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Abstract

A survey of known results in the theory of convolution type Calderón-Zygmund sin-
gular integral operators with rough kernels is given. Some recent progress is discussed.
A list of remaining open questions is presented.

1 Introduction

Throughout this article, Ω will be a complex-valued integrable function over the sphere Sn−1,
with mean value zero with respect to surface measure. Define a tempered distribution KΩ

on Rn by setting

KΩ(f) = lim
ε→0

∫
|x|>ε

Ω(x/|x|)
|x|n f(x) dx = p.v.

∫
Rn

Ω(x/|x|)
|x|n f(x) dx, (1)

for f in the Schwartz class S(Rn). The limit in (1) can be easily shown to exist for any f
C1 function on Rn which satisfies |f(x)| ≤ C|x|−δ for some C, δ > 0 and all |x| large.

We will denote by TΩ the operator given by convolution with Ω initially defined on
the set of Schwartz functions S(Rn). The operators TΩ were introduced by Calderón and
Zygmund in [1] and today are referred to as Calderón-Zygmund singular integral operators
(of convolution type).

In this article we shall be concerned with the following questions: What conditions on Ω
imply Lp boundedness for TΩ and other related operators? It is a classical result, that if Ω
has some smoothness on Sn−1, say Lipschitz of order α > 0, then TΩ is a bounded operator
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on Lp (Rn) for 1 < p < ∞. In fact, for such Ω’s we have that KΩ satisfies Hörmander’s
condition ∫

|x|≥2|y|

|KΩ(x− y)−KΩ(x)| dx ≤ B, (2)

for some B = B(n,Ω) > 0. Condition (2) implies that TΩ is of weak type (1, 1), a property
which will be discussed in section 4. This property, together with the L2 boundedness of Ω
(which follows from a Fourier transform calculation), implies that TΩ is bounded on Lp (Rn)
for 1 < p <∞. See [19] for details.

In 1956 Calderón and Zygmund [2] introduced the method of rotations. The idea is the
following: If Ω is an odd function on Sn−1, then it is easy to see that

(TΩf)(x) =
1

2

∫
Sn−1

Ω(θ)(Hθf)(x) dθ, (3)

where Hθf is the directional Hilbert transform of f in the direction θ ∈ Sn−1, defined by

(Hθf)(x) = p.v.
1

π

∫
R1

f(x− tθ)
t

dt =
1

π
Tδθ−δ−θ , (4)

where δa is Dirac mass at a. (Of course Ω = δθ − δ−θ is not in L1, but we can extend the
definition of TΩ for Ω bounded Borel measures on Sn−1.) Using a rotation, it is easy to show
that Hθf maps Lp(Rn)→ Lp(Rn) with the same norm as the usual Hilbert transform from
Lp(R1) → Lp(R1). It follows from (3) that TΩ maps Lp(Rn) into itself for any Ω odd in
L1(Sn−1).

In the same paper [2], Calderón and Zygmund proved that if∫
Sn−1

|Ω(θ)|Log+|Ω(θ)| dθ <∞, (5)

then TΩ is a bounded operator on Lp, 1 < p <∞. In view of the previous discussion about
odd kernels, condition (5) is only relevant to even Ω’s.

The general question along these lines is the following:
Question 1. Let Ω be an integrable even function on Sn−1 with integral zero. Given a
1 < p <∞, find a necessary and sufficient condition on Ω such that TΩ extends to a bounded
operator from Lp(Rn)→ Lp(Rn).

It is likely that such a condition will depend on the parameter p.

2 L2 boundedness

L2 is a good starting point to study boundedness of the operators TΩ on Lp spaces. We
begin with the following natural question: If Ω is merely an L1 function with integral zero,
is TΩ a bounded operator on L2(Rn)?

The answer is known to be negative. More precisely, an example constructed by M. Weiss
and A. Zygmund gives a dramatic answer to this question:
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Theorem 1. (M. Weiss and A. Zygmund [21]) Let φ(u) be a non-negative increasing (non-
necessarily strictly) function defined for u ≥ 0 which satisfies:

lim
u→∞

φ(u)

u log u
= 0.

Then there exists an Ω in L1(Sn−1) with integral zero which satisfies∫
Sn−1

φ(|Ω(θ)|) dθ < +∞,

and a continuous f ∈ Lp(Rn) for all 1 ≤ p ≤ ∞, which tends to zero at infinity such that

lim sup
ε→0

∣∣∣∣∣∣∣
∫
|y|>ε

Ω(y/|y|)
|y|n f(x− y) dy

∣∣∣∣∣∣∣ = +∞

for almost all x in Rn.

In particular, taking φ(u) = u, we conclude that there exists an Ω in L1(Sn−1) such that
TΩ is not a bounded operator on all Lp spaces. Taking φ(u) = u(log u)1−ε we obtain that
Ω ∈ LLog1−εL is not a strong enough condition to imply Lp boundedness for TΩ.

However, the question is far from over. We know precisely when a convolution operator
maps L2(Rn) into itself. This happens exactly when the Fourier transform of the convolving
distribution is a bounded function. Let us compute the Fourier transform of the distribution
KΩ. Fix f in the Schwartz class. We have

K̂Ω(f) =

∫
Rn

KΩ(x)f̂(x) dx

= lim
ε→0

N→∞

∫
Rn

f(y)

 ∫
ε≤|x|≤N

Ω(x/|x|)
|x|n e−2πiy·xdx

 dy (6)

= lim
ε→0

N→∞

∫
Rn

f(y)

[∫
Sn−1

Ω(θ)

{∫ N/|y|

r=ε/|y|
e−2πir y′·θ dr

r

}
dθ

]
dy

where y′ = y/|y|. It can be shown (see [19] for details) that the expression inside the curly
brackets above converges pointwise to

πi

2
sgn(θ · y′) + log

1

|θ · y′| .

