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Abstract. On the Heisenberg group Hn with coordinates (z, t) ∈ Cn × R, define the distri-

bution K(z, t) = L(z)δ(t), where L(z) is a homogeneous distribution on Cn of degree −2n,

smooth away from the origin and δ(t) is the Dirac mass in the t variable. We prove that the

operator given by convolution with K maps H1(Hn) to weak L1(Hn).

1. Introduction. H
n is the Lie group with underlying manifold Cn × R and mul-

tiplication (z, t) · (z′, t′) = (z + z′, t + t′ + 2 Im z · z̄′) where z · z̄′ =
∑n
j=1 zj z̄

′
j . For

u = (z, t) ∈ Hn we define |u| = maxj(|Re zj |, |Im zj |, |t|1/2) where z = (zj). The norm | · |
is homogeneous of degree 1 under the one-parameter group of dilations Dr, r > 0 where
Dr(z, t) = (rz, r2t). A Heisenberg group left invariant ball is a set Q of the form

Q = {u ∈ Hn : |u−1
0 u| ≤ δ} for some u0 ∈ Hn

and some δ > 0. The condition |u−1
0 u| ≤ δ is equivalent to the pair of conditions

maxj(|Re zj − Re z0
j |, |Im zj − Im z0

j |) ≤ δ and |t− t0 + 2 Im z · z̄0| ≤ δ2 where u = (z, t),
u0 = (z0, t0). u0 is the center of the ball Q and δ > 0 is the radius. Hn balls are tilted
(2n + 1)-dimensional rectangles, with maximum tilt from the center of Q proportional to
the radius of Q times the Euclidean distance of the projection of the center of Q onto Cn,
to the origin.

An Hn atom is a function a(z, t) supported in a ball Q and satisfying
∫
a(z, t) dz dz̄ dt =

0 and |a| ≤ |Q|−1χQ. ( We denote by XB the characteristic function of a set B.)
Let L(z) be a homogeneous distribution on C

n of degree −2n, which agrees with a
smooth function away from the origin. Also let δ(t) be the Dirac distribution in the t
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variable. We denote by K the distribution on Hn defined by K(z, t) = L(z)δ(t). Thus,
if φ is a test function and 〈K,φ〉 denotes the action of K on φ, 〈K,φ〉 = 〈L, φ(· , 0)〉.
Geller and Stein [GS1], [GS2] proved that the operator A : C∞0 → C∞(Hn) given by
Af = f ∗K extends to a bounded operator from Lp to Lp for 1 < p <∞. (∗ denotes the
group convolution.) They established their estimates by embedding the operator A in an
analytic family of operators Aγ such that A0 = A and by proving an L2 and an Lp estimate
at the endlines of a strip containing 0. Their result followed by analytic interpolation. It
has been an open question whether the operator A is of weak type (1, 1). In this paper we
establish a weaker estimate, still sharper than the Lp boundedness of A, namely we prove
that A is of weak type H1. By this we mean that A extends to an operator that maps
H1(Hn) to weak L1(Hn). Here H1(Hn), henceforth H1, denotes the Heisenberg group
Hardy space, homogeneous under the family of dilations Dr, r > 0 defined as follows:
H1 is the set of all sums of the form f =

∑
λQaQ where Q are Heisenberg group balls,

λQ ∈ C,
∑
|λQ| < +∞ and aQ are atoms supported in the corresponding balls Q. ‖f‖H1

is then defined to be the infimum of
∑
|λQ| over all representations of f as

∑
λQaQ. Our

main result is the following:

Theorem. The operator A, as defined before, is of weak type H1.

The proof is an application of the method developed in [C]. Some technical difficulties
arise because of the geometry of the Heisenberg balls.

2. Preliminaries for the proof. For σ, τ ∈ Z, τ ≥ σ we define the class R̃σ,τ of all
sets of the form
B = {(z, t) ∈ Hn : maxj(|Re zj−Re z0

j |, |Im zj−Im z0
j |) ≤ 2σ and |t−t0+2 Im z·z̄0| ≤ 2σ+τ}

for all (z0, t0) ∈ Hn. For τ = σ, R̃σ,σ is the class of allHn balls of radius 2σ. Given B ∈ R̃σ,τ
let σ(B) = σ, τ(B) = τ denote the associated parameters. The corresponding Euclidean
rectangle BEucl of a set B ∈ R̃σ,τ is the set
BEucl = {(z, t) ∈ Hn : maxj(|Re zj − Re z0

j |, |Im zj − Im z0
j |) ≤ 2σ and |t− t0| ≤ 2σ+τ}

where (z0, t0) is the center of B. Let Rσ,τ denote the class of all sets in R̃σ,τ whose
corresponding Euclidean rectangles have vertices closest to the origin of the form:
(i12σ, . . . , in2σ, j12σ, . . . , jn2σ, k2σ+τ ) where i1, . . . , in, j1, . . . , jn, k are integers.

For B ∈ R̃σ,τ , B∗ will denote an expansion of B by a constant factor that has the
following two properties:
(a) If B′ ∈ Rσ′,τ ′ , σ′ ≤ σ, τ ′ ≤ τ and B′ intersects B then B′ ⊆ B∗.
(b) If D ∈ Rσ′,τ ′ , σ′ ≤ σ, τ ′ ≤ τ and the projection of D onto Cn is contained in the
projection of B onto Cn, then D∗ ⊆ B∗.
Note that any larger expansion of B∗ (for example B∗∗, B∗∗∗) also satisfies (a) and (b).

