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Abstract. We study the boundedness of bilinear Fourier integral operators on products
of Lebesgue spaces. These operators are obtained from the class of bilinear pseudodif-
ferential operators of Coifman and Meyer via the introduction of an oscillatory factor
containing a real-valued phase of five variables Φ(x, y1, y2, ξ1, ξ2) which is jointly homo-
geneous in the phase variables (ξ1, ξ2). For symbols of order zero supported away from
the axes and the antidiagonal, we show that boundedness holds in the local-L2 case.
Stronger conclusions are obtained for more restricted classes of symbols and phases.

1. introduction

We initiate the study of a class of operators that extend the classical Fourier integral
operators to the bilinear setting. The results in this work are of introductory nature but
they indicate that there is probably a rich and extensive underlying theory that awaits to
be developed. The present work only touches on certain aspects of the theory.

The results of this article extend known results concerning bilinear pseudodifferential
operators; these operators have been introduced and extensively studied by Coifman and
Meyer [CM1], [CM2], [CM3]. They have the form

Pσ(f1, f2)(x) =

∫
R2n

σ(x, ξ1, ξ2)f̂1(ξ1)f̂2(ξ2)e2πix·(ξ1+ξ2) dξ1dξ2 , (1)

where f1, f2 are smooth functions with compact support on Rn and σ is symbol of 3n

real variables, usually taken to be in some Hörmander class. Here f̂ denotes the Fourier

transform of the function f defined by f̂(ξ) =
∫
Rn f(x)e−2πix·ξdx. A classical theorem

of Coifman and Meyer [CM3] states that if σ is a symbol in the Hörmander class S0

uniformly in x, then the operator Pσ admits a bounded extension on products of Lebesgue
spaces whose indices are related as in Hölder’s inequality. An extension of this theorem
to Lebesgue spaces with indices p < 1 including some endpoint cases was obtained by
Grafakos and Torres [GT1] and in some special cases by Kenig and Stein [KS].

A bilinear pseudodifferential operator can also be written in the form

Pσ(f1, f2)(x) =

∫
R4n

e2πi((x−y1)·ξ1+(x−y2)·ξ2)σ(x, ξ1, ξ2)f1(y1)f2(y2) dy1dy2dξ1dξ2 , (2)

2000 Mathematics Subject Classification: 42B99.
Key Words: Multilinear operators, Fourier integral operators.
The first author acknowledges the support of the NSF under grant DMS-0900946. The second author

is supported by grant Prin 2007 Analisi Armonica. The second author would like to acknowledge the
support of the MU Mathematics Department Miller Fund.



2 L. GRAFAKOS AND M. PELOSO

where f1, f2 are smooth functions with compact support. Written in this form, we may
allow the symbol σ to also depend (smoothly) on the variables y1 and y2. This extra depen-
dence does not present any difficulties in the theory; in fact the aforementioned Coifman-
Meyer bilinear multiplier theorem is also valid for symbols of the form σ(x, y1, y2, ξ1, ξ2)
that depend smoothly and have compact support in the variables y1, y2. The results in
this article are of local nature and for this reason the symbols we consider indeed have
compact support in the variables x, y1, y2.

Looking at the bilinear pseudodifferential operator written in the form (2), it is only a
matter of introducing an appropriate oscillatory factor to create a bilinear Fourier integral
operator. To set the framework for this theory, we first recall some definitions.

We assume that we are given a smooth function b(x, y1, y2, ξ1, ξ2), a real number m, and
a compact subset Q ⊂ Rn such that b is supported in Q×Q×Q in the first three variables
and all multiindices γ, γ1, γ2, α1, α2 in (Z+)n, there exists a constant C = C|γ|,|γ1|,|γ2||α1|,|α2|
such that

|∂γx∂γ1y1∂
γ2
y2
∂α1
ξ1
∂α2
ξ2
b(x, y1, y2, ξ1, ξ2)| ≤ C(1 + |ξ1|+ |ξ2|)m−|α1|−|α2|

for all (x, y1, y2) ∈ Q×Q×Q and ξ1, ξ2 ∈ Rn. Such functions are called Hörmander symbols

of order m. In this article, we often use the notation ~ξ for the pair (ξ1, ξ2) ∈ Rn ×Rn.
We are concerned with bilinear Fourier integral operators (FIO) of the form

F(f1, f2)(x) =

∫
R4n

eiΦ(x,~y,~ξ )b(x, ~y, ~ξ )f1(y1)f2(y2) d~y d~ξ , x ∈ Rn , (3)

where b is a symbol of Hörmander type and Φ is a real-valued phase that satisfies some
nondegeneracy conditions. In this work, we focus attention to phases in reduced form

Φ(x, ~y, ~ξ ) = (x− y1) · ξ1 + (x− y2) · ξ2 + ψ(x, ξ1, ξ2) (4)

where ψ(x, ξ1, ξ2) is smooth function on Rn× (Rn \{0})× (Rn \{0}) and is homogeneous
of degree 1 jointly in the variables (ξ1, ξ2).

Setting ϕ(x, ~ξ ) = x · (ξ1 + ξ2) + ψ(x, ~ξ ), the nondegeneracy conditions required in this
article can be formulated as follows:

det (ϕx,ξ1) 6= 0 (5)

and

det (ϕx,ξ2) 6= 0 (6)

on the support of the symbol.
We end this section by providing a motivation for the study of the topic of bilinear FIOs.

Inspired by certain restriction problems, we consider the issue of restricting solutions of
certain hyperbolic PDEs along subspaces of half the spacial dimension. We present a
typical problem that may arise in the case of the wave equation on Rn ×Rn ×R.
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Consider the wave equation on R2n × R with coordinates (x, t), where x = (x′, x′′),
x′, x′′ ∈ Rn and t ∈ R

2n∑
j=1

∂2u

∂x2
j

=
∂2u

∂t2
, u(x, 0) = f0(x′)g0(x′′),

∂u

∂t
(x, 0) = f1(x′)g1(x′′).

