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Abstract. We obtain a maximal transference theorem that relates almost ev-

erywhere convergence of multilinear Fourier series to boundedness of maximal
multilinear operators. We use this and other recent results on transference

and multilinear operators to deduce Lp and almost everywhere summability of

certain m-linear Fourier series. We formulate conditions for the convergence
of multilinear series and we investigate certain kinds of summation.

1. Introduction

Transference is a powerful tool that reveals equivalent and often unexpected
reformulations of certain estimates. The study of transference of boundedness of
linear operators has been pursued by several authors; for brevity we only mention
the pioneering work of de Leeuw [5] that was beautifully placed into a framework
of a general theory by Coifman and Weiss [4].

As an application of transference and some basic functional analysis, the Lp

convergence of Fourier series of Lp functions on the circle T is equivalent to the Lp

boundedness of the Hilbert transform H on R. Likewise, the almost everywhere
convergence of the Fourier series of a function on T whose pth power is integrable
follows from the Lp boundedness of the maximally modulated Hilbert transform

H∗(f) = sup
ξ∈R
|H(Mξf)| ,

on Lp(R), where Mξf(x) = e2πiξxf(x) and H is the Hilbert transform; the passage
from the circle to the line here follows from the maximal transference theorem of
Kenig and Tomas [11].

It is natural to investigate analogous reductions of the problem of convergence
of multilinear Fourier series on Tn × · · · × Tn to the boundedness of multilinear
operators on Rn × · · · × Rn. It turns out that such reductions are possible and
are easy consequences of a rich theory of multilinear transference. Multilinear
transference has been studied by (in chronological order) Murray [15], Grafakos
and Weiss [9], Fan and Sato [6], Blasco [1], and Blasco and Villaroya [2]. These
articles are concerned with transference of operators that are linear in each variable.
In this work we discuss transference of maximal multilinear operators analogous to
that obtained by Kenig and Tomas [11] for maximal linear operators.

As an application of transference (and some basic functional analysis), one can
use the boundedness of the bilinear Hilbert transforms

(1) Hα(f1, f2)(x) =
1

π
p.v.

∫
R
f1(x− t)f2(x+ αt)

dt

t
,
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obtained by Lacey and Thiele [12], [13] to deduce the Lp convergence of the bilinear
Fourier series ∑

|m+n|<N
|m−αn|<N

ĝ1(m)ĝ2(n)e2πi(m+n)x

as N →∞ and vice versa. Here α is a fixed real number, g1, g2 are functions on the
circle T, and f1, f2 functions on the line. We note that the aforementioned conver-
gence can also be obtained via the boundedness of the bilinear conjugate function
obtained in Fan and Sato [6] using transference. Likewise, we can use maximal
multilinear transference to obtain almost everywhere convergence for multilinear
Fourier series. Details on these applications will be given at the end of this paper.

We will be working with indices 1 ≤ p1, · · · , pm ≤ ∞ such that

(2)
1

p
=

1

p1
+

1

p2
+ · · ·+ 1

pm
> 0 .

We say that a function B ∈ L∞((Rn)m) is an m-linear multiplier, or lies in
Mp1,p2,...,pm,p(Rn), if the m-linear operator

(3) TB(f1, . . . , fm)(x) =

∫
(Rn)m
B(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm)e

2πi(
∑
j
ξj)·x

dξ1 . . . dξm,

satisfies, for some constant C, the estimate

‖TB(f1, . . . , fm)‖Lp ≤ C‖f1‖Lp1 . . . ‖fm‖Lpm
for all smooth compactly supported functions fj on Rn. When all pj < ∞ this
means that TB admits a bounded extension from Lp1(Rn) × · · · × Lpm(Rn) to
Lp(Rn).

We define the class Mp1,p2,...,pm,p(Tn) in the same way. (We identify T with
[0, 1].) We say that a sequence b ∈ l∞((Zn)m) belongs to Mp1,p2,...,pm,p(Tn), or is
an m-linear multiplier on Tn, if the operator

(4) Sb(g1, . . . , gm)(x) =
∑

k∈(Zn)m

b(k1, . . . , km)ĝ1(k1) · · · ĝm(km)e2πi(
∑
j kj)·x ,

initially defined for trigonometric polynomials gj , extends to a bounded opera-
tor from Lp1(Tn) × · · · × Lpm(Tn) to Lp(Tn). The spaces Mp1,p2,...,pm,p(Rn) and
Mp1,p2,...,pm,p(Tn) are easily seen to be Banach spaces (or quasi-Banach spaces
when p < 1) with respect to the norms (resp. quasi-norms when p < 1) defined by
the corresponding operator norms. We will use the notation

‖B‖Mp1,p2,...,pm,p(Rn) = ‖TB‖Lp1 (Rn)×···×Lpm (Rn)→Lp(Rn)

‖b‖Mp1,p2,...,pm,p
(Tn) = ‖Sb‖Lp1 (Tn)×···×Lpm (Tn)→Lp(Tn) ,

for these multiplier and operator norms.
We introduce the dilation operator DRf(x) = f(Rx) for R > 0 whenever f is

a function on Rn. The following proposition summarizes a few basic properties of
multilinear multipliers. The simple proof is omitted.