Therefore, if we assume that

sup
y′∈Sn−1

∫
Sn−1

|Ω(θ)| log
1

|θ · y′| dθ < +∞, (7)
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it is an easy consequence of the Lebesgue dominated convergence theorem that K̂Ω is the
bounded function:

K̂Ω(y) =

∫
Sn−1

Ω(θ)

[
πi

2
sgn(θ · y′) + log

1

|θ · y′|

]
dθ. (8)

More generally, it can be seen from the calculations above that K̂Ω is a function in L∞(Rn)
if and only if the limit of the bracketed expression in (6) exists and is equal to a bounded
function, i.e.

lim
ε→0

N→∞

∫
ε≤|x|≤N

Ω(x/|x|)
|x|n e−2πiy·xdx = m(y) ∈ L∞(Rn). (9)

Condition (7), even though not equivalent to (9) contains most of its essence.
An easy consequence of the above is the following

Theorem 2. Suppose that Ω satisfies (7) or more generally (9). Then TΩ extends to an
operator bounded from L2(Rn) into itself. In fact condition (9) is equivalent to the L2

boundedness of TΩ.

Exercise. Use Young’s inequality in the context of Orlicz spaces to prove directly that
condition (5) implies condition (7).

3 Lp boundedness, 1 < p <∞
It is well known that if a convolution operator maps Lp → Lp then by duality it also maps
Lp′ → Lp′ with the same norm. (p′ = p/(p − 1) throughout this paper.) It follows that it
maps L2 → L2 by interpolation. Since condition (9) is equivalent to L2 boundedness, it is
unlikely to expect that condition (9) would imply that TΩ is Lp bounded. Condition (7) is
slightly weaker, and we can pose the following question:
Question 2. Let Ω be an integrable function on Sn−1 with integral zero satisfying condition
(7). Does it follow that TΩ is a bounded operator on Lp(Rn) for some p �= 2?

A weaker question is answered in Theorem 4.
Let us denote by H1(Sn−1) the 1-Hardy space on the sphere in the sense of Coifman and

Weiss [6]. It is a known result that functions Ω on Sn−1 which satisfy (5) are in H1(Sn−1). It
is natural to ask whether TΩ is Lp bounded when Ω ∈ H1(Sn−1). With the aid of a theorem
in [3] and with a bit of work one can show that the condition Ω ∈ H1(Sn−1) is equivalent to

Ω(x/|x|)
|x|n χ1/2≤|x|≤2 ∈ H1(Rn), (10)

where H1(Rn) denotes the Hardy space on Rn. See [18] for details.
We now investigate connections between condition (10) and L2 boundedness. Take Ω to

be an even function in this discussion. Using polar coordinates and the fact that Ω has mean
value zero, it is easy to see that

log 4

∫
Sn−1

Ω(θ) log
1

|θ · ξ| dθ =

∫
1/2≤|x|≤2

|Ω(x/|x|)|
|x|n log

1

|x · ξ| dx, (11)
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where both integrals in (11) are finite for almost all ξ ∈ Rn by an easy application of Fubini’s
theorem. The H1-BMO duality now gives∣∣∣∣∣∣∣

∫
1/2≤|x|≤2

Ω(x)

|x|n log
1

|x · ξ|dx

∣∣∣∣∣∣∣ ≤
∥∥∥∥log

1

|x · ξ|

∥∥∥∥
BMO(dx)

∥∥∥∥Ω(x)

|x|n χ1/2≤|x|≤2

∥∥∥∥
H1(dx)

. (12)

Since the BMO norm is invariant under rotations, it is easy to see the BMO norms of the
functions x→ − log |x · ξ| are uniformly bounded in ξ. It follows from (11) and (12) that

sup
|ξ|=1

∣∣∣∣∫
Sn−1

Ω(θ) ln
1

|θ · ξ| dθ
∣∣∣∣ ≤ C ∥∥∥∥Ω(x)

|x|n χ1/2≤|x|≤2

∥∥∥∥
H1(dx)

. (13)

Since Ω is even, the left hand side of (13) is equal to ‖K̂Ω‖L∞ in view of (8). We conclude
that TΩ is L2 bounded, and hence condition (10) implies L2 boundedness.

We now show that the H1(Sn−1) condition implies that Lp boundedness for TΩ for 1 <
p < ∞. The theorem below was independently discovered by Connett [7] and Ricci and
Weiss [14]. See also [6] for a proof in dimension n = 2. The proof we give below uses the
equivalent hypothesis (10).

Theorem 3. (W. Connett, F. Ricci and G. Weiss) Let Ω be an integrable function on Sn−1

with mean value zero which satisfies condition (10). Then TΩ extends to a bounded operator
from Lp(Rn) into itself for 1 < p <∞.

Proof. As discussed before, it suffices to consider Ω even. Denote by Rj the jth Riesz

transform given by convolution with p.v.
Γ(n+1

2
)

π
n+1

2

xj
|x|n+1

. Since

I =
n∑

i=1

R2
j ,

it follows that

T =
n∑

i=1

RjTj, (14)

where Tj = RjT . Observe that Tj is well defined as an operator on L2. Let Vj be the kernel
of Tj. Since T has an even kernel and Rj has an odd kernel, Tj has an odd kernel Kj which
is also homogeneous of degree −n. Write

Kj(x) = Rj

(
p.v.

Ω( · )
| · |n

)
(x) =

Vj(x/|x|)
|x|n ,

where Vj is an odd distribution on the sphere. ( Vj(x/|x|) denotes the distribution φ →
〈Vj, φ(x/|x|)〉 on Rn). We will show that Vj is a function satisfying∫

Sn−1

|Vj(θ)|dθ <∞. (15)
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To prove (15) write Kj = K0
j +K1

j +K∞j , where

K0
j =Rj

(
p.v.

