necessary because Jν(x) = O(xν)
when x→ 0 and is O(x−

1
2 ) when x→∞.

By Theorem (B) we have

‖Jν(x)xα‖Lq(2ν,∞) ≤ C

( ∫ ∞
2ν

(
r(α− 1

2
) + r(α−1)

)q
dr

) 1
q

.

Condition (2.1) on α guarantees that the integral above converges. Thus,

‖Jν(x)xα‖Lq(2ν,∞) ≤ Cν
α− 1

2
+ 1
q ,

which is the required estimate.
We use again Theorem (B) in the interval (ν + ν

1
3 , 2ν). We obtain,

‖Jν(x)xα‖
Lq(ν+ν

1
3 , 2ν)

≤C
(
‖rα(r2 − ν2)−

1
4 ‖

Lq(ν+ν
1
3 , 2ν)

+ ν2‖rα(r2 − ν2)−
7
4 ‖

Lq(ν+ν
1
3 , 2ν)

+ ‖rα−1‖
Lq(ν+ν

1
3 , 2ν)

)
≤Cν

α+ 1
q
− 1

2

(
‖sα(s2 − 1)−

1
4 ‖

Lq(1+ν−
2
3 , 2)

+ ‖sα(s2 − 1)−
7
4 ‖

Lq(1+ν−
2
3 , 2)

+ ν−
1
2

)
≤Cν

α+ 1
q
− 1

2 .

We are left with estimating the norm of rαJν(r) in the interval (0, ν + ν
1
3 ).

It is a well known fact, (see e.g. [7]) that there is a constant C > 0 such that for
all ν ≥ 0 and all r ≥ 0 we have |Jν(r)| < Cν−

1
3 . Furthermore, Jν(r) is increasing and

is |Jν(r)| < Cν−
1
2 in the interval [0, ν − ν

1
3 ]. The latter can be easily proved using the

following estimate, (see [14], pg. 255),

Jν(νx) ≤ e−νf(x)

(1− x2)
1
4

√
2πν
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where 0 ≤ x < 1, and

f(x) = log

(
1 +
√

1− x2

x

)
−

√
1− x2.

Therefore,

‖Jν(x)xα‖
Lq(ν−ν

1
3 , ν+ν

1
3 )
≤ Cν−

1
3
(ν + ν

1
3 )α+ 1

q − (ν − ν
1
3 )α+ 1

q

(αq + 1)
1
q

≤ Cν
1
3
(α+ 1

q
−1)

,

which is better than what we need. Indeed,
1
3
(α +

1
q
− 1) ≤ α +

1
q
− 1

2
⇐⇒ α ≥ 1

4
− 1

q
,

as required.
Since |Jν(r)| < Cν−

1
2 for all r ≤ ν − ν

1
3 , the estimate claimed in Proposition 1 easily

follows.

Remark. Proposition 1 can also be proved as a corollary of Proposition 4.1 in [4].

We now let F (x) = F (rω) = rmfm(r)Ym(ω) ∈ L, and we recall that F̂ (ζ) = F̂ (ρσ) =
ρmf̂m(ρ)Ym(σ), where

f̂m(ρ) = imρ−
n
2
+1

∫ +∞

0
fm(r)J d

2
−1+m(rρ)r

d
2
+m dr.

In order to prove (1.1) for a function F in L, we shall prove that, for every 1 ≤ p < 2d
d+1

and q ≥ d−1
d+1p

′, the ratio

‖F̂‖Lq(Sd−1, dσ)

‖F‖Lp(Rd)

=

∣∣∣∣∫ +∞

0
f(r)J d

2
−1+m(r)r

d
2
+mdr

∣∣∣∣(∫ +∞

0
|f(r)|prd−1+mpdr

) 1
p

‖Ym‖Lq(Sd−1, dσ)

‖Ym‖Lp(Sd−1, dσ)

(3.1)

is bounded by a constant that depends only on p, q and d. Then (3.1) will be a consequence
of the following lemmas.

