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ABsTRACT On the Heisenberg group H"™ with coordinates (z,t) € C™ x R, define the distri-
bution K(z,t) = L(2)d(t), where L(z) is a homogeneous distribution on C" of degree —2n,
smooth away from the origin and 4(t) is the Dirac mass in the t variable. We prove that the
operator given by convolution with K maps H!(H") to weak L' (H").

1. Introduction. H" is the Lie group with underlying manifold C* x R and mul-
tiplication (z,t) - (2/,t') = (z 4+ 2/, t+t + 2 Im z - Z') where z -z’ = 2?21 zjz;. For
u = (z,t) € H" we define |u| = max;(|Re z;|, |Im z;], [t|'/?) where z = (z;). The norm | - |
is homogeneous of degree 1 under the one-parameter group of dilations D,., r > 0 where
D, (z,t) = (rz,7°t). A Heisenberg group left invariant ball is a set @Q of the form

Q= {uecH": |uy'u| < &} for some uy € H"

and some § > 0. The condition |uy'u| < § is equivalent to the pair of conditions
max;(|Rez; — Rez?|, [Imz; — Im 29]) < and [t —tg 4 2 Im 2 - Zp| < §* where u = (z,1),
up = (20,t0). up is the center of the ball  and 6 > 0 is the radius. H" balls are tilted
(2n + 1)-dimensional rectangles, with maximum tilt from the center of @) proportional to
the radius of ) times the Euclidean distance of the projection of the center of ) onto C”,
to the origin.

An H" atom is a function a(z, t) supported in a ball Q and satisfying [ a(z,t) dzdz dt =
0 and |a| < |Q| 'xg. ( We denote by Xp the characteristic function of a set B.)

Let L(z) be a homogeneous distribution on C™ of degree —2n, which agrees with a
smooth function away from the origin. Also let §(¢) be the Dirac distribution in the ¢
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variable. We denote by K the distribution on H" defined by K(z,t) = L(2)d(t). Thus,
if ¢ is a test function and (K, ¢) denotes the action of K on ¢, (K,¢) = (L,¢(-,0)).
Geller and Stein [GS1], [GS2] proved that the operator A : C§° — C*°(H") given by
Af = fx K extends to a bounded operator from L? to LP for 1 < p < oo. (* denotes the
group convolution.) They established their estimates by embedding the operator A in an
analytic family of operators A” such that A = A and by proving an L? and an L? estimate
at the endlines of a strip containing 0. Their result followed by analytic interpolation. It
has been an open question whether the operator A is of weak type (1,1). In this paper we
establish a weaker estimate, still sharper than the LP? boundedness of A, namely we prove
that A is of weak type H'. By this we mean that A extends to an operator that maps
HY(H") to weak L'(H"). Here H'(H"), henceforth H', denotes the Heisenberg group
Hardy space, homogeneous under the family of dilations Dr, » > 0 defined as follows:
H' is the set of all sums of the form f = > Agag where Q are Heisenberg group balls,
Ao € C, Y |Ag| < +o0 and ag are atoms supported in the corresponding balls Q. ||f|| 1
is then defined to be the infimum of ) |Ag| over all representations of f as > Agag. Our
main result is the following:

Theorem. The operator A, as defined before, is of weak type H'.

The proof is an application of the method developed in [C]. Some technical difficulties
arise because of the geometry of the Heisenberg balls.