Ω( · )
| · |nχ| · |< 1

2

)
, K1

j =Rj

(
Ω( · )
| · |nχ 1

2
≤| · |≤2

)
, K∞j =Rj

(
Ω( · )
| · |nχ2<| · |

)
. (16)

Fix x in the annulus 3/4 ≤ |x| ≤ 3/2. Then

π
n+1

2

Γ(n+1
2

)

∣∣K0
j (x)

∣∣ =

∣∣∣∣∣limε→0

∫
ε<|y|< 1

2

xj − yj
|x− y|n+1

Ω(y)

|y|n dy
∣∣∣∣∣

=

∣∣∣∣∣
∫
|y|< 1

2

(
xj − yj
|x− y|n+1

− xj
|x|n+1

)
Ω(y)

|y|n dy
∣∣∣∣∣

=

∣∣∣∣∣
∫ 1

2

0

∫
Sn−1

θ · ∇
(
xj
|x|n+1

)
(x− ρ θ tx,ρθ) Ω(θ) dθdρ

∣∣∣∣∣
≤ 1

2
‖Ω‖L1 max

1/4≤|x|≤7/4

∣∣∣∣∇(
xj
|x|n+1

)∣∣∣∣ = C‖Ω‖L1 ,

for some tx,ρθ ∈ [0, 1]. Similarly,

π
n+1

2

Γ(n+1
2

)

∣∣K∞j (x)
∣∣ =

∣∣∣∣∫
|y|>2

xj − yj
|x− y|n+1

Ω(y)

|y|n dy
∣∣∣∣

≤
∫
|y|>2

1

|x− y|n
|Ω(y)|
|y|n dy

≤
∫
|y|>2

4n

|y|2n |Ω(y)| dy = C‖Ω‖L1 ,

for 3/4 ≤ |x| ≤ 3/2. Finally, K1
j is in L1(Rn) since by assumption (Ω(x/|x|)/|x|n)χ1/2≤|x|≤2

is in the Hardy space H1(Rn). See [20] p. 114.
It follows thatKj is integrable over the annulus 3/4 ≤ |x| ≤ 3/2. Therefore Vj(x/|x|)/|x|n

has to be integrable over a sphere aSn−1, for some 3/4 ≤ a ≤ 3/2. By homogeneity Vj is
integrable over Sn−1. Therefore Tj = TVj and by identity (3) for Ω = Vj we deduce that
Tj = TVj is bounded on Lp. (14) now gives that T is bounded on Lp.

Remark. In the proof of Theorem 3, we showed that condition (10) implies that Vj is
integrable over Sn−1. In fact, the converse is also true. It is shown in [14] that Vj ∈ L1(Sn−1)
for all j = 1, . . . , n if and only if Ω ∈ H1(Sn−1). Moreover, condition Ω ∈ H1(Sn−1) is
equivalent to condition (10) as shown in [18]. Therefore all these three conditions on Ω are
equivalent and they all imply that TΩ is bounded on Lp(Rn), 1 < p <∞.

We end this section with a another sufficient condition on Ω that implies Lp boundedness
for TΩ. The theorem below is proved based on ideas developed in [9]. Littlewood-Paley
decomposition and a bootstrapping argument are used in conjunction with the logarithmic
decay at infinity of the Fourier transform of the expression in (10). For a proof we refer the
reader to [12].
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Theorem 4. Let α > 0. Let Ω be an even function in L1(Sn−1) with mean value zero which
satisfies:

sup
y′∈Sn−1

∫
Sn−1

|Ω(θ)|
(

log
1

|θ · y′|

)1+α

dθ < +∞. (17)

Then TΩ extends to a bounded operator from Lp(Rn) into itself for (2+α)/(1+α) < p < 2+α.

Remark. It follows that if condition (17) holds for every α > 0, then TΩ maps Lp → Lp

for all 1 < p < ∞. It is natural to ask how condition (17) for all α > 0 compares with
condition (5) or even the condition Ω ∈ H1(Sn−1). The authors have constructed examples
of functions Ω which satisfy condition (17) for all α > 0 but do not satisfy the H1 condition
(10). See [12] for details. Conversely, the function

Ω(θ) =
∞∑
k=2

eikθ

(log k)2

is in H1(S1) but it behaves like θ−1 log−2(θ−1) as θ → 0+ and therefore it fails to satisfy
condition (17) for any α > 0. See [22] p. 189 for a justification of this.

4 The L1 theory

We now turn to questions regarding the behavior of TΩ on L1(Rn). TΩ is said to be of weak
type (1, 1) if there is a constant C = C(n,Ω) > 0 such that for all f ∈ L1(Rn) we have

|{x : |(TΩf)(x)| > α}| ≤ C‖f‖L1/α.

The question of weak type (1, 1) boundedness of TΩ for Ω rough has puzzled many
authors who obtained partial results. An important question along these lines was whether
a condition bearing on the size of Ω alone sufficed for the weak type (1, 1) boundedness of
TΩ. The answer turned out to be positive. See M. Christ [4] and S. Hofmann [13] for the
case Ω ∈ Lq(S1), q > 1, and M. Christ and J.-L. Rubio de Francia [5] for Ω ∈ LLog+L(S1).
The latter authors were able to extend their result to all dimensions n ≤ 7 (unpublished).
Finally A. Seeger [15] proved that TΩ is weak type (1, 1) bounded when Ω ∈ LLog+L(Sn−1)
in all dimensions.

Theorem 5. Let Ω be in L1(Sn−1) with integral zero. Suppose that Ω satisfies condition (5).
Then TΩ can be extended to an operator of weak type (1, 1).

At this point it is natural to ask whether the method of rotations can be used to show
that TΩ is of weak type (1, 1). This is known to be false. The following question is therefore
more difficult than its Lp counterpart:
Question 3. Let Ω be an integrable odd function on Sn−1. Is TΩ of weak type (1, 1)?

Outside the context of odd functions, the general question for weak type (1, 1) which is
analogous to Question 1 can be phrased as follows:
Question 4. Let Ω be an integrable function on Sn−1 with integral zero. Find a necessary
and sufficient condition on Ω such that the associated operator TΩ is of weak type (1, 1).
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In the context of question 4 posed above, it is not as natural to assume that Ω ∈ L1(Sn−1),
as it is to assume that Ω is a general distribution on the sphere. The reason for that it is
sometimes easier to handle finite sums of Dirac masses than general L1 functions. In this
case, it is conceivably easier to handle a finite sum of directional Hilbert transforms than a
general TΩ with Ω ∈ L1(Sn−1). Furthermore, one sees from (8) that certain distributions Ω
give rise to bounded operators on L2.
Question 5. Let Ω be a distribution on Sn−1 with mean value zero. Find a necessary and
sufficient condition on Ω such that the associated operator TΩ is of weak type (1, 1). Likewise
for TΩ to be bounded on Lp.