For each fixed t, the solution u(x, t) can be written as a sum of Fourier integral operators

with phases Φ± = (x′−y′)·ξ′+(x′′−y′′)·ξ′′±t
√
|ξ′|2 + |ξ′′|2, where ξ = (ξ′, ξ′′) ∈ Rn×Rn is

the dual variable of (x′, x′′). When one considers the restriction of the solution u(x′, x′′, t)
along the diagonal x′ = x′′, one obtains two bilinear FIOs with phases Φ+ and Φ− acting
on the pairs of functions (f0, g0) and (f1, g1). To determine if this restriction lies in
Lp(Rn), it is natural to investigate the boundedness of these FIOs when the initial data
f0, g0, f1, g1 lie Lpj(Rn).

2. The main results

For bilinear operators T that map Lp1 ×Lp2 → Lp with 1/p1 + 1/p2 = 1/p, the local-L2

case is the situation where 2 ≤ p1, p2, p
′ ≤ ∞. In this case, the trilinear form

(f1, f2, f3) 7→ 〈T (f1, f2), f3〉

is bounded by ‖T‖‖f1‖Lp1‖f2‖Lp2‖f3‖Lp′ and the functions f1, f2, f3 are locally in L2. The
Banach case is the situation where the indices satisfy 1 ≤ p1, p2, p ≤ ∞, while the quasi-
Banach case is the most general situation where the index p is allowed to be less than
1 (but greater than or equal to 1/2). We now state our main results that concern the
local-L2 case, the Banach, and quasi-Banach space cases under different assumptions on
the associated symbols. In the rest of the paper |ξ1| ≈ |ξ2| means c < |ξ1|/|ξ2| < c−1 for
some c > 0.

Theorem 2.1. (Local-L2 case) Let F be a bilinear FIO with phase satisfying (5) and
(6) and symbol of order zero which is compactly supported in the first three variables and
whose last two variables are supported in a conical set U of the form |ξ1| ≈ |ξ2| ≈ |ξ1 + ξ2|
such that for (ξ1, ξ2) ∈ U we have

c−1
0 |~ξ | ≤ |∇xΦ(x, ~y, ~ξ )| ≤ c0|~ξ | (7)

for all x, y1, y2 ∈ Rn. Then the bilinear FIO F maps Lp1(Rn) × Lp2(Rn) → Lp(Rn)
whenever 2 ≤ p1, p2, p

′ ≤ ∞.

Corollary 2.2. Suppose that the function ψ in (4) is is independent of x (such as in the

case of the wave equation phases (x − y1) · ξ1 + (x − y2) · ξ2 ±
√
|ξ1|2 + |ξ2|2). Let F be

the associated bilinear FIO having a symbol of order zero which is compactly supported in
the first three variables and whose last two variables (ξ1, ξ2) are supported away from the
antidiagonal, i.e., in a conical set U of the form |ξ1| ≈ |ξ2| ≈ |ξ1 + ξ2|. Then the bilinear
FIO F maps Lp1(Rn)× Lp2(Rn)→ Lp(Rn) whenever 2 ≤ p1, p2, p

′ ≤ ∞.
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Proposition 2.3. (Banach case) Let F be a bilinear FIO with phase satisfying (5) and
(6) and symbol of order m that is compactly supported in the first three variables. Then
F maps L1(Rn)× L∞(Rn)→ L1(Rn) and L∞(Rn)× L1(Rn)→ L1(Rn) whenever

m < −2n− 1

2
.

Proposition 2.4. (Quasi-Banach case) Let F be a BFIO with phase satisfying (5) and
(6) and symbol that is compactly supported in the first three variables. Assume that the
phase Φ of F can be written as sum Φ = Φ1 + Φ2 of two non-degenerate linear phases,
see (19). If the order of the symbol is −(n− 1)(1/p− 1) and 1 < p1, p2 < 2, then F maps
Lp1(Rn)× Lp2(Rn)→ Lp(Rn), where 1/p = 1/p1 + 1/p2.

3. Preliminary lemmas

The following lemmas contain straighforward extensions of the standard TT ∗ lemma
and of Schur’s lemma in the context of bilinear operators.

Given a bilinear operator T , the adjoints T ∗1 and T ∗2 are defined by the relations

〈T ∗1(f1, f2), g〉 = 〈f1, T (g, f2)〉 and 〈T ∗2(f1, f2), g〉 = 〈f2, T (f1, g)〉
for all functions f, g, h in a dense subclass of the domains of the operators.

Lemma 3.1. Let T be a bilinear operator and let 1 ≤ p, p1, p2 ≤ ∞.
(a) We have that T : Lp1 × Lp2 → L2 with norm at most A if and only if

‖T ∗1(T (h1, h2), h3)‖
Lp
′
1
≤ A2‖h1‖Lp1‖h2‖Lp2‖h3‖Lp2 (8)

and this happens if and only if

‖T ∗2(h1, T (h2, h3))‖
Lp
′
2
≤ A2‖h1‖Lp1‖h2‖Lp1‖h3‖Lp2 (9)

for all functions h1, h2, h3 in the appropriate domains.
(b) We have that T : Lp1 × L2 → Lp with norm at most A if and only if

‖T (h1, T
∗2(h2, h3))‖Lp ≤ A2‖h1‖Lp1‖h2‖Lp2‖h3‖Lp′ (10)

for all functions h1, h2, h3 in the appropriate domains.
(c) We have that T : L2 × Lp2 → Lp with norm at most A if and only if

‖T (T ∗1(h1, h2), h3))‖Lp ≤ A2‖h1‖Lp′‖h2‖Lp2‖h3‖Lp2 (11)

for all functions h1, h2, h3 in the appropriate domains.