Given U, V subsets of Hn by U · V we denote the set of all uv where u ∈ U , v ∈ V and
by U−1 we denote the set of all u−1 where u ∈ U . Following Christ [C], we define the
tendril T (q) of a set q ∈

⋃
σ

⋃
τ≥σ Rσ,τ to be the set T (q) = q∗ ·{(z, 0) : |z| ≤ 2τ(q)+1}. One
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can easily check that |T (q)| ∼ 2σ(q)+(2n+1)τ(q) . (We denote by |B| the Lebesgue measure
of the set B.)

For the proof of our theorem, we may assume that a given f ∈ H1 is a finite sum∑
λQaQ where

∑
|λQ| ≤ 2‖f‖H1 . Once the theorem is proved for such f the general case

will follow by a limiting argument. We may also assume that each λQ in the decomposition
of f is positive since we can always multiply an atom by a scalar of modulus one to achieve
this. Finally, we can assume that for any ball Q in the decomposition of f we have
σ(Q) ∈ Z. The general case follows from the observation that every ball Q is contained
in a ball Q′ with comparable measure and with σ(Q′) ∈ Z. Let’s call F the collection of
balls appearing in the atomic decomposition of f ∈ H1.

We are now given an α > 0 and a finite collection F of balls Q with σ(Q) ∈ Z and with
associated scalars λQ > 0. The first of the following two lemmas is valid in any space of
homogeneous type X. For our purposes X = H

n.

Lemma 1. Given α > 0 and F as above, there exists a collection of balls {S} such
that:
(1.1) The balls obtained by shrinking the S’s by a fixed constant factor are pairwise disjoint
and no point in X is contained in more than M S’s. M is a constant depending only on
X.

∑
S

|S| ≤ C α−1
∑
Q∈F

λQ(1.2)

∑
Q⊂S∗

λQ ≤ C α|S|(1.3)

∥∥∥∥∥∥
∑

Q* any S∗

λQ|Q|−1χQ

∥∥∥∥∥∥
L∞

≤ C α .(1.4)

Proof. Let F =
∑
Q∈F λQ|Q|−1χQ∗ and let

Ω =


x ∈ X : sup

B	x
B balls

|B|−1

∫
B

F > α


 .

Ω is an open set. Then by theorem (1.3) page 70 in [CW], there exists a sequence of
balls Sj such that Ω =

⋃
j Sj , a fixed dilate of every Sj meets the complement of Ω and

such that (1.1) is satisfied. (The first statement in (1.1) is not explicitly mentioned in the
statement of theorem (1.3) in [CW] but follows easily from the proof.) Using the fact that
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the Hardy-Littlewood maximal function in a space of homogeneous type is of weak type
(1, 1) (theorem (2.1) page 71 [CW]) and with the help of (1.1) we immediately derive (1.2).
We only need to prove (1.3) and (1.4). For fixed j we have

∑
Q⊆S∗j

λQ =
∫ ∑

Q⊆S∗j

λQ|Q|−1 χQ ≤ C |Sj | |S∗j |−1

∫
S∗j

F ≤ C α|Sj | .

The last inequality is valid because a fixed dilate of Sj meets the complement of Ω. To
check (1.4) fix x0 ∈ X. Let Q0 be a ball with the smallest possible radius that contains x0

and is not contained in any Sj . Then

∑
Q* anyS∗j

λQ|Q|−1 χQ(x0) ≤
∑

Q* anyS∗j

λQ|Q|−1 χQ∗(x0)

= |Q0|−1

∫
Q0

∑
Q* anyS∗j

λQ|Q|−1 χQ∗ ≤ |Q0|−1

∫
Q0

F .

Let S0 be any S containing x0. If Q0 had smaller radius than S0 then Q0 ⊆ S∗0 which is
impossible. Thus S0 has no larger radius than Q0 which implies that S0 ⊆ Q∗0. Therefore
some dilate of Q∗0, call it Q#

0 , meets the complement of Ω. We then have |Q#
0 |−1

∫
Q#

0
F ≤ α.

Finally |Q0|−1
∫
Q0

F ≤ C |Q#
0 |−1

∫
Q#

0
F ≤ C α and thus (1.4) holds. This concludes the

proof of Lemma 1.
Call C the subcollection of F consisting of all balls Q contained in S∗ for some S as in

Lemma 1.

Lemma 2. Given an α > 0, F and C as above we can find a measurable set E ⊆ Hn
and a function κ : C → Z such that

|E| ≤ C α−1
∑
Q∈F

λQ(2.1)

Q · {(z, 0) : |z| ≤ 2j+1} ⊆ E for all Q ∈ C and all j < κ(Q)(2.2)

If Q ⊂ S∗ then κ(Q) > σ(S∗) ≥ σ(Q)(2.3)

For any σ, τ ∈ Z, τ ≥ σ and any q ∈ Rσ,τ
∑
Q⊂q∗
κ(Q)≤τ

λQ ≤ 22n+1α 2σ+(2n+1)τ .(2.4)

(Here B∗ denotes any expansion of B ∈
⋃
σ

⋃
τ≥σ R̃σ,τ that satisfies (a) and (b).) The

constant C depends on the dimension n and not on α, F , {λQ}.
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Proof. Find a τ0 > σ(Q) for all Q ∈ C such that
∑
Q∈C λQ < α 22(n+2)τ0 . Initially set

C1 = φ and C2 = φ. Also set τ1 = τ0 − 1, σ1 = τ1. Select all q ∈ Rσ1,τ1 such that

∑
Q⊂q∗

Q∈C\(C1∪C2)

λQ > α 2σ1+(2n+1)τ1 .