Obtaining weak type (1, 1) bounds is usually a more difficult task than proving Lp bound-
edness, for, the latter bounds follow from the weak type (1, 1) bounds by interpolation. In
some occasions a more natural aspect of the L1 theory is to prove that the operator in
question is bounded from the Hardy space H1 to L1.

It is fairly easy to check that if KΩ possesses a certain amount of smoothness then TΩ

extends to a bounded operator from H1 → L1. Here is a precise statement.

Theorem 6. Suppose that Ω ∈ L1(Sn−1) has mean value zero and assume that KΩ satisfies
(2) and Ω satisfies (9). Then TΩ extends to a bounded operator from H1 → L1.

Proof. The proof is standard. Fix an atom aQ and prove that ‖T (aQ)‖L1 ≤ C with C
independent of Q. For x ∈ 2Q use the L2 estimate (which is follows from (9)) and Hölder’s
inequality. For x /∈ 2Q subtract K(x)aQ(x) from T (aQ)(x) and then use condition (2).

Even though H1 → L1 boundedness holds for Ω smooth enough, it may fail for Ω rough.
A good starting point to study H1 → L1 boundedness is the directional Hilbert transform.
Consider the unit vector e1 = (1, 0) in R2 and the operator He1 . Let f be the H1 function in
R2 defined by f(x1, x2) = χ|x|<1,x2>0 − χ|x|<1,x2<0. Then it is easy to see that |(He1f)(x)| ≥
C|x|−1 when |x| ≥ 2 and |x2| ≤ 1/2. It follows that He1f cannot be in L1(R2).

Other examples can be found in [8]. Below, we give the an example communicated to us
by M. Christ.
Example. (M. Christ) There exists an Ω in L2(S1) such that TΩ does not map H1(R2) to
L1(R2).

For x ∈ R2, let θx = Argx denote the argument of x. Choose a lacunary sequence λj ≥ 2j

whose properties will be specified later and let aj be a square summable sequence also to be
chosen later. Define

Ω(x) =
∞∑
j=1

aje
iλjθx .

We have that Ω is in L2(S1) and it has mean value zero. Now take f to be a C∞ and radial
atom which is supported in the unit disc in R2. Fix x ∈ R2 satisfying 1/2 ≤ |x2|/|x1| ≤ 2
in the annulus λjµj ≤ |x| ≤ 2λjµj for some j ≥ 1. When we write O( · ), we are tacitly
implying that the constants involved in the bounds are independent of the λj’s and x but
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may depend on f and the other parameters. For 1 ≤ k ≤ j we calculate(
f ∗ e

iλkθy

|y|2
)

(x)

=
1

|x|2
∫∫
|y|≤1

f(y)eiλkθx−ydy +

∫∫
|y|≤1

f(y)eiλkθx−y
(

1

|x− y|2 −
1

|x|2
)
dy

=
1

|x|2
∫ 1

0

f(ρ(1, 0))ρ

[∫ 2π

0

eiλkArg(x−ρ eiφ)dφ

]
dρ+O

(
1

|x|3
)

=
1

|x|2
∫ 1

0

f(ρ(1, 0))ρeiλkθx
[∫ 2π

0

eiλk(Arg(x−ρ eiφ)−θx)dφ

]
dρ+O

(
1

|x|3
)

=
1

|x|2
∫ 1

0

f(ρ(1, 0))ρeiλkθx
∫ 2π

0

[
1 +

6∑
m=1

(iλk)
m

m!
(gφ(ρ)− gφ(0))m + (18)

+O
(
λ7
k(gφ(ρ)− gφ(0))7

) ]
dφ dρ+O

(
1

|x|3
)
,

where gφ(ρ) = arctan[(x2 − ρ sinφ)/(x1 − ρ cosφ)]. The mean value theorem and an easy
estimate give that

gφ(ρ)− gφ(0) =
ρ

|x|2 (−x1 sinφ+ x2 cosφ) +O

(
1

|x|2
)
.

Plugging in the estimate above in (18), calculating, and integrating with respect to φ, we
obtain that(

f ∗ e
iλkθy

|y|2
)

(x)

=
1

|x|2
∫ 1

0

f(ρ(1, 0))ρeiλkθx
[
1− 4

λ2
kρ

2

|x|2 + c4
λ4
kρ

4

|x|4 + c6
λ6
kρ

6

|x|6 +O

(
λ7
k

|x|7
)]
dρ+O

(
1

|x|3
)
.

Since f is an atom we have that

∫ 1

0

f(ρ(1, 0))ρ dρ = 0. At this point we select f such that

cf =

∫ 1

0

f(ρ(1, 0))ρ3 dρ �= 0, but

∫ 1

0

f(ρ(1, 0))ρ5 dρ =

∫ 1

0

f(ρ(1, 0))ρ7 dρ = 0. It follows that

(
f ∗ e

iλkθy

|y|2
)

(x) = −4cf
λ2
k

|x|4 e
iλkθx +O

(
λ7
k

|x|9
)

+O

(
1

|x|3
)

and therefore(
f ∗

j∑
k=1

ak
eiλkθy

|y|2

)
(x) = −4cfaj

λ2
j

|x|4 e
iλjθx +O

(
λ2
j−1

λ4
jµ

4
j

)
+O

(
λ7
j

λ9
jµ

9
j

)
+O

(
j

λ3
jµ

3
j

)
.
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For fixed x as above, let Ix,ρ be the set of all φ ∈ [0, 2π] with |x− ρeiφ| ≤ 1. We have∣∣∣∣∣
(
f ∗

∞∑
k=j+1

ak
eλkθy

|y|2

)
(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ |x|+1

|x|−1

∫
Ix,ρ

f(x− ρeiφ)
∞∑

k=j+1

ake
iλkφdφ

dρ

ρ

∣∣∣∣∣
=

∣∣∣∣∣
∫ |x|+1

|x|−1

∫
Ix,ρ

d

dφ

(
f(x− ρeiφ)

) ∞∑
k=j+1

ak
eiλkφ

iλk
dφ
dρ

ρ

∣∣∣∣∣
≤

∫ |x|+1

|x|−1

∥∥∥∥ ddφ(
f(x− ρeiφ)

)∥∥∥∥
L2(dφ)

∥∥∥∥∥
∞∑

k=j+1

ak
eiλkφ

iλk

∥∥∥∥∥
L2(dφ)

dρ

ρ

≤
∫ |x|+1

|x|−1

‖∇f‖L∞
( ∞∑

k=j+1

1

λ2
k

)1/2

dρ

=O

(
1

λj+1

)
.

