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Abstract. We present a framework that yields a variety of weighted and vector-valued
estimates for maximally modulated Calderón-Zygmund singular (and maximal singular)
integrals from a single a priori weak type unweighted estimate for the maximal modulations
of such operators. We discuss two approaches, one based on the good-λ method of Coifman
and Fefferman [CF] and an alternative method employing the sharp maximal operator.
As an application we obtain new weighted and vector-valued inequalities for the Carleson
operator and also for a related maximally modulated operator with quadratic phase studied
by M. Lacey. We obtain that these operators are controlled by a natural maximal function
associated with the Orlicz space L(logL)(log log logL). This control is in the sense of a
good-λ inequality and yields strong and weak type estimates as well as vector-valued and
weighted estimates for the operators in question.

After this article was completed, a mistake was found in [L]. Consequently, all results in
this paper based on [L] may not properly explained. Certain points left open in [L] were
proved in subsequent work by V. Lie: The (weak-L2) boundedness of the quadratic Carleson
operator, Geom. Funct. Anal. 19 (2009), no. 2, 457–497, .

1. Introduction and Main results

In this article we will be concerned with estimates for maximally modulated Calderón-
Zygmund singular integrals on Rn. A Calderón-Zygmund operator is a linear operator T
which is bounded from L2(Rn) into itself such that for f ∈ L∞c (Rn) (essentially bounded
functions with compact support), we have

Tf(x) =

∫
Rn
K(x, y) f(y) dy, a.e. x ∈ Rn \ supp f .

The kernel K : Rn × Rn \ {(x, x) : x ∈ Rn} −→ C is assumed to satisfy the following
standard conditions

|K(x, y)| ≤ c0

|x− y|n
, x 6= y,

and

|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)| ≤ c0
|y − y′|τ

|x− y|n+τ
, |x− y| > 2 |y − y′|,
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for some c0, τ > 0. Associated with T there is a truncated operator Tε and a maximal
singular operator T? defined as follows:

Tεf(x) =

∫
|x−y|>ε

K(x, y) f(y) dy, T?f(x) = sup
ε>0
|Tεf(x)|.

Suppose that we are given a family Φ = {φα}α∈A of measurable real-valued functions
indexed by an arbitrary set A. Then we can define maximally modulated versions of T and
T? associated with Φ. First we define the modulation operator

Mφαf(x) = e2π i φα(x) f(x)

and the “Carleson”-type maximal modulated singular integral of T with respect to Φ:

TΦf(x) = sup
α∈A

∣∣T (Mφαf)(x)
∣∣.

This definition is motivated by the Carleson operator in which T is the Hilbert transform
and the family Φ consists of the linear functions φα(y) = α y with α ∈ R. We also define
the (maximally) modulated maximal singular integral associated with T and Φ via

TΦ
? f(x) = sup

ε>0
sup
α∈A

∣∣Tε(Mφαf)(x)
∣∣ = sup

ε>0
sup
α∈A

∣∣∣ ∫
|x−y|>ε

K(x, y) e2π i φα(y) f(y) dy
∣∣∣ .

The purpose of this article is to present a framework that yields weighted and vector-
valued estimates for TΦ and TΦ

? from a single a priori weak type estimate for TΦ. Our
main approach is based on the good-λ method of Coifman and Fefferman [CF] although
we discuss an alternative approach using the sharp maximal operator. We note that in the
special case where T is the Hilbert transform and TΦ is the Carleson operator, boundedness
on Lp(w) for w in Ap was obtained by Hunt and Young [HY]. Below we sharpen and extend
such weighted estimates to more general maximally modulated operators.

We denote by M the Hardy-Littlewood maximal operator and by Mrf = M
(
|f |r
) 1
r where

0 < r <∞. A non-negative locally integrable function w is said to be in Ap, 1 < p <∞, if
there exists some constant C such that for every cube Q (with sides parallel to the coordinate
axes) we have ( 1

|Q|

∫
Q
w(x) dx

)( 1

|Q|

∫
Q
w(x)1−p′ dx

)p−1
≤ C.

Letting p→ 1 we analogously define the A1 class( 1

|Q|

∫
Q
w(x) dx

)
‖w−1‖L∞(Q) ≤ C.

The smallest constant C for which the condition Ap, 1 ≤ p < ∞, holds is called the
Ap characteristic constant of w. We also recall that A∞ =

⋃
p>1Ap. These classes were

introduced by Muckenhoupt in [M] to characterize the boundedness of the Hardy-Littlewood
maximal functions on weighted Lebesgue spaces Lp(w) = Lp(w dx). The reader is referred
to [GR] for a comprehensive account of these topics.

We have the following theorem.

Theorem 1.1. Let T be a Calderón-Zygmund operator and let Φ a family of measurable
real-valued functions. Assume that TΦ maps Lr(Rn) into Lr,∞(Rn) for some 1 < r < ∞
with norm ‖TΦ‖Lr→Lr,∞. Then, for any w ∈ A∞ there exist positive constants C0, ε0, that
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depend only on w, and γ0 that depends on τ, c0, r, and ‖TΦ‖Lr→Lr,∞, such that for all f in⋃
1≤p<∞

Lp(Rn), for all 0 < γ < γ0, and for all λ > 0 we have

(1) w
{
TΦ
? f > 3λ, Mrf ≤ γ λ

}
≤ C0 γ

r·ε0 w
{
TΦ
? f > λ

}
.

Using (1) and standard techniques we deduce the following weighted estimates.

Corollary 1.2. Let T and Φ be as before. Assume that TΦ maps Lr(Rn) into Lr,∞(Rn).
Then for every w ∈ A∞ and 0 < p <∞ there is a constant C that depends on p, w, n, c0, τ,
and ‖TΦ‖Lr→Lr,∞ such that the estimates below hold

‖TΦf‖Lp(w) ≤ C ‖Mrf‖Lp(w),(2)

‖TΦf‖Lp,∞(w) ≤ C ‖Mrf‖Lp,∞(w),(3)

‖TΦ
? f‖Lp(w) ≤ C ‖Mrf‖Lp(w),(4)

‖TΦ
? f‖Lp,∞(w) ≤ C ‖Mrf‖Lp,∞(w),(5)

with the understanding that these estimates hold for all functions f for which the left hand
sides of the displayed inequalities are finite. Consequently, it follows that TΦ and TΦ

? map
Lp(w) into Lp(w) for all p > r whenever w ∈ Ap/r. Moreover, TΦ and TΦ

? map Lr(v) into
Lr,∞(v) for all v ∈ A1.

There is a way to obtain Corollary 1.2 bypassing the good-λ inequality of Theorem 1.1.
Namely, using the sharp maximal function M#, one can show that

(6) M#(TΦf)(x) ≤ CMrf(x)

which implies all the previous estimates of Corollary 1.2. For the sake of completeness, we
will discuss this alternative approach as well. The latter idea has been utilized by [RRT]
in the study of Carleson-Sjölin operators; the terminology refers to maximally modulated
operators in which the family Φ consists of the functions φa(y) = a · y, where a ∈ Rn.

We would like to point out that Corollary 1.2 is weaker than the good-λ inequality con-
tained in Theorem 1.1. Nevertheless, some recent results obtained in [CMP], [CGMP] show
that from the single estimate

(7) ‖TΦf‖Lp(w) ≤ Cp(w) ‖Mrf‖Lp(w), for all 0 < p <∞, w ∈ A∞,

one can extrapolate and obtain all the conclusions of Corollary 1.2 in the scale of Lorentz,
Orlicz spaces, and other rearrangement invariant function spaces. However, here we prefer to
deduce these estimates as a corollary of the powerful good-λ inequality of Theorem 1.1. This
inequality provides a precise pointwise estimate for the level sets of a maximally modulated
singular integrals and it therefore subsumes all possible norm estimates; more importantly,
it is of intrinsic interest and yields structural information about such operators.

One advantage of the extrapolation results in [CMP] is that `q-valued estimates follow
from (7) without use of Banach-space theory for Calderón-Zygmund operators, as in [RRT].
Thus, from (2), (4), and [CMP] we obtain the following:

Corollary 1.3. Let T and Φ be as before. Assume that TΦ maps Lr(Rn) into Lr,∞(Rn).
Then for every w ∈ A∞ and 0 < p, q <∞ there is a constant C such that∥∥∥(∑

j

|TΦfj |q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

(Mrfj)
q
) 1
q
∥∥∥
Lp(w)
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and ∥∥∥(∑
j

|TΦfj |q
) 1
q
∥∥∥
Lp,∞(w)

≤ C
∥∥∥(∑

j

(Mrfj)
q
) 1
q
∥∥∥
Lp,∞(w)

,

for all sequences of functions fj for which the left hand sides are finite. Consequently, for
every q > r,∥∥∥(∑

j

|TΦfj |q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|fj |q
) 1
q
∥∥∥
Lp(w)

, for all p > r, w ∈ Ap/r;

and ∥∥∥(∑
j

|TΦfj |q
) 1
q
∥∥∥
Lr,∞(w)

≤ C
∥∥∥(∑

j

|fj |q
) 1
q
∥∥∥
Lr(w)

, for all w ∈ A1

for all sequences of functions fj in Lp(w) (or Lr(w) if w ∈ A1). Moreover, all the above
estimates also hold for TΦ

? in place of TΦ.

We note that the two last estimates in Corollary 1.3 could also be obtained as a conse-
quence of the Banach space approach developed in [RRT] suitably adapted to our framework.

Our next goal in this article is to improve the previously known results when estimates
near L1 are known. Let us explain the motivation for this problem.

We have seen in Theorem 1.1 and Corollaries 1.2, 1.3 that a maximally modulated singular
integral operator TΦ mapping Lr(Rn) into Lr,∞(Rn) is controlled by the maximal operator
Mr. From the proof of the good-λ inequality, or from the approach based on the sharp
maximal function, we see that Mr was chosen because TΦ satisfies a weak type estimate
in Lr. In general, one would like to replace Mr by a better maximal operator as close
as possible to the Hardy-Littlewood maximal operator (which does not control maximally
modulated singular integrals.) This would require to study the boundedness of TΦ near L1.

Let us consider the Carleson operator, that is the operator

Cf(x) = sup
a∈R

∣∣∣∣p.v.

∫
R

e2πi a y

x− y
f(y) dy

∣∣∣∣
acting on functions on the real line. Using the notation previously introduced, C = HΨ1(1)

where H is the Hilbert transform and Ψ1(1) is the family of one-variable real polynomials
of degree at most 1. It is well known that C is bounded on Lp(R) for all 1 < p < ∞.
Then, we know that C can be controlled by Mp where p can be taken arbitrarily close to
1. But p cannot be taken equal to 1 as C is known not to be of weak type (1, 1). But
there is big gap between M and Mp, p > 1; all maximal operators associated with Orlicz
spaces between L1 and Lp, such as L(logL) or L(logL)(log log . . . logL), could serve the
purpose of controlling C and other maximally modulated singular integrals in the good-λ
sense previously described.