2. Preliminaries for the proof. For 0,7 € Z, 7 > ¢ we define the class RUJ of all
sets of the form
B = {(2,t) € H" : max;(|Re zj—Re 2}, [Im z;—Im 2?|) < 27 and [t—to+2Im z-Zo| < 2777}
for all (29, t0) € H". For 7 = o, Ra,a is the class of all H" balls of radius 2. Given B € }N‘BU’T
let o(B) = o, 7(B) = 7 denote the associated parameters. The corresponding Euclidean
rectangle By of a set B € RGJ is the set
Biua = {(2,t) € H" : max;(|Re z; — Re 2J|, [Tm z; — Im 29|) <27 and |t —to| < 2777}
where (zo,tp) is the center of B. Let R, , denote the class of all sets in RU,T whose
corresponding Euclidean rectangles have vertices closest to the origin of the form:
(1129, ... ;027 7127, ... , 29, k2°F7) where i1, ... ,in,j1,--- ,Jn, k are integers.
For B € RU,T, B* will denote an expansion of B by a constant factor that has the
following two properties:
(a) If B' € Ryr 7+, 0’ <o, 7 <7 and B’ intersects B then B’ C B*.
(b) If D € Ry 1, 0/ < o, 7" < 7 and the projection of D onto C" is contained in the
projection of B onto C™, then D* C B*.
Note that any larger expansion of B* (for example B**, B***) also satisfies (a) and (b).
Given U,V subsets of H” by U - V we denote the set of all uv where v € U, v € V' and
by U~! we denote the set of all u~! where u € U. Following Christ [C], we define the
tendril T'(¢q) of a set ¢ € U, U, >, Bo,r to be the set T'(q) = ¢ -{(2,0) : 2] < 27(@+11 One
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can easily check that |T(q)| ~ 2°(@+@n+1)7(@) = (We denote by |B| the Lebesgue measure
of the set B.)

For the proof of our theorem, we may assume that a given f € H' is a finite sum
> Agag where > [Ag| < 2|/ f]|g1. Once the theorem is proved for such f the general case
will follow by a limiting argument. We may also assume that each Aqg in the decomposition
of f is positive since we can always multiply an atom by a scalar of modulus one to achieve
this. Finally, we can assume that for any ball ) in the decomposition of f we have
0(Q) € Z. The general case follows from the observation that every ball @ is contained
in a ball Q" with comparable measure and with o(Q’) € Z. Let’s call F the collection of
balls appearing in the atomic decomposition of f € H*.

We are now given an o > 0 and a finite collection F of balls @) with ¢(Q) € Z and with
associated scalars Ag > 0. The first of the following two lemmas is valid in any space of
homogeneous type X. For our purposes X = H".

Lemma 1. Given o > 0 and F as above, there exists a collection of balls {S} such

that:

(1.1) The balls obtained by shrinking the S’s by a fized constant factor are pairwise disjoint
and no point in X is contained in more than M S’s. M is a constant depending only on
X.

(1.2) dSI<Cca Y Ag
S

QEF
(1.3) Y Ao <Cals]
QCS*
(1.4) Y XlQTMxe| <Ca.
Qg any S* oo

PROOF. Let F' = "5 AQ|Q| ™ "xq~ and let

Q=¢xecX: sup ]B|_1/F>04
B>x B
B balls

) is an open set. Then by theorem (1.3) page 70 in [CW], there exists a sequence of

balls S; such that Q = (J ; S;, a fixed dilate of every S; meets the complement of {2 and

such that (1.1) is satisfied. (The first statement in (1.1) is not explicitly mentioned in the

statement of theorem (1.3) in [CW] but follows easily from the proof.) Using the fact that
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the Hardy-Littlewood maximal function in a space of homogeneous type is of weak type
(1,1) (theorem (2.1) page 71 [CW]) and with the help of (1.1) we immediately derive (1.2).
We only need to prove (1.3) and (1.4). For fixed j we have

S do=[ Y xalel e scls st [ Fscals.

QCS; QCS; 5

The last inequality is valid because a fixed dilate of S; meets the complement of €2. To
check (1.4) fix g € X. Let Qo be a ball with the smallest possible radius that contains xg
and is not contained in any S;. Then

> Al M xeo) < D Ael@I T xer (x0)
Q,Q_anyS;f annys;

=|@o!—1/Q > Al e <@l [

0 Q),Q_anyS’;k 0

Let Sy be any S containing xg. If @y had smaller radius than Sy then Qo C S§ which is
impossible. Thus Sy has no larger radius than )y which implies that Sy C Q. Therefore

some dilate of ), call it Q#, meets the complement of 2. We then have |QZ§7£|_1 fQ# F<a.
0
Finally [Qo|™" [, F < C Q¥ |1 Jo# ' < Ca and thus (1.4) holds. This concludes the
0
proof of Lemma 1.

Call C the subcollection of F consisting of all balls () contained in S* for some S as in
Lemma 1.