Combining this result with the one obtained above for the remaining terms we obtain that

|(TΩf)(x)| ≥
cf |aj|
µ4
jλ

2
j

− C
[
λ2
j−1

λ4
jµ

4
j

+
1

λ2
jµ

9
j

+
j

λ3
jµ

3
j

+
1

λj+1

]
for x satisfying λjµj ≤ |x| ≤ 2λjµj and 1/2 ≤ |x2|/|x1| ≤ 2. Estimate the L1 norm of TΩf
from below by

‖TΩf‖L1 ≥ cf
π

10

∞∑
j=1

|aj|
µ2
j

− C
∞∑
j=1

[
λ2
j−1

λ2
jµ

2
j

+
1

µ7
j

+
j

λjµj
+
λ2
jµ

2
j

λj+1

]
. (19)

Choose now µj = j1/6 and aj = j−5/8. Select also a lacunary sequence λj such that∑∞
j=1 λ

2
jµ

2
j/λj+1 <∞.

This choice of numbers makes the expression in (19) equal to infinity.
Remark. Observe that the proof above gives that for a radial C∞ function f supported in
the unit disc we have(

f ∗ e
iλθy

|y|2
)

(x) = c0
1

|x|2 e
iλθx + c1

λ2

|x|4 e
iλθx +O

(
λ4

|x|6
)

+O

(
1

|x|3
)

with bounds independent of λ for |x| ≥ λ satisfying |x2|/|x1| ∼ 1. The constants c0 and c1
are multiples of the integral and of the first moment of f respectively.
Remark. M. Christ has informed us that his example can be modified so that Ω ∈ L∞.
Remark. A fundamental result of J. Daly and K. Phillips [8] says that if TΩ maps H1(Rn)
into L1(Rn), then the function Ω has to be in H1(Sn−1). Using this theorem we conclude
that for every Ω ∈ L1(Sn−1) − H1(Sn−1) we have that the corresponding operator TΩ does
not map H1 to L1.

10



Remark. Recently A. Seeger and T. Tao [16] have shown that the best possible result on
H1 is that TΩ maps H1 to L1,q for q ≥ 2, where denotes the Lorentz space. This means that
for some Ω, TΩ does not map H1 into L1,q for q < 2.

Techniques from the L1 theory can be used to answer some questions about the Lp theory.
Question 6. Give an example of an Ω ∈ L1(Sn−1) such that TΩ is bounded on some Lq but
not on some other Lp.

If Ω is allowed to be a distribution on the sphere, such an Ω is shown to exist by abstract
methods. To be more precise, let us introduce the following Banach spaces of distributions
on the sphere.

Sp = {Ω: Ω distribution on Sn−1 and ‖Ω‖Sp = ‖TΩ‖Lp→Lp <∞}.

By duality and interpolation we see that Sp = Sp′ and Sp ⊆ Sq, where 1 < p < q ≤ 2. What
is not immediately clear here is that Sp,Sq are different spaces.

Theorem 7. (M. Christ) We have Sp $ Sq whenever 1 < p < q ≤ 2.

Proof. It suffices to prove the theorem in dimension n = 2. For x ∈ R2, let us denote by
θz = Argx the argument of x. Consider the operators TN = TΩN where ΩN(x) = eiNθx for
N = 1, 2 . . . . According to ([8], Section 3)

\(eiNθx

|x|2
)

(ξ) =
2πi(isgn(N))N+1

N
eiNθξ .

Therefore ‖TN‖L2→L2 ≤ CN−1. Next, we show that ‖TN‖H1→L1 ≤ C. By dilation invariance,
it suffices to consider f to be an atom supported in the unit ball and ‖f‖∞ ≤ 1. For |x| ≤ N
we use the Cauchy-Schwartz inequality to deduce that∫

|x|≤N
|TNf(x)| dx ≤ CN‖TNf‖L2 ≤ CNN−1‖f‖L2 = C.

For |x| ≥ N we have

TNf(x) =

∫
|y|≤1

eiNArg(x−y)

|x− y|2 f(y)dy =

∫
|y|≤1

(
eiNArg(x−y)

|x− y|2 −
eiNArg(x)

|x|2
)
f(y)dy.

Now use that, for |x| ≥ N ≥ 2 we have |Arg(x− y)− Arg(x)| ≤ C/|x|, to obtain∫
|x|≥N

|TNf(x)|dx ≤
∫
|y|≤1

|f(y)|dy
(∫
|x|≥N

∣∣eiN(Arg(x−y)−Arg(x)) − 1
∣∣

|x|2 dx+

∫
|x|≥N

C

|x|3dx
)

≤ C

(∫
|x|≥N

N

|x|3dx+ C

)
= C.

Therefore ‖TN‖H1→L1 ≤ C. By interpolation we see that for every 1 < p < 2

‖TN‖Lp→Lp ≤ CN2/p−2.

11



On the other hand, as we saw in the remark after the previous example, for suitable f the
following is true

TNf(x) = cf
eiNArg(x)

|x|2 +O

(
N2

|x|4
)

+O

(
1

|x|3
)
, for |x| ≥ N near the diagonal,

with bounds independent of N . Therefore for |x| ≥ N and N very large, the first two terms
above are the dominant ones and hence

‖TNf‖Lp ≥ C1

 ∫
|x|≥N

1

|x|2pdx


1/p

= C2N
2/p−2.

From this we conclude that

‖ΩN‖Sp ∼ CN2/p−2 for N large.