Lemma 1. Let 1 ≤ p < 2d
d+1 and let f(r) ∈ C∞0 (0, +∞). Then,∣∣∣∣∫ +∞

0
fm(r)J d

2
−1+m(r)r

d
2
+mdr

∣∣∣∣(∫ +∞

0
|fm(r)|prd−1+mpdr

) 1
p

≤ Cm
(d−1)( 1

2
− 1
p
)+ 1

p′ .(3.2)

Lemma 2. Let p ≤ q ≤ 2. Let Ym(ω) be a spherical harmonics which, in polar coordinates,
can be expressed as the product of factors of the form of (sin z)s−jP

(s)
n (cos z), (see section

2). Then,
‖Ym‖Lq(Sd−1, dσ)

‖Ym‖Lp(Sd−1, dσ)

≤ Cm
(d−2)( 1

2p
− 1

2q
)
.(3.3)
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When Lemmas 1 and 2 are proved, then Theorem 1.1 easily follows. Indeed, let p ≤ 2d
d−1

and q = d−1
d+1p

′. By (3.2) and (3.3) the right-hand side of (3.1) is at most

Cm
(d−1)( 1

2
− 1
p
)+ 1

p′+(d−1)( 1
2p
− 1

2q
)
,

and the conditions on p and q guarantee that the exponent of m above is equal to −d−1
d+1

1
q =

− 1
p′ which is nonpositive.

Proof. (Lemma 1). By Hölder’s inequality,∣∣∣∣∫ +∞

0
f(r)J d

2
−1+m(r)r

d
2
+mdr

∣∣∣∣
≤

(∫ +∞

0
|f(r)|prmp+d−1dr

) 1
p

‖J d
2
−1+mr

d
2
− d−1

p ‖Lp′ (R+).

(3.4)

By Proposition 1, the Lp′ norm in (3.4) is finite if and only if p < 2d
d+1 and is at most a

constant multiple of the quantity m
(d−1)( 1

2
− 1
p
)+ 1

p′ .

The proof of Lemma 2 utilizes Proposition 2 and will be given in section 7.

4. Some more lemmas

The proof of Proposition 2 relies on Lemmas 3, 4 and 5 stated and proved below.

Lemma 3. Let 0 < j ≤ s. The relative extrema of (sin z)s−jP
(s)
n (cos z) in the interval

[0, π
2 ] are increasing whenever

z ≤ zs
j,n =

1
2

arccos
(
j − 3j2 + j3 + jn2 − s + 2js + 2jns + s2 − js2

j (n2 − j2 + 2ns + s2)

)
(4.1)

and decreasing otherwise. The relative extrema of (sin z)sP
(s)
n (cos z) in the interval [0, π

2 ]
are increasing whenever 0 ≤ s ≤ 1 and decreasing otherwise.

Proof. Let

ψj(z) = (n + s)2 + j2 +
j(j − 1) + s(s− 1)

sin2 z
.

Since ys
0,n(z) = (sin z)sP

(s)
n (cos z) satisfies the differential equation

u′′ + ψ0(z)u = 0,

(see the Appendix), it is not difficult to prove that ys
j,n(z) satisfies the differential equation

v′′ + 2jv′ cot z + ψj(z)v = 0.(4.2)

Let

f(z) = (ys
j,n(z))2 +

( d
dz ys

j,n(z))2

ψj(z)
.

Then,

f ′(z) = 2
d

dz
ys

j,n(z)

(
ys

j,n(z) +
d2

d2z
ys

j,n(z)ψj(z)− 1
2

d
dzy

s
j,n(z)ψ′j(z)

ψ2
j (z)

)
,
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and by (4.2)

f ′(z) = −2g(z)
(cot z)(csc z)2

(
d
dzy

s
j,n(z)

)2

(
n2 − j2 + 2ns + s2 + (j − s) (−1 + j + s) (csc z)2

)2 ,

where

g(z) = j3 − 3j2 + s(s− 1) + j(1 + n2 + 2s + 2ns− s2) + j(j2 − (n + s)2) cos(2z).

f(z) is increasing if and only if g(z) ≤ 0. If j = 0 then g(z) = s(s − 1), and therefore the
sequence of the relative extrema of y(s)

0,n(z) is increasing if s ≥ 1 and decreasing if 0 ≤ s ≤ 1.
If j �= 0, then f(z) is increasing if and only if z ≤ zs

j,n, where zs
j,n is defined as in (4.1).

Since f(z) = (ys
j,n(z))2 at the critical points of ys

j,n(z), then the theorem is proved.

The next ingredient of our proof is a theorem of Sturm type.

Lemma 4. Let H(z) be continuous on (z1, z2). Suppose that u(z) satisfies u′′+H(z)u = 0
and that H(z) ≥ N > 0 on (z1, z2). Then, u(z) has a zero on every subinterval of (z1, z2)
of length π√

N
.