Proof. In all of these assertions, the boundedness of the operator easily implies statements
(8)–(11). Conversely, we focus on case (c), since the other cases are similar.

As a consequence of (11) we have that∣∣〈T (T ∗1(h1, h2), h3)), ‖h1‖−1

Lp′
h1〉
∣∣ ≤ A2‖h1‖Lp′‖h2‖Lp2‖h3‖Lp2

and taking h2 = h3 we have∣∣〈T (T ∗1(h1, h2), h2)), h1〉
∣∣ ≤ A2‖h1‖2

Lp′
‖h2‖2

Lp2
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from which it follows that∣∣〈T ∗1(h1, h2)), T ∗1(h1, h2)〉
∣∣ ≤ A2‖h1‖2

Lp′
‖h2‖2

Lp2

and thus T ∗1 maps Lp
′ × Lp2 to L2. Hence T maps L2 × Lp2 to Lp. �

The preceding result can also be formulated in a straightforward way for m-linear
operators. The following extension of Schur’s lemma to the m-linear setting appeared in
[BBPR] and [GT2]. It will be useful to us when m = 2, 3.

Lemma 3.2. Let K(y0, y1 . . . , ym) be a function on R(m+1)n such that for all 0 ≤ i ≤ m
we have

sup
yi∈Rn

∫
Rmn

|K(y0, y1, . . . , ym)| dy0 . . . d̂yi . . . dym = Ai <∞ ,

where d̂yi is indicating that the integration variable dyi is missing. Then the m-linear
operator

T (f1, . . . , fm)(x) =

∫
Rmn

K(x, y1 . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym

maps Lp1 × · · · × Lpm → Lp with bound

A
1/p′

0 A
1/p1
1 . . . A1/pm

m

whenever 1/p1 + · · ·+ 1/pm = 1/p where 1 ≤ p1, . . . , pm, p ≤ ∞.

Proof. We provide the easy proof when m = 3. Taking a function f0 in Lp
′
, we calculate

‖T (f1, f2, f3)‖Lp via duality as follows:∣∣∣ ∫
Rn

T (f1, f2, f3)(y0)f0(y0) dy0

∣∣∣ ≤ (∫
R4n

|K(y0, y1, y2, y3)||f0(y0)|p′ dy0 dy1 dy2 dy3

)1/p′

(∫
R4n

|K(y0, y1, y2, y3)||f1(y1)|p1 dy0 dy1 dy2 dy3

)1/p1

(∫
R4n

|K(y0, y1, y2, y3)||f2(y2)|p2 dy0 dy1 dy2 dy3

)1/p2

(∫
R4n

|K(y0, y1, y2, y3)||f3(y3)|p3 dy0 dy1 dy2 dy3

)1/p3

≤ A
1/p′

0 ‖f0‖Lp′A
1/p1
1 ‖f1‖Lp1A1/p2

2 ‖f2‖Lp2A1/p3
3 ‖f3‖Lp3

in view of Hölder’s inequality with respect to the measure |K(y0, y1, y2, y3)|dy0dy1dy2dy3

and of the hypotheses on T . �
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4. The local-L2 case

In this section we prove Theorem 2.1. Set

ϕ(x, ξ ) = x · ξ1 + x · ξ2 + ψ(x, ~ξ ) .

We consider a bilinear FIO F given by

F(f1, f2)(x) =

∫
R4n

ei(ϕ(x,~η )−~y·~η )b(x, ~y, ~η )f1(y1)f2(y2) d~y d~η , (12)

where b(x, ~y, ~η ) is a Hörmander symbol of order 0 which has compact support in the
variables x, y1, y2. We study mapping properties of the operator (12) originally defined
for smooth functions with compact support f1, f2.

We point out that, as it is standard in this theory of Fourier integral operators, the
above definition must be interpreted in a weak sense in general. For, we can write

ei(ϕ(x,~η )−~y·~η ) =
1

(1 + |~η |2)N
(I −∆~y)

Nei(ϕ(x,~η )−~y·~η ) ,

and then integrate by parts in ~y the integral in (12) to obtain an equivalent form that
converges absolutely.

We pick a nonnegative smooth function β on the real line supported in the interval
[7/8, 2] equal to one on [1, 7/4] and a function β0 supported in [0, 2] such that

β0(t) +
∞∑
k=1

β(2−kt) = 1

for all t ≥ 0. For notational convenience we set βk(t) = β(2−kt).
We decompose the bilinear FIO accordingly

F(f1, f2)(x) =

∫
R4n

ei(ϕ(x,~η )−~y·~η )b(x, ~y, ~η )f1(y1)f2(y2) d~y d~η

=
∞∑
k=0

∞∑
k′=0

∫
R4n

ei(ϕ(x,~η )−~y·~η )bk,k′(x, ~y, ~η )f1(y1)f2(y2) d~y d~η

=
∞∑
k=0

∞∑
k′=0

Fk,k′(f1, f2)(x) ,

where bk,k′(x, ~y, ~η ) = βk(|η1|)βk′(|η2|)b(x, ~y, ~η ). The case k = k′ = 0 is trivial as the
symbol of the corresponding operator is a smooth function with compact support in all
variables. The same comment applies to all terms of the form |k|, |k′| ≤ c0 for some c0 > 0.

Recall that the symbol b is supported in the conical region |η1| ≈ |η2| ≈ |η1 + η2|. This
assumption translates to a condition relating k and k′ as follows: |k − k′| < c for some
constant c > 0.This reduces the double sum in k and k′ above to essentially one sum
where k is arbitrary and k′ is within a fixed distance from k. Matters therefore reduce to
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the study of the bilinear FIO

Fk(f1, f2)(x) =

∫
R4n

f1(y1)f2(y2)b(x, ~y, ~η )γ1(2−k|η1|)γ2(2−k|η2|)ei(ϕ(x,~η )−~y·~η ) d~y d~η (13)

where γ1 and γ2 are smooth functions with compact support that do not contain the
origin. (These functions are the same as the previously defined β.)