Suppose now that Sp = Sq. Then by the open mapping theorem we must have that

c‖Ω‖Sp ≤ ‖Ω‖Sq for every T in Sq.

In particular, for every N large

CN2/p−2 ≤ c‖ΩN‖Sp ≤ ‖ΩN‖Sq ≤ CN2/q−2,

which is a contradiction as N →∞ since p < q.

5 Another H1 condition in dimension 2

The following fact is well known. If f is supported in a ball B in Rn, f is in Lp(B) for some
1 < p ≤ ∞ (or more generally in LLog+L (B)), and f has mean value zero, then f is in the
Hardy space H1(Rn). It is also known that LLog+L(B) cannot be replaced by L1(B) nor
LLog1−εL(B) in this context. The following question is therefore naturally raised:
Question 7. Let B be a ball in Rn. Find a condition bearing on the size of a function
such that for all f supported in B we have∫

B

f(x) dx = 0 and (size condition on f) ⇐⇒ f ∈ H1(Rn).

In dimension 1 an interesting answer was given in [18]. The condition discovered by the
author reflects more the oscillation/variation of the function than its size. We state the
result below:

Theorem 8. Let f be supported in [0, 1], be integrable, and have integral zero. Define

mf (y) =

∫ 1

0

f(x) log
1

|x− y|dx, (20)
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for Af ⊂ [0, 1], where Af a full measure subset of [0, 1], on which the integral giving mf (y)
converges absolutely. Then f ∈ H1(R1) if and only if mf is a function of bounded variation
on Af . Quantitatively speaking, there exists a constant C > 0 such that for all f supported
in [0, 1] with integral zero, we have

‖f‖H1 ≤ VarAf (mf ) + C‖f‖L1 ,

VarAf (mf ) ≤ C‖f‖H1 .

Remark. The Variation of mf over Af is defined as

VarAf (mf ) = sup
P
{

n∑
j=1

|mf (xj)−mf (xj−1)| : P = {0 = x0 < x1 < · · · < xn = 1}, xj ∈ Af}.

Let us now try to explain Theorem 8 along some heuristic lines. Recall the following: A
function is in H1(R1) if and only if its Hilbert transform is in L1(R1). Theorem 8 states
that mf is of total variation if and only if Hf is integrable. Formally speaking, to find the
derivative of the function mf we differentiate under the integral sign to obtain the Hilbert
transform of the function f . Of course this argument cannot be justified for a general f ∈ L1

since Hf is not necessarily given in a form of a convergent integral. (Hf can be written as a
convergent integral for smooth enough f .) However, mf is defined almost everywhere and the
condition that mf has finite variation makes sense for all integrable functions f . Theorem 8
is first proved for step functions and then by approximation is extended to general functions.
The extension to general functions is a little delicate because of the convergence problems
indicated above.

We now use the result in Theorem 8 to state an alternative characterization of the “H1

condition” for singular integrals in R2. We have the following:

Theorem 9. Let Ω ∈ L1(S1) have mean value zero. If there exists a G ⊂ S1 with measure
|G| = 2π such that

VarG(mΩ) < +∞, (21)

where

mΩ(ξ) =

∫
S1

Ω(θ) log
1

|θ · ξ|dθ,

then TΩ maps Lp(R2) into itself for 1 < p <∞.

Compare condition (21) to condition (7) which is essentially required for L2 boundedness
of TΩ.

The idea of the proof of Theorem 9 is straightforward. In view of Theorem 8 and via a
simple transference argument from the interval to the circle, we obtain that condition (21) is
equivalent to the condition that Ω ∈ H1(S1). As observed before, this condition is equivalent
to (10). Now Theorem 3 gives the desired conclusion. We refer the reader to [18] for details.
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6 Maximal functions and maximal singular integrals

In this section we discuss two operators related to TΩ, the maximal function MΩ and the
maximal singular integral T ∗Ω. First consider the maximal function

(MΩf)(x) = sup
r>0
r−n

∫
|y|≤r
|f(x− y)||Ω(y/|y|)| dy,

where Ω is in L1(Sn−1). The following theorem is a straightforward consequence of the
method of rotations See [20] p. 72.

Theorem 10. If Ω is in L1(Sn−1) then MΩ maps Lp(Rn) into itself for 1 < p ≤ ∞.

Note that MΩ is a positive operator and no mean value property is imposed on Ω.
It is reasonable to ask if there is an L1 theory for MΩ. Again the main question here is

whether a condition bearing only on the size of Ω suffices for the weak type (1, 1) property.
This question was first answered positively by M. Christ (Ω ∈ Lq(Sn−1), q > 1, n = 2), and
later by M. Christ and J.-L. Rubio de Francia (Ω ∈ LLog+L(Sn−1) all n).

Theorem 11. (M. Christ and J.-L. Rubio de Francia) If Ω satisfies (5), then MΩ is of weak
type (1, 1).

The question still left open is the following:
Question 8. Is MΩ weak type (1, 1) bounded when Ω is merely in L1(Sn−1)?

It is fairly easy to check that the singular integral operator with kernelKΩ shares the same
mapping properties as its truncated version having kernel Ω(x/|x|)|x|−nχ|x|>ε. Obtaining
estimates for the supremum of the truncated singular integrals allows us to conclude that the
principal value integral in (1) is almost everywhere convergent for f ∈ Lp(Rn), 1 ≤ p <∞.

For Ω an integrable function of the sphere with mean value zero, define

(T ∗Ωf)(x) = sup
ε>0

∣∣∣∣∫
|y|>ε

Ω(y/|y|)
|y|n f(x− y) dy

∣∣∣∣ .
We call this operator the maximal singular integral operator associated with TΩ. The Lp

boundedness of T ∗Ω for Ω in LLog+L is due to Calderón and Zygmund [2]. T ∗Ω is also Lp

bounded for Ω ∈ H1(Sn−1). The theorem below was proved by the authors and independently
by Fan and Pan [10] in a more general context. The proof given combines ideas from [2] and
from the proof of Theorem 3.