Any Q contained in q∗ for some q selected is assigned to q and is placed in C1. Notice
that any Q of class C1 is assigned to at most K many q selected, where K is a constant
depending only on the definition of q∗. This was step (σ1, τ1) of the induction. Now set
σ2 = σ1 − 1. Select all q ∈ Rσ2,τ1 such that

∑
Q⊂q∗

Q∈C\(C1∪C2)

λQ > α 2σ2+(2n+1)τ1 .

Any Q contained in q∗ for some q selected is assigned to q and is placed in C1. This was step
(σ2, τ1) of the induction. Continue similarly until we reach a σ smaller than minQ∈C σ(Q).
Then place in C2 all Q with σ(Q) = τ1 which are not already in C1.

Now set τ2 = τ1 − 1, σ2 = τ2. Select all q ∈ Rσ2,τ2 such that

∑
Q⊂q∗

Q∈C\(C1∪C2)

λQ > α 2σ2+(2n+1)τ2 .

Any Q contained in q∗ for some q selected is assigned to q and is placed in C1. We
just described step (σ2, τ2) of the induction. Repeat this procedure until all the σ’s are
exhausted then place in C2 all Q ∈ C with σ(Q) = τ2 which are not already in C1. Continue
the double induction until we reach a τ < minQ∈C σ(Q).

We have now split C into two disjoint classes C1 and C2. For Q ∈ C1 define κ(Q) =
maxq,S(1+ τ(q), 1+σ(S∗)) where the maximum is taken over all q such that Q is assigned
to q and over all S such that Q ⊂ S∗. For Q ∈ C2 define κ(Q) = maxS(1 + σ(S∗)) where
the maximum is taken over all S such that Q ⊂ S∗. (2.3) is now clearly satisfied. To
simplify our notation, for q ∈

⋃
σ

⋃
τ≥σ Rσ,τ set Λ(q) =

∑
Q⊂q∗ λQ where the sum is taken

over all Q ∈ C not yet placed in C1 ∪ C2 at step (σ(q), τ(q)). To prove (2.4) fix q ∈ Rσ,τ
and consider two cases. If q was not selected then

α 2σ+(2n+1)τ ≥ Λ(q) ≥
∑
Q⊂q∗
κ(Q)≤τ

λQ .

5



Suppose now that q was selected at the step (σ, τ) of the induction. Let’s assume that
(2.4) fails i.e. ∑

Q⊂q∗
κ(Q)≤τ

λQ > 22n+1α 2σ+(2n+1)τ .

Note that for (q′)∗ ⊃ q∗,
Λ(q′) ≥ Λ(q) ≥

∑
Q⊂q∗
κ(Q)≤τ

λQ .

It follows that, at least when τ < τ1, the unique q′ ∈ Rσ,τ+1 which contains q would have
been selected at step (σ, τ + 1), contradiction because all Q ∈ C contained in q∗ would
be contained in (q′)∗ and therefore they would have been placed in C1 at a previous step.
When τ = τ1 choose q′ ∈ Rσ+1,τ such that q′Eucl ⊃ qEucl. Then by (b), q∗ ⊂ (q′)∗ and the
previous argument leads to a contradiction. Define E =

⋃
q selected T (q)∪

⋃
S S

+ where for
any S, S+ = S∗ · {(z, 0) : |z| ≤ 2σ(S∗)+2}. Since

∣∣∣∣∣
⋃
S

S+

∣∣∣∣∣ ≤
∑
S

|S+| ≤ C
∑
S

|S| ≤ C α−1
∑
Q∈F

λQ ,

to prove (2.1) it will suffice to bound |
⋃
q selected T (q)|. We have

∑
q selected

|T (q)| ≤ C
∑

q selected

2σ(q)+(2n+1)τ(q)

≤ C α−1
∑

q selected

∧(q) ≤ C α−1
∑

q selected

∑
Q assigned to q

λQ

≤ C α−1
∑
Q∈C1

λQ#{q : Q is assigned to q}

≤ KC α−1
∑
Q∈C1

λQ ≤ C α−1
∑
Q∈F

λQ .

Finally, we check (2.2). If Q ∈ C1 and j < κ(Q) then

Q · {(z, 0) : |z| ≤ 2j+1} ⊆ q · {(z, 0) : |z| ≤ 2τ(q)+1} = T (q) ⊆ E ,

where Q is assigned to q. If Q ∈ C2, let S0 have the largest radius among all S such that
Q ⊂ S∗. Then κ(Q) = 1 + σ(S∗0 ) and for j < κ(Q)

Q · {(z, 0) : |z| ≤ 2j+1} ⊆ S+
0 ⊆ E .
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The lemma is now proved.
3. Proof of the theorem. We must show that

(1) |{u ∈ Hn |(Af)(u)| > α}| ≤ C

α
‖f‖H1 .

We split f as g + b where

b =
∑
Q∈C

λQaQ, g =
∑

Q∈F\C
λQaQ .

By (1.4), ‖g‖L∞ ≤ C α and thus

‖g‖2L2 ≤ C α ‖g‖L1 ≤ C α
∑

Q∈F\C
λQ ≤

C

α

∑
Q∈F

λQ ≤
C

α
‖f‖H1 .

The L2 boundedness of A, [GS2], gives

∣∣∣{u ∈ Hn : |(Ag)(u)| > α

2

}∣∣∣ ≤ 4
α2
‖Ag‖2L2 ≤ C

α2
‖g‖2L2 ≤ C

α
‖f‖H1 .