Lemma 2. Given an a > 0, F and C as above we can find a measurable set E C H"
and a function Kk : C — Z such that

(2.1) [E|<Ca™' Y Aq
QEF

Q-{(2,0):|z| <27M}Y CE for all Q € C and all j < k(Q)
If QC S* then k(Q) > o(S*) > o(Q)

(2.4) For any 0,71 € Z, T>0 and any q € R, - Z Ao < 92n+1, 90+ (2n+1)T

QCq”
K(Q)<T

(Here B* denotes any expansion of B € U, U, >, R, that satisfies (a) and (b).) The
constant C' depends on the dimension n and not on o, F, {\q}.
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PROOF. Find a 79 > o(Q) for all Q € C such that Yo Ag < 22" T2 Initially set
C1 = ¢ and Cy = ¢. Alsoset 71 =719 — 1, 01 = 71. Select all ¢ € R,, -, such that

Z )‘Q > a201+(2n—|—1)7'1 )

QCq”
QecC\(C1UC2)

Any @ contained in ¢* for some ¢ selected is assigned to ¢ and is placed in C;. Notice
that any @ of class C; is assigned to at most K many ¢ selected, where K is a constant
depending only on the definition of ¢*. This was step (o1, 71) of the induction. Now set
o9 = 01 — 1. Select all ¢ € R,, -, such that

T Ag > ageteriin

QCq”
QeC\(C1UC2)

Any @ contained in ¢* for some ¢ selected is assigned to ¢q and is placed in C;. This was step
(02, 71) of the induction. Continue similarly until we reach a ¢ smaller than mingec o(Q).
Then place in Cy all @ with o(Q) = 71 which are not already in C;.

Now set 75 = 7 — 1, 03 = 7. Select all ¢ € R,, -, such that

T Ag > agetCrin

QCq”
QeC\(C1UC2)

Any @ contained in ¢* for some ¢ selected is assigned to ¢ and is placed in C;. We
just described step (o2, 72) of the induction. Repeat this procedure until all the o’s are
exhausted then place in Cy all Q € C with o(Q)) = 72 which are not already in C;. Continue
the double induction until we reach a 7 < mingec 0(Q).

We have now split C into two disjoint classes C; and Cy. For @ € C; define k(Q) =
maxy s(1+7(q), 1+0(S*)) where the maximum is taken over all ¢ such that () is assigned
to ¢ and over all S such that @ C S*. For @ € C; define k(@) = maxg(1 + o(5*)) where
the maximum is taken over all S such that Q@ C S*. (2.3) is now clearly satisfied. To
simplify our notation, for ¢ € U, U, >, Ro,- set A(q) = > - A where the sum is taken
over all @ € C not yet placed in C; U Cy at step (o(q), 7(q)). To prove (2.4) fix ¢ € R, ;
and consider two cases. If ¢ was not selected then

a20—|—(2n+1)r > A(q) > Z )‘Q )

QCq”
K(Q)<T



Suppose now that g was selected at the step (o,7) of the induction. Let’s assume that
(2.4) fails i.e.

Z )\Q > 22n+1a 2G—|—(2TL+1)T )

QCq”
K(Q)<T

Note that for (¢')* D ¢*,
M) = M) > ) Ao

It follows that, at least when 7 < 71, the unique ¢’ € R, 41 which contains ¢ would have
been selected at step (0,7 + 1), contradiction because all @Q € C contained in ¢* would
be contained in (¢')* and therefore they would have been placed in C; at a previous step.
When 7 = 11 choose ¢’ € Ry41, such that ¢, O ¢eua. Then by (b), ¢* C (¢')* and the
previous argument leads to a contradiction. Define £ = | T(q)UUg ST where for

any S, St = 5% {(2,0) : |z| <2°05)+2}, Since

US+ <Z\S+y<02|5\<ca IR

g selected

QeF
to prove (2.1) it will suffice to bound | U, sc1eetea 1'(¢)|- We have
Z IT(q)| < C Z 90(9)+(2n+1)7(q)
q selected g selected
<cat Y A@<Cat Y Y g
q selected g selected Q assigned togq
at Z Ao #{q : Q is assigned to ¢}
Qel
SKECa™ Y M<Ca' > Ag.
QeC QEF

Finally, we check (2.2). If Q € C; and j < k(Q) then
Q- {(2,0): 2] 2T} Cq-{(2,0): 2] <27} =T(q) C E,

where @) is assigned to q. If Q) € Co, let Sy have the largest radius among all S such that
Q C S*. Then k(Q) =1+ o(S§) and for j < K(Q)

Q-{(z0): ]z <2} C 57 CE.
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The lemma is now proved.
3. Proof of the theorem. We must show that

(1) [ B [(AN) ()] > o} < O Fll

We split f as g + b where

b:Z)\QaQ, g = Z )\QCLQ.