For C some estimates near L1, better than Lp, are known. Let us write S? for the discrete
analog of C on the torus, that is, for the supremum of the partial sums of a Fourier series
in the torus. In [Sj] it was proven that S? maps L(logL)(log logL) into L1,∞. There is a
general extrapolation result (in the spirit of Yano) which says that a sublinear operator that
satisfies a restricted weak Lp estimate with constant (p−1)−m as p→ 1+ is indeed bounded
from L(logL)m(log logL) to L1,∞ (see [So1], [So2]). Lately Antonov [An] sharpened the best
known result known for S? showing that C maps the Orlicz space L(logL)(log log logL) to
L1,∞ (see also [Ar]). Recently [SS] have provided a general extrapolation principle that works
for several maximal operators which, in particular, gives another proof of the aforementioned
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result of Antonov concerning S? and also yields some positive results for the Walsh-Fourier
series and for the halo conjecture.

In this work we exploit these kind of ideas to obtain a better maximal operator controlling
C. We are going to get a general result for TΦ only assuming an appropriate growth in the
constant of the restricted weak Lp estimate of such an operator. We will see in particular,
that the operator ML(logL)(log log logL) controls C and also a similar maximally modulated
singular integral with quadratic phase (see Section 2 below). Observe that this operator
is pointwise smaller than all the Mp, p > 1, hence our estimates are better than those
previously known.

Next we introduce some notation about Orlicz spaces. For a complete development of
this topic the reader is referred to [RR], [BS]. Let Υ : [0,∞) −→ [0,∞) be a Young function,
that is, a continuous, convex, increasing function with Υ(0) = 0 and such that Υ(t) −→ ∞
as t → ∞. By definition, the Orlicz space LΥ consists of all measurable functions f such
that ∫

Rn
Υ

(
|f(x)|
λ

)
dx <∞, for some λ > 0.

The space LΥ is a Banach function space if it is endowed with the Luxemburg norm

‖f‖Υ = ‖f‖LΥ
= inf

{
λ > 0 :

∫
Rn

Υ

(
|f(x)|
λ

)
dx ≤ 1

}
.

For example, if Υ(t) = tp for 1 < p <∞, then LΥ = Lp. Another classical example is given
by Υ(t) = t (1 + log+ t), properly speaking, Υ(t) is the convex majorant of t (1 + log+ t). In
this case LΥ is the Zygmund space L logL. Let us define the following localized version of
the Orlicz norm: for every Q,

‖f‖Υ,Q = inf
{
λ > 0 :

1

|Q|

∫
Q

Υ

(
|f(x)|
λ

)
dx ≤ 1

}
.

Note that ‖f‖Υ,Q = ‖f‖LΥ(Q, dx|Q| )
. We also define the maximal operator associated to this

space as:

MΥf(x) = sup
Q3x
‖f‖Υ,Q.

For example, if Υ(t) = tp we have MΥf(x) = Mpf(x) since for every cube ‖f‖Υ,Q is the
Lp-average of f over Q.

We need to introduce a little bit more of notation: for any cube Q ⊂ Rn we consider the

probability measure dµQ(x) =
χQ(x)
|Q| dx and we define the localized operator

TΦ
Qf(x) = TΦ(f χQ)(x) χQ(x).

Let us also set ϕm(t) = t
(
1 + log+ 1

t

)m
.

Now, we state the main result of this article. We only work with convolution type oper-
ators but analogous results could be obtained for general nonconvolution linear operators.

Theorem 1.4. Let T be a convolution Calderón-Zygmund operator and Φ = {φα}α∈A be
a family of twice differentiable real-valued functions such that for each α ∈ A and for each
cube Q we have

‖φα‖L∞(Q) + ‖∇φα‖L∞(Q) + ‖D2φα‖L∞(Q) ≤ C(Q,α) <∞.
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Assume that either A is countable or that there exists a countable subset A0 ⊂ A such that
for almost all x ∈ Rn we have

TΦf(x) = sup
α∈A

∣∣T (Mφαf)(x)
∣∣ = sup

α∈A0

∣∣T (Mφαf)(x)
∣∣.

Suppose that for some C > 0, m ≥ 0 and for all 1 < p ≤ 2 and measurable sets A of finite
measure, TΦ satisfies the following restricted weak type estimate

(8)
∣∣{x : TΦ(χA)(x) > λ

}∣∣ 1
p ≤

(
C

p− 1

)m |A| 1p
λ

.

Let Υm(t) = t (1 + log+ t)m (1 + log+ log+ log+ t). Then for all 0 < p < ∞, w ∈ A∞, and
all functions f for which the left hand side below is finite we have the estimate

(9) ‖TΦf‖Lp(w) ≤ C ‖MΥmf‖Lp(w).

Moreover, all the estimates (1), (3), (4), (5) and the vector-valued inequalities contained in
Corollary 1.3 hold for MΥm in place of Mr.

Furthermore, (8) can be replaced by the weaker condition

(10) µQ
{
x : TΦ

Q (χA)(x) > λ
}

= µQ
{
x ∈ Q : TΦ(χA)(x) > λ

}
≤ C0

λ
ϕm
(
µQ(A)

)
.

for any cube Q ⊂ Rn and for all measurable sets A ⊂ Q, where C0 is independent of Q.

The proof of this result is based on some sort of Yano’s extrapolation procedure inspired
by [SS]; see Theorem 5.3 in Section 5 (Subsection 5.2) for more details. This result will
provide the following estimate

‖TΦ
Qf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q,

which will be used to yield the corresponding good-λ inequality. For the approach based on
the sharp maximal function, the latter estimate will yield a substitute for (6):

M#
δ (TΦf)(x) ≤ CδMΥmf(x), whenever 0 < δ < 1,

where M#
δ g(x) = M#

(
|g|δ)(x)1/δ.

Remark 1.5. Note that for t ≥ 1 we have that Υm(t) ≤ tr for 1 < r < ∞ and therefore
‖f‖Υm,Q ≤ 2 ‖f‖tr,Q which gives MΥmf(x) ≤ Mrf(x). Thus, Theorem 1.4 is an improve-
ment of previous theorems in which only a single Lr-estimate was assumed.

Remark 1.6. We show that (10) is weaker than (8) and thus it suffices to work with estimate
(10) in the proof of Theorem 1.4. To see this we first notice that (8) implies∣∣{x : TΦ

Q (χA)(x) > λ
}∣∣ 1

p =
∣∣{x ∈ Q : TΦ(χA)(x) > λ

}∣∣ 1
p ≤

(
C0

p− 1

)m |A| 1p
λ

which in terms of the probability measure µQ can be written as(
µQ
{
x : TΦ

Q (χA)(x) > λ
}) 1

p ≤
(

C0

p− 1

)m µQ(A)
1
p

λ
.

Taking in particular p = 1 +
(
1− logµQ(A)

)−1
we obtain

µQ
{
x : TΦ

Q (χA)(x) > λ
}
≤ µQ

{
x : TΦ

Q (χA)(x) > λ
} 1
p ≤ Cm0

λ
(p− 1)−m µQ(A)

1
p

=
Cm0
λ

ϕm
(
µQ(A)

)
µQ(A)

1
p
−1 ≤ Cm0 e

λ
ϕm
(
µQ(A)

)
November 16, 2020.
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since µQ(A)
1
p
−1 ≤ e. Therefore we have shown that (8) implies (10).

We organize the paper as follows. In Section 2 we present some applications of our
main results. In Section 3 we give a proof of the good-λ estimate in Theorem 1.1. Section 4
contains the alternative approach based on the sharp maximal function. Section 5 is devoted
to show Theorem 1.4 and the general extrapolation procedure that leads to it, whose proof
is given in Section 6.

2. Applications

Before discussing the proofs of our results, we turn to some applications. Let us denote
by Ψ1(k) the family of all one-variable real polynomials of degree at most k defined on R.

Using the notation introduced earlier, the Carleson operator C is HΨ1(1) where H is the
Hilbert transform. It is known that C is bounded on Lr(R) for all 1 < r <∞. Then we have

‖Cf‖Lp(w) ≤ C ‖Mrf‖Lp(w)

for all 1 < r < ∞, all 0 < p < ∞ and w ∈ A∞. We also have the corresponding good-λ
estimate in Theorem 1.1, all the estimates in Corollary 1.2 and the vector-valued inequalities
in Corollary 1.3. The same estimates are valid for C? in place of C. As a consequence, for
1 < p, q < ∞ and for w ∈ Ap, by taking 1 < r < min{p, q} sufficiently close to 1 so that
w ∈ Ap/r, we easily obtain

‖Cf‖Lp(w) ≤ C ‖f‖Lp(w),
∥∥∥(∑

j

|Cfj |q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|fj |q
) 1
q
∥∥∥
Lp(w)

.

The first of these estimates first appeared in [HY] and the second in [RRT].
It is a well known fact [H] that C satisfies the following restricted weak type (p, p) result

(11)
∣∣{x : C(χA)(x) > λ

}∣∣ 1
p ≤ C

(
p2

p− 1

)m |A| 1p
λ

for λ > 0, 1 < p ≤ 2. This means that we can apply Theorem 1.4 with m = 1. We then
obtain the following theorem that improves the results of [HY] and [RRT].

Theorem 2.1. Let C be the Carleson operator and Υ(t) = t (1+log+ t) (1+log+ log+ log+ t).
Then, for all 0 < p <∞ and w ∈ A∞ we have

‖Cf‖Lp(w) ≤ C ‖MΥf‖Lp(w),
∥∥∥(∑

j

|Cfj |q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|MΥfj |q
) 1
q
∥∥∥
Lp(w)

,

and

‖Cf‖Lp,∞(w) ≤ C ‖MΥf‖Lp,∞(w),
∥∥∥(∑

j

|Cfj |q
) 1
q
∥∥∥
Lp,∞(w)

≤ C
∥∥∥(∑

j

|MΥfj |q
) 1
q
∥∥∥
Lp,∞(w)

for all functions f or sequences of functions fj for which the left hand sides are finite. As
a consequence, writing M3 = M ◦M ◦M we get

‖Cf‖Lp(w) ≤ C ‖M3f‖Lp(w),
∥∥∥(∑

j

|Cfj |q
) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|M3fj |q
) 1
q
∥∥∥
Lp(w)

.

and also the corresponding Lp,∞-estimates. Furthermore, all these estimates hold with C? in
place of C and the corresponding good-λ inequality is valid.
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The inequalities with M3 are proved by observing that Υ(t) ≤ t (1+log+ t)2 and therefore

MΥf(x) ≤ML(logL)2f(x) ≈M3f(x).