Proof. It is an easy consequence of Theorem 1.82.1 in [12], (see also [8]).

We will also need the following easy Lemma.

Lemma 5. Let −x < y <∞, with x > 0. The function

x→ Γ (x)xy

Γ(x + y)

is an increasing function of x.

Proof. Let f(x) = Γ(x)xy

Γ(x+y) . To prove that f(x) is increasing we prove that

ln f(x) = y lnx + ln(Γ(x)))− ln(Γ(x + y))

is increasing, that is, its derivative is positive.
We recall that the logarithmic derivative of Γ(z) is

Γ′(z)
Γ(z)

= γ − 1
z
−
∞∑

m=1

(
1

z + m
− 1

m

)
where γ is Euler’s constant. Therefore,

(ln f(x))′ =
y

x
−
∞∑

m=0

1
x + m

− 1
x + y + m

.

The sum above is

≤
∫ ∞

0

(
1

x + ζ
− 1

x + y + ζ

)
dζ = ln

(
x + y

x

)
.

Therefore,
(ln f(x))′ ≥ y

x
− ln(1 +

y

x
) > 0

as required.
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An immediate consequence of Lemma 5 is that
Γ (x)xy

Γ(x + y)
≤ lim

x→∞
f(x) = 1, by Stirling’s

formula, while, if x ≥ x0, f(x) ≥ f(x0). Therefore,

Γ(x + y)
Γ(x)

≤ xyx−y
0

Γ(x0 + y)
Γ (x0)

.(4.3)

5. Proof of Proposition 2

Let ys
j,n(z) = (sin z)s−jP

(s)
n (cos z), and let cn, s be as defined in (2.4).

In what follows we will assume that n is even, since the proof in the other case is similar.
We first consider the case j = 0. By complex interpolation we can extend the result to
the general case. Indeed, the function ys

j,n(z) depends analytically on j. If j = s then

‖ys
s, n‖∞ = P

(s)
n (1) = Γ(n+2s)

Γ(n+1)Γ(2s) , (see the Appendix). If we prove that ‖ys
0,n‖∞ = cn, s, then

‖ys
j,n‖∞ ≤ (cs

n)1−
j
s (P (s)

n (1))
j
s

which is (2.3). We now prove (2.5). ¿From the inequality above follows that

‖ys
j,n‖∞ ≤ cn, s

(
P

(s)
n (1)
cn, s

) j
s

= cn, s

( √
πΓ(1+n

2 + s)
Γ(1+n

2 )Γ(1
2 + s)

) j
s

.

Let t = 1+n
2 for the sake of simplicity. We prove that( √

πΓ(t + s)
Γ(t)Γ(1

2 + s)

) 1
s

≤ e

(
1 +

t

s

)
.(5.1)

Let

g(t, s) =
√
πssΓ(t + s)

es(t + s)sΓ(t)Γ(1
2 + s)

.

We aim to prove that g(t, s) ≤ 1 for every t ≥ 1
2 and s ≥ 0.

By Lemma 5, t → g(t, s) is increasing. That can be easily seen if we let x = s + t and
s = y. Therefore

g(t, s) ≤
√
π

ss

esΓ(s + 1
2)

lim
t→∞

Γ(t + s)
(t + s)sΓ(t)

.

By Stirling’s formula,

Γ(t + s)
(t + s)sΓ(t)

∼
(

s+t
e

)t+s− 1
2

(t + s)s
(

t
e

)t− 1
2

= e−s
(
1 +

s

t

)t− 1
2
,

and thus

lim
t→∞

Γ(t + s)
(t + s)sΓ(t)

= 1.

Therefore,

g(t, s) ≤
√
π

ss

esΓ(s + 1
2)

.(5.2)



ON THE RESTRICTION CONJECTURE 11

Let h(s) be the function on the right-hand side of (5.2). We prove that h(s) is decreasing,
and therefore that g(t, s) ≤ h(0) = 1 as required.

It is enough to prove that, for every s > 0, h(s + 1) ≥ h(s), or equivalently that

h(s + 1)
h(s)

=
(s + 1)s+1

e ss(s + 1
2)

=
1
e

(
1 +

1
s

)s s + 1
s + 1

2

≤ 1.

which can easily seen too be the case.