QeC QEeF\C

By (1.4), ||g||~ < C « and thus

21Q

lglli: < Calglp <Ca Y Ag<

C
> ro <= Iflan
QeF\C QeF

The L? boundedness of A, [GS2], gives

a 4 9 C 9
n: — < — 2 < — 2 <
{uwem : j(ag @l > S} < = 4l < = lgli3- <

21Q

[alrE

Therefore (1) will follow from

«

2) HueH”:\(Ab)(uﬂ > 2

<< 0l

Because of (2.1) and of the assumption )" 5c r Ag < 2[|f||g1, (2) will be a corollary of

Hue H'\ E : |(Ab)(u)| > %H < g 3 e
QeC

which in turn will follow from

(3) [Ab]|72 g\ gy < C v Z AQ
QeC
with the aid of Chebychev’s inequality.
The rest of the paper is devoted to the proof of (3).
Fix ¢ € C3°(C™) supported in 1/2 < |z| < 2 such that

> p(277z) =1 forall z€ C" - {0}.
JEL
7



We decompose the operator A =" ; Aj, where A; is given by convolution with K (z,t) =

L(2)$(2772)4(t). Since all balls Q appearing in the definition of b are in C, in the remainder
of the paper every () considered is in C. This restriction is assumed to hold in all sums
below.

To treat (3) fix u € H" \ E and write

Ab(u) = A (Z AQQQ) (1)
= Z ((Z AQaq) *Kj> (U)Z AQag * Z K; | (w)
J Q

JZr(Q)

:ZZ Z Agag * K| (u).

520 jEL [r(Q)=j—s
If we set
B, = Z )\QCLQ , keZ
w(Q)=k
(3) will be a consequence of
2

(4) > (Bj_s * K;) <Ca277 ) A
JEZ L2(H") K(Q)=j—s
for all s > 0.

Without loss of generality, we may assume that K(z,t) = L(2)d(t) is a real-valued
distribution. Expanding the square out, we write the left hand side of (4) as:

> [||Bj_s «Kjlli-+2 ) /(Bj_s « K;)(By_s * K3,) dzdz dt

(5) JEZ J—3<k<y

+2 ) /(Bj_s % K;)(By_s * K1) dzdz dt| .
k<j—3

We will treat the first and the third term inside the brackets in (5). The estimate for
the second term in (5) will follow from the estimate for the first term with the use of
Cauchy-Schwarz inequality. We therefore only need to prove

S OB x Kl + > /(Bj_s % K;)(By_s * Ky) dzdz dt
(6) JEZ E<j—3

<Ca2” Y Ag.
K(Q)=j—s
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By rescaling, it suffices to prove (6) when j = 0. Our proof will be complete if we can
show:

(7) IB_sx Koll7- < Ca27® > g
K(Q)=—s

(8) >

k<—3

/(B—S*KO)(Bk—s*Kk) dzdz dt’ <Ca2° Z )\Q.
K(Q)=—s

We start with the proof of (7). We will need two lemmas.
Lemma 3. For any ball Q with 0(Q) < 0, |lag * Ko|lr~ < C277(@),
PRrROOF. Fix a @ with 0(Q) = o < 0. We have

laq * Ko)(z,1)| =

/ ag(z —w,t —2Im z - w)Lo(w) dwdw
< ClQIYSq (2. 1) = C27 "7 S5 (2, )]

where Sg(z,t) = {w € C" : 3 < |w| <2 such that (z —w,t—2Im z-w) € Q} .

Clearly Sq(z,t) = {w € C": 1 <|w| <2 such that (w,0) € Q7'(z,t)} .