Proposition 1. Let b1, b2 ∈ Mp1,p2,...,pm,p(Rn) and b ∈ Mpi(Rn) for some 1 ≤
p1, . . . , pn ≤ ∞ and 0 < p <∞ satisfying 1

p1
+ 1

p2
+ · · ·+ 1

pm
= 1

p . Then

(a) Tb1 + Tb2 = Tb1+b2 ∈Mp1,p2,...,pm,p.
(b) Tb1(·, . . . , Tb(·), . . . , ·) = Tb1⊗ib ∈Mp1,p2,...,pm,p, where ⊗i represents product

in the variable i, that is (b1 ⊗i b)(x1, . . . , xm) = b1(x1, . . . , xm)b(xi).
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(c) The dilation operator DR leaves the norm of a multiplier invariant, i.e.

‖DRb1‖Mp1,p2,...,pm,p
= ‖b1‖Mp1,p2,...,pm,p

.

2. Transference of maximal multipliers

The main result of this section, Theorem 2, concerns transference of maximal
multipliers. This theorem will be a key element in obtaining almost everywhere
convergence for certain multilinear Fourier series. A similar result is mentioned as
a remark (without proof) in Fan and Sato [6] for maximal dilations of multipliers.
For the applications we have in mind, we need a slightly stronger version of this
theorem that allows an arbitrary family of multipliers.

We fix a set Γ and a set of bα ∈ L∞((Rn)m) indexed by α ∈ Γ. We also fix
indices p1, . . . , pm that satisfy (2) and we assume that Tbα is a bounded m-linear
operator from Lp1(Rn)× · · · × Lpm(Rn) to Lp(Rn). Then, for fj ∈ Lpj (Rn) we set

N(f1, . . . , fm)(x) = sup
α∈Γ
|Tbα(f1, . . . , fm)(x)| .

We make a similar assumption for Sbα and for gi ∈ Lpi(Tn) we set

M(g1, . . . , gm)(x) = sup
α∈Γ
|Sbα(g1, . . . , gm)(x)| .

We will need the following lemma from the measure theory whose easy proof is
omitted. (See [7].)

Lemma 1. Let A be a family of measurable functions on a measure space X.
Suppose that

sup
{F⊂A:F finite}

∥∥ sup
f∈F

f
∥∥
Lp(X)

≤ C <∞.

Then for every f ∈ A there is a measurable function gf , such that f = gf a.e. and∥∥ sup
f∈A

gf
∥∥
Lp(X)

≤ C.

We introduce the following notation

Gp,ε(x) = e−
π
p |εx|

2

which will be used repeatedly in the sequel. We note that for all continuous func-
tions g on Tn we have

(5) lim
ε→0

εn
∫
Rn
g(x)G1,ε(x)dx =

∫
Tn
g(x)dx.

We now state and prove the main result of this section, a transference theorem
for maximal multilinear multipliers. In the case m = 1, a slightly weaker version of
this theorem was obtained by Kenig and Tomas [11].

Theorem 2. Let 1 ≤ p1, . . . , pn <∞, 0 < p <∞, where 1
p1

+ 1
p2

+ · · ·+ 1
pm

= 1
p ,

and let bα ∈ L∞((Rn)m), where α ∈ Γ. Assume that every bα has a Lebesgue point
at every k ∈ (Zn)m. Suppose that for all fj ∈ Lpj (Rn) we have:

‖N(f1, . . . , fm)‖Lp(Rn) ≤ C‖f1‖Lp1 (Rn) · · · ‖fm‖Lpm (Rn).

Then for all gj ∈ Lpj (Tn) we have:

‖M(g1, . . . , gm)‖Lp(Tn) ≤ C‖g1‖Lp1 (Tn) · · · ‖gm‖Lpm (Tn).
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Proof. Let us fix α1, . . . , αk in the index set Γ. In view of Lemma 1, it will be
enough to prove the boundedness of the following operator

M0(Q1, . . . , Qm)(x) = sup
bα1 ,...,bαk

∣∣Sbαi (Q1, . . . , Qm)(x)
∣∣ .

In analogy, for trigonometric polynomials Q1, . . . Qm, we define

N0(Q1, . . . , Qm)(x) = sup
bα1

,...,bαk

∣∣Tbαi (f1, . . . , fm)(x)
∣∣ .