Remark 2.2. Note that in terms of the iterations of the Hardy-Littlewood maximal function,
M3 is, so far, the best known iteration that can be written on the right hand side. As
mentioned before, with M such result is not true. Getting M2 would be equivalent, somehow,
to the fact that Fourier series of functions in L(logL) converge a.e., since M2 ≈ML(logL).
This remains an open question at the moment.

Remark 2.3. We can obtain a formulation of Theorem 1.4 in terms of iterations of the
Hardy-Littlewood maximal function. Note that Υ(t) ≤ t (1 + log+ t)m+1 and, as before,

MΥmf(x) ≤ML(logL)m+1f(x) ≈Mm+2f(x),

where Mm+2 is the operator M iterated m+ 2-times. Hence, as a consequence of Theorem
1.4, we also obtain the estimate

‖TΦf‖Lp(w) ≤ C ‖Mm+2f‖Lp(w),

and all the associated good-λ and vector-valued inequalities.

A recent theorem of Lacey [L] says that the maximally modulated singular integral

HΨ1(2)f(x) = sup
a,b∈R

∣∣∣∣p.v.

∫
R
f(y) e2π i (a y+b y2) dy

x− y

∣∣∣∣
is bounded on Lp(R) for all 1 < p < ∞. One can extract from the proof in [L] that this
operator also satisfies the corresponding restricted weak type inequality (11). Therefore, we

have the following result concerning the operator HΨ1(2):

Theorem 2.4. Let Υ(t) = t (1 + log+ t) (1 + log+ log+ log+ t). Then, for all 0 < p, q < ∞
and all w ∈ A∞ we have

‖HΨ1(2)f‖Lp(w) + ‖HΨ1(2)
? f‖Lp(w) ≤ C ‖MΥf‖Lp(w),

and∥∥∥(∑
j

|HΨ1(2)fj |q
) 1
q
∥∥∥
Lp(w)

+
∥∥∥(∑

j

|HΨ1(2)
? fj |q

) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|MΥfj |q
) 1
q
∥∥∥
Lp(w)

for all functions or sequences of functions for which the left hand sides are finite. All these
inequalities are also valid with Lp,∞(w) in place of Lp(w) and the corresponding good-λ
estimate (1) holds. (As before, we can replace MΥ by M3.)

As a consequence we obtain that for every 1 < p, q <∞ and every weight w ∈ Ap we have

‖HΨ1(2)f‖Lp(w) + ‖HΨ1(2)
? f‖Lp(w) ≤ C‖f‖Lp(w)

for all f in Lp(w) and also∥∥∥(∑
j

|HΨ1(2)fj |q
) 1
q
∥∥∥
Lp(w)

+
∥∥∥(∑

j

|HΨ1(2)
? fj |q

) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|fj |q
) 1
q
∥∥∥
Lp(w)

for all `q-valued sequences {fj}j in Lp(w).
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To prove Theorem 2.4 we just need to apply Theorem 1.4 with m = 1. The claimed
estimates can be easily obtained using the formulation in terms of M3, noting that M3

is bounded on Lp(w) for w ∈ Ap and also satisfies the corresponding weighted vector-
inequalities (applying the known estimates for M three times).

Next we turn to higher dimensional analogues of Theorem 2.4. We suppose that Ω is an
odd integrable function on Sn−1 and we introduce a singular integral operator TΩ by

TΩf(x) = p.v.

∫
Rn

Ω(y/|y|)
|y|n

f(x− y) dy

for f sufficiently smooth. We denote the family of real polynomials of n variables and degree
at most k by

Ψn(k) =
{
P (y) : P (y) =

∑
|γ|≤k

cγy
γ
}

where cγ are real coefficients indexed by multi-indices γ = (γ1, . . . , γn) in Rn. We consider

the maximally modulated operator T
Ψn(k)
Ω and we seek bounds for it. To study this operator

we introduce the directional maximally modulated singular integral operator associated with
Ψn(k) along the direction of a unit vector θ as follows:

H
Ψn(k)
θ f(x) = sup

ψ∈Ψn(k)

∣∣∣∣p.v.

∫
R
f(x− rθ)e2πiψ(x−rθ)dr

r

∣∣∣∣
where f : Rn → R and x ∈ Rn. A simple argument using a suitable orthogonal transforma-

tion reduces the Lp(Rn) boundedness of H
Ψn(k)
θ to that of H

Ψn(k)
e1 , where e1 = (1, 0, . . . , 0).

For instance in the case k = 2, to obtain the boundedness of H
Ψn(2)
e1 we write ψ(x−re1) =

φx2,...,xn(x1−r) as a one-variable polynomial of degree at most 2 with coefficients depending
on x2, . . . , xn. Then we have∥∥HΨn(2)

e1 f
∥∥p
Lp
≤
∫
· · ·
∫

Rn−1

∫
R

(
HΨ1(2)f( · , x2, . . . , xn)

)
(x1)pdx1dx2 . . . dxn

and the latter is controlled by a constant multiple of ‖f‖pLp by the boundedness of HΨ1(2)

on Lp(R), see [L], applied in the first variable.
We now employ the method of rotations to write

T
Ψn(2)
Ω f(x) ≤ 1

2

∫
Sn−1

|Ω(θ)|HΨn(2)
θ f(x) dθ .

We can therefore obtain the boundedness of T
Ψn(2)
Ω as a consequence of that for HΨ1(2). We

conclude the following result:

Theorem 2.5. Let Ω be an odd and integrable function on Sn−1. Then for every 1 < p, q <
∞ and every weight w ∈ Ap there is a constant C = C(p, q, w) such that

‖TΨn(2)
Ω f‖Lp(w) + ‖(TΨn(2)

Ω )?f‖Lp(w) ≤ C‖f‖Lp(w)

holds for all f in Lp(w) and also∥∥∥(∑
j

|TΨn(2)
Ω fj |q

) 1
q
∥∥∥
Lp(w)

+
∥∥∥(∑

j

|(TΨn(2)
Ω )?fj |q

) 1
q
∥∥∥
Lp(w)

≤ C
∥∥∥(∑

j

|fj |q
) 1
q
∥∥∥
Lp(w)

holds for all sequences {fj}j in Lp`q(w).
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10 LOUKAS GRAFAKOS, JOSÉ MARÍA MARTELL, AND FERNANDO SORIA

Finally we consider the operator defined by

T̃
Ψn(k)
Ω f(x) = sup

ψ∈Ψn(k)

∣∣∣∣p.v.

∫
Rn
f(y)e2πiψ(x−y)K(x− y) dy

∣∣∣∣
where Ω(y/|y|)

|y|n = K(y). In view of the trivial estimate

T̃
Ψn(k)
Ω f(x) ≤ TΨn(k)

Ω f(x)

we conclude that all weighted and vector-valued estimates that hold for T
Ψn(2)
Ω are also valid

for T̃
Ψn(2)
Ω . At this point it is unclear to us whether boundedness for T̃

Ψn(k)
Ω holds when

k ≥ 3 even in the unweighted case. However, it is worth mentioning a recent theorem of
Stein and Wainger [SWa] stating that if the family Ψn(k) is replaced by the subfamily Ψn(k)′

consisting of all polynomials in Ψn(k) with no linear term, then the corresponding operator

T̃
Ψn(k)′

Ω is Lp(Rn) bounded for all 1 < p < ∞. This result should be compared with our

observation that the operators T̃
Ψn(2)
Ω are Lp bounded (even on weighted spaces) with no

restriction on the linear terms. It is unclear at this point how to combine these two results

to obtain the boundedness of T̃
Ψn(k)
Ω for all k ≥ 1.

Finally we note that Theorem 2.5 can be also extended to the case where Ω is even

and of class L logL(Sn−1). To achieve this we need to know that for such Ω, T
Ψn(2)
Ω is

Lp(Rn) bounded for all 1 < p <∞. This result requires explicit estimates from the proof of
Carleson’s theorem [C] and can be obtained by a modification of the proof given for linear
phases in Sjölin [Sj].

Naturally Theorems 2.4 and 2.5 can be extended to polynomials of degree k provided an
a priori Lp estimate is known to hold for HΨ1(k). This would allow us one to replace Ψn(k)′

by Ψn(k) in the theorem of Stein and Wainger [SWa]. But this seems to be a difficult task
and is rather elusive at present.

3. Proof of the good-λ inequality (1)

We fix f in
⋃

1≤p<∞
Lp(Rn) and consider the open set

Ω = {TΦ
? f(x) > λ} =

⋃
j

Qj ,

where Qj are the Whitney cubes. We define Q∗j = 10
√
nQj and Q∗∗j = 100

√
nQ∗j , where

aQ denotes the cube with the same center as Q whose sidelength is a l(Qj); here l(Qj) is
the sidelength of Qj . These Whitney cubes satisfy that the distance from Qj to Ωc is at
least 2

√
n l(Qj) and at most 4

√
n l(Qj) and therefore Q∗j must meet Ωc. We so fix a point

yj ∈ Ωc ∩Q∗j . For each j we write

f = f j0 + f j∞ = f χQ∗∗j
+f χ(Q∗∗j )c .

We now claim that it suffices to show that :

(12)
∣∣{x ∈ Qj : TΦ

? f(x) > 3λ, Mrf(x) ≤ γ λ
}∣∣ ≤ Cn γr ∣∣Qj∣∣.

Once the validity of (12) is established, we use standard properties of A∞ weights and there
exist ε0, C2 > 0 (that depend on [w]A∞ and the dimension n) such that

w
{
x ∈ Qj : TΦ

? f(x) > 3λ, Mrf(x) ≤ γ λ
}
≤ C2C

ε0
n γr·ε0 w(Qj).

Then a simple summation on j gives the desired estimate.
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Then we prove (12). We may assume that for each cube Qj there exists a zj ∈ Qj such
that Mrf(zj) ≤ γ λ, otherwise there is nothing to prove. Then,∣∣{x ∈ Qj : TΦ

? f(x) > 3λ, Mrf(x) ≤ γ λ
}∣∣ ≤ Iλ0 + Iλ∞

where

Iλ0 =
∣∣{x ∈ Qj : TΦ

? f
j
0 (x) > λ, Mrf(x) ≤ γ λ

}∣∣,
Iλ∞ =

∣∣{x ∈ Qj : TΦ
? f

j
∞(x) > 2λ, Mrf(x) ≤ γ λ

}∣∣.
To control the first term we need to observe that TΦ

? also maps Lr(Rn) into Lr,∞(Rn). To
see that we use that T is a Calderón-Zygmund operator and thus it satisfies the Cotlar
estimate T?g(x) ≤ CMg(x) + CM(Tg)(x) and then

T?(Mφαf)(x) ≤ CM(Mφαf)(x) + CM(T (Mφαf))(x) ≤ CMf(x) + CM(TΦf)(x)

which yields TΦ
? f(x) ≤ CMf(x) + CM(TΦf)(x). Using the fact that M maps Lr,∞(Rn)

into Lr,∞(Rn) and that TΦ is of weak type (r, r) it follows that TΦ
? is bounded from Lr(Rn)

to Lr,∞(Rn).
Now we estimate Iλ0 as follows:

Iλ0 ≤
∣∣{x ∈ Rn : TΦ

? f
j
0 (x) > λ}

∣∣ ≤ C

λr

∫
Rn
|f j0 (x)|r dx ≤ C

|Q∗∗j |
λr

1

|Q∗∗j |

∫
Q∗∗j

|f(x)|r dx

≤ C
Mrf(zj)

r

λr
|Qj | ≤ C γr |Qj |.