( We set Q7 1(2,t) = Q71 - {(2,t)}). Since Q is a left-invariant ball, Qy = Q1(z,t) is a
right-invariant ball of radius 27, centered say at (z1,t1). The set Sq(z,t) is empty unless
|z1| ~ 1. This observation implies that the maximum tilt of @y from its center is < C'27.
Thus Sg(z,t) is contained in

{fweC":|w—2z|<27, |2Im 2 -w| < C2%7}.
Setting ( = w — 21, to prove the lemma, it will suffice to show that
{¢CeC™:|¢|<2° and |Im(C- %) < C227) < C2@n+d)a

The latter becomes obvious when we introduce a rotation that takes z; to the point
(a +10, 0+10,...,0+1i0) € C", where |a| < C.

Given f(z,t) a function on the Heisenberg group, let f denote the function f(z,t) =
f((z,t)71) = f(—z,—t). Note that for all f, g, h functions on any group with Haar measure
dx the following is valid:

[eomar= [ x5 ar.

To prove (7) we will need one more lemma.
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Lemma 4. Ky * K, has compact support and satisfies:

(Ko * Ko) (2, )] < O(l| + [t])
V(Ko Ko)(2, )| < C(|z] + [¢) 7.

PROOF. Let 9 be a test function. Then

(Ko % Ko, ) = (Ko, ¥ x Ko) = / Lo(w) (¢ % Ko)(w,0) dw dw
:/ Lo(w) | $(w—¢, =2 Tmw - C)Lo(¢) dC e dw dw
n Cn
(9) :/n /n Lo(z +O(z,—2Imz - {)Lo(¢) d¢ d¢ dzdz.

Let ¢ = (C1,C2y---,Cn), ¢ =zj+iy;, 1 <j<n Fixl:1</{¢<n and denote by
2',¢' € C"! the points z,( whose (th variable is deleted. Change variables in (9) by
setting

t=2Imz-(=-2Im 2(—2Im 2 -
and

s=-—2Rez-(=—-2Rez(—2Rez (.

Then ¢, = £=2#£222¢ apd ‘det (aglziff)ﬂ =1 |z 2.

—2ZzZy
We can rewrite (9) as

(10) /cmR Y(z,t) E |2¢| 72 /Cnl/RLo(erf)Lo(f) ds dg’dg’} dz dz dt

Whereéz <<17"' 7C€—17 %a Ce-f—la"' 7(71) .
It follows that (Ko * Ko)(z,t) is equal to the expression inside the brackets in (10). Since
Ly is supported in |z| < 2 we must have

(11) 2"+ ¢+ <C




which implies | — 2|2¢|?> + s+ 2 Re 2’ - {'| < C|z¢|. Therefore, once (’ is fixed, s varies over
a set of measure < C|zy|. It follows that

- 1 . .
(Ko * Ko) (2, 1) < § |2 2/|,|<C/ | Lol dsdc’ < Clze| ™.

Since £ was arbitrary in {1,2,...n} we get |(Kq % Ko)(z,t)| < C|z|~'. It also follows from
(11) that |t — 2 Im Z’ - (/| < C|zk| which implies that

[t < Clak] + 22| IC'] < C(l2k] + [2]) < Clz] .

Thus on the support of (Ko % Ko)(2,t), |t| < ¢|z| and the asserted bound follows. The
estimate for the gradient can be proved similarly.

We now begin the proof of (7).

First fix s > 0 and assign each @ occurring in (7) to some (but only one) element
q € Ry(g),0 such that Q intersects ¢ (hence Q C ¢*). For ¢ in R, (0 < 0) write

Aq = Z )\QCLQ )\q = Z )\Q .

Q assigned toq Q assigned toq

Also split every g € Ry (0 < —s) in 2° g¢j € Ry _5, 1 < j < 2%, so that their union is ¢
and associate with each @) assigned to ¢ one ¢; such that @ intersects ¢; (hence Q C q;‘)

Write
qu = Z )\QGQ )\qj = Z )\QGQ.

Q associated to g; Q associated to g;

We then have A, = 23; Ag;s Mg = 22S Ag; - We now write the left hand side of (7) as

j=1

Z Z A, * Ky

o<—s g€ERs o 12

=2> > > N /A x Ko)(Ay * Ko) dz dz dt
0'<—s 0<o’ ¢’ER,/ 4 q€ERs0
<I+1II where

=2 > 2 2

0'<—s 0<o’'q€R, 3 gERsp0
an(q')"#0
11

/(Aq * Ko)(Aq/ * K()) dzdz dt



DD VDS

o'<—so<o’' ¢ER, 3 qERsp0
an(q’)"=0

/(Aq * KQ)(Aq/ * Ko) dzdz dt‘ .