We shall first obtain the boundedness of M0 for trigonometric polynomials Qj .
We observe that for linear monomials

Pj(x) = e2πikj ·x

we have

Sb(P1, . . . , Pm)(x)Gp,ε(x) =

= C0ε
−mn

∫
(Rn)m

b(k1, . . . , km)e−
πp1
ε2
|ξ1−k1|2 · · · e−

πpm
ε2
|ξm−km|2e2πi(

∑
j ξj)·xdξ,

where C0 =
√
pn1 · · · pnm. If we set

gj(x) = Pj(x)Gpj ,ε(x),

we can write

Tb(g1, . . . , gm)(x)

= C0ε
−mn

∫
(Rn)m

b(ξ1, . . . , ξm)e−
πp1
ε2
|ξ1−k1|2 · · · e−

πpm
ε2
|ξm−km|2e2πi(

∑
j ξj)·xdξ

and compare the two operators as follows:

|Sb(P1, . . . , Pm)(x)Gp,ε(x)− Pb(g1, . . . , gm)(x)|

≤ C ′‖b‖∞
∫
{ξ∈(Rn)m: |ξ|≥r}

e−π|ξ|
2

dξ

+ C ′ε−mn
∫
{η∈(Rn)m: |η|<rε}

|b(k1, . . . , km)− b( η1√
p1

+ k1, . . . ,
ηm√
pm

+ km)|dη,

where r > 0 is arbitrary. The first term above tends to 0 as r →∞ while the second
one tends to 0 as ε → 0 whenever k is a Lebesgue point of b. We can extend the
same estimate to trigonometric polynomials Qj by linearity. Taking the supremum,
we obtain

|M0(Q1, . . . , Qm)(x)Gp,ε −N0(Q1Gp1,ε, . . . , QmGpm,ε)(x)| ≤ o 1
r
(1) + rmnoε(1)

Using (5) we deduce∫
Tn

sup
bα1

,...,bαk

|Sbαi (Q1, . . . , Qm)(x)|pdx

= lim
ε→0

εn
∫
Rn

sup
bα1

,...,bαk

|Sbαi (Q1, . . . , Qm)(x)Gp,ε(x)|pdx.
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The function M0(Q1, . . . , Qm) is bounded by some constant K, so

lim
ε→0

εn
∫
Rn

sup
bα1

,...,bαk

|Sbαi (Q1, . . . , Qm)(x)Gp,ε(x)|pdx

≤ Ko 1
R

(1) + lim
ε→0

εn
∫
Rn∩{|x|≤Rε }

sup
bα1

,...,bαk

|Sbαi (Q1, . . . , Qm)(x)Gp,ε(x)|pdx.

After we deduce the estimate

εn
∫
|x|≤Rε

sup
bα1

,...,bαk

|Sbαi (Q1, . . . , Qm)(x)Gp,ε(x)|pdx.

≤ Rn(o 1
r
(1) + rmnoε(1))

+ εn
∫
Rn

sup
bα1 ,...,bαk

|Tbαi (Q1Gp1,ε, . . . , QmGpm,ε)(x)|pdx,

we take R and r such that the first term above is negligible and finally obtain

‖M0(Q1, . . . , Qm)‖Lp(Tn)

≤ lim sup
ε→0

εn‖N(Q1Gp1,ε, . . . , QmGpm,ε)‖Lp(Tn)

≤ C lim sup
ε→0

εn/p1‖Q1Gp1,ε‖Lp1 · · · εn/pm‖QmGpm,ε‖Lpm εn/p
′

≤ C‖Q1‖Lp1 · · · ‖Qm‖Lpm .

This proves that the operator M0 is bounded for trigonometric polynomials.
To extend the boundedness to general Lpj functions gj , we first recall that the

linear operator Sbα is well defined and bounded on Lp1 × · · · × Lpm for any α ∈ Γ.
This implies that whenever trigonometric polynomials Qj,l → gj in Lpj (Tn), we
have

Sbα(Q1,l, . . . , Qm,l)→ Sbα(g1, . . . , gm)

in Lp. We can now can use the trivial estimate

|M0(g1, . . . , gm)(x)−M0(Q1,l, . . . , Qm,l)(x)|

≤
k∑
i=1

|Sbαi (Q1,l, . . . , Qm,l)(x)− Sbαi (g1, . . . , gm)(x)|

and take the Lp norm to obtain the required estimate for general functions gj ∈ Lpj .
�

We make a couple of remarks. It is possible to define the multilinear multiplier
even in the case when some pi = ∞. The multiplier then, of course, extends only
to the closure of the set C∞0 in L∞. It is possible to prove the above transference
result in this setting, using an arbitrary cutoff function in place of Gε,pi . When
p ≥ 1, the proof can be trivially extended to regulated maximal multipliers, where
bα is regulated, if bα(x) = limφn φn ∗ bα for any point x ∈ Znm for some aproximate
identity φn. Key to this is the following lemma, which has been proved for bilinear
multipliers in [1].