Theorem 12. Let Ω be an integrable function on Sn−1 with mean value zero which satisfies
condition (10). Then T ∗Ω extends to a bounded operator from Lp(Rn)→ Lp(Rn) for 1 < p <
∞.

Proof. For a unit vector θ ∈ Sn−1 define

(Mθf)(x) = sup
a>0

1

2a

∫ a

−a
|f(x− rθ)| dr. (22)

(H∗θf)(x) = sup
ε>0

∣∣∣∣∫
|r|>ε

f(x− rθ)
r

dr

∣∣∣∣ (23)
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It is a classical result that for some Cp > 0 and all f we have

sup
|θ|=1

‖Mθf‖Lp + sup
|θ|=1

‖H∗θf‖Lp ≤ Cp‖f‖Lp .

For Ω odd, the method of rotations gives

|(T ∗Ωf)(x)| ≤
∫

Sn−1

|Ω(θ)|(H∗θf)(x)dθ

and therefore ‖T ∗Ωf‖Lp ≤ Cp‖Ω‖L1(Sn−1)‖f‖Lp . Let us now consider the case when Ω is even.
Fix Φ to be a smooth radial function such that Φ(x) = 0 for |x| < 1/4 and Φ(x) = 1 for

|x| > 1/2. We have that

(T ε
Ωf)(x) =

∫
Rn

Ω(x− y)
|x− y|n Φ

(
x− y
ε

)
f(y)dy −

∫
|x−y|<ε

Ω(x− y)
|x− y|n Φ

(
x− y
ε

)
f(y)dy,

where we extended Ω to be a homogeneous of degree zero function on Rn. Since the pointwise
estimate

sup
ε>0

∣∣∣∣∣∣∣
∫

|x−y|<ε

Ω(x− y)
|x− y|n Φ

(
x− y
ε

)
f(y)dy

∣∣∣∣∣∣∣ ≤ C sup
ε>0

∫
ε/4<|x−y|<ε

|Ω(x− y)|
|x− y|n |f(y)|dy

≤ C sup
ε>0

∫
Sn−1

|Ω(θ)|1
ε

ε∫
ε/4

|f(x− rθ)|drdθ ≤ C
∫

Sn−1

|Ω(θ)|(Mθf)(x)dθ

is valid, and the last term above maps Lp(Rn)→ Lp(Rn) for 1 < p <∞, it suffices to obtain
an Lp bound for the smoothly truncated maximal singular integral operator

(T̃ ∗Ωf)(x) = sup
ε>0
|(T̃ ε

Ωf)(x)|, where (T̃ ε
Ωf)(x) =

∫
Rn

Ω(x− y)
|x− y|n Φ

(
x− y
ε

)
f(y) dy.

As usually, we denote by Rj the jth Riesz transform. Let Uj = Rj (Ω( · )/| · |n).
We can write Uj(x) as Vj(x/|x|)/|x|n, where Vj is an odd distribution on Sn−1. Here we

use the fact that Ω is even and that Rj has an odd kernel.
It turns out that the fact Ω ∈ H1(Sn−1) is equivalent to the fact that Vj are integrable

functions on Sn−1 for all j = 1, . . . , n. See [14]. Here we only that Vj ∈ L1(Sn−1) a fact
proved in Theorem 3.

Also let Ṽj(x) = Rj (Ω( · )Φ( · )/| · |n). Then

(T̃ ε
Ωf)(x) =

n∑
j=1

Rj

(
Ω( · )
| · |nΦ

( ·
ε

))
∗Rj(f) =

n∑
j=1

1

εn
Ṽj

( ·
ε

)
∗Rj(f) (24)

We shall need the following lemma whose proof is postponed until the end of this section
(see also [2], p.299).
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Lemma 1. There exist Gj, homogeneous of degree 0, integrable on Sn−1 functions, such that

|Ṽj(x)| ≤ Gj(x) for every |x| ≤ 1,

|Ṽj(x)− Uj(x)| ≤ C‖Ω‖L1(Sn−1)|x|−n−1 for every |x| > 1.

Using Lemma 1 and (24), we obtain

|(T̃ ε
Ωf)(x)| =

∣∣∣∣∣
n∑

j=1

1

εn

∫
Ṽj

(
x− y
ε

)
(Rjf)(y)dy

∣∣∣∣∣ ≤ (25)

≤ A1(f, ε) + A2(f, ε) + A3(f, ε), (26)

where

A1(f, ε) =
n∑

j=1

∣∣∣∣∣∣∣
∫

|x−y|>ε

Uj(x− y)(Rjf)(y)dy

∣∣∣∣∣∣∣ ,
A2(f, ε) = C

n∑
j=1

ε

∫
|x−y|>ε

|Rjf(y)|
|x− y|n+1

dy,

A3(f, ε) =
n∑

j=1

1

εn

∫
|x−y|<ε

|Gj(x− y)||(Rjf)(y)|dy.

First we observe that the supε>0 |A1(f, ε)| is controlled by a sum of maximal singular integral
operators associated with odd integrable kernels applied to the Riesz transforms of f , hence
this term is bounded on Lp.

The jth term in A2(f, ε) is controlled by

ε

∫
|x−y|>ε

|(Rjf)(y)|
|x− y|n+1

dy ≤ ε

∫
Sn−1

∫ ∞

ε

1

r2
|Rjf(x− rθ)|drdθ

≤ C

∫
Sn−1

∞∑
k=0

2−k
1

2kε

∫ 2k+1ε

2kε

|(Rjf)(x− rθ)|drdθ

≤ C

∫
Sn−1

Mθ(Rjf)(x)dθ,

hence

‖ sup
ε>0
|A2(f, ε)|‖Lp ≤ C

n∑
j=1

sup
θ
‖Mθ(Rjf)‖Lp ≤ Cp‖f‖Lp .

Finally,

1

εn

∫
|x−y|<ε

|Gj(x− y)||Rjf(y)|dy ≤
∫

Sn−1

|Gj(θ)|
1

ε

ε∫
0

|Rjf(x− rθ)|drdθ

≤
∫

Sn−1

|Gj(θ)|Mθ(Rjf)(x)dθ,
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which implies that

‖sup
ε>0
|A3(f, ε)|‖Lp ≤ C

n∑
j=1

sup
θ
‖Mθ(Rjf)‖Lp ≤ Cp‖f‖Lp .