Next we are going to show that Iλ∞ = 0 if we take γ sufficiently small and consequently∣∣{x ∈ Qj : TΦ
? f(x) > 3λ, Mrf(x) ≤ γ λ

}∣∣ ≤ Iλ0 + Iλ∞ ≤ C γr |Qj |,

which yields (12).
Take ε > 0 and φα ∈ Φ. Then, for every x ∈ Qj ,∣∣Tε(Mφαf j∞)(x)− Tε(Mφαf j∞)(yj)

∣∣ ≤ L1 + L2 + L3,

where

L1 =

∫
|yj−y|>ε

|K(x, y)−K(yj , y)| |f j∞(y)| dy,

L2 =

∫
|yj−y|≤ε<|x−y|

|K(x, y)| |f j∞(y)| dy,

L3 =

∫
|x−y|≤ε<|yj−y|

|K(x, y)| |f j∞(y)| dy.

Since y /∈ Q∗∗j , x, zj ∈ Qj and yj ∈ Q∗j we have

3

4
≤ |y − x|
|y − yj |

≤ 5

4
,

40

41
≤ |y − zj |
|y − x|

≤ 40

39
.

We estimate L1. Note that |y − zj | > 49n `(Qj). Besides, the smoothness of K leads to

L1 ≤
∫
|yj−y|>ε

c0
|x− yj |τ

|x− y|n+τ
|f j∞(y)| dy ≤ C `(Qj)τ

∫
|y−zj |>49n `(Qj)

1

|y − zj |n+τ
|f(y)| dy

≤ CMf(zj),
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12 LOUKAS GRAFAKOS, JOSÉ MARÍA MARTELL, AND FERNANDO SORIA

where for the last inequality one has to break up the integral into dyadic annuli and sum
up the geometric series. For L2, note that |y − zj | < 2 ε and then

L2 ≤
∫
|yj−y|≤ε<|x−y|

c0

|x− y|n
|f j∞(y)| dy ≤ C

εn

∫
|y−zj |≤2 ε

|f(y)| dy ≤ CMf(zj).

Finally, for L3 we use that |x− y| > 3 ε/4 and |y − zj | ≤ 40 ε/39. Thus,

L3 ≤
∫
|x−y|≤ε<|yj−y|

c0

|x− y|n
|f j∞(y)| dy ≤ C

εn

∫
|y−zj |≤ 40

39
ε
|f(y)| dy ≤ CMf(zj).

Collecting the three estimates we therefore obtain∣∣Tε(Mφαf j∞)(x)− Tε(Mφαf j∞)(yj)
∣∣ ≤ CMf(zj)

and consequently

(13) TΦ
? f

j
∞(x) ≤ TΦ

? f
j
∞(yj) + CMf(zj).

Now we want to replace the first term in the right hand side by TΦ
? f(yj). We can do that

but we get some extra terms Mf(zj). We claim that

(14) |Tε(Mφαf j∞)(yj)| ≤ TΦ
? f(yj) + CMf(zj).

To show this estimate we first let Rj2 be the smallest number and Rj1 be the largest num-

ber so that B(yj , R
j
1) ⊂ Q∗∗j ⊂ B(yj , R

j
2). If ε ≥ Rj2 then Q∗∗j ⊂ B(yj , ε) and hence

Tε(Mφαf j∞)(yj) = Tε(Mφαf)(yj). In this case (14) is trivial. On the other hand, if ε ≤ Rj1,

then Tε(Mφαf j∞)(yj) = T
Rj1

(Mφαf j∞)(yj). So, it remains to consider the case Rj1 ≤ ε < Rj2.

We use that Q∗∗j ⊂ B(yj , R
j
2) and hence T

Rj2
(Mφαf j∞)(yj) = T

Rj2
(Mφαf)(yj). One can

easily see that |y − yj | ≥ 2
5
√
n
Rj2 and thus

|Tε(Mφαf j∞)(yj)| = |Tε(Mφαf j∞)(yj)− TRj2(Mφαf j∞)(yj) + T
Rj2

(Mφαf)(yj)|

≤
∫
ε≤|yj−y|≤Rj2

c0

|x− y|n
|f j∞(y)| dy + TΦ

? f(yj)

≤
∫

2
5
√
n
Rj2≤|yj−y|≤R

j
2

c0

|x− y|n
|f j∞(y)| dy + TΦ

? f(yj)

≤ C

(Rj2)n

∫
|y−zj |≤2Rj2

|f(y)| dy + TΦ
? f(yj)

≤ CMf(zj) + TΦ
? f(yj),

where in the penultimate estimate above we have taken into account that

|y − zj | ≤
40

39

5

4
|y − yj | ≤ 2Rj2, |x− y| ≥ 3

4
|y − yj | ≥

3

10
√
n
Rj2.

Then we have proved (14) which together with (13) yield TΦ
? f

j
∞(x) ≤ TΦ

? f(yj)+C0Mf(zj).
Recalling that yj /∈ Ω and that Mrf(zj) ≤ λ γ we observe that

TΦ
? f

j
∞(x) ≤ λ+ C0Mrf(zj) ≤ λ+ C0 γ λ,

for every x ∈ Qj . If 0 < γ < γ0 = C−1
0 , then TΦ

? f
j
∞(x) < 2λ and so

Iλ∞ =
∣∣{x ∈ Qj : TΦ

? f
j
∞(x) > 2λ, Mrf(x) ≤ γ λ

}∣∣ = |Ø| = 0,

as desired.
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4. An alternative proof of Corollary 1.2.

As we mentioned earlier, Corollary 1.3 can be obtained as a consequence of the good-λ
inequality (1) using standard techniques. There is however an alternative approach based on
the sharp maximal function that leads to similar estimates. We discuss here this approach.

Proposition 4.1. If TΦ maps Lr(Rn) into Lr,∞(Rn), then for every f ∈ L∞c (Rn), we have

M#(TΦf)(x) ≤ CMrf(x).

Proof. We fix x and some cube Q 3 x. We write xQ for the center of Q. We split f as
follows

f(x) = f1(x) + f2(x) = f(x) χQ∗(x) + f(x) χ(Q∗)c(x).

where Q∗ = 2
√
nQ. Set aQ = TΦf2(xQ). Then,

1

|Q|

∫
Q

∣∣TΦf(y)− aQ
∣∣ dy =

1

|Q|

∫
Q

∣∣ sup
α∈A
|T (Mφαf)(y)| − sup

α∈A
|T (Mφαf2)(xQ)|

∣∣ dy
≤ 1

|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf)(y)− T (Mφαf2)(xQ)
∣∣ dy

≤ 1

|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf1)(y)
∣∣ dy +

1

|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)
∣∣ dy

=
1

|Q|

∫
Q
TΦf1(y) dy +

1

|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)
∣∣ dy = I + II.

For the first term we use the hypothesis on TΦ:

I ≤ 1

|Q|
‖TΦf1‖Lr,∞(Rn) ‖χQ ‖Lr′,1(Rn) ≤

C

|Q|
‖f1‖Lr(Rn) |Q|

1
r′

= C
( 1

|Q∗|

∫
Q∗
|f(y)|r dy

) 1
r ≤ CMrf(x).

The estimate for II follows from the smoothness condition assumed on the kernel of T . Let
y ∈ Q and α ∈ A. Then,∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)

∣∣ ≤ ∫
Rn
|K(y, z)−K(xQ, z)| |f2(z)| dz

≤
∫

(Q∗)c
c0
|y − xQ|τ

|z − xQ|n+τ
|f(z)|dz ≤ C `(Q)

∫
|z−xQ|>

√
n `(Q)

1

|z − xQ|n+τ
|f(z)| dz

≤ CMf(x) ≤Mrf(x),

where the penultimate estimate follows by breaking up the integral in dyadic annuli. There-
fore, II ≤ CMrf(x) and

1

|Q|

∫
Q

∣∣TΦf(y)− aQ
∣∣ dy ≤ CMrf(x),

which leads to the desired estimate. �

Remark 4.2. We point out that the weak type (r, r) assumption on TΦ has been only used
in term I to control TΦf1 = TΦ(f χQ∗) in the cube Q. Indeed, the same estimate remains

true if the assumption that TΦ maps Lr(Rn) into Lr,∞(Rn) is replaced by a corresponding
local version

‖TΦ
Qf‖Lr,∞(Q) ≤ C0‖f‖Lr(Q)
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for all cubes Q ⊂ Rn with C0 independent of Q, where TΦ
Q denotes the localized operator

given by TΦ
Qf(x) = TΦ(f χQ)(x)χQ(x). In this case we have that

I =
1

|Q|

∫
Q
TΦf1(y) ≤ 1

|Q|
‖TΦ

Q∗f‖Lr,∞(Q∗) ‖χQ ‖Lr′,1(Rn) ≤
C0

|Q|
‖f‖Lr(Q∗) |Q|

1
r′

≤ CMrf(x).

We now deduce Corollary 1.2 from Proposition 4.1. We show that for all 0 < p <∞ and
w ∈ A∞ estimates (2) and (4) hold while we leave the proofs of (3) and (5) to the reader.
For these estimates to make sense we should assume that the left-hand sides are finite. As
we observed in the proof of the good-λ inequality we have

TΦ
? f(x) ≤ CMf(x) + CM(TΦf)(x).