Lemma 3. Assume the hypotheses of Theorem 2 and also that p ≥ 1. Let Φ be in
L1(Rmn). Then for any b1 = bα1 ∗ Φ, . . . , bk = bαk ∗ Φ we have

‖ sup
b1,...,bk

|Tbi(q1, . . . , qm)(x)| ‖Lp(Rn) ≤ C‖Φ‖L1(Rn)
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for Schwartz functions q1, . . . , qm, where C is the constant in Theorem 2.

Proof. To prove this result, we need to use the linearization introduced in [11].
Clearly, if we write

‖ sup
b1,...,bk

|Tbi(q1, . . . , qm)(x)| ‖Lp(Rn)

=
∥∥∥‖(Tb1(q1, . . . , qm), . . . , Tbk(q1, . . . , qm))‖l∞k

∥∥∥
Lp(Rn)

,

we can express the second norm as the supremum over all Schwartz functions
h1, . . . , hk with ‖

∑
i |hi|‖Lp′ (Rn) ≤ 1 of the expression∣∣∣∣ ∫

Rn

∑
i

Tbi(q1, . . . , qm)(x)hi(x)dx

∣∣∣∣ .
By Parseval’s identity, this is equal to∫

Rnm

∑
i

bi(ξ1, . . . , ξm)q̂1(ξ1) · · · q̂k(ξm)ĥi(
∑
j

ξj)dξ1 · · · dξm.

The claim then follows by expressing bi as bαi ∗Φ, applying Fubini’s theorem, and
applying the assumption that the maximal operator N is bounded on products of
Schwartz functions. �

To obtain maximal trasference in the oposite direction, one has to impose some
aditional condition on the set of the multipliers. For example, a standard condition
is that the set of multipliers {bα}α contains all dilations of its elements.

Theorem 4. Let 1 ≤ p1, . . . , pm <∞, 0 < p <∞, where 1
p1

+ 1
p2

+ · · ·+ 1
pm

= 1
p ,

and let bα ∈ L∞((Rn)m), where α ∈ Γ. Assume for every bα and R > 0 we have a
β ∈ Γ such that bα = DRbβ. Let any bα has a Lebesgue point at every k ∈ (Zn)m

and let us assume that it is Riemann integrable over any rectangle.
Suppose that for all functions gj ∈ Lpj (Tn) we have:

‖M(g1, . . . , gm)‖Lp(Tn) ≤ C‖g1‖Lp1 (Tn) · · · ‖gm‖Lpm (Tn).

Then for all fj ∈ Lpj (Rn) we have:

‖N(f1, . . . , fm)‖Lp(Rn) ≤ C‖f1‖Lp1 (Rn) · · · ‖fm‖Lpm (Rn)

Proof. Again, in wiev of the Lemma 1 it is enough to prove the boundedness of the
operators N0. Moreover, a limiting argument similar to that in Theorem 2 shows
that it is enough to work with smooth compactly supported functions ak. One can
check that for any Riemann integrable bounded function b we have

lim
R→∞

DR−1

SDR−1b(D
Ra1, . . . , D

Ram)(x) = Tb(a1, . . . , am)(x),

where the right hand side (which is well defined for large R) is a Riemann sum. For
the maximal operators this implies

N0(a1, . . . , am)(x) ≤ lim inf
R→∞

DR−1

M(DRa1, . . . , D
Ram)(x)

and the claim follows. �
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3. Tools to study convergence

Before we turn to applications of transference of maximal multipliers to conver-
gence of m-linear Fourier series, we discuss a couple of useful results in the study
of convergence. We begin with a general theorem that formulates an equivalent
condition for the Lp convergence of multilinear multiplier operators on the torus.

Theorem 5. Fix 0 < p <∞ and
∑m
j=1 1/pj = 1/p, 1 ≤ pj <∞. Suppose that for

each R > 0 there is a compactly supported sequence bR ∈ l∞((Zn)m) and a sequence
b ∈ l∞((Zn)m) such that for any k ∈ (Zn)m we have bR(k) → b(k) as R → ∞.
Then the sequence SbR(g1, . . . , gm) converges in Lp(Tn) for any gj ∈ Lpj (Tn) if and
only if there exists a constant K <∞ such that

(6) sup
R>0
‖bR‖Mp1,p2,...,pm,p

≤ K.