We first obtain an orthogonality lemma saying that the uniform boundedness of the
Fk’s implies the boundedness of their sum.

Lemma 4.1. Let Fk be as in (13) and let p1, p2, p be indices that satisfy 2 ≤ p1, p2, p
′ ≤ ∞

and 1
p1

+ 1
p2

+ 1
p′

= 1. Suppose there exists a constant A < ∞ such that for all f1, f2 in

C∞0 (i.e., smooth functions with compact support) we have

sup
k≥1
‖Fk(f1, f2)‖Lp(Rn) ≤ A‖f1‖Lp1‖f2‖Lp2

Then
∞∑
k=1

Fk(f1, f2)

is also bounded from Lp1 × Lp2 → Lp.

Proof. We define Littlewood-Paley operators ∆m by setting ∆m(f)̂(ξ) = f̂(ξ)ψ(2−mξ),

for m ≥ 1 and ∆0(f)̂(ξ) = f̂(ξ)ψ0(ξ), where ψ is a smooth function that is supported in
an annulus that does not contain the origin in Rn and is equal to one on a smaller such
annulus, while ψ0 is smooth and equal to one on ball containing the origin and supported
in a bigger ball. We pick ψ such that

∑∞
m=0 ψm(ξ) = 1, where ψm(ξ) = ψ(2−mξ).

Inspired by the work of [Se], we introduce the decomposition

Fk(f1, f2) =
∞∑
m=0

∞∑
j1=0

∞∑
j2=0

∆mFk(∆j1f1,∆j2f2) .

The key observation is that when the indices m, j1, j2 are near the index k, then we
may exploit orthogonality, while when they are away from k there is decay in all variables
involved. We precisely quantify this statement. We note that

∆mFk(∆j1f1,∆j2f2)(x) =

∫
Rn

∫
Rn

Km,k,j1,j2(x, y1, y2)f1(y1)f2(y2) dy1dy2 ,

where

Km,k,j1,j2(x, y1, y2) =
1

(2π)8n

∫
(Rn)8

ei(θ·(x−u)+~η·(~z−~y )+ϕ(u,~ξ )−~z·~ξ )β(2−kξ1)β(2−kξ2)

× ψ(2−m|θ|)ψ(2−j1|η1|)ψ(2−j2|η2|)b(u, ~z, ~ξ ) du d~z dθ d~η d~ξ .

We consider first the case near the diagonal, i.e., the case where m = k+ c, j1 = k+ c1,
j2 = k + c2, where c, c1, c2 are integer constants that satisfy max(|c|, |c1|, |c2|) ≤ C0 for
some C0 > 0. There are finitely many such terms and we fix one such choice of c, c1, c2.
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Suppose first that 2 ≤ p1, p2, p
′ <∞. Let us set Lk(f1, f2) = ∆k+cT2k(∆k+c1f1,∆k+c2f2)

and start with f1 ∈ Lp1 , f2 ∈ Lp2 and h ∈ Lp′ . Then, inspired by [GL], we may write

∣∣〈∑
k

Lk(f1, f2), h〉
∣∣ =

∣∣∑
k

〈Fk(∆k+c1f1,∆k+c2f2),∆k+ch〉
∣∣

≤
∫

Rn

(∑
k

|Fk(∆k+c1f1,∆k+c2f2)|2
)1/2(∑

k

|∆k+ch|2
)1/2

dx

≤
∥∥∥∥(∑

k

|Fk(∆k+c1f1,∆k+c2f2)|2
)1/2

∥∥∥∥
Lp

∥∥∥∥(∑
k

|∆kh|2
)1/2

∥∥∥∥
Lp′

≤ Cp

∥∥∥∥(∑
k

|Fk(∆k+c1f1,∆k+c2f2)|2
)1/2

∥∥∥∥
Lp

∥∥h∥∥
Lp′
,

where the last inequality follows from the Littlewood-Paley theorem. It will suffice to
estimate the Lp norm of the previous square function above. We have∥∥∥∥(∑

k

|Fk(∆k+c1f1,∆k+c2f2)|2
)1/2

∥∥∥∥p
Lp
≤
∫

R

∑
k

|Fk(∆k+c1f1,∆k+c2f2)|p dx

=
∑
k

‖Fk(∆k+c1f1,∆k+c2f2)‖pLp

≤ Ap
∑
k

‖∆k+c1f1‖pLp1‖∆k+c2f2‖pLp2

where we used the fact p ≤ 2 and the uniform boundedness of the operators Fk. Now
applying Hölder’s inequality for sequences and using the embeddings `2 ⊂ `p1

⋂
`p2 (since

p1, p2 ≥ 2) we obtain the following∑
k

‖∆k+c1f1‖pLp1‖∆k+c2f2‖pLp2

≤
(∑

k

‖∆k+c1f1‖p1Lp1
)p/p1(∑

k

‖∆k+c2f2‖p2Lp2
)p/p2

=
(∫

Rn

∑
k

|∆k+c1f1|p1 dx
)p/p1(∫

Rn

∑
k

|∆k+c2f2|p2 dx
)p/p2

≤
(∫

Rn

(∑
k

|∆k+c1f1|2
)p1/2 dx)p/p1(∫

Rn

(∑
k

|∆k+c2f2|2
)p2/2 dx)p/p2

=
∥∥∥(∑

k

|∆k+c1f1|2
)1/2∥∥∥p

Lp1

∥∥∥(∑
k

|∆k+c2f2|2
)1/2∥∥∥p

Lp2

≤ C2
p‖f1‖pLp1‖f2‖pLp2 ,

by the Littlewood-Paley theorem.
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We are still considering the case near the diagonal but we now suppose that the point
(p1, p2, p) in [2,∞]2 × [1, 2] is one of the “vertices” (2, 2, 1), (2,∞, 2), or (∞, 2, 2) of the
local-L2 triangle. When (p1, p2, p) = (2, 2, 1) we argue as follows:∥∥∥∑