To prove Proposition 2 in the case j = 0 we use induction on n. Assume s > 1, since the
case s < 1 is known (see [12]).

The case n = 0 is easy to check. Indeed, P (s)
0 (t) ≡ 1, and the right-hand side of (2.5) is

also equal to one.
We now assume that the result is true for n− 1 and we prove that it is also true for n.
We recall that we have set ys

j,n(t) = (sin t)s−jP
(s)
n (t) and that (P (s)

n (t))′ = 2sP (s+1)
n−1 (t),

(see the Appendix). Thus,

(ys
j,n)′(z) = (s− j)(cos z)P (s)

n (cos z) (sin z)s−1−j − 2sP (s+1)
n−1 (cos z)(sin z)s+1−j .

Therefore, the following equation is satisfied by the critical points of ys
j,n(z).

ys
j,n(z) =

2s
s− j

(tan z) ys+1
j,n−1(z).

When j = 0, ys
j,n(z) satisfies

ys
0,n(z) = 2(tan z) ys+1

j,n−1(z).(5.3)

Let zs
n be the point at which ys

0,n(z) attains its maximum. By Lemma 3, the sequence of
the relative extrema of ys

0,n(z) is decreasing, and therefore zs
n is the smallest critical point

of ys
0,n(z) in the interval [0, π

2 ].
To estimate zs

n we use the Lemma 4. We recall that ys
0,n(z) satisfies the differential

equation (A.5), with

ψ0(z) = (n + s)2 +
s(s− 1)
(sin z)2

≥ (n + s)2 + s(s− 1).

By Lemma 4, ys
0,n(z) has a zero in each interval [ε, ξ(s, n) + ε] for every ε > 0, where we

have let ξ(s, n) = π√
(n+s)2+s(s−1)

. Since ys
0,n(z) vanishes at z = 0, then d

dzy
s
0,n(z) vanishes

at least once in (0, ξ + ε]. Therefore, zs
n ≤ ξ, and

tan(zs
n) =

sin(zs
n)

cos(zs
n)
≤ zs

n√
1− (zs

n)2
=

π√
n2 − π2 − s + 2ns + 2s2

.

If ‖ys+1
0,n−1‖∞ ≤ cn−1, s+1, then by (5.3) and and the estimate above,

‖ys
0,n‖∞ = |ys

0,n(zs
n)| ≤ 2πcn−1,s+1√

n2 − π2 − s + 2ns + 2s2
,

and the right-hand side of the inequality above is ≤ cn, s if

h(n, s) =
2πcn−1,s+1

cn, s

√
n2 − π2 − s + 2ns + 2s2

≤ 1.
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Recalling that n−1 is odd, since we have assumed that n is even, after easy simplifications
we can write

h(n, s) =
πn(n + 2s)

s
√
n2 − s + 2ns

√
n2 − π2 − s + 2ns + 2s2

,(5.4)

which is easily seen to be at most 1.

6. Proof of Lemma 2

We show that Lemma 2 is a consequence of Proposition 3. The proof of Proposition 3
will be given in section 7.

Let Ym be as in Lemma 2. We shall prove (3.3), that is: for every 1 ≤ p < q ≤ 2 and
every d ≥ 2,

‖Ym‖Lq(Sd−1, dσ)

‖Ym‖Lp(Sd−1, dσ)

≤ Cm
d−2
2

( 1
p
− 1
q
)
.(6.1)

First of all we observe that it suffices to prove Lemma 2 when q = 2. Indeed, say that
1
q = α

p + 1−α
2 , where α =

1
q
− 1

2
1
p
− 1

2

. By the Riesz-Thorin convexity theorem,

‖Ym‖Lq(Sd−1, dσ) ≤ ‖Ym‖αLp(Sd−1, dσ)‖Ym‖1−α
L2(Sd−1, dσ)

,

and if (2.6) holds when q = 2, then

‖Ym‖Lq(Sd−1, dσ) ≤
(
Cm

d−2
2

�
1
p
− 1

2

�)1−α

‖Ym‖Lp(Sd−1, dσ) = C1−αm
d−2
2

�
1
p
− 1
q

�
,

i.e. it holds for all other q ≤ 2. Then, we observe that in order to prove (6.1) for q = 2 it
suffices to prove that

‖Ym‖Lp′ (Sd−1, dσ)

‖Ym‖L2(Sd−1, dσ)