Moreover, if (6) holds for some K <∞, we must have

‖b‖Mp1,p2,...,pm,p
≤ K

and SbR(g1, . . . , gm) → Sb(g1, . . . , gm) in Lp(Tn) for all gj ∈ Lpj (Tn). (Here Sb
denotes the unique bounded extension of the same operator.)

Proof. We deduce (6) by a repeated application of the uniform boundedness the-
orem. Each operator SbR corresponds to a compactly supported multiplier and is
therefore bounded. From the convergence we see that for each {gj}j we have a
constant C{gj}j such that

‖SbR(g1, . . . , gm)‖Lp ≤ C{gj}j
for any choice of R. Now we fix g2, . . . , gm and apply the uniform boundedness
theorem on the family of linear operators SbR(·, g2, . . . , gm), indexed by R. This
gives us a constant Cg2,...,gm ,

‖SbR(·, g2, . . . , gm)‖Lp1→Lp ≤ Cg2,...,gm .

In other words, we obtained a family of operators SbR(g1/‖g1‖Lp1 , ·, . . . , gm) indexed
by R and g1. We use the uniform boundedness in the second variable and proceed
by induction. This way we deduce the existence of a constant K <∞ such that

‖SbR(g1/‖g1‖Lp1 , . . . , gm/‖gm‖Lpm )‖Lp ≤ K.

Let us now assume (6). Then clearly for any choice of trigonometric polynomials
{Qj}j , Fatou’s lemma gives

‖Sb(Q1, . . . , Qm)‖Lp ≤ lim inf
R→∞

‖SbR(Q1, . . . , Qm)‖Lp ≤ K‖Q1‖Lp1 · · · ‖Qm‖Lpm ,

which means that Sb extends to a bounded operator on Lp1 × · · · ×Lpm with norm
bounded by K.

Fix now gj ∈ Lpj (Tn) for each 1 ≤ j ≤ m. For any ε > 0 we may take
trigonometric polynomials {Qj} such that

‖Qj − gj‖Lpj ≤ ε.

The Fourier transform of a trigonometric polynomial is compactly supported, which
means

‖Sb(Q1, . . . , Qm)− SbR(Q1, . . . , Qm)‖Lp → 0.
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We can pick R0 such that the above quantity is less than ε for R > R0 and then
write

‖Sb(g1, . . . , gm)−SbR(g1, . . . , gm)‖Lp
≤Cp(‖SbR(g1, . . . , gm)− SbR(Q1, . . . , Qm)‖Lp

+ ‖SbR(Q1, . . . , Qm)− Sb(Q1, . . . , Qm)‖Lp
+ ‖Sb(Q1, . . . , Qm)− Sb(g1, . . . , gm)‖Lp).

The middle term on the right is controlled by ε, while the remaining two can be
estimated using multilinearity by the usual transformation

Sb(Q1, . . . , Qm)− Sb(g1, . . . , gm) =Sb(Q1, . . . , Qm − gm)

+ Sb(Q1, . . . , Qm−1 − gm−1, gm)

+ · · · − Sb(g1 −Q1, . . . , gm).

These terms all have Lp norm estimated by some constant multiple of Kε. The
same works for SbR . The result follows by triangle inequality (or quasi-triangle
inequality when p < 1). �

Next we obtain a result allowing us to derive almost everywhere convergence for
multilinear operators from the boundedness of a corresponding maximal operator.
Let (Xj , µj), 1 ≤ j ≤ m, (Y, ν) be measure spaces and let 0 < pj ≤ ∞, 0 < q <∞.
Suppose that D is a dense subspace of Lpj (X,µ) for all j. Suppose that for every
ε > 0, Tε is an m-linear operator defined on Lp1(X1, µ1)× · · ·×Lpm(Xm, µm) with
values in the set of measurable functions on Y . Define a sublinear operator

(7) T∗(f1, . . . , fm) = sup
ε>0
|Tε(f1, . . . , fm)| .

Then we have the following result.

Theorem 6. Suppose that for some B > 0 and all fj ∈ Lpj (Xj , µj) we have

(8) ‖T∗(f1, . . . , fm)‖Lq,∞ ≤ B‖f1‖Lp1 . . . ‖fm‖Lpm
and that for all hj ∈ D
(9) lim

ε→0
Tε(h1, . . . , hm) = T (h1, . . . , hm)

exists and is finite ν-a.e. and defines a multilinear operator on Dm. Then for
all fj ∈ Lp(X,µj) the limit (9) exists and is finite ν-a.e. and defines a bounded
multilinear operator T from Lp1(X1) × · · · × Lpm(Xm) to Lq,∞(Y ) that uniquely
extends T defined on Dm.

Proof. Given a tuple (f1, . . . , fm) in Lp1 ×· · ·×Lpm , we define its oscillation at the
point y ∈ Y as

O(f1, . . . , fm)(y) = lim sup
ε→0

lim sup
θ→0

|Tε(f1, . . . , fm)(y)− Tθ(f1, . . . , fm)(y)|.