Therefore (1) will follow from

(2)
∣∣∣{u ∈ Hn : |(Ab)(u)| > α

2

}∣∣∣ ≤ C

α
‖f‖H1 .

Because of (2.1) and of the assumption
∑
Q∈F λQ ≤ 2‖f‖H1 , (2) will be a corollary of

∣∣∣{u ∈ Hn \E : |(Ab)(u)| > α

2

}∣∣∣ ≤ C

α

∑
Q∈C

λQ

which in turn will follow from

(3) ‖Ab‖2L2(Hn\E) ≤ C α
∑
Q∈C

λQ

with the aid of Chebychev’s inequality.
The rest of the paper is devoted to the proof of (3).
Fix φ ∈ C∞0 (Cn) supported in 1/2 ≤ |z| ≤ 2 such that

∑
j∈Z

φ(2−jz) = 1 for all z ∈ Cn − {0} .
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We decompose the operator A =
∑
j Aj , where Aj is given by convolution with Kj(z, t) =

L(z)φ(2−jz)δ(t). Since all balls Q appearing in the definition of b are in C, in the remainder
of the paper every Q considered is in C. This restriction is assumed to hold in all sums
below.

To treat (3) fix u ∈ Hn \E and write

Ab(u) = A
(∑

λQaQ

)
(u)

=
∑
j

(
(
∑

λQaQ) ∗Kj
)

(u)
∑
Q


λQaQ ∗

∑
j≥κ(Q)

Kj


 (u)

=
∑
s≥0

∑
j∈Z


 ∑
κ(Q)=j−s

λQaQ ∗Kj


 (u) .

If we set
Bk =

∑
κ(Q)=k

λQaQ , k ∈ Z

(3) will be a consequence of

(4)

∥∥∥∥∥∥
∑
j∈Z

(Bj−s ∗Kj)

∥∥∥∥∥∥
2

L2(Hn)

≤ C α2−s
∑

κ(Q)=j−s
λQ

for all s ≥ 0.
Without loss of generality, we may assume that K(z, t) = L(z)δ(t) is a real-valued

distribution. Expanding the square out, we write the left hand side of (4) as:

(5)

∑
j∈Z

[
‖Bj−s ∗Kj‖2L2 + 2

∑
j−3<k<j

∫
(Bj−s ∗Kj)(Bk−s ∗Kk) dz dz̄ dt

+ 2
∑
k≤j−3

∫
(Bj−s ∗Kj)(Bk−s ∗Kk) dz dz̄ dt

]
.

We will treat the first and the third term inside the brackets in (5). The estimate for
the second term in (5) will follow from the estimate for the first term with the use of
Cauchy-Schwarz inequality. We therefore only need to prove

(6)

∑
j∈Z


‖Bj−s ∗Kj‖2L2 +

∑
k≤j−3

∫
(Bj−s ∗Kj)(Bk−s ∗Kk) dz dz̄ dt




≤ C α 2−s
∑

κ(Q)=j−s
λQ .
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By rescaling, it suffices to prove (6) when j = 0. Our proof will be complete if we can
show:

(7) ‖B−s ∗K0‖2L2 ≤ C α 2−s
∑

κ(Q)=−s
λQ

and

(8)
∑
k≤−3

∣∣∣∣
∫

(B−s ∗K0)(Bk−s ∗Kk) dz dz̄ dt

∣∣∣∣ ≤ C α 2−s
∑

κ(Q)=−s
λQ .

We start with the proof of (7). We will need two lemmas.

Lemma 3. For any ball Q with σ(Q) < 0, ‖aQ ∗K0‖L∞ ≤ C 2−σ(Q).

Proof. Fix a Q with σ(Q) = σ < 0. We have

|aQ ∗K0)(z, t)| =
∣∣∣∣
∫
Cn

aQ(z − w, t− 2 Im z · w̄)L0(w) dw dw̄

∣∣∣∣
≤ C|Q|−1|SQ(z, t)| = C 2−(2n+2)σ|SQ(z, t)| ,

where SQ(z, t) =
{
w ∈ Cn : 1

2 ≤ |w| ≤ 2 such that (z − w, t− 2 Im z · w̄) ∈ Q
}
.

Clearly SQ(z, t) =
{
w ∈ Cn : 1

2 ≤ |w| ≤ 2 such that (w, 0) ∈ Q−1(z, t)
}
.

( We set Q−1(z, t) = Q−1 · {(z, t)}). Since Q is a left-invariant ball, Q0 = Q−1(z, t) is a
right-invariant ball of radius 2σ, centered say at (z1, t1). The set SQ(z, t) is empty unless
|z1| ∼ 1. This observation implies that the maximum tilt of Q0 from its center is ≤ C 2σ.
Thus SQ(z, t) is contained in

{w ∈ Cn : |w − z1| ≤ 2σ, |2 Im z1 · w̄| ≤ C 22σ} .

Setting ζ = w − z1, to prove the lemma, it will suffice to show that

|{ζ ∈ Cn : |ζ| ≤ 2σ and |Im(ζ · z̄1)| ≤ C 22σ}| ≤ C 2(2n+3)σ .

The latter becomes obvious when we introduce a rotation that takes z1 to the point
(a + i0, 0 + i0, . . . , 0 + i0) ∈ Cn, where |a| ≤ C.