k

∆k+cFk(∆k+c1f1,∆k+c2f2)
∥∥∥
L1
≤

∑
k

∥∥∆k+cFk(∆k+c1f1,∆k+c2f2)
∥∥
L1

≤ C
∑
k

∥∥Fk(∆k+c1f1,∆k+c2f2)
∥∥
L1

≤ C A
∑
k

∥∥∆k+c1f1

∥∥
L2

∥∥∆k+c2f2

∥∥
L2

≤ C A

(∑
k

∥∥∆k+c1f1

∥∥2

L2

)1
2
(∑

k

∥∥∆k+c2f2

∥∥2

L2

)1
2

≤ C ′A ‖f1‖L2‖f2‖L2 .

When (p1, p2, p) = (2,∞, 2) there is a similar argument. Using the orthogonality of the
∆k+c’s on the Fourier transform side, we have∥∥∥∑

k

∆k+cFk(∆k+c1f1,∆k+c2f2)
∥∥∥2

L2
≤ C

∑
k

∥∥∆k+cFk(∆k+c1f1,∆k+c2f2)
∥∥2

L2

≤ C ′
∑
k

∥∥Fk(∆k+c1f1,∆k+c2f2)
∥∥2

L2

≤ C ′A2
∑
k

∥∥∆k+c1f1

∥∥2

L2

∥∥∆k+c2f2

∥∥2

L∞

≤ C ′′A2 ‖f1‖2
L2‖f2‖2

L∞ .

The situation (p1, p2, p) = (∞, 2, 2) is symmetric with (p1, p2, p) = (2,∞, 2).
We now consider the case where max(|k −m|, |k − j1|, |k − j2|) ≥ C0. We look at the

expression defining Km,k,j1,j2 and we consider the phase of the exponential in it which is

Φ̃(u, z1, z2, ξ1, ξ2) = ϕ(u, ~ξ ) + θ · (x− u) + ~η · (~z − ~y )− ~z · ~ξ .

Note that ∇u,~z Φ̃(u, ~ξ ) is equal to the following vector in (Rn)3

V =
(
∇uϕ(u, ~ξ )− θ, ~η − ~ξ

)
.

We claim that

|V | ≥ c′max(2k, 2m, 2j1 , 2j2) . (14)

Indeed, recall that |η1| ≈ 2j1 , |η2| ≈ 2j2 , |ξ1| ≈ 2k, |ξ2| ≈ 2k, and |θ| ≈ 2m. Moreover, by

in view of (7) we have |∇uϕ(u, ~ξ )| ≈ |~ξ| ≈ 2k. Thus

|V | & |∇uϕ(u, ~ξ )− θ|+ |ξ1 − η1|+ |ξ2 − η2| & max(2k, 2m, 2j1 , 2j2)

whenever max(|k −m|, |k − j1|, |k − j2|) ≥ C0.
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Using this estimate for V and integrating by parts in Km,k,j1,j2 with respect to the
variables u, ~z we obtain the pointwise bound

|Km,k,j1,j2(x, y1, y2)| ≤ CM max(2k, 2m, 2j1 , 2j2)−M

for any integer M , whenever max(|k −m|, |k − j1|, |k − j2|) ≥ C0.
Let Q be a cube centered at the origin in Rn which contains the support of b in each of

the first three variables. When one of x, y1, y2 is not in Q, then we can also integrate by
parts with respect to the corresponding variables θ, η1, η2 in the integral defining Km,k,j1,j2

to obtain the extra decay (1 + |x|)−M ′ , (1 + |y1|)−M
′
, or (1 + |y2|)−M

′
, respectively for∣∣Km,k,j1,j2(x, y1, y2)

∣∣. These extra factors can also be inserted when some of x, y1, y2 are
in Q since in this case they are comparable to constants.

Combining these observations, we conclude the following estimates for all x, y1, y2 ∈ Rn∣∣∣Km,k,j1,j2(x, y1, y2)
∣∣∣ ≤ CM,M ′

max(2k, 2m, 2j1 , 2j2)−M

(1 + |x|)M ′(1 + |y1|)M ′(1 + |y2|)M ′
.

It follows from these estimates via the bilinear Schur lemma (Lemma 3.2) that a bilinear
operator with kernel Km,k,j1,j2 is bounded from Lp1 × Lp2 → Lp for all 1 ≤ p1, p2, p ≤ ∞
with norm at most max(2k, 2m, 2j1 , 2j2)−M .

These estimates show that∑
k,m,j1,j2

∥∥∥∥∆mFk(∆j1f1,∆j2f2)

∥∥∥∥
Lp
≤ C‖f1‖Lp1‖f2‖Lp2 ,

where the sum is over the indices that satisfy max(|k −m|, |k − j1|, |k − j2|) ≥ C0.
This concludes the proof of the lemma. �

It remains to show that the Fk’s are bounded in the local-L2 case uniformly in k. We
introduce a slightly different notation by setting λ = 2k in (13) and also we define an
operator Tλ by setting

Tλ(f1, f2) = λ2nFk(f1, f2) .

Obviously, the uniform boundedness of the Fk’s from Lp1 × Lp2 to Lp is equivalent to
boundedness of Tλ from Lp1 × Lp2 to Lp with norm that decays like λ−2n for λ large.
This is the assertion of the next lemma which is proved via a bilinear adaptation of the
classical T ∗T argument.