We will show that for all (f1, . . . , fm) in Lp1 × · · · × Lpm and δ > 0, we have

(10) ν({y ∈ Y : O(f1, . . . , fm)(y) > δ}) = 0.

Once (10) is established, given (f1, . . . , fm) in Lp1 × · · · × Lpm , we obtain that
O(f1, . . . , fm)(y) = 0 for ν-almost all y ∈ Y , which implies that Tε(f1, . . . , fm)(y)
is Cauchy for ν-almost all y and it therefore converges ν-a.e. to some multilinear
operator T (f1, . . . , fm)(y) as ε→ 0 that extends T defined on Dm.
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To approximate O(f1, . . . , fm) we use density. Given 0 < η < 1, find gj ∈ D
such that ‖fj − gj‖Lpj < η. It is easy to see that for some constant C we have

(11) O(f1, . . . , fm) ≤ O(g1, . . . , gm) + C
∑

O(φ1, . . . , φm) ν-a.e.,

where φj is either fj or fj − gj and the sum is taken over all finitely many possible
combinations of expressions of this sort in which at least one φk is fk − gk. Since
Tε(g1, . . . , gm) → T (g1, . . . , gm) ν-a.e, it follows that O(g1, . . . , gm) = 0 ν-a.e. We
can therefore pointwise control the oscillation O(f1, . . . , fm) by a sum of oscillations
of tuples of functions in which at least one entry has small norm.

Now for any δ > 0 and any tuple (φ1, . . . , φm) as above we have

ν({O(φ1, . . . , φm) > δ}) ≤ ν({O(φ1, . . . , φm) > δ})
≤ ν({T∗(φ1, . . . , φm) > δ/2})
≤ (2B‖φ1‖Lp1 . . . ‖φm‖Lpm /δ)q

≤ C(f1, . . . , fm) (2B/δ)
q
ηq ,

where C(f1, . . . , fm) is a constant depending on the functions fj . Letting η → 0
and using (11), we deduce (10). We conclude that Tε(f1, . . . , fm) is a Cauchy se-
quence and hence it converges ν-a.e. to some T (f1, . . . , fm). Since |T (f1, . . . , fm)| ≤
|T∗(f1, . . . , fm)|, it follows that T is a bounded operator (with norm at most B.) �

4. Multilinear Fourier series

We now discuss applications of the preceding results. We consider an open
connected set E ⊂ Rmn which contains the point 0 in its interior. Define the
m-linear Fourier partial sum

PER (g1, . . . , gm)(x) =
∑

(k1,...,km)∈R·(E∩Zmn)

ĝ(k1) . . . ĝm(km)e2πi(k1+···+km)·x

which naturally converges to g1(x) . . . gm(x) whenever g1, g2, . . . gm are smooth func-
tions on Tn. The summation here is taken over all lattice points inside the R-fold
dilate of the set E and the convergence is understood as R→∞. We will use trans-
ference to study the Lp and almost everywhere convergence of this series whenever
the gj lie in some Lebesgue spaces. In view of Theorem 5, the Lp convergence of PER
is a consequence of the uniform boundedness of the family of multilinear operators
{PER }R>0. Transferring these operators to Rn, reduces matters to showing that
χE lies in Mp1,...,pm,p(Rn) (for the Lp convergence problem) and that the maxi-
mal operator supN>0 |TχN·E | is bounded (for the almost everywhere convergence
problem). Here N · E is an N -fold dilate of E and TB is defined in (3).

We consider the case in which the set E is a polygon in R2 with finitely many
sides. We prove an easy geometric lemma, which allows us to write this polygon as
a difference of finite unions of triangles.

Lemma 7. Let D ⊂ R2 be a closed polygon with finitely many sides. Then we can
find two finite sets T1, T2 of closed triangles each of which has two sides parallel to
axes, such that ∑

T∈T1

χ
T
−
∑
T∈T2

χ
T

= χ
D

a.e.
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Proof. Clearly, we can divide any polygon into finitely many triangles. Consider
such a triangle and denote it T . If T does not have any sides parallel to the first
coordinate axis, the orthogonal projection of its vertices on the second axis consists
of three distinct points and the straight line parallel to the first coordinate axis
passing though the middle of these three points splits T into two triangles T ′ and
T ′′ which have one side parallel to the first coordinate axis.

Let T ′ have vertices A,B,C, where the line AB is parallel to the first coordinate
axis. If no remaining side of T ′ is parallel to the second coordinate axis, let X be
the point of intersection of the line passing through A and B and of the line passing
through the point C and parallel to the second coordinate axis. The triangles AXC
and BXC have two sides parallel to the coordinates, and we have

χ
ABC

= χ
AXC

+ χ
BXC

or

χ
ABC

= χ
AXC

− χ
BXC

or

χ
ABC

= −χ
AXC

+ χ
BXC

a.e.