Given f(z, t) a function on the Heisenberg group, let f̃ denote the function f̃(z, t) =
f((z, t)−1) = f(−z,−t). Note that for all f, g, h functions on any group with Haar measure
dx the following is valid: ∫

(f ∗ g)h dx =
∫

f(h ∗ g̃) dx .

To prove (7) we will need one more lemma.
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Lemma 4. K0 ∗ K̃0 has compact support and satisfies:

|(K0 ∗ K̃0)(z, t)| ≤ C(|z|+ |t|)−1

|∇(K0 ∗ K̃0)(z, t)| ≤ C(|z|+ |t|)−2 .

Proof. Let ψ be a test function. Then

〈K0 ∗ K̃0, ψ〉 = 〈K0, ψ ∗K0〉 =
∫
Cn

L0(w)(ψ ∗K0)(w, 0) dw dw̄

=
∫
Cn

L0(w)
∫
Cn

ψ(w − ζ, −2 Imw · ζ̄)L0(ζ) dζ dζ̄ dw dw̄

=
∫
Cn

∫
Cn

L0(z + ζ)ψ(z,−2 Im z · ζ̄)L0(ζ) dζ dζ̄ dz dz̄ .(9)

Let ζ = (ζ1, ζ2, . . . , ζn), ζj = xj + iyj , 1 ≤ j ≤ n. Fix : : 1 ≤ : ≤ n and denote by
z′, ζ ′ ∈ Cn−1 the points z, ζ whose :th variable is deleted. Change variables in (9) by
setting

t = 2 Im z · ζ̄ = −2 Im z�ζ̄� − 2 Im z′ · ζ̄ ′

and

s = −2 Re z · ζ̄ = −2 Re z�ζ̄� − 2 Re z′ · ζ̄ ′ .

Then ζk = s−it+2z̄′·ζ′
−2z̄�

and
∣∣∣det

(
∂(x�,y�)
∂(s,t)

)∣∣∣ = 1
4 |z�|−2 .

We can rewrite (9) as

(10)
∫
Cn×R

ψ(z, t)
[
1
4
|z�|−2

∫
Cn−1

∫
R
L0(z + ζ̃)L0(ζ̃) ds dζ ′ dζ̄ ′

]
dz dz̄ dt

where ζ̃ =
(
ζ1, . . . , ζ�−1 ,

s−it+2z̄′·ζ′
−2z̄�

, ζ�+1, . . . , ζn

)
.

It follows that (K0 ∗ K̃0)(z, t) is equal to the expression inside the brackets in (10). Since
L0 is supported in |z| ≤ 2 we must have

(11) |z′ + ζ ′|+
∣∣∣∣z� +

s− it + 2z̄′ · ζ ′
−2z̄�

∣∣∣∣ ≤ C
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which implies | − 2 |z�|2 + s+ 2 Re z̄′ · ζ ′| ≤ C|z�|. Therefore, once ζ ′ is fixed, s varies over
a set of measure ≤ C|z�|. It follows that

|(K0 ∗ K̃0)(z, t)| ≤
1
4
|z�|−2

∫
|ζ′|≤C

∫
s

‖L0‖2L∞ ds dζ ′ ≤ C|z�|−1 .

Since : was arbitrary in {1, 2, . . . n} we get |(K0 ∗ K̃0)(z, t)| ≤ C|z|−1. It also follows from
(11) that |t− 2 Im z̄′ · ζ ′| ≤ C|zk| which implies that

|t| ≤ C|zk|+ 2|z′| |ζ ′| ≤ C(|zk|+ |z′|) ≤ C|z| .

Thus on the support of (K0 ∗ K̃0)(z, t), |t| ≤ c|z| and the asserted bound follows. The
estimate for the gradient can be proved similarly.

We now begin the proof of (7).

First fix s ≥ 0 and assign each Q occurring in (7) to some (but only one) element
q ∈ Rσ(Q),0 such that Q intersects q (hence Q ⊂ q∗). For q in Rσ,0 (σ < 0) write

Aq =
∑

Q assigned to q

λQaQ λq =
∑

Q assigned to q

λQ .

Also split every q ∈ Rσ,0 (σ < −s) in 2s qj ∈ Rσ,−s, 1 ≤ j ≤ 2s, so that their union is q
and associate with each Q assigned to q one qj such that Q intersects qj (hence Q ⊂ q∗j ).
Write

Aqj =
∑

Q associated to qj

λQaQ λqj =
∑

Q associated to qj

λQaQ .

We then have Aq =
∑2s

j=1 Aqj , λq =
∑2s

j=1 λqj . We now write the left hand side of (7) as

∥∥∥∥∥∥
∑
σ<−s

∑
q∈Rσ,0

Aq ∗K0

∥∥∥∥∥∥
2

L2

= 2
∑
σ′<−s

∑
σ≤σ′

∑
q′∈Rσ′,0

∑
q∈Rσ,0

∫
(Aq ∗K0)(Aq′ ∗K0) dz dz̄ dt

≤ I + II where

I = 2
∑
σ′<−s

∑
σ≤σ′

∑
q′∈Rσ′,0

∑
q∈Rσ,0
q∩(q′)∗ �=∅

∣∣∣∣
∫

(Aq ∗K0)(Aq′ ∗K0) dz dz̄ dt

∣∣∣∣
11



II = 2
∑
σ′<−s

∑
σ≤σ′

∑
q′∈Rσ′,0

∑
q∈Rσ,0
q∩(q′)∗=∅

∣∣∣∣
∫

(Aq ∗K0)(Aq′ ∗K0) dz dz̄ dt

∣∣∣∣ .