Lemma 4.2. Let a = a(x, y1, y2, ξ1, ξ2) be a smooth function on R5n whose (ξ1, ξ2) support
is contained in the set {(ξ1, ξ2) ∈ Rn ×Rn : |ξ1| ≈ |ξ1 + ξ2| ≈ |ξ2| ≈ c}1 for some c > 0.
Let Φ be a non-degenerate phase function and consider the bilinear operator Tλ as

Tλ(f1, f2)(x) =

∫
R4n

a(x, ~y, ~ξ )eiλΦ(x,~y,~ξ )f1(y1)f2(y2) d~y d~ξ .

Then, if 2 ≤ p1, p2, p
′ ≤ ∞ and 1

p1
+ 1

p2
+ 1

p′
= 1 there exists a constant C > 0 such that

‖Tλ(f1, f2)‖p ≤ Cλ−2n‖f1‖p1‖f2‖p2 ,
1In the published version of this paper the condition |ξ1| ≈ |ξ1 + ξ2| was mistakenly omitted



BILINEAR FOURIER INTEGRAL OPERATORS 11

for λ sufficiently large.

Proof. Recall the assumption that the phase function

Φ(x, y1, y2, ξ1, ξ2) = ϕ(x, ξ1, ξ2)− x · y1 − x · y2

is non-degenerate, that is det (ϕx,ξ1) 6= 0 and det (ϕx,ξ2) 6= 0 on supp a, and ϕ is homoge-

nous of degree 1 in ~ξ. We consider the trilinear operator

Tλ
(
T ∗1λ (f1, f2), f3

)
=

∫
R3n

f1(z1)f2(z2)f3(z3)K(x, z1, z2, z3) dz1 dz2 dz3 ,

where

K(x, z1, z2, z3) =

∫
R5n

eiλ[Φ(x,y,z3,~ξ)−Φ(z1,y,z2,~ζ )]a(x, y, z3, ~ξ )ā(z1, y, z2, ~ζ ) d~ξ d~ζ dy . (15)

Then,

∇(y,ξ1,ξ2,ζ1,ζ2)

[
Φ(x, y, z3, ξ1, ξ2)− Φ(z1, y, z2, ζ1, ζ2)

]
= ∇(y,ξ1,ξ2,ζ1,ζ2)

[
ϕ(x, ξ1, ξ2)− y · ξ1 − z3 · ξ2 −

(
ϕ(z1, ζ1, ζ2)− y · ζ1 − z2 · ζ2

)]
=
(
ζ1 − ξ1, ϕξ1(x, ξ1, ξ2)− y, ϕξ2(x, ξ1, ξ2)− z3, y − ϕζ1(z1, ζ1, ζ2), z2 − ϕζ2(z1, ζ1, ζ2)

)
.

Therefore,∣∣∣∇(y,ξ1,ξ2,ζ1,ζ2)

[
Φ(x, y, z3, ξ1, ξ2)− Φ(z1, y, z2, ζ1, ζ2)

]∣∣∣
≈ |ξ1 − ζ1|+

∣∣ϕξ1(x, ξ1, ξ2)− y
∣∣+
∣∣ϕξ2(x, ξ1, ξ2)− z3

∣∣+
∣∣ϕζ1(z1, ζ1, ζ2)− y

∣∣
+
∣∣ϕζ2(z1, ζ1, ζ2)− z2

∣∣ .
Integrating by parts in (15) in all variables we obtain that for all N > 0 there exists a

constant CN such that
∣∣K(x, z1, z2, z3)

∣∣ is less than or equal to

CN

∫
E

1

(1 + λ|ξ1 − ζ1|)N
· 1

(1 + λ|ϕξ1(x, ξ1, ξ2)− y|)N
· 1

(1 + λ|ϕξ2(x, ξ1, ξ2)− z3|)N

× 1

(1 + λ|ϕζ1(z1, ζ1, ζ2)− y|)N
· 1

(1 + λ|ϕζ2(z1, ζ1, ζ2)− z2|)N
dy d~ξ d~ζ , (16)

where E = {(y, ξ1, ξ2, ζ1, ζ2) ∈ R5n : |y| ≤ C1, |~ξ |, |~ζ | ≈ C2}.
We need to show that the kernel K satisfies the hypotheses of Lemma 3.2. We first

consider the integral
∫
R3n |K(x, z1, z2, z3)| dxdz1dz2. We integrate first in the variable z2

in (16) and we obtain a factor of λ−n. Then we integrate in z1 by making the change of
variables z′1 = λϕζ1(z1, ζ1, ζ2) − λy and using the fact that detϕz1,ζ1 6= 0 on the support
of a. This provides another factor of λ−n. Then we integrate in y which provides another
factor of λ−n and finally the integral in ξ1 will also yield a factor of λ−n. The remaining
integrals are over compact regions and the final result is that∫

R3n

|K(x, z1, z2, z3)| dx dz1 dz2 ≤ C λ−4n
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with C independent of λ. A similar calculation yields that∫
R3n

|K(x, z1, z2, z3)| dx dz1 dz3 ≤ C λ−4n .

We now consider the integral
∫
R3n |K(x, z1, z2, z3)| dx dz2 dz3. We integrate (16) with

respect to the variables z2, z3, y, ξ1 in this order to obtain a factor of λ−4n and the remaining
integrals are over compact regions. We deduce the estimate∫

R3n

|K(x, z1, z2, z3)| dx dz2 dz3 ≤ C λ−4n

with C independent of λ. Analogously, we obtain the estimate∫
R3n

|K(x, z1, z2, z3)| dz1 dz2 dz3 ≤ C λ−4n .