So this procedure splits T to at most four triangles, which we place in T1 or T2

according to the sign they inherit by the previous identities. �

We now discuss the problem of the convergence of bilinear Fourier series summed
over lattice points inside dilates of polygons in R2. Let us fix such a polygon D.
Apply Lemma 7 to obtain sets of triangles indexed by the sets T1 and T2. It follows
from the work of Lacey and Thiele [12], [13] that the characteristic function of any
triangle in R2 with no side parallel to the antidiagonal y = −x lies in Mp1,p2,p(R)
where 2/3 < p < ∞, 1 < p1, p2 ≤ ∞ and 1/p1 + 1/p2 = 1/p. (If the triangle has
a side parallel to the antidiagonal y = −x, then the same conclusion is valid with
the additional restriction that p > 1.)

Using Lemma 7 we conclude that the characteristic function of a polygon D in
R2 with no side parallel to the antidiagonal y = −x is a bounded bilinear multiplier
in Mp1,p2,p(R) where 2/3 < p < ∞, 1 < p1, p2 ≤ ∞ and 1/p1 + 1/p2 = 1/p.
Moreover, part (c) of Proposition 1 says that any dilate of D is also a bounded
bilinear multiplier (with the same norm). We can now take a suitable increasing
sequence or Rn such that D dilated by Rn contains no lattice point in its boundary
and such that there is exactly one R′n between Rn and Rn+1 such that the dilate
of D by the amount R′n has a lattice point in its boundary. We can also arrange so
that the dilate of D by R1 contains only the zero lattice point. This choice of our
sequence ensures that for any R > 0 there is an n such that PDR = PDRn . Thus the
characteristic function of any dilate of D has a Lebesgue point at every lattice point
and we can apply both the transference theorem in [6] and Theorem 5 to obtain the
boundedness of each of the operators PDRn . We conclude that PDR (g1, g2)→ g1g2 in
Lp(T) for any g1 ∈ Lp1(T) and g2 ∈ Lp2(T) where 2/3 < p < ∞, 1 < p1, p2 ≤ ∞.
Precisely we have the following.

Theorem 8. Let 2/3 < p <∞, 1 < p1, p2 <∞, 1/p1 + 1/p2 = 1/p and D ⊂ R2 be
a polygon that contains 0 in its interior and has no side parallel to the antidiagonal
y = −x. Then for g1 ∈ Lp1(T) and g2 ∈ Lp2(T) we have

PDR (g1, g2)→ g1g2 in Lp(T)

as R→∞.
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Using a similar argument we can also obtain a theorem in which the summation
is taken over lattice points in a dilate of a disc.

Theorem 9. Let 1 < p < 2, 2 < p1, p2 < ∞, 1/p1 + 1/p2 = 1/p and let U be the
unit disc in R2. Then for g1 ∈ Lp1(T) and g2 ∈ Lp2(T) we have

PUR (g1, g2)→ g1g2 in Lp(T)

as R→∞.

Theorem 9 easily follows by applying the previous reasoning to the characteristic
function of a disc in R2 and using the fact that this function is anMp1,p2,p bilinear
multiplier on R× R. For the last result we refer to [8].

We now pass to an application of the maximal transference Theorem 2. Let E
be a polyhedron in Rm containing the origin. One would like to known whether the
expressions PER (g1, . . . , gm) converge almost everywhere to the product g1 . . . gm as
R → ∞ whenever gj ∈ Lpj (T). The previous analysis reduces this problem to the
Lp1 × · · ·×Lpm → Lp boundedness of the maximal operator defined on R× · · ·×R

T m∗ (f1, . . . , fm)(x) = sup
N>0

∣∣∣∣ ∫
· · ·
∫

(
ξ1
N ,..., ξmN )∈E

f̂1(ξ1) . . . f̂m(ξm)e2πix(ξ1+···+ξm)dξ1 . . . dξm

∣∣∣∣
which is a variant of a multilinear Carleson type operator. In the forthcoming
publication, Muscalu, Thiele, and Tao (see [16] for the Walsh case) show that the
following so-called bi-Carleson operator

C∗(f1, f2)(x) = sup
N>0

∣∣∣∣ ∫∫
ξ1<ξ2<N

f̂1(ξ1)f̂2(ξ2)e2πix(ξ1+ξ2)dξ1dξ2

∣∣∣∣
maps Lp1(R) × Lp2(R) into Lp(R) for all 1 < p1, p2 ≤ ∞ with 2/3 < p < ∞
whenever 1/p1 + 1/p2 = 1/p. Let us introduce a bilinear multiplier operator Sb on
T× T by setting

Sb(g1, g2)(x) =
∑
n1<n2

ĝ1(n1)ĝ2(n2)e2πix(n1+n2)

for all g1, g2 smooth functions on T. The operator Sb is a version of a discrete
bilinear Hilbert transform and admits a bounded extension (also denoted by Sb)
from Lp1(T)×Lp2(T) to Lp(T) via bilinear transference; see Fan and Sato [6] when
1 < p1, p2 ≤ ∞, 2/3 < p <∞, and 1/p1 + 1/p2 = 1/p.