Also, by the Lebesgue differentiation theorem we have TΦf(x) ≤ M(TΦf)(x) for a.e x.
Therefore, it suffices to show that

(15)

∫
Rn
M(TΦf)(x)pw(x) dx ≤ C

∫
Rn
Mrf(x)pw(x) dx,

for all 0 < p < ∞, w ∈ A∞ and f ∈ L∞c (Rn). Let us fix f ∈ L∞c with supp f ⊂ B for
some ball B, 0 < p <∞ and w ∈ A∞. Without loss of generality we may assume that w is
bounded since otherwise we may replace it by wk = min{w, k} ∈ A∞ whose characteristic
constant is uniformly bounded by the A∞ characteristic constant of w. In this way, wk
is bounded and if we get the desired estimate for wk with no dependence on k we can let
k →∞ to obtain (15). We will see that this assumption is only used to assure that a certain
quantity is finite. We can also suppose that the right hand side of (15) is finite because
otherwise there is nothing to prove. Then, by Proposition 4.1 we have∫

Rn
M(TΦf)(x)pw(x) dx ≤ C

∫
Rn
M#(TΦf)(x)pw(x) dx ≤ C

∫
Rn
Mrf(x)pw(x) dx,

whenever the left hand side is finite. Note that the first estimate arises from the well-known
Fefferman-Stein’s inequality∫

Rn
Mg(x)pw(x) dx ≤ C

∫
Rn
M#g(x)pw(x) dx

for all 0 < p <∞, w ∈ A∞, and whenever the left hand side is finite (see [FS]). Therefore,
we only have to show that the left hand side of (15) is finite. Recall that we have also
assumed that the right hand side is finite which implies

(16) ∞ >

∫
Rn
Mrf(x)pw(x) dx ≥ C(f)

∫
Rn

w(x)

(1 + |x|)
n p
r

dx.

Note that if y ∈ (2B)c then TΦf(y) ≤ C(f)/(1 + |y|)n = C(f)h(y) and then

I =

∫
Rn
M(TΦf χ(2B)c)(x)pw(x) dx ≤ C(f)

∫
Rn
Mh(x)pw(x) dx

≤ C(f)

∫
Rn

(1 + log+ |x|
(1 + |x|)n

)p
w(x) dx ≤ C(f)

∫
Rn

w(x)

(1 + |x|)
n p
r

dx <∞,
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by (16). On the other hand,

II =

∫
(4B)c

M(TΦf χ2B)(x)pw(x) dx ≤ C
∫

(4B)c

‖TΦf‖p
L1(2B)

(1 + |x|)n p
w(x) dx

≤ C ‖χ2B ‖
p

Lr′,1(Rn)
‖TΦf‖pLr,∞(Rn)

∫
Rn

w(x)

(1 + |x|)
n p
r

dx

≤ C |B|
p
r′ ‖f‖pLr(Rn)

∫
Rn

w(x)

(1 + |x|)
n p
r

dx <∞.

Finally, since w is bounded, for q > max{r/p, 1},

III =

∫
4B

M(TΦf χ2B)(x)pw(x) dx ≤ ‖w‖L∞(Rn) |4B|
1
q′ ‖M(TΦf χ2B)‖pLq p(Rn).

Since q p > r > 1, then M is bounded on Lq p(Rn). Next, Proposition 4.1 implies that

‖TΦg‖BMO(Rn) ≤ C ‖g‖L∞(Rn), g ∈ L∞c (Rn),

which by interpolation with TΦ : Lr(Rn) −→ Lr,∞(Rn) gives that TΦ is bounded on Ls(Rn)
for all r < s <∞. In particular, since p q > r, TΦ is bounded on Lq p(Rn), which eventually
yields

III ≤ C ‖w‖L∞(Rn) |B|
1
q′ ‖TΦf‖pLq p(Rn) ≤ C ‖w‖L∞(Rn) |B|

1
q′ ‖f‖pLq p(Rn) <∞.

Collecting these three estimates we conclude that∫
Rn
M(TΦf)(x)pw(x) dx ≤ I + II + III <∞,

as desired.

5. Proof of Theorem 1.4

As mentioned in the introduction, Theorem 1.4 will be proved by using some Yano’s
extrapolation type result inspired by [SS]. Unfortunately the results in [SS] cannot be
applied to TΦ or its localized versions. We need to suitably adjust the ideas from the
articles [SS], [So1] and [So2] to derive the desired inequality. The following theorem is quite
crucial in our work and its proof is postponed until later in this section (Subsection 5.2).

Theorem 5.1. Under the hypotheses of Theorem 1.4, for every cube Q and every function
in LΥ(Q) we have that

‖TΦ
Qf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q,

where C does not depend on Q.

To prove Theorem 1.4, we will first focus on the approach with the sharp maximal function.
Afterwards, we will sketch the proof of the good-λ approach.

We are now going to obtain the pointwise estimate for M#
δ (TΦf) when 0 < δ < 1, where

M#
δ g(x) = M#(|g|δ)(x)1/δ.

Proposition 5.2. For every f ∈ L∞c (Rn) we have M#
δ (TΦf)(x) ≤ CδMΥmf(x) whenever

0 < δ < 1.
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The proof of this result is given below in Subsection 5.1.

We now deduce Theorem 1.4. We want to obtain (9) and the analog for TΦ
? . Since T is

a Calderón-Zygmund operator we have the following Cotlar estimate

T?g(x) ≤ C(δ)
(
Mg(x) +Mδ(Tg)(x)

)
, 0 < δ ≤ 1.

We apply this estimate to g =Mφαf and take the supremum over α ∈ A. This gives

(17) TΦ
? f(x) ≤ C(δ)

(
Mf(x) +Mδ(T

Φf)(x)
)
≤ C(δ)

(
MΥmf(x) +Mδ(T

Φf)(x)
)
,

since t ≤ Υ(t) for all t ≥ 0. In view of the Lebesgue differentiation theorem we have
TΦf(x) ≤ Mδ(T

Φf)(x) a.e.. It therefore suffices to show that Mδ(T
Φf) is controlled by

MΥmf (in norm). Then, if 0 < δ < 1, 0 < p < ∞ and w ∈ A∞, we use Proposition 5.2 to
obtain ∫

Rn
Mδ(T

Φf)(x)pw(x) dx =

∫
Rn
M
(
|TΦf |δ

)
(x)

p
δ w(x) dx

≤ C

∫
Rn
M#

(
|TΦf |δ

)
(x)

p
δ w(x) dx

= C

∫
Rn
M#
δ (TΦf)(x)pw(x) dx

≤ C

∫
Rn
MΥmf(x)pw(x) dx.

From this we eventually deduce the required estimates

‖TΦf‖Lp(w) ≤ C ‖MΥmf‖Lp(w), ‖TΦ
? f‖Lp(w) ≤ C ‖MΥmf‖Lp(w).

Then by the extrapolation results in [CMP], [CGMP] we get the analogs in Lp,∞(w) as well
as the vector-valued estimates. These extrapolation results also yield estimates in Lorentz
spaces, Orlicz spaces, and in other rearrangement invariant function spaces. This completes
the proof with the approach based on the sharp maximal function.

The good-λ approach relies on a slight modification of the argument given in Section
3. We follow the same steps changing Mrf by MΥmf at any place it occurs adopting
the same notation. Note that at the very end of the estimate of Iλ∞ we used before that
Mf(x) ≤Mrf(x). In this case Mf(x) ≤MΥmf(x) since t ≤ Υ(t), and so Iλ∞ = 0. Thus, we
only need to change the estimate of Iλ0 since this is the only place where the boundedness
of the operator TΦ is used.

We fix 0 < δ < 1 and use (17) to observe

Iλ0 ≤
∣∣{x ∈ Rn : TΦ

? f
j
0 (x) > λ}

∣∣ ≤ ∣∣{x ∈ Rn : C(δ)
(
Mf j0 (x) +Mδ(T

Φf j0 )(x)
)
> λ}

∣∣
≤

∣∣{x ∈ Rn : C(δ)Mf j0 (x) > λ/2}
∣∣+
∣∣{x ∈ Rn : C(δ)Mδ(T

Φf j0 )(x) > λ/2}
∣∣

= |Eλ|+ |Fλ|.
We estimate the first term:

|Eλ| ≤
C

λ

∫
Rn
|f j0 (x)| dx ≤ C

λ
|Qj |Mf(zj) ≤

C

λ
|Qj |MΥmf(zj) ≤ C γ |Qj |,

where in the last inequality we have used that zj ∈ Qj with MΥmf(zj) ≤ γ λ. For |Fλ|, a
little bit more of work is required

|Fλ| =
∣∣{x ∈ Rn : M

(
|TΦf j0 |

δ
)
(x) > C λδ}

∣∣ ≤ C

λδ

∫
Fλ

|TΦf j0 (y)|δ dy
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=
C

λδ

(∫
Fλ∩2Q∗∗j

|TΦf j0 (y)|δ dy +

∫
Fλ\2Q∗∗j

|TΦf j0 (y)|δ dy
)

=
C

λδ
(B1 +B2).

To treat term B1 we pass to the local operator TΦ
2Q∗∗j

:

B1 = C

∫
Fλ

|TΦ
2Q∗∗j

f j0 (y)|δ dy ≤ Cδ |Fλ|1−δ
∥∥TΦ

2Q∗∗j
f j0
∥∥δ
L1,∞(Rn)

= C |Fλ|1−δ |2Q∗∗j |δ
∥∥TΦ

2Q∗∗j
f j0
∥∥δ
L1,∞(2Q∗∗j ,µ2Q∗∗

j
)

≤ C |Qj |δ |Fλ|1−δ ‖f‖δΥm,2Q∗∗j
≤ C |Qj |δ |Fλ|1−δMΥmf(zj)

δ

≤ C |Qj |δ |Fλ|1−δ (γ λ)δ,

where we have used Kolmogorov’s inequality and Theorem 5.1. As before, it is crucial to
note that the previous constant C does not depend on the cubes. We deal with term B2 as
follows: for y ∈ Fλ \ 2Q∗∗j we have

TΦf j0 (y) ≤
∫
Q∗∗j

|Kj(y − z)| |f(z)| dz ≤
∫
Q∗∗j

c0

|y − z|n
|f(z)| dz ≤ 2n c0

`(Q∗∗j )n

∫
Q∗∗j

|f(z)| dz

≤ CMf(zj) ≤ CMΥmf(zj) ≤ C γ λ,

since zj ∈ Qj ⊂ Q∗∗j . Thus B2 ≤ C |Fλ| (γ λ)δ. Collecting the estimates for B1 and B2 we
eventually obtain

|Fλ| ≤
C

λδ
(B1 +B2) ≤ C1 |Qj |δ |Fλ|1−δ γδ + C2 |Fλ| γδ.

Take γ such that C2 γ
δ ≤ 1/2. Since |Fλ| < ∞ (this follows by using that M and TΦ are

bounded in Lp(Rn), here we may have to consider functions that are in some Lp(Rn) for
p > 1), we get

|Fλ| ≤ 2C1 |Qj |δ |Fλ|1−δ γδ

which yields |Fλ| ≤ C γ |Qj | and therefore Iλ0 ≤ C γ |Qj |. This completes the proof of
Theorem 1.4 using the good-λ approach.