To treat term I, let’s fix σ′ < −s, σ ≤ σ′, q′ ∈ Rσ′,0. Then

∑
q∈Rσ,0
q∩(q′)∗ �=∅

∣∣∣∣
∫

(Aq ∗K0)(Aq′ ∗K0) dz dz̄ dt

∣∣∣∣

≤
∑
q∈Rσ,0
q∩(q′)∗ �=∅

‖Aq′ ∗K0‖L1 ‖Aq ∗K0‖L∞ by Lemma 3

≤
∑
q∈Rσ,0
q∩(q′)∗ �=∅

C λq′2−σ λq .(12)

To get a bound for (12) write (q′)∗ ∩ (vertical Euclidean cylinder over q′) as a union of
C 2s, q′j ∈ Rσ,−s. We then have that

⋃
j(q
′
j)
∗ ⊇ (q′)∗ and therefore

∑
q∈Rσ,0
q∩(q′)∗ �=∅

λq ≤
C2s∑
j=1

∑
q∈Rσ,0

q∩(a′j)
∗ �=∅

λq ≤
C2s∑
j=1

∑
q∈Rσ,0
q⊆(q′j)

∗∗

≤
C2s∑
j=1

∑
Q⊆(q′j)

∗∗∗

κ(Q)=−s

λQ .

An application of (2.4) for each q′j gives that the above is bounded by

C 2s 2n+1 α 2σ−(2n+1)s ≤ C α 2σ−2ns .

Therefore (12) is bounded above by C λq′2−σCα 2σ−2ns ≤ C αλq′2−s.
Summing over all q′ ∈ Rσ′,0, σ ≤ σ′ and σ′ < −s we get the desired conclusion for I.
In the sequel we will need the following simple lemma whose proof we omit.

Lemma 5. On the Heisenberg group, let a have support contained in the set A and
integral 0 and let h be C1. Then

|(a ∗ h)(u)| ≤ ‖a‖L1‖∇h‖L∞(A−1·u) Euclidean diameter of(A−1 · u) .

To treat term II, fix as before σ′ < −s, σ ≤ σ′, q′ ∈ Rσ′,0. Note that for q ∈ Rσ,0 and
all u ∈ Hn, the Euclidean diameter of q−1u is at most C 2−s. We have

∑
q∈Rσ,0
q∩(q′)∗=∅

∣∣∣∣
∫

(Aq ∗K0)(Aq′ ∗K0) dz dz̄ dt

∣∣∣∣
12



≤
∑

r∈Rσ,−s
r∩(q′)∗=∅

∣∣∣∣
∫

(Ar ∗K0)(Aq′ ∗K0) dz dz̄ dt

∣∣∣∣

≤
∑

q∈Rσ,−s
q∩(q′)∗=∅

∣∣∣∣
∫

Aq(Aq′ ∗K0 ∗ K̃0) dz dz̄ dt

∣∣∣∣

≤
∑

q∈Rσ,−s
q∩(q′)∗=∅

λq′‖Aq ∗K0 ∗ K̃0‖L∞(q′) by Lemma 5

≤ C 2−sλq′
∑

q∈Rσ,−s
q∩(q′)∗=∅

λq‖∇(K0 ∗ K̃0‖L∞(q−1·q′) .(13)

To get an estimate for (13) consider all expansions of q′ by a factor of 2m, m ≥ 0. By this
we mean all sets q′m in R̃m+σ′,0 with the same center as q′ and tilted as q′. We first fix an
m ≥ 0 and get an estimate for ∑

q∈Rσ,−s
q∩q′m+1 �=∅

λq .

Note that since K0 ∗ K̃0 has compact support only those m for which m + σ′ ≤ C are of
interest to us. Consider two cases:
Case 1. m+σ′ < 0. Write q′m+1 as the union of 2−(m+σ′) rectangles q′m+1,k ∈ Rm+σ′,m+σ′ ,
1 ≤ k ≤ 2m+σ′ . Then

∑
q∈Rσ,−s
q∩q′m+1 �=∅

λq ≤
2−(m+σ′)∑
k=1

∑
q∈Rσ,−s

q∩q′m+1,k �=∅

λq ≤
2−(m+σ′)∑
k=1

∑
Q⊂(q′m+1,k)

∗∗

λq

≤ 2−(m+σ′)C α 2m+σ′+(2n+1)(m+σ′) = C α 2(2n+1)(m+σ′) .

where in the last inequality we used (2.4).
Case 2. 0 ≤ m + σ′ ≤ C. All q ∈ Rσ,−s which intersect q′m+1 intersect at most C
rectangles Rk in R0,0. Then

∑
q∈Rσ,−s
q∩q′m+1 �=∅

λq ≤
C∑
k=1

∑
q∈Rσ,−s
q∩Rk �=∅

λq ≤
C∑
k=1

∑
Q⊆R∗∗k
Rk∈R0,0

λQ ≤ C α .

13



We finally get an estimate for (13).

(13) ≤ C 2−sλq′
C−σ′∑
m=0

∑
q∈Rσ,−s

q∩(q′m+1−q′m) �=∅

λq ‖∇(K0 ∗ K̃0)‖L∞(q−1·q′)

≤ C 2−2λq′
C−σ′∑
m=0

∑
q∈Rσ,−s
q∩q′m+1 �=∅

λq 2−2(m+σ′)

≤ C 2−sλq′
[ −σ′∑
m=0

2−2(m+σ′)C α 2(2n+1)(m+σ′) +
C−σ′∑

m=−σ′+1

2−2(m+σ′) Cα

]

≤ C α 2−sλq′ .