Theorem 12 is now proved and we turn and we turn our attention to the proof of Lemma 1
left open.

Proof. If |x| > 1 since Φ(y) = 1 for every |y| > 1/2 , we have

|Ṽj(x)− Uj(x)| ≤
∣∣∣∣∫ xj − yj
|x− y|n+1

(Φ(y)− 1)
Ω(y)

|y|n dy
∣∣∣∣

≤ C

∫
|y|<1/2

|Ω(y)|
|y|n

∣∣∣∣ xj − yj|x− y|n+1
− xj
|x|n+1

∣∣∣∣ dy ≤ C

|x|n+1

∫
|y|<1/2

|Ω(y)|
|y|n−1

dy

≤ C‖Ω‖L1(Sn−1)|x|−n−1.

For the case |x| < 1, notice first that if |x| < 1/8, then |Ṽj(x)| ≤ C‖Ω‖L1 , because the
singularity is away from x. If 1/8 ≤ |x| ≤ 1, then

|Ṽj(x)− Φ(x)Uj(x)| ≤
∫
|y|>2

|Ω(y)|
|y|n |Φ(y)− Φ(x)| |xj − yj||x− y|n+1

dy

+

∫
1/16<|y|<2

|Ω(y)|
|y|n |Φ(y)− Φ(x)| |xj − yj||x− y|n+1

dy

+

∫
0<|y|<1/16

|Ω(y)|
|y|n |Φ(y)− Φ(x)|

∣∣∣∣ |xj − yj||x− y|n+1
− xj
|x|n+1

∣∣∣∣ dy
= P1(x) + P2(x) + P3(x).

The first term is easy:

P1(x) ≤ C
∫
|y|>2

|Ω(y)|
|y|2n dy ≤ C‖Ω‖L1 .

For the second term P2(x), we use that Φ is a Lipshitz function to obtain

P2(x) ≤ C
∫

1/16<|y|<2

|Ω(y)|
|y|n|y − x|n−1

dy ≤
∫ |y|1/2|Ω(y)|
|y|n|y − x|n−1

dy

≤ C|x|n−3/2

∫ |y|1/2|Ω(y)|
|y|n|y − x|n−1

dy.

For the third term use the elementary inequality∣∣∣∣ xj − yj|x− y|n+1
− xj
|x|n+1

∣∣∣∣ ≤ C|y|
17



to get

P3(x) ≤ C
∫

0<|y|<1/16

|Ω(y)|
|y|n−1

dy ≤ C‖Ω‖L1 .

Therefore choose Gj to be

Gj(x) = C

[
|Vj(x)|+ ‖Ω‖L1 + |x|n−3/2

∫ |Ω(y)|
|y|n−1/2|y − x|n−1

dy

]
.

This proves the Lemma.

We note that condition (17) also implies Lp boundedness for T ∗Ω for a certain range of p’s
depending on α. We refer the reader to [12] for details.

For Ω ∈ L1(Sn−1), let us define three operators

(M∗Ωf)(x) =

∫
Sn−1

|Ω(θ)|(Mθf)(x) dθ, (27)

(HΩf)(x) =

∫
Sn−1

|Ω(θ)||(Hθf)(x)| dθ, (28)

(H∗Ωf)(x) =

∫
Sn−1

|Ω(θ)|(H∗θf)(x) dθ, (29)

where Mθ and H∗θ are given in (22) and (23), and Hθ in (4). As observed in the proof of the
previous theorem, Lp estimates for the operatorsM∗Ω, HΩ, and H∗Ω were useful in establishing
Lp bounds for the operators MΩ, TΩ, and T ∗Ω. One may wonder whether (27), (28), and (29)
are also of weak type (1, 1). The answer turns out to be false. In fact with Ω = 1, there is
an example of R. Fefferman [11] which says that M∗Ω is not of weak type (1, 1). Examples
can also be given to show that HΩ and H∗Ω are also not of weak type (1, 1).

The L1 theory of T ∗Ω for Ω rough is still open as of this writing. The basic question here
is whether TΩ is of weak type (1, 1) if Ω does not possess any smoothness. The following
problem was posed by A. Seeger.
Question 9. Is T ∗Ω of weak type (1, 1) when Ω is in L∞(Sn−1)?

We end this exposition with three tables of known and open questions regarding the
operators MΩ, TΩ and T ∗Ω.

Tables 1 and 2 refer to general functions Ω, while table 3 refers to odd functions.
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Ω ∈ Lq(Sn−1) Ω ∈ Llog+L(Sn−1) (17) ∀α > 0 Ω ∈ H1(Sn−1) Ω ∈ L1(Sn−1)
MΩ Yes, trivial Yes, trivial Yes, trivial Yes, trivial Yes, trivial
TΩ Yes, [2] Yes, [2] Yes, [12] Yes, [14], [7] No, [21]
T ∗Ω Yes, [2] Yes, [2] Yes, [12] Yes, [10]1 No, [21]

1 independently proved by the authors (Theorem 12)

Table 1: Boundedness from Lp → Lp for 1 < p <∞, (1 < q ≤ ∞).

Ω ∈ Lq(Sn−1), q > 1 Ω ∈ Llog+L(Sn−1) Ω ∈ H1(Sn−1) Ω ∈ L1(Sn−1)
MΩ [4] (n=2) [5] (all n) irrelevant open2

TΩ [13] (n=2), [5]3 (n ≤ 7) [5]3 (n ≤ 7), [15] (all n) open No, [21]2

T ∗Ω open open open No, [21]2

2 true for the subspace of weak L1 consisting of radial functions [17]
3 only the case n = 2 is given in this reference

Table 2: Weak type (1, 1) boundedness

Lp → Lp, 1 < p <∞ L1 → weakL1

MΩ Yes, by method of rotations open
TΩ Yes, by method of rotations open
T ∗Ω Yes, by method of rotations open

Table 3: The case Ω is an odd function in L1(Sn−1).
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