5.1. Proof of Proposition 5.2. We proceed as in the proof of Proposition 4.1. We fix x
and a cube Q 3 x. We split f = f1 + f2 as in that proof and define aQ in the same way.
Then

1

|Q|

∫
Q

∣∣|TΦf(y)|δ − |aQ|δ
∣∣ dy ≤ 1

|Q|

∫
Q

∣∣TΦf(y)− aQ
∣∣δ dy

≤ 1

|Q|

∫
Q
TΦf1(y)δ dy +

1

|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)
∣∣δ dy

≤ 1

|Q|

∫
Q
TΦf1(y)δ dy +

( 1

|Q|

∫
Q

sup
α∈A

∣∣T (Mφαf2)(y)− T (Mφαf2)(xQ)
∣∣ dy)δ

= Iδ + (II)δ,

For II, as in Proposition 4.1, we observe that II ≤ CMf(x). Notice that Mf(x) ≤
MΥmf(x) and then we get the desired estimate. Now we have to analyze Iδ and this is
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the only part where the boundedness of the operator is used. Note that f1 = f χQ∗ and
therefore

Iδ ≤ (2
√
n )n

∫
Q∗
TΦ
Q∗f(y)δ dµQ∗(y) ≤ C

1− δ
‖TΦ

Q∗f‖δL1,∞(Q∗,µQ∗ ) ≤ Cδ ‖f‖
δ
Υm,Q∗

≤ CδMΥmf(x)δ,

where we have used that 0 < δ < 1, Kolmogorov’s inequality, Theorem 5.1, and also that
x ∈ Q ⊂ Q∗. (Note that the constant is independent of the cube Q.) Thus we have seen
that

1

|Q|

∫
Q

∣∣TΦf(y)δ − |aQ|δ
∣∣ dy ≤ Iδ + (II)δ ≤ CMΥmf(x)δ,

which yields the desired estimate. �

5.2. Proof of Theorem 5.1. Behind the main estimate claimed in Theorem 5.1 there is a
general result in the spirit of [SS]. We state it precisely:

Theorem 5.3. Consider a maximal operator S?f(x) = supj |Sjf(x)| such that each Sj is a
singular integral operator given by a kernel sj(x, y) which is defined away from the diagonal
x = y. For any cube Q, we set S?Qf = S?(f χQ) χQ and in an analogous way we define

Sj,Q whose kernel is sQj (x, y) = sj(x, y) χQ×Q(x, y). For any cube Q, we assume

(a) sQj (x, ·) ∈ L1(Q,µQ) for a.e. x ∈ Q.

(b) sQj (·, y) ∈ L1(Q,µQ) uniformly in y ∈ Q.

(c) Given ε > 0, there exists δ = δ(ε, j,Q) such that∫
Q
|sQj (x, y1)− sQj (x, y2)| dµQ(x) ≤ ε, whenever |y1 − y2| < δ, y1, y2 ∈ Q.

(d) For all A ⊂ Q and λ > 0, and for some m ≥ 1,

µQ
{
x : S?Q(χA)(x) > λ

}
≤ C0

λ
ϕm
(
µQ(A)

)
=
C0

λ
µQ(A)

(
1 + log+ 1

µQ(A)

)m
,

where the constant C0 does not depend on the cube Q.

Then, there exists a constant C, independent of Q, such that for all functions f in LΥm(Q)
we have

‖S?Qf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q = C ‖f‖L(logL)m log log logL,Q.

We will give a proof of this result in the next section. In the rest of this section, we apply
Theorem 5.3 to derive the desired estimate in Theorem 5.1.

We would like to use this extrapolation result for the maximal operator TΦ
Qf(x). Notice

that the kernels are e2π i φα(y)K(x − y)χQ×Q(x, y) which because of their singularity may

not belong to L1(Q). We avoid this difficulty by defining

T̃Φf(x) = sup
α∈A

∣∣T ((ei φα(·) − ei φα(x)) f(·)
)
(x)
∣∣,

and analogously its localized version T̃Φ
Q . Note that we have incorporated the factor 2π

into the function φα to make the computations cleaner. Using the notation of Theorem 5.3,

S? = T̃Φ and, by hypothesis, we can assume that A is countable. Then, we have

(18) |TΦf(x)− T̃Φf(x)| ≤ sup
α∈A

∣∣T (ei φα(x) f(·)
)
(x)
∣∣ = |Tf(x)|,
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and the same holds for the localized operators. Since T is a Calderón-Zygmund operator, it
is of weak type (1, 1). Then, for any cube Q and for every A ⊂ Q we have

µQ
{
x : |TQ(χA)(x)| > λ

}
≤ 1

|Q|
∣∣{x ∈ Rn : |T (χA)(x)| > λ

}∣∣ ≤ C

λ

|A|
|Q|
≤ C

λ
ϕm
(
µQ(A)

)
,

where C does not depend on Q. This estimate, (10) and (18) yield

µQ
{
x : T̃Φ

Q (χA)(x) > λ
}
≤ C

λ
ϕm
(
µQ(A)

)
,

where C is independent of the cube Q. This means that property (d) in Theorem 5.3 holds.

Let us fix some arbitrary cube Q0 and α ∈ A. The kernel of T̃Φ
Q0

is

Kα(x, y) = KQ0
α (x, y) = (ei φα(y) − ei φα(x))K(x− y) χQ0×Q0

(x, y).

Next, we have to check that Kα(x, y) satisfies (a), (b), (c). The first two go as follows: if
x ∈ Q0, then∫

Q0

|Kα(x, y)| dµQ0(y) ≤ c0 ‖∇φα‖L∞(Q0) |Q0|−1

∫
Q0

|x− y|1−n dy

≤ c0 ‖∇φα‖L∞(Q0) cn |Q0|−1+ 1
n <∞,

which gives (a). In the same way, we get

sup
y∈Q0

∫
Q0

|Kα(x, y)| dµQ0(x) ≤ c0 ‖∇φα‖L∞(Q0) cn |Q0|−1+ 1
n <∞,

and (b) holds. The verification of (c) requires more work. We fix ε and we have to find δ > 0
such that∫

Q0

|Kα(x, y1)−Kα(x, y2)| dµQ0(x) ≤ ε, whenever |y1 − y2| < δ, y1, y2 ∈ Q0.

Note that it is sufficient to prove the same estimate with dx in place of µQ0 , and that δ
might depend on the cube Q0. We fix ε > 0, set B0 = B(0,

√
n `(Q0)) and define the

function H(x) = |x|K(x) χB0
(x) ∈ L1(B0) because |K(x)| ≤ c0 |x|−n. Then, there exists

h ∈ C∞0 (B0) such that

‖H − h‖L1(B0) <
ε

8 ‖∇φα‖L∞(Q0)
.

We take

0 < ε1 <
ε

16

1

‖h‖L∞(B0)Cφα |Q0|
, with Cφα = ‖∇φα‖2L∞(Q0) + ‖D2φα‖L∞(Q0).

Then, for y1, y2 ∈ Q0,∫
Q0

|Kα(x, y1)−Kα(x, y2)| dx

=

∫
QA

|Kα(x, y1)−Kα(x, y2)| dx+

∫
QB

|Kα(x, y1)−Kα(x, y2)| dx = A+B,

where

QA = Q0 ∩B(y1, ε1) ∩B(y2, ε1), QB = Q0 \ (B(y1, ε1) ∩B(y2, ε1)).

We start with A and define

O(x, y) =
ei φα(y) − ei φα(x)

|x− y|
χQ0×Q0

(x, y).
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Hence,

Kα(x, y) = O(x, y)H(x− y) = O(x, y)
(
H(x− y)− h(x− y)

)
+O(x, y)h(x− y)

= I(x, y) + II(x, y).

Note that for any y ∈ Q0, we have∫
Q0

|I(x, y)| dx ≤ ‖∇φα‖L∞(Q0)

∫
Q0

|H(x− y)− h(x− y)| dx

≤ ‖∇φα‖L∞(Q0)

∫
B0

|H(z)− h(z)| dz < ε

8
,

and therefore, for y1, y2 ∈ Q0,

(19)

∫
QA

|I(x, y1)− I(x, y2)| dx < ε

4
.

On the other hand, for y1, y2 ∈ Q0∫
QA

|II(x, y1)− II(x, y2)| dx(20)

≤
∫
Q0

|O(x, y1)| |h(x− y1)− h(x− y2)| dx+

∫
QA

|h(x− y2)| |O(x, y1)−O(x, y2)| dx

≤ ‖∇φα‖L∞(Q0) ‖∇h‖L∞(B0) |Q0| |y1 − y2|+ ‖h‖L∞(B0)

∫
QA

|O(x, y1)−O(x, y2)| dx.

Then we have to estimate the last displayed integral. Let x /∈ {y1, y2} such that x ∈ QA =

Q0∩B(y1, ε1)∩B(y2, ε1). Using the order 1 Taylor expansion for the function g(y) = ei φα(y)

centered at x we obtain

|O(x, y1)−O(x, y2)|

≤ |∇gα(x)|
∣∣∣∣ y1 − x
|y1 − x|

− y2 − x
|y2 − x|

∣∣∣∣+
1

2
‖D2gα‖L∞(Q0)

(
|y1 − x|+ |y2 − x|

)
≤ ‖∇gα‖L∞(Q0) |m(y1 − x)−m(y2 − x)|+ ‖D2gα‖L∞(Q0) ε1

≤ ‖∇φα‖L∞(Q0) |m(y1 − x)−m(y2 − x)|+ Cφα ε1,

where m(x) = χB0
(x) · x/|x| ∈ L1(Rn). Then,∫

QA

|O(x, y1)−O(x, y2)| dx ≤ ‖∇φα‖L∞(Q0)

∫
Q0

|m(y1 − x)−m(y2 − x)| dx+ Cφα ε1 |Q0|

≤ ‖∇φα‖L∞(Q0)

∫
Rn
|m(z + y2 − y1)−m(z)| dz + Cφα ε1 |Q0|.

We fix

ε2 =
ε

16

1

‖h‖L∞(B0) ‖∇φα‖L∞(Q0)
.

Since m ∈ L1(Rn) we can use the properties of the translation operator in this space and
there exists δ1 > 0 such that∫

Rn
|m(z + ∆z)−m(z)| dz < ε2, whenever |∆z| < δ1.
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Thus, if |y1 − y2| < δ1, we have∫
QA

|O(x, y1)−O(x, y2)| dx ≤ ‖∇φα‖L∞(Q0) ε2 + Cφα ε1 |Q0| <
ε

8 ‖h‖L∞(B0)
.

We set

δA = min

{
δ1,

ε

8

1

‖∇φα‖L∞(Q0) ‖∇h‖L∞(B0) |Q0|

}
and, for |y1 − y2| < δA, the latter estimate plugged into (20) yields∫

QA

|II(x, y1)− II(x, y2)| dx

≤ ‖∇φα‖L∞(Q0) ‖∇h‖L∞(B0) |Q0| |y1 − y2|+ ‖h‖L∞(Q0)
ε

8 ‖h‖L∞(B0)
<
ε

4
.