Summing over all q′ ∈ Rσ′,0, all σ ≤ σ′ and all σ′ < −s we get the desired conclusion for
term II. This concludes the proof of (7).

4. The off-diagonal terms. This section is devoted to the proof of (8). We begin
with a lemma.

Lemma 6. For k ≤ −3, Kk ∗ K̃0 is supported in the set {(z, t) : |z| ≤ C, |t| ≤ C 2k}
and satisfies

‖Kk ∗ K̃0‖L∞ ≤ C 2−k(6.1)

‖∇(Kk ∗ K̃0)‖L∞ ≤ C 2−2k(6.2)

‖∇2(Kk ∗ K̃0)‖L∞ ≤ C 2−3k .(6.3)

Proof. Same reasoning as in Lemma 4 shows that, when : = n,

(Kk ∗ K̃0)(z, t) =
1
4
|zn|−2

∫
Cn−1

∫
R
Lk(z + ζ̃)L0(ζ̃) ds dζ ′ dζ̄ ′

where ζ ′ = (ζ1, . . . , ζn−1) ∈ Cn−1 and ζ̃ =
(
ζ1, . . . , ζn−1 ,

s−it+2z̄′·ζ′
−2z̄n

)
∈ Cn .

Since Lk(z) is supported in |z| ∼ 2k we get that

|z′ + ζ ′|+
∣∣∣∣zn +

s− it + 2z̄′ · ζ ′
−2z̄n

∣∣∣∣ ≤ C 2k ,

thus ζ ′ integrates over a Euclidean ball about −z′ of radius C 2k. The above inequality
gives

14



|s− 2|zn|2 + 2 Re z̄′ · ζ ′| ≤ C 2k|zn|
|t− 2 Im z̄′ · ζ ′| ≤ C 2k|zn| .

We certainly have that |zn| ≤ C on the support of (Kk ∗ K̃0)(z, t). It follows that for any
fixed ζ ′, s integrates over a set of measure ≤ C 2k. Also

|t| ≤ C 2k|zn|+ |2 Im z̄′ · ζ ′|
≤ C 2k + 2| Im(z̄′ + ζ̄ ′) · ζ ′|
≤ C 2k + 2|z′ + ζ ′| |ζ ′| ≤ C 2k .

This proves the assertion about the support of Kk ∗ K̃0.
We now prove the size estimates for Kk ∗ K̃0. It follows from the definition of ζ̃ that

the plane zn = 0 doesn’t intersect the support of Kk ∗ K̃0. Since the latter set is compact,
there exists a constant C0 such that |zn| ≥ C0 when (z, t) lies in the support of Kk ∗ K̃0.
We use ‖Lk‖L∞ ≤ C(2k)−2n to estimate ‖Kk ∗ K̃0‖L∞ by

1
4
C−2

0

∫
|ζ′+z′|≤C 2k

∫
|s−aζ′ |≤C 2k

∫
|s−aζ′ |≤C 2k

‖Lk‖L∞‖L0‖L∞ ds dζ ′ dζ̄ ′

≤ C(2k)2(n−1)2k(2k)−2n = C 2−k ,

where in the above estimate we set aζ′ = 2|zn|2 − 2 Re z̄′ · ζ ′ . The estimates for the
derivatives of Kk ∗ K̃0 are similar.

For each k ≤ −3, let’s call Sk = {(z, t) : |z| ≤ C, |t| ≤ C 2k} so that support (Kk∗K̃0) ⊆
Sk. Note that for each u ∈ Hn we have S−1

k u = Sku.
We will need the following two lemmas:

Lemma 7. Fix any Q ∈ C with σ(Q) = σ and any k ≤ −3. If m = max(σ, k) we have:

(7.1)
∑

Q′∩
 S
u∈Q

Smu

!
�=∅

κ(Q′)≤m

λQ′ ≤ C α 2m .

Lemma 8. For any Q ∈ C with σ(Q) = σ, any κ ≤ σ and any (w, s) ∈ Hn,

(8.1)
∫
Q

χSk(z,t)(w, s) dz dz̄ dt ≤ C 2k+(2n+1)σ
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Proof. For any u ∈ Q, Smu is a tilted rectangle in R2n+1 of dimensions

(C, . . . , C︸ ︷︷ ︸
2n times

, C 2m) .

It follows that
⋃
u∈Q Smu is contained in a tilted rectangle in R2n+1 of dimensions

(C, . . . , C︸ ︷︷ ︸
2n times

, C 2m) .

Cover
⋃
n∈Q Smu by the union of C 2−(2n+1)m elements of Rm,m. For each element of

Rm,m apply (2.4). The desired conclusion follows.
To prove (8.1) note that the set of all (z, t) ∈ Q for which the fixed (w, s) lies in Sk(z, t)

is contained in a rectangle R of dimensions

(C, . . . , C︸ ︷︷ ︸
2n times

, C 2k)

centered at the center of Q and with maximum tilt from its center ∼ Cd, where d denotes
the Euclidean distance from the center of Q to the origin. Q has dimensions

( 2σ, . . . , 2σ︸ ︷︷ ︸
2n times

, 22σ)

and has maximum tilt from its center ∼ C2σd, (σ < 0). It follows that Q and R intersect
almost vertically and with respect the coordinate system induced by R, Q should be
thought as having dimensions (2σ, . . . , 22σ, . . . 2σ). Therefore Q ∩R has measure at most

C 2σ, . . . , 2σ︸ ︷︷ ︸
2n−1 times

, 22σ2min(k,σ) = C2k+(2n+1)σ .