≤ Cm
d−2
2

�
1
p
− 1

2

�
,(6.2)

where p′ is the dual exponent of p. Indeed, we observe that

‖Ym‖2L2(Sd−1, dσ) ≤ ‖Ym‖Lp′ (Sd−1, dσ)‖Ym‖Lp(Sd−1, dσ), ,

by Hölder’s inequality. Therefore,

‖Ym‖L2(Sd−1, dσ)

‖Ym‖Lp(Sd−1, dσ)

≤
‖Ym‖Lp′ (Sd−1, dσ)

‖Ym‖L2(Sd−1, dσ)

,

and if (6.2) holds, then (6.1) also holds with q = 2. Finally, we can use Riesz-Thorin
convexity theorem once more to reduce the proof of (6.2) to the case p′ = ∞. We shall
therefore prove that

‖Ym‖L∞(Sd−1, dσ)

‖Ym‖L2(Sd−1, dσ)

≤ Cm
d−2
4 .(6.3)
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We now recall that Ym is as in Lemma 2, that is, as in (1.3). If we use spherical coordinates,
(6.3) can be rewritten as

sup
zk+1∈[0, π]
k=0,...,d−3

d−3∏
k=0

|P (mk+1+ d−k−1
2

)
mk−mk+1

(cos zk+1)|(sin zk+1)mk+1

(∫ π

0
· · ·

∫ π

0

d−3∏
k=0

|P (mk+1+ d−k−1
2

)
mk−mk+1

(cos zk+1)|2(sin zk+1)2mk+1+d−2−kdz1 · · · dzd−2

) 1
2

=
d−3∏
k=0

sup
zk+1∈[0, π]

|P (mk+1+ d−k−1
2

)
mk−mk+1

(cos zk+1)|(sin zk+1)mk+1

(∫ π

0
|P (mk+1+ d−k−1

2
)

mk−mk+1
(cos zk+1)|2(sin zk+1)2mk+1+d−2−kdzk+1

) 1
2

≤ Cm
d−2
4 .

Thus, (6.3) follows if we can prove that, for every 0 ≤ k ≤ d− 3,

sup
zk+1∈[0, π]

|P (mk+1+ d−k−1
2

)
mk−mk+1

(cos zk+1)|(sin zk+1)mk+1

(∫ π

0
|P (mk+1+ d−k−1

2
)

mk−mk+1
(cos zk+1)|2(sin zk+1)2mk+1+d−2−kdzk+1

) 1
2

≤ Cm
1
4 .(6.4)

To simplify notation, we will let z = zk+1, n = mk − mk+1, s = mk+1 + d−k−1
2 , and

j = d−2−k
2 .

We also observe that we can integrate over the interval (0, π
2 ) since the ultraspherical

polynomials are either even or odd. With the new formalism, the inequality that we shall
prove is

sup
z∈[0, π

2
]
|P (s)

n (cos z)|(sin z)s−j

(∫ π
2

0
|P (s)

n (cos z)|2(sin z)2sdz

) 1
2

≤ Cm
1
4 .(6.5)

A change of variables shows that (6.5) is equivalent to (2.6), which will be proved in the
next section.

7. Proof of Proposition 3

As observed at the end of the previous section, (2.6) is equivalent to (6.5). We therefore
concentrate our attention to the proof of (6.5). We divide the proof of the inequality (6.5)
into four steps.

Step 1. In what follows we will often denote by Is
j,n the ratio on the left-hand side of (6.5)

and we will let ‖f‖p = ‖f‖Lp(0,π
2
).
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The L2 norm of (sin z)sP
(s)
n (cos z) is

qn,s =
(

π21−2sΓ(n + 2s)
(n + s)(Γ(s))2Γ(n + 1)

) 1
2

,(7.1)

(see the Appendix).
By Proposition 2 and (7.1) we obtain,

Is
j,n =

sup
z∈[0, π

2
]

∣∣∣(sin z)(s−j)P
(s)
n (cos z)

∣∣∣2∫ π
2

0
|(sin z)sP (s)

n (cos z)|2dz
≤ e2j

(
1 +

n

s

)2j
(
cn, s

qn,s

)2

.

We will assume that n is even, since the proof in the other case is similar. Thus,(
cn, s

qn,s

)2

=
(n + s) Γ(1+n

2 )Γ(n
2 + s)

πΓ(1 + n
2 )Γ(1+n

2 + s)
.