To treat term I, let’s fix o/ < —s, 0 < 0’, ¢ € R,/ 9. Then

Z ‘/(Aq * K())(Aq/ * KO) dzdz dt'
qERU,O
an(q’)"#0
< > |lAg # Kollpr |Ag * Kol[z~ by Lemma 3
qeRU,O
an(q’)"#0

(12) < Y CA277 ).
qeRo‘,O
an(q")" 0

To get a bound for (12) write (¢’)* N (vertical Euclidean cylinder over ¢') as a union of
C'2°, q; € Ry —s. We then have that |J;(q})* 2 (¢)* and therefore

c2° c2° c2°
SIRTES SED SRPUES Sl SR SRS SR
q€Rs 0 j=1 q€Rs o Jj=1 g€Rs J=1 QC(qj)*
an(g’)*#£0 qn(a)* #0 qC(gy)™” K(Q)=—s

An application of (2.4) for each g; gives that the above is bounded by
C 28 2n—|—1 o 20—(2n+1)s S Oa2a—2ns )

Therefore (12) is bounded above by C' A\;277Ca 2772 < Ca\y275.
Summing over all ¢ € R,/ 9,0 < ¢’ and ¢’ < —s we get the desired conclusion for I.

In the sequel we will need the following simple lemma whose proof we omit.

Lemma 5. On the Heisenberg group, let a have support contained in the set A and
integral 0 and let h be C'. Then

[(a * h)(w)| < [lall | VAl e a-1.4) Buclidean diameter of(A™" - u).

To treat term II, fix as before 0/ < —s, 0 < o', ¢ € R,/ . Note that for ¢ € R, and
all u € H", the Euclidean diameter of ¢~ 'u is at most C'27%. We have

2.

qERo',O
an(q’) =0

/(Aq * Ko)(Aq/ * K()) dzdz dt
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< ) /(AT « Ko)(Ay * Ko) dzdz dt’
r€Rs s
r0(q")" =0
< Z /Aq(Aq, « Ko * Ko) dzdz dt‘
q€Rs, s
an(q’)"=0
< Z Ay ||[Aq * Ko * IN(OHLoo(q/) by Lemma 5
q€Rs, s
an(q’)"=0
(13) SC27%\ Y MIIV(Eo # Kol poe g-1.q7) -
q€Rs s
an(q’)"=0

To get an estimate for (13) consider all expansions of ¢’ by a factor of 2™, m > 0. By this

we mean all sets ¢/, in Rm+0170 with the same center as ¢’ and tilted as ¢’. We first fix an
m > 0 and get an estimate for
>

qE€ERs —s
4Gy, 1170

Note that since Ko * Ko has compact support only those m for which m + ¢’ < C are of
interest to us. Consider two cases:
Case 1. m+o’ < 0. Write ¢, ; as the union of 2~ (m+7) rectangles Q1 € Rntolimtors

1<k <27t Then

o~ (m+o") g—(m+o’)
)OREESD DI DEEED DI DR
qeRo,fs k=1 qERa,f.s k=1 Qc(q/ )**
+1,k
qﬂq:n+17é(2) qmq;n—b—l,k?é@ "

S 2—(m+a/)ca 2m+0'+(2n+1)(m+0/) — Ca 2(2n+1)(m+a/) )

where in the last inequality we used (2.4).

Case 2. 0 < m+ o < C. All ¢ € R, _, which intersect ¢;,,; intersect at most C
rectangles Ry in Rg . Then

> Aqéi 3 Aqsfj Y X <Ca.

g€ERs s k=1 g€Rs _s k=1 QCR;*
qnq;, 1170 qN Ry #0 Rr€Ro,0



We finally get an estimate for (13).