This and (19) provide

A =

∫
Q0∩B(y1,ε1)∩B(y2,ε1)

|Kα(x, y1)−Kα(x, y2)| dx

≤
∫
QA

|I(x, y1)− I(x, y2)| dx+

∫
QA

|II(x, y1)− II(x, y2)| dx

<
ε

2
,

whenever |y1 − y2| < δA.
Let us get a similar estimate for B. We break up QB as follows

QB = Q0 \ (B(y1, ε1) ∩B(y2, ε1)) =
(
Q0 \B(y1, ε1)

)
∪
(
Q0 \ ∩B(y2, ε1)

)
= Q1

B ∪Q2
B.

and then

B ≤
∫
Q1
B

|Kα(x, y1)−Kα(x, y2)| dx+

∫
Q2
B

|Kα(x, y1)−Kα(x, y2)| dx = B1 +B2.

We we are going to get an estimate for B1, for B2 we only have to switch y1 and y2. Let
y1, y2 ∈ Q0 be such that |y1 − y2| < ε1/2, x ∈ Q1

B. Then |x− y2| > ε1/2 and so x 6= y1, y2.
We estimate the difference of the kernels:

|Kα(x, y1)−Kα(x, y2)|
≤

∣∣ei φα(x) − ei φα(y2)
∣∣ |K(x− y1)−K(x− y2)|+

∣∣ei φα(y2) − ei φα(y1)
∣∣ |K(x− y1)|

≤ 2 |K(x− y1)−K(x− y2)|+ ‖∇φα‖L∞(Q0) |y1 − y2| |K(x− y1)|.

Note that |x− y1| > ε1 > 2 |y1− y2| and therefore we can use the regularity assumed on the
Calderón-Zygmund kernel K to obtain

|K(x− y1)−K(x− y2)| ≤ c0
|y1 − y2|τ

|x− y1|n+τ
≤ c0

|y1 − y2|τ

εn+τ
1

.

On the other hand, by the size condition of K we have

|K(x− y1)| ≤ c0

|x− y1|n
<
c0

εn1

Hence,

B1 ≤ 2

∫
QB1

|K(x− y1)−K(x− y2)| dx+ ‖∇φα‖L∞(Q0) |y1 − y2|
∫
QB1

|K(x− y1)| dx
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≤ 2 c0 |Q0|
εn+τ

1

|y1 − y2|τ +
‖∇φα‖L∞(Q0)c0 |Q0|

εn1
|y1 − y2|

whenever |y1 − y2| < ε1/2. If we set

δB = min

{
ε1

2
,
ε

8

εn1
‖∇φα‖L∞(Q0)c0 |Q0|

,

[
ε

8

εn+τ
1

2 c0 |Q0|

]1/τ}
and we assume that |y1− y2| < δB, we have proved that B1 < ε/4. In a similar way we also
obtain that B2 < ε/4 which yields

B ≤ B1 +B2 <
ε

2
, whenever |y1 − y2| < δB.

Putting all together we have shown that given ε > 0 there exists δ = min{δA, δB} (that
depends on α, Q0, ε) such that, for y1, y2 ∈ Q0 we have∫

Q0

|Kα(x, y1)−Kα(x, y2)| dx ≤ A+B < ε, whenever |y1 − y2| < δ.

This gives (c) in Theorem 5.3. This concludes the proof that all conditions of Theorem 5.3
apply to TΦ

Q . The conclusion of this theorem therefore yields

‖TΦ
Qf‖L1,∞(Q,µQ) ≤ C ‖f‖Υm,Q,

where C does not depend on Q. �

6. Proof of Theorem 5.3

The proof of this theorem is inspired by [SS]. The exact formulation of the theorem in [SS]
does not exactly apply to our setting and in this section we suitably modify the arguments
given in [SS] to obtain the proof of Theorem 5.3. It is crucial for us to obtain localized
estimates that do not depend on the cube, otherwise our arguments will not work.

We fix an arbitrary cube Q0. Given N ≥ 1 we write S?Nf(x) = sup1≤j≤N |Sjf(x)| and we
use the notation S?N,Q0

for the corresponding localized operators.
The proof splits in the following steps:

Step 1: Given a bounded function 0 ≤ f ∈ L1(Q0, µQ0), the sequence {ak}k with a0 = 0

and ak = 22k for k ≥ 1, and ε > 0 there exists k0 ≥ 1, so that f(x) ≤ ak0 , and a simple
function h:

h =

k0∑
k=1

ak χFk
=
∞∑
k=1

ak χFk

such that
(i) Fk ⊂ Gk = {x ∈ Q0 : ak−1 < f(x) ≤ ak}, k ≥ 1.

(ii)

∫
Gk

f(x) dµQ0(x) =

∫
Gk

h(x) dµQ0(x) = ak µQ0(Fk).

(iii)

∫
Q0

S?N,Q0
(f − h)(x) dµQ0(x) ≤ ε.

Note that Fk = Gk = Ø for k > k0.

Step 2: For h as above

µQ0

{
x : S?Q0

h(x) > λ
}
≤ C

λ

(
1 +

∫
Q0

Υm(f) dµQ0

)(
1 + log

(
1 +

∫
Q0

Υm(f) dµQ0

))
,
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where C does not depend on Q0 nor on ε.

Step 3: ‖S?Q0
f‖L1,∞(Q0,µQ0

) ≤ C ‖f‖Υm,Q, for all f ∈ LΥm(Q,µQ) and where C does not

depend on Q0.

Proof of Step 3: By the monotone convergence theorem, it is enough to fix N ≥ 1 and
obtain estimates for S?N,Q0

with C independent of N . Notice that ‖ · ‖L1,∞(Q0,µQ0
) is a quasi-

norm and ‖ ·‖Υm,Q is a norm for the Banach space LΥm(Q0, µQ0). On the other hand, S?N,Q0

is a sublinear operator, thus it suffices to show

‖S?Q0
f‖L1,∞(Q0,µQ0

) ≤ C

(with C independent of Q0) for any function 0 ≤ f ∈ LΥm(Q0, µQ0) with ‖f‖Υm,Q < 1.
On the other hand, without lost of generality we can assume that f is also bounded: set
fM (x) = f(x) when f(x) ≥M with M some fixed large number, then by (b),∫

Q0

S?N,Q0
fM (x) dµQ0(x) ≤

N∑
j=1

∫
Q0

|Sj,QfM (x)| dµQ0(x)

≤
N∑
j=1

sup
y∈Q0

(∫
Q0

|sQ0
j (x, y)| dµQ0(x)

) ∫
Q0

|fM (y)| dµQ0(y)

≤ C(Q0, N) ‖fM‖L1(Q0,µQ0
) −→ 0, as M →∞

So, we take f a non-negative bounded function such that ‖f‖Υm,Q < 1 which implies

(21)

∫
Q0

Υm(f) dµQ0 ≤ 1.

Let ε > 0 to be chosen. Let λ > 0 and 0 < η < λ. We apply Step 1 with ε̃ = η ε. Then
S?N,Q0

f(x) ≤ S?N,Q0
(f − h)(x) + S?N,Q0

h(x) and

µQ0

{
x : S?N,Q0

f(x) > λ
}
≤ µQ0

{
x : S?N,Q0

(f − h)(x) > η
}

+ µQ0

{
x : S?N,Q0

h(x) > λ− η
}

≤ 1

η
‖S?N,Q0

(f − h)‖L1(Q0,µQ0
) +

C

λ− η

≤ 1

η
ε̃+

C0

λ− η
= ε+

C0

λ− η
−→ C0

λ
, as η, ε→ 0.

Note that in the second estimate we have used Chebichev’s inequality for the first term and
Step 2, with (21), for the second. The third estimate is (iii) in Step 1. We would like to
point out that C0 is independent of Q0. In this way, we have shown that

‖S?Q0
f‖L1,∞(Q0,µQ0

) ≤ C0

as desired. �

Proof of Step 2: Let us recall that ϕm(t) = t
(
1 + log+ 1

t

)m
. We are going to use the

log-convexity of the L1,∞ norm (see [SWe], [K]), namely, if {gj} is a sequence of functions
such that ‖gk‖L1,∞(Q0,µQ0

) ≤ C0 and {βk}k is a sequence of non-negative numbers then

(22)
∥∥∥∑

k

βk gk

∥∥∥
L1,∞(Q0,µQ0

)
≤ 6C0N ({βk}k)
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where

N ({βk}k) =
∑
k

βk

(
1 + log

∑
j βj

βk

)
.

Note that∥∥∥∥S?Q0

(
χFk

ϕm(µQ0(Fk))

)∥∥∥∥
L1,∞(Q0,µQ0

)

=
1

ϕm(µQ0(Fk))
‖S?Q0

(χFk
)‖L1,∞(Q0,µQ0

) ≤ C0

where we have used (d) and C0 does not depend on Q0. Thus, we can use (22) to get

‖S?Q0
h‖L1,∞(Q0,µQ0

) ≤
∥∥∥∥∑

k

ak ϕm(µQ0(Fk))S
?
Q0

(
χFk

ϕm(µQ0(Fk))

)∥∥∥∥
L1,∞(Q0,µQ0

)

≤ 6C0N
({
ak ϕm(bk)

}
k

)
where we have written bk = µQ0(Fk). We are going to modify the functional N in the
following way: let {βk}k be a non-identically-zero sequence of non-negative numbers. Let
β =

∑
k βk > 0. Then using the submultiplicity of ϕ1,

N ({βk}k) = β
∑
k

βk
β

(
1 + log

1

βk/β

)
= β

∑
k

ϕ1

(βk
β

)
≤ β ϕ1

( 1

β

) ∑
k

ϕ1(βk)

=
(

1 + log+
∑
k

βk

)
Ñ ({βk}k)

where Ñ ({βk}k) =
∑

k ϕ1(βk). In this way,

‖S?Q0
h‖L1,∞(Q0,µQ0

) ≤ 6C0

(
1 + log+

∑
k

ak ϕm(bk)
)
Ñ ({ak ϕm(bk)}k).

Lemma 6.1. Let m ≥ 1, there exists C1, C2 —that only depend on m— such that for any
sequence {βk} with 0 ≤ βk ≤ 1 we have

∞∑
k=1

22k ϕm(βk) ≤ C1

(
1 +

∞∑
k=1

22k 2km βk

)
,

∞∑
k=1

ϕ1

(
22k ϕm(βk)

)
≤ C2

(
1 +

∞∑
k=1

22k 2km(1 + log k)βk

)
.