Using the aforementioned result concerning the bi-Carleson operator, Theorem
2, and Theorem 6 we deduce the following:

Theorem 10. Let 1 < p1, p2 <∞ with 2/3 < p <∞ whenever 1/p1 + 1/p2 = 1/p.
Then for gj ∈ Lpj (T) we have∑

−R<n1<n2<R

ĝ1(n1)ĝ2(n2)e2πix(n1+n2) → Sb(g1, g2)(x)

as R→∞ for almost all x in T.

PLEASE IGNORE THE MATERIAL IN BLUE AS THE PROOF OF THEO-
REM 11 IS INCORRECT. For our next application, we let again D be a polygon
in R2 containing 0 in its interior with no side parallel to the antidiagonal y = −x.
We are interested in showing that the operators PDR (g1, g2) converge a.e. to the
product g1g2 whenever g1 and g2 are Lpj functions on the circle.
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We can reduce the boundedness of the operator T 2
∗ to that of C∗ in the following

way. We first write D as a union of at most four polygons each contained in one of
the four quadrants and without loss of generality we may work with the part of D
in the first quadrant. Using Lemma 7 we can break D as a difference of two finite
unions of triangles with two sides parallel to the axes. Applying translations in
Fourier space (modulations in time space), we may assume that all of the triangles
that appear in the decomposition have an acute angle at the origin. This way we
can pointwise control T 2

∗ by a finite sum of operators of the form (for some c > 0)

C∗(f1, f2)(x) = sup
N>0

∣∣∣∣ ∫∫
0<ξ1<cξ2<N

f̂1(ξ1)f̂2(ξ2)e2πix(ξ1+ξ2)dξ1dξ2

∣∣∣∣ .
Using the boundedness of this version of the bi-Carleson operator, Theorem 2, and
Theorem 6 we obtain the following:

Theorem 11. Let D be a polygon in R2 with no side parallel to the antidiagonal
y = −x that contains 0 in its interior. Let 1 < p1, p2 ≤ ∞ with 2/3 < p < ∞
whenever 1/p1 + 1/p2 = 1/p. Then for gj ∈ Lpj (T) we have

PDR (g1, g2)→ g1g2

almost everywhere on T as R→∞. If D has a side parallel to the the antidiagonal
y = −x, then the same conclusion is valid whenever p > 1.

The preceding result may be viewed as a bilinear analogue of the Carleson-Hunt
theorem [3], [10] on the almost everywhere convergence of Fourier series of Lp

functions on the circle (with respect to polygonal summation).
Another analogue of the Carleson-Hunt theorem can be obtained using recent

results by Li and Muscalu [14] who showed that the maximal operator obtained by
considering the supremum of all the shifts of a Coifman-Meyer multiplier σ on Rm
is Lp(R) bounded. (Taking σ(ξ) = χ(0,∞) when m = 1 yields the Carleson-Hunt
theorem). The Coifman-Meyer symbols are those satisfying

|∂α1
1 · · · ∂αmm σ(ξ1, . . . , ξm)| ≤ Cα1,...,αm(|ξ1|+ · · ·+ |ξm|)−(|α1|+···+|αm|)

for all sufficiently large multiindices α1, . . . , αm. The associated maximal operator
is defined as the supremum of the operators |Tσz | over all z ∈ (Rn)m, where σz =
σ(·+ z). The result of [14] then says that this maximal operator is bounded from
Lp1(R) × · · · × Lpm(R) to Lp(R) for any pj satisfying (2) with 1/m < p < ∞.
Combining this theorem with Theorem 6 and Theorem 2 yields the following result:

Theorem 12. Let σ be a Coifman-Meyer multilinear multiplier on Rm which is
continuous at zero and let 1 < pj <∞, 1/m < p <∞ be such that (2) holds. Then

lim
z→0

Tσ(·+z)(f1, . . . , fm) = Tσ(f1, . . . , fm)

almost everywhere and

lim
z→0

Sσ(·+z)(g1, . . . , gm) = Sσ(g1, . . . , gm)

almost everywhere for any fj ∈ Lpj (Rn) and gj ∈ Lpj (Tn).
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