C—o’
(13) S 0278)\q’ Z Z /\q ||V(K0 * KO)HLoo(q—l.q/)
m=0 qERo,—s
qm(‘l;n+1_qgl)5£@

C—o'
< 02—2)\(1/ Z Z )\q 2—2(m+o-/)
m=0 gER, _s

qﬁQLnJrl 750)

—o’ C—o'
< 0275)\(1/ |: Z 272(m+a')0a2(2n+1)(m+0/) + Z 272(m+a/) Ca

m=0 m=—o'+1

S C « 2_5)‘q’ .

Summing over all ¢’ € R,/ o, all 0 < ¢’ and all 0’ < —s we get the desired conclusion for
term II. This concludes the proof of (7).

4. The off-diagonal terms. This section is devoted to the proof of (8). We begin
with a lemma.

Lemma 6. For k < —3, K} x K is supported in the set {(z,t) : |z| < C, |t| < C2*}
and satisfies

(6.3) V(K * Ko)||p~ < C273F,

PROOF. Same reasoning as in Lemma 4 shows that, when ¢ = n,
- 1 ~ _
(K * Ko)(z,t) = 2 |2 | 2/ /Lk(z+C)LO(C) dsd¢" d¢’
cn-1 JR

where CI = (Cl? s ;Cn—l) € Cnil and 5 = (glv s 7<’n—1 s %) eCr.
Since Ly (2) is supported in |z| ~ 2% we get that

s—it+2z -
—2%,

12+ |+ |2n + <C2F,

thus ¢’ integrates over a Euclidean ball about —z’ of radius C'2*. The above inequality
gives
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5= 20znl +2 Re 7 ('] < C2¥|z)
It —2Tm 2" - ¢'| < O2%|z,].
We certainly have that |z,| < C on the support of (K} * Ko)(z,t). It follows that for any
fixed ¢/, s integrates over a set of measure < C'2*. Also
[t] < C 2%z | + |2 Im 2" - (|
<C2F 42/ Im(z + (') - ¢
<C02¥ 421 + (||| < C2F.

This proves the assertion about the support of K}, x Ko.

We now prove the size estimates for Ky * f(o. It follows from the definition of 5 that
the plane z,, = 0 doesn’t intersect the support of K x Ky. Since the latter set is compact,
there exists a constant Cj such that |z,| > Cy when (z,t) lies in the support of K} % K.
We use || L ||z < C(2F)~2" to estimate || Ky * Ko|[z~ by

00_2/ / / Lkl Lo | Lol Lo ds d¢' dC’
¢ +2120 2% Jls—agr|<C 28 Jls—ags|<O 2

S C(2k>2(n—1)2k(2k)—2n — 02—.16 ,

1

W

where in the above estimate we set a;r = 2|z,|> — 2 Re 2’ - (. The estimates for the
derivatives of K, * K are similar.

For each k < —3, let’s call S, = {(2,t) : |2| < C, |t| < C'2¥} so that support (Kj*Kg) C
Sk. Note that for each © € H" we have Sk_lu = Sipu.

We will need the following two lemmas:

Lemma 7. Fiz any Q € C with 0(Q) = o and any k < —3. If m = max(c, k) we have:

(7.1) > Agr < Ca2™,

Q/ﬁ< U Smu) #0
uweQ

K(Q)<m

Lemma 8. For any Q € C with 0(Q) = o, any k < o and any (w,s) € H",

(8.1) / XSy (z,) (W, 8) dzdZ dt < C 2k+(2ntbo
Q

15



PROOF. For any u € Q, S,,u is a tilted rectangle in R?2"*! of dimensions

(C,...,C,C2m).
——

2n times

It follows that (J,co Smu is contained in a tilted rectangle in R27+1 of dimensions

(C,...,C,C2m).
——

2n times

Cover UnEQ S,,u by the union of C'2~C»*+)™ elements of R, m. For each element of
Ry.m apply (2.4). The desired conclusion follows.