Thus, the kernel K of the trilinear operator Tλ(f1, f2, f3) = Tλ
(
T ∗1λ (f1, f2), f3

)
satisfies

the hypotheses Lemma 3.2 with constants A0 = A1 = A2 = A3 = C λ−4n; thus the
conclusion of Lemma 3.2 holds for Tλ and in particular we obtain that

‖Tλ‖Lr1×Lr2×Lr3→Lr ≤ C λ−4n

whenever 1/r1 + 1/r2 + 1/r3 = 1/r and 1 ≤ r1, r2, r3 ≤ ∞. Taking (r1, r2, r3, r) to be
either (p1, p2, p2, p

′
1), or (p1, p2, p

′, p) or (p′, p2, p2, p) we deduce that Tλ satisfies conditions
(8), (9), and (10) of Lemma 3.1. We conclude that Tλ maps Lp1 ×Lp2 to Lp with norm at
most a constant multiple of λ−2n when 1/p1 + 1/p2 = 1/p, 2 ≤ p′, p2 ≤ ∞, and one of the
indices p1, p2, p is equal to 2. This region consists of the three sides of the local-L2 triangle
1/p1 + 1/p2 = 1/p, 2 ≤ p′, p2 ≤ ∞. Boundedness for the points in the interior of the
triangle follows by interpolation (that also yields the required bound on the norm). �

5. Proof of Proposition 2.3

Let Ψ ∈ C∞0 (R2n), with supp Ψ ⊆ {~ξ : 2−1 ≤ |~ξ| ≤ 4} and such that Ψ0(~ξ ) +∑∞
j=1 Ψ(2−j~ξ ) = 1, where Ψ0 is in C∞0 (R2n) with support near the origin.

Next, for each j select a set of unit vectors {~ξνj } of cardinality c2j(2n−1)/2 such that

|~ξνj − ~ξν
′
j | ≈ 2−j/2 and such that the union of the balls of radii 2−j/2 centered at the

~ξνj covers the unit sphere in R2n. Let {χνj} be a partition of unity on the unit sphere

subordinate to this covering. Extend these functions to all of R2n \ {(0, 0)} as functions
homogenous of degree 0.

We now write

b(x, ~y, ~ξ ) = b0(x, ~y, ~ξ ) +
∞∑
j=1

c2j(2n−1)/2∑
ν=1

bνj (x, ~y,
~ξ )

where b0(x, ~y, ~ξ ) = b(x, ~y, ~ξ )Ψ0(~ξ ) and bνj (x, ~y,
~ξ ) = b(x, ~y, ~ξ )χνj (

~ξ )Ψ(2−j~ξ ). Moreover,
we define

Kν
j (x, ~y ) =

∫
R2n

ei(ϕ(x,~ξ )−~y·~ξ )bνj (x, ~y,
~ξ ) d~y .



BILINEAR FOURIER INTEGRAL OPERATORS 13

Via this decomposition we express F = F0 +
∑

j

∑
ν Fνj , where Fνj is the bilinear

integral operator with kernel Kν
j :

Fνj (f1, f2)(x) =

∫
R2n

Kν
j (x, ~y )f1(y1)f2(y2) d~y .

Write

ϕ(x, ~ξ )− ~y · ~ξ = ϕξ1(x,
~ξνj ) · ξ1 − y1 · ξ1 + ϕξ2(x,

~ξ ) · ξ2 − y2 · ξ2 +Hν
j (x, ~ξ ) ,

where

Hν
j (x, ~ξ ) = ϕ(x, ~ξ )− ϕ~ξ(x, ~ξ

ν
j ) · ~ξ .

We introduce the differential operator

L = I + 22j∂2
~ξνj

+ 2j∆(~ξνj )′

where (~ξνj )′ denotes a (2n− 1)-dimensional set of coordinates orthogonal to ~ξνj . We have

Lemma 5.1. If b ∈ Sm, then for all N > 0 there exists C > 0 such that∣∣LN(eiHν
j (x,~ξ )bνj (x, ~y,

~ξ )
)∣∣ ≤ C2jm . (17)

Proof. In order to prove the estimate, notice that, since bνj lies in Sm and is localized in

the set |~ξ | ≈ 2j, the worst case is when all the derivatives fall on the exponential factor.
Notice however that

|bνj (x, ~y, ~ξ )| ≤ C2jm .

The lemma will follow if we prove that
∣∣LNeiHν

j (x,~ξ )
∣∣ ≤ CN for all N > 0, which is a

consequence of the estimates below:

(i)
∣∣∂k~ξνjHν

j (x, ~ξ )
∣∣ ≤ C2−jk;

(ii)
∣∣∇k′

(~ξνj )′
Hν
j (x, ~ξ )

∣∣ ≤ C2−jk
′/2;

for ~ξ in the support of bνj , for all 0 ≤ k, k′ ≤ N . Here, and in what follows, we denote by
~θ′ the projection of the vector ~θ of R2n onto the subspace orthogonal to ~ξν .

The estimates (i) and (ii) follow from the fact that H is homogeneous of degree 1 in ~ξ

and that |~ξ | ≈ 2j, as in [St] p. 407. �

Next we estimate the kernel Kν
j integrating by parts. Set

A(x, ~y, ~ξ ) = ϕξ1(x,
~ξνj ) · ξ1 − y1 · ξ1 + ϕξ2(x,

~ξ ) · ξ2 − y2 · ξ2 ,

then

|Kν
j (x, ~y )| ≤ 1(

1 + 22j|~ξνj · ∇~ξ A|2 + 2j|(∇~ξ A)′|2
)N ∫

R2n

∣∣∣LN(eiHν
j (x,~ξ )bνj (x, ~y,

~ξ )
)∣∣∣ d~ξ .
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From this it follows that |Kν
j (x, ~y )| is controlled by