By Lemma 5,
Γ(n

2 + s)
Γ(1+n

2 + s)
≤

(n

2
+ s

)− 1
2 and

Γ(1+n
2 )

Γ(1 + n
2 )
≤

(
1 + n

2

)− 1
2

. We obtain

(
cn, s

qn,s

)2

≤ 2(n + s)

π(n + 1)
1
2 (n + 2s)

1
2

Therefore

Is
j,n ≤ e2j

(
1 +

n

s

)2j 2(n + s)

π(n + 1)
1
2 (n + 2s)

1
2

.(7.2)

If n ≤ αs for some fixed α > 1, then

Is
j,n ≤ e2j (1 + α)2j sup

n≤αs

2(n + s)

π(n + 1)
1
2 (n + 2s)

1
2

One can easily verify that (n + 1)(n + 2s) ≥ (n +
√
s)2; therefore

Is
j,n ≤ e2j (1 + α)2j 2(n + s)

π(n +
√
s)
≤ 4

π
e2j (1 + α)2j s

1
2 ,

which is what we shall prove.
In the next step we will show that we can always reduce matters to this case.

Step 2. In the proof of Lemma 3 we have observed that the following equation is satisfied
by the critical points of ys

n(t).

ys
j,n(z) =

2s
s− j

(tan z) ys+1
j,n−1(z).

By Lemma 3, the relative extrema of ys
j,n(z) in the interval [0, π

2 ] are increasing whenever

z ≤ zs
j,n =

1
2

arccos
(
j − 3j2 + j3 + jn2 − s + 2js + 2jns + s2 − js2

j (−j2 + n2 + 2ns + s2)

)
and decreasing otherwise.
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Therefore, ys
j,n(z) attains its maximum at one of the two critical points that immediately

follow or precede zs
j,n. Let z be such point. Then,

sup
z∈[0, π

2
]
ys

j,n(z) ≤ 2s
s− j

(tan z) sup
z∈[0, π

2
]
ys+1

j,n−1(z).

In the next steps we will prove that there exists α > αj , where

αj =
4π√

2j − 1
,

such that the following inequalities hold whenever j > 1
2 , s ≥ j and n ≥ αs:

a) z ≤ 2zs
j,n,

b) 2s
s−j tan z ≤ 1.

That will be enough to conclude the proof of the Theorem. Indeed, from a) and b) follow
that

sup
0≤z≤π

2

ys
j,n(z) ≤ sup

0≤z≤π
2

ys+k
j,n−k(z)

for every k which is such that (n − k + 1) ≥ α(s + k − 1). If we let k =
[

n−αs
α+1

]
, we have

(n− k + 1) ≥ α(s + k − 1) and n− k ≤ α(s + k).
By Step 1,

Is+k
j,n−k ≤ Ce2j

(
1 + j2

)2j (s + k)
1
2 ≤ Ce2j

(
1 + j2

)2j (s + n)
1
2 ,

where C depends only on j, which is what we required.

Step 3. In proving a) we suppose that z ≥ zs
j,n, since the other case is trivial.

We recall that z is the first critical point of ys
j,n(z) in the interval [zs

j,n,
π
2 ]. By Lemma

4, the function ys
j,n(z) has at least a zero in the interval [zs

j,n, σ(s, n) + zs
j,n], and at least

two zeroes in [zs
j,n, 2σ(s, n) + zs

j,n], where σ(s, n) = π√
(n+s)2+s(s−1)

. By Rolle’s theorem,

ys
j,n(z) has at least one critical point in [zs

j,n, 2σ(s, n) + zs
j,n], and thus z ≤ 2σ(s, n) + zs

j,n.
We prove that 2σ(s, n) ≤ zs

j,n whenever n ≥ αjs and s ≥ j. To this aim it is sufficient
to prove that

(4σ(s, n))2 ≤ sin(2zs
j,n)2

= 1−
(
j − 3j2 + j3 + jn2 + (2j + 2jn− 1)s + s2(1− j)

j (n2 − j2 + 2ns + s2)

)2

= 2u(s, n)− (u(s, n))2

where we have let

u(s, n) =
(2j − 1) (s2 − s− j2 − j)

j
(
(n + s)2 − j2

) .