To prove (8.1) note that the set of all (z,¢) € @ for which the fixed (w, s) lies in Sk/(z, )
is contained in a rectangle R of dimensions

(C,...,C,C2"
——
2n times

centered at the center of () and with maximum tilt from its center ~ Cd, where d denotes
the Fuclidean distance from the center of @) to the origin. () has dimensions

(29,...,29,2%9)
~———

2n times

and has maximum tilt from its center ~ C27d, (o < 0). It follows that @ and R intersect
almost vertically and with respect the coordinate system induced by R, @ should be
thought as having dimensions (27, ... ,227 ...29). Therefore Q N R has measure at most

C2°, ... 20 229gmin(k.o) _ cokt(ntl)o

2n—1 times

We can now prove (8). Write the left hand side of (8) as:

3 / (B )(Br_s Ky » o) dz dz dt

k<—3
<Y D> ). /(AQ)(BkS*Kk*KO) dzdz dt
0<—3s k(Q)=—s k<-3

o(Q)=c
<I+1I where
16



I—Z Z Z)\Q/|AQ||BkS*Kk*K0|dzdzdt

0<—$ k(Q)=—s k<o
o(Q)=c

HE Y ZAQ‘/AQ (Br_s * Kp x Ko) dzdz dt| .

o<l —s8 R(Q =—s k<o
o(Q)=c

We begin with term I. Fix 0 < —s and @ € C with k(Q) = —s and 0(Q) = 0. By Lemma
5 and the definition of an atom we get

> )‘Q/\GQI |By_s * Ky, % Ko| dzdz dt
k<o

<CAQlQIT D / { A 27 @) |V (K % Ko)|| g~} dzdz dt
k<o ,{(Q ) k—s
QNS (2,1)#0

by (2.3) and (6.2)

< CAQlQI™1) | 2P e 2 %/ Y g dzdzdt

k<o n(Q)=k—s
Q' NSk (z,t)#0

< Crof Y 2 |
k<o Q

|: /{ )\Q/’Q/’_l)(Ql(’w, S) }Xsk(z,t) (w, S) dwdw ds | dzdz dt

Q' NSk (z,t)#£0
K(Q")=k—s
by Fubini

< CrolQ™ 22’”/

k<o

Z )\Q/|Q/‘_1XQ/<w,5) |: / ng(z7t)(w,s) dzdz dt| dwdw ds
QN U (Sku)#0 “

R(Q)=k—s
17



by (8.1)

< C/\Q|Q|_1 Z 2—k—s 2k—|—(2n—|—1)0 Z )‘Q’
k<o
B Q’m< U Sku> #0
ueQ
R(Q)=k—s

< C)\Q 2777% Z Z )\Qr

k<o
le< U So’“) #@
ueQ

~(Q")=k—s
< C)\Q 27579 Z )\Q/
Q'ﬁ< U Sgu>;£®
ueQ
k(Q") <o
by (7.1)
S Ca 2_8)\Q .

Summing over all @ € C with 0(Q) = 0, k(Q) = —s and all 0 < —s we get the required
conclusion for term I.

To treat term 11, fix 0 < —s and Q € C with 0(Q) = 0 and k(Q) = —s. Two applications
of Lemma 5 give the first two inequalities below.

k>0
< C Y A 27| Bies * V(Ey % Ko)l| 1)
k>0
<CY A2sup Y A 27 V(K # kol
k>0 <L Qs tue
w(Q)=k—s

by (2.3) and (6.3)

<C Z Ao 272875 273 qup Z g/
k>0 “EQ Q' (Sew) £
R(Q)=k-s
18



<C )\Q 27° Z 902k Z )\Ql

k>0
Q’ﬂ< § sku> #6
ueQ
K(Q)<k
<CAg2° ) 277 (Ca2k) < Carg2™’.
k>0

The penultimate inequality follows by another application of (7.1). Summing over all
Q € C with 0(Q) = 0, kK(Q) = —s and all 0 < —s we get the required conclusion for term
II. (8) is now proved. This concludes the proof of (1) and hence of our theorem.

5. Concluding Remarks. The proof follows the method initiated in [C] in the treat-
ment of the maximal function along the parabola (¢,t2). An application of this method
gives Theorem 2 in [G]. The same method might prove that the analytic family A” consid-
ered by Geller and Stein in [GS2] maps H! to L1**° when Re~y = 0. This result, together
with the sharp L? estimates in [GS2], would give a positive endpoint result for the analytic
family A7. It still remains an open question whether the operator A is of weak type (1,1).
The answer to this problem is probably the same as for the Hilbert transform along the
parabola (¢,t?) in R2.

I would like to thank my supervisor Mike Christ, for introducing to this problem and
for giving me numerous suggestions throughout this work.
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