Lemma 6.2. Let h be the function defined in Step 1. Then,

2−m
∫
Q0

Υm

(
h(x)

)
dµQ0(x) ≤

∞∑
k=1

µQ0(Fk) 22k 2km (1+log k) ≤ 2m+1

∫
Q0

Υm

(
f(x)

)
dµQ0(x).

We will prove this auxiliary results later. Recall that we took ak = 22k and wrote
bk = µQ0(Fk), which satisfies 0 ≤ bk ≤ 1 since µQ0 is a probability measure. We use the
first estimate in Lemma 6.1, and Lemma 6.2 to get∑

k

ak ϕm(bk) ≤ C1

(
1 +

∞∑
k=1

22k 2km bk

)
≤ C1

(
1 +

∞∑
k=1

22k 2km (1 + log k) bk

)
≤ C1 2m+1

(
1 +

∫
Q0

Υm(f) dµQ0

)
.
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On the other hand, by the second estimate in Lemma 6.1, and by Lemma 6.2,

Ñ ({ak ϕm(bk)}k) =

∞∑
k=1

ϕ1

(
22k ϕm(bk)

)
≤ C2

(
1 +

∞∑
k=1

22k 2km(1 + log k)βk

)
≤ C2 2m+1

(
1 +

∫
Q0

Υm(f) dµQ0

)
.

Thus,

‖S?Q0
h‖L1,∞(Q0,µQ0

) ≤ 6C0

(
1 + log+

∑
k

ak ϕm(bk)
)
Ñ ({ak ϕm(bk)})

≤ C

(
1 + log

(
1 +

∫
Q0

Υm(f) dµQ0

))(
1 +

∫
Q0

Υm(f) dµQ0

)
,

as desired.

Proof of Lemma 6.1. Both estimates are proved in a similar way. Set

I =
{
k ≥ 1 : βk ≤

1

22k 2km k2

}
, II =

{
k ≥ 1 : βk >

1

22k 2km k2

}
.

Then, using that ϕ1 is an increasing function,

ΣI =
∑
k∈I

22k ϕm(βk) ≤
∑
k∈I

22k ϕm

( 1

22k 2km k2

)
=

∞∑
k=1

22k 1

22k 2km k2

(
1 + log+(22k 2km k2)

)m
≤ Cm

∞∑
k=1

1

k2
.

On the other hand,

ΣII =
∑
k∈II

22k ϕm(βk) =
∑
k∈II

22k βk

(
1 + log+ 1

βk

)m
≤

∞∑
k=1

22k βk
(
1 + log+(22k 2km k2)

)m
≤ Cm

∞∑
k=1

22k 2km βk.

Thus,
∞∑
k=1

22k ϕm(βk) = ΣI + ΣII ≤ C1

(
1 +

∞∑
k=1

22k 2km βk

)
,

where C1 only depends on m.
We indicate how to obtain the latter estimate. Since both ϕ1, ϕm are increasing we have

ΣI =
∑
k∈I

ϕ1

(
22k ϕm(βk)

)
≤
∞∑
k=1

ϕ1

(
22k ϕm

( 1

22k 2km k2

))
≤
∞∑
k=1

ϕ1

(Cm
k2

)
≤ Cm

∞∑
k=1

1 + log k

k2
.
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On the other hand,

ΣII =
∑
k∈II

ϕ1

(
22k ϕm(βk)

)
=
∑
k∈II

ϕ1

(
22k βk

(
1 + log+ 1

βk

)m)
≤

∑
k∈II

ϕ1

(
22k βk

(
1 + log+(22k 2km k2)

)m)
≤

∑
k∈II

ϕ1

(
Cm 22k 2km βk

)
≤ Cm

∑
k∈II

22k 2km βk

(
1 + log+ 1

22k 2km βk

)
≤ Cm

∞∑
k=0

22k 2km βk
(
1 + log+ k2

)
≤ Cm

∞∑
k=0

22k 2km βk (1 + log+ k).

Collecting the estimates for ΣI and ΣII we get the desired inequality. �

Proof of Lemma 6.2. The first inequality is trivial: the sets Fk are pairwise disjoint (since
the Gk’s are) and therefore

2−m
∫
Q0

Υm(h) dµQ0 = 2−m
∫
Q0

Υm

( ∞∑
k=1

ak χFk

)
dµQ0 = 2−m

∞∑
k=1

Υm(ak)µQ0(Fk)

= 2−m
∞∑
k=1

µQ0(Fk) 22k
(
1 + log+ 22k

)m (
1 + log+ log+ log+ 22k

)
≤

∞∑
k=1

µQ0(Fk) 22k 2km (1 + log k).

For the second estimate we use (ii) in Step 1:

∞∑
k=1

µQ0(Fk) 22k 2km (1 + log k) =

∞∑
k=1

∫
Gk

f(x) dµQ0(x) 2km (1 + log k)

To finish we only have to notice that

G1 = {x ∈ Q0 : 0 < f(x) ≤ 4}; Gk = {x ∈ Q0 : 22k−1
< f(x) ≤ 22k}, k ≥ 2,

and thus, for x ∈ Gk, we have

2k ≤ 2
(
1 + log+ f(x)

)
, 1 + log k ≤ 2

(
1 + log+ log+ log+ f(x)

)
.

Hence, since the sets Gk are pairwise disjoint

∞∑
k=1

µQ0(Fk) 22k 2km (1 + log k) =

∞∑
k=1

∫
Gk

f(x) 2km (1 + log k) dµQ0(x)

≤ 2m+1
∞∑
k=1

∫
Gk

f(x)
(
1 + log+ f(x)

)m (
1 + log+ log+ log+ f(x)

)
dµQ0(x)
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≤ 2m+1

∫
Q0

Υm

(
f(x)

)
dµQ0(x).

�

Proof of Step 1: This step is an extension of an approximation lemma in [SS]. We will
prove it for completeness. It is clear that since f is bounded, f(x) ≤ ak0 for all x ∈ Q0 and
for some k0 ≥ 1. Fix ε > 0. Let {Ql} be a finite family of dyadic subcubes of Q0, which all
are of the same fixed generation (that is, they all have the same side length). The generation
that we are considering is taken in such a way that the length of the diagonal of any of them
is smaller than δ, for some δ > 0 to be chosen. Let Gk = {x ∈ Q0 : ak−1 < f(x) ≤ ak}.
Note that Gk = Ø for k ≥ k0 + 1. Since,∫

Gk∩Ql
f(x) dµQ0(x) ≤ ak µQ0(Gk ∩Ql),

there exists F lk ⊂ Int(Ql) ∩Gk such that∫
Gk∩Ql

f(x) dµQ0(x) = ak µQ0(F lk).

We define Fk = ∪lF lk and note that Fk = Ø for k ≥ k0 + 1. Our simple function is

h(x) =

∞∑
k=1

ak χFk
=

k0∑
k=1

ak χFk
.

Conclusion (i) holds by construction. The same occurs for (ii):∫
Gk

f(x) dµQ0(x) =
∑
l

∫
Gk∩Ql

f(x) dµQ0(x) =
∑
l

ak µQ0(F lk) = ak µQ0(Fk)

=

∫
Gk

h(x) dµQ0(x),

by the disjointness of the sets {F lk}l and also of {Gk}. So we only have to prove (iii). We
proceed as follows∫

Q0

S?N,Q0
(f − h)(x) dµQ0(x) ≤

N∑
j=1

∫
Q0

|Sj,Q0(f − h)(x)| dµQ0(x)

=

N∑
j=1

∫
Q0

∣∣∣ ∫
Q0

sj(x, y)
(
f(y)− h(y)

)
dy
∣∣∣ dµQ0(x)

≤
N∑
j=1

k0∑
k=1

∑
l

∫
Q0

∣∣∣ ∫
Gk∩Ql

sj(x, y)
(
f(y)− ak χF lk(y)

)
dy
∣∣∣ dµQ0(x)

=

N∑
j=1

k0∑
k=1

∑
l

∫
Q0

∣∣∣ ∫
Gk∩Ql

(
sj(x, y)− sj(x, yl)

) (
f(y)− ak χF lk

(y)
)
dy
∣∣∣ dµQ0(x),

where yl is the center of Ql and the last equality holds because∫
Gk∩Ql

(
f(y)− ak χF lk

(y)
)
dy = |Q0|

(∫
Gk∩Ql

f(y) dµQ0(y)− akµQ0(F lk)
)

= 0.
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Take,

ε0 =
ε

2 N |Q0| ‖f‖L1(Q0,µQ0
)
.

By (c), for each j = 1, . . . , N , there exists δj such that∫
Q0

|sj(x, y1)− sj(x, y2)| dµQ0(x) ≤ ε0, whenever |y1 − y2| < δj , y1, y2 ∈ Q0.

We choose δ = min{δ1, . . . , δN}. Since yl is the center of Ql and y ∈ Ql we have that
|y − yl| < diag(Ql) ≤ δ and so∫

Q0

|sj(x, y)− sj(x, yl)| dµQ0(x) ≤ ε0, j = 1, . . . , N.

Thus,∫
Q0

S?N,Q0
(f − h)(x) dµQ0(x)

≤
N∑
j=1

k0∑
k=1

∑
l

∫
Gk∩Ql

∣∣f(y)− ak χF lk
(y)
∣∣ dy ∫

Q0

∣∣sj(x, y)− sj(x, yl)
∣∣ dµQ0(x)

≤ ε0N

k0∑
k=1

∑
l

∫
Gk∩Ql

(
f(y) + ak χF lk

(y)
)
dy = 2 ε0N

k0∑
k=1

∑
l

∫
Gk∩Ql

f(y) dy

≤ 2 ε0N |Q0| ‖f‖L1(Q0,µQ0
) = ε.

�
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[GR] J. Garćıa-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics,

North-Holland Math. Stud. 116, North-Holland, 1985.
[H] R. Hunt, On the convergence of Fourier series, Orthogonal Expansions and Their Continuous

Analogues (Edwardsville, Ill., 1967), pp. 235–255, D. T. Haimo (ed.), Southern Illinois Univ. Press,
Carbondale IL, 1968.

[HY] R. Hunt and W.-S. Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc.
80 (1974), 274–277.

[K] N. J. Kalton, Convexity, type, and the three space problem, Studia Math. 69 (1981), 247–287.
[L] M. Lacey, Carleson’s theorem with quadratic phase functions, Studia Math. 153 (2002), no. 3,

249–267.
[M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math.

Soc. 165 (1972), 207–226.

November 16, 2020.



WEIGHTED INEQUALITIES FOR MAXIMALLY MODULATED SINGULAR INTEGRALS 29

[RR] M. Rao and Z. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied
Mathematics 146, Marcel Dekker, Inc., New York, 1991.

[RRT] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued
kernels, Adv. Math. 62 (1986), 7–48.
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