We can now prove (8). Write the left hand side of (8) as:

∑
k≤−3

∫
(B−s)(Bk−s ∗Kk ∗ K̃0) dz dz̄ dt

≤
∑
σ<−s

∑
κ(Q)=−s
σ(Q)=σ

λQ
∑
k≤−3

∣∣∣∣
∫

(AQ)(Bk−s ∗Kk ∗ K̃0) dz dz̄ dt

∣∣∣∣
≤ I + II where
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I =
∑
σ<−s

∑
κ(Q)=−s
σ(Q)=σ

∑
k≤σ

λQ

∫
|AQ| |Bk−s ∗Kk ∗ K̃0| dz dz̄ dt

II =
∑
σ<−s

∑
κ(Q)=−s
σ(Q)=σ

∑
k≤σ

λQ

∣∣∣∣
∫

(AQ)(Bk−s ∗Kk ∗ K̃0) dz dz̄ dt

∣∣∣∣ .

We begin with term I. Fix σ < −s and Q ∈ C with κ(Q) = −s and σ(Q) = σ. By Lemma
5 and the definition of an atom we get

∑
k≤σ

λQ

∫
|aQ| |Bk−s ∗Kk ∗ K̃0| dz dz̄ dt

≤ CλQ|Q|−1
∑
k≤σ

∫
Q

{
∑

κ(Q′)=k−s
Q′∩S−1

k (z,t) �=∅

λQ′2σ(Q′)‖∇(Kk ∗ K̃0)‖L∞} dz dz̄ dt

by (2.3) and (6.2)

≤ CλQ|Q|−1
∑
k≤σ

2k−s 2−2k

∫
Q

∑
κ(Q′)=k−s
Q′∩Sk(z,t) �=∅

λQ′ dz dz̄ dt

≤ CλQ|Q|−1
∑
k≤σ

2−k−s
∫
Q[ ∫

{
∑

Q′∩Sk(z,t) �=∅
κ(Q′)=k−s

λQ′ |Q′|−1χQ′(w, s) }χSk(z,t)(w, s) dw dw̄ ds

]
dz dz̄ dt

by Fubini

≤ CλQ|Q|−1
∑
k≤σ

2−k−s
∫

∑
Q′∩

S
u∈Q

(Sku) �=∅

κ(Q′)=k−s

λQ′ |Q′|−1χQ′(w, s)
[ ∫

Q

χSk(z,t)(w, s) dz dz̄ dt

]
dw dw̄ ds
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by (8.1)

≤ CλQ|Q|−1
∑
k≤σ

2−k−s 2k+(2n+1)σ
∑

Q′∩
 S
u∈Q

Sku

!
�=∅

κ(Q′)=k−s

λQ′

≤ CλQ 2−σ−s
∑
k≤σ

∑
Q′∩

 S
u∈Q

Sσu

!
�=∅

κ(Q′)=k−s

λQ′

≤ CλQ 2−s−σ
∑

Q′∩
 S
u∈Q

Sσu

!
�=∅

κ(Q′)≤σ

λQ′

by (7.1)

≤ C α 2−sλQ .

Summing over all Q ∈ C with σ(Q) = σ, κ(Q) = −s and all σ < −s we get the required
conclusion for term I.

To treat term II, fix σ < −s and Q ∈ C with σ(Q) = σ and κ(Q) = −s. Two applications
of Lemma 5 give the first two inequalities below.

∑
k>σ

λQ

∣∣∣∣
∫

AQ(Bk−s ∗Kk ∗ K̃0) dz dz̄ dt

∣∣∣∣
≤ C

∑
k>σ

λQ 2σ‖Bk−s ∗ ∇(Kk ∗ K̃0)‖L∞(Q)

≤ C
∑
k>σ

λQ 2σ sup
u∈Q

∑
Q′∩S−1

k u �=φ
κ(Q′)=k−s

λQ′2σ(Q′)‖∇2(Kk ∗ k0‖L∞

by (2.3) and (6.3)

≤ C
∑
k>σ

λQ 2σ2k−s 2−3k sup
u∈Q

∑
Q′∩(Sku) �=φ
κ(Q′)=k−s

λQ′
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≤ C λQ 2−s
∑
k>σ

2σ−2k
∑

Q′∩
 S
u∈Q

Sku

!
�=φ

κ(Q′)≤k

λQ′

≤ C λQ 2−s
∑
k>σ

2σ−2k(Cα 2k) ≤ CαλQ 2−s .

The penultimate inequality follows by another application of (7.1). Summing over all
Q ∈ C with σ(Q) = σ, κ(Q) = −s and all σ < −s we get the required conclusion for term
II. (8) is now proved. This concludes the proof of (1) and hence of our theorem.

5. Concluding Remarks. The proof follows the method initiated in [C] in the treat-
ment of the maximal function along the parabola (t, t2). An application of this method
gives Theorem 2 in [G]. The same method might prove that the analytic family Aγ consid-
ered by Geller and Stein in [GS2] maps H1 to L1,∞ when Re γ = 0. This result, together
with the sharp L2 estimates in [GS2], would give a positive endpoint result for the analytic
family Aγ . It still remains an open question whether the operator A is of weak type (1, 1).
The answer to this problem is probably the same as for the Hilbert transform along the
parabola (t, t2) in R2.

I would like to thank my supervisor Mike Christ, for introducing to this problem and
for giving me numerous suggestions throughout this work.
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