Thus, we shall prove that

(u(s, n))2 − 2u(s, n) + (4σ(s, n))2 ≤ 0

or equivalently that
u(s, n) ≤ 1 +

√
1− (4σ(s, n))2.
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We observe that u(s, n) ≤ u(s, 0) ≤ lims→∞ u(0, s) = 2− 1
j since u(s, n) is increasing with

respect to s and decreasing with respect to n. Thus, we prove that

2− 1
j
≤ 1 +

√
1 + (4σ(s, n))2,

or

(4σ(s, n))2 ≤ 2
j
− 1

j2

whenever n ≥ αjs and s ≥ j. But

(4σ(s, n))2 ≤ 16π2

(1 + αj)2s2
≤ 16π2

(1 + αj)2j2
,

and so the claim readily follows.

Step 4. We now prove b). We shall prove that there exists α ≥ αj which is such that
tan(2zs

j,n) ≤ s−j
2s whenever n ≥ αs, s > j and j > 1

2 . That is equivalent to (2zs
j,n) ≤

arctan
(

s−j
2s

)
, or to

cos(2zs
j,n) ≥ cos

(
arctan

(
s− j

2s

))
=

1(
1 +

(
s−j
2s

)2
) 1

2

,(7.3)

since t→ cos t is a decreasing function in [0, π
2 ].

The function on the right-hand side of (7.3) is an increasing function of s and its supre-
mum is 2√

5
. Therefore, it is sufficient to prove that

cos(2zs
j,n) =

j − 3 j2 + j3 + j n2 − s + 2 j s + 2 j n s + s2 − j s2

j (−j2 + n2 + 2n s + s2)
≥ 2√

5
.

Let cos(2zs
j,n)) = A(s, n). It is easy to see that n → A(s, n) is increasing, and therefore

that A(s, n) ≥ A(s, αs). We now prove that for some α > αj

A(s, αs)− 2√
5

=
−5j + 15j2 − 5j3 − 2

√
5j3 + (5− 10j) s + ψ(α, j)s2

5j (j2 − s2 − 2αs2 − α2s2)
≥ 0

where ψ(α, j) =
(
−5 + 5j + 2

√
5j − 10αj + 4

√
5αj − 5α2j + 2

√
5α2j

)
, whenever s ≥ j >

1
2 . But this is easily seen to be satisfied.

8. Appendix

We collect here the definitions and the identities that we have used throughout this paper
related to Jacobi polynomials and Bessel functions. Our main reference is the classical
book of Szegö [12], but the formulas listed here can also be found in many other standard
textbooks on special functions, (see also [1]).

Let α, β ∈ R. The Jacobi polynomials of degree n and order (α, β) are

P (α, β)
n (x) = (1− x)−α(1 + x)−β (−1)n

2nn!

(
dn

dx

)
(1− x)α+n(1 + x)β+n.(A.1)

They are a complete orthogonal system in L2([−1, 1], (1− x)α(1 + x)βdx).
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When α = β the Jacobi polynomials take the name of ultraspherical, or Gegenbauer
polynomials and are denoted by P

(s)
n (x), The following is the customary notation and

normalization.

P (s)
n (t) = Cs

nP
s− 1

2
,s− 1

2
n (t), s > −1

2
,(A.2)

where Cs
n =

Γ(s + 1
2)

Γ(2s)
Γ(n + 2s)

Γ(n + s + 1
2)

. We can easily see that P
(s)
n (x) ≡ 1 when n = 0 and

P
(s)
n (x) = 2sx when n = 1; furthermore,

P (s)
n (−x) = (−1)nP (s)

n (x).(A.3)

P
(s)
n (t) satisfies the following differential equation:

(1− x2)y′′ − (2s + 1)xy′ + n(n + 2s)y = 0,(A.4)

and (sin t)sP
(s)
n (cos t) satisfies the differential equation:

u′′ +
(

(n + s)2 +
s(s− 1)
(sin z)2

)
u = 0.(A.5)

We also recall that
d

dt
P (s)

n (t) = 2sP (s+1)
n−1 (x),(A.6)

and

sup
−1≤x≤1

|P (s)
n (x)| = P (s)

n (1) =
Γ(n + 2s)

Γ(n + 1)Γ(2s)
(A.7)

and that

qn,s =
( ∫ π

2

0
(sin t)2

∣∣P (s)
n (cos t)

∣∣2 dt) 1
2

=
(

π21−2sΓ(n + 2s)
(n + s)(Γ(s))2Γ(n + 1)

) 1
2

.(A.8)
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