C 2jm2j+j(2n−1)/2(
1 + 22j|~ξνj ·

(
ϕξ1(x,

~ξνj )− y1, ϕξ2(x,
~ξνj )− y2

)
|2 + 2j|

(
ϕξ1(x,

~ξνj )− y1, ϕξ2(x,
~ξνj )− y2

)′|2)N .
In order to prove that T =

∑
j

∑
ν Fνj is bounded T : L1×L∞ → L1 it suffices to show

that ∑
j

∑
ν

[
sup
y1

∫∫
|Kν

j (x, y1, y2)| dxdy2

]
<∞ . (18)

Perfoming the changes of variables u = ϕ1(x, ~ξνj ), v = ϕ2(x, ~ξνj )− y2 we see that∫
Rn

∫
Rn

|Kν
j (x, y1, y2)| dxdy2

≤ C

∫
Rn

∫
Rn

2jm2j(n+ 1
2

)(
1 + 22j|~ξνj ·(u− y1, v)|2 + 2j|(u− y1, v)′|2

)N dudv

= C2jm
∫

Rn

∫
Rn

1(
1 + |(u, v)|2

)N dudv

= C2jm .

Therefore, the norm of F : L1 × L∞ → L1 is bounded by a constant times∑
j

∑
ν

[
sup
y1

∫
Rn

∫
Rn

|Kν
j (x, y1, y2)| dxdy2

]
≤ C

∑
j

∑
ν

2jm ≤ C
∑
j

2j(m+n−1/2) ≤ C

as long as m+ n− 1/2 < 0, that is m < −(2n− 1)/2. �

6. Proof of Proposition 2.4

We consider a bilinear FIO with a Hörmander symbol σ(x, y1, y2, ξ1, ξ2) whose phase
has the form

Φ(x, ~y, ~ξ ) = [φ1(x, ξ1)− y1 · ξ1] + [φ2(x, ξ2)− y2 · ξ2] , (19)

where each each expression inside the square brackets is a non-degenerate linear phase;
that is, φ1 and φ2 are C∞ functions real on Rn ×Rn \ {(0, 0)}, homogeneous of degree 1
in ξ1 and ξ2, resp., and they satisfy the non-degeneracy conditions

det(φj)xξj 6= 0 , j = 1, 2

on the support of the symbol, which are equivalent to (5) and (6) for φ = φ1 + φ2.
In this case the associated bilinear FIO has the form

Tσ(f1, f2)(x) =

∫
R4n

σ(x, y1, y2, ξ1, ξ2)f1(y1)f2(y2)ei(x−y1)·ξ1ei(x−y2)·ξ2eiφ1(x,ξ1)eiφ(x,ξ2) d~y d~ξ .

We assume that the symbol σ has compact support in the variables x, y1, y2. Denote the
support by Q, that is, the function (x, y1, y2) 7→ σ(x, y1, y2, ξ1, ξ2) is supported in the set
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Q×Q×Q. We cover the set Q by a finite collection of balls of radius 2 and we introduce
a smooth partition of unity subordinate to this collection of balls. We may therefore
write the symbol σ(x, y1, y2, ξ1, ξ2) as a finite sum of symbols σρ(x, y1, y2, ξ1, ξ2), where
each σρ is supported in a ball of radius 2 in the variables y1 and y2. We fix such a ρ and
by a translation we may assume that σρ is supported in the ball of radius 2 centered at
the origin in the variables y1 and y2. For notational convenience we set σρ = σ in the
argument below.

We introduce a smooth function ζ on R2n whose support in contained in the annulus

1/2 < |~ξ | < 2 such that

ζ0(~ξ ) +
∞∑
j=1

ζ(2−j~ξ ) = 1

for some smooth function ζ0 supported in a ball centered at the origin.

We set σ0(x, y1, y2, ξ1, ξ2) = σ(x, y1, y2, ξ1, ξ2)ζ0(~ξ ), and for j ≥ 1 set σj(x, y1, y2, ξ1, ξ2) =

σ(x, y1, y2, ξ1, ξ2)ζ(2−j~ξ ). We split the symbol σ as

σ = σ0 +
∞∑
j=1

σj

and this introduces a decomposition of the bilinear FIO

Tσ = Tσ0 +
∞∑
j=1

Tσj .

As Tσ0 has a symbol that is compactly supported in all variables, one trivially obtains

|Tσ0(f1, f2)(x)| ≤ C‖f1‖L1(Q)‖f2‖L1(Q)χQ(x)

Consequently, Tσ0 maps Lp1 × Lp2 → Lp for any 1 ≤ p1, p2 ≤ ∞ with 1/p = 1/p1 + 1/p2.
We focus therefore our attention to the sum of the operators Tσj . Fix a j ≥ 1 for the

moment. For every x ∈ Rn, the function

(y1, y2, ξ1, ξ2) 7→ σj(x, y1, y2, 2
jξ1, 2

jξ2) (20)

is supported in B(0, 2)4, where B(0, 2) is the ball of radius 2 centered at the origin in Rn.
Since B(0, 2) is contained in [−π, π]n, by expanding the function in (20) in Fourier series
over [−π, π]4n (as in the work of Coifman and Meyer [CM1], [CM2]) we obtain that for
all y1, y2, ξ1, ξ2 ∈ Rn the function σj(x, y1, y2, 2

jξ1, 2
jξ2) is equal to∑

`1∈Zn

∑
`2∈Zn

∑
k1∈Zn

∑
k2∈Zn

cj`1,`2,k1,k2(x)ei(`1·y1+`2·y2+k1·ξ1+k2·ξ2)η(y1)η(y2)η(ξ1)η(ξ2) ,

where η is a smooth function on Rn equal to 1 on the square [−5/2, 5/2]n (and thus on
the ball B(0, 2)) and vanishing outside the square [−π, π]n. The coefficient cj`1,`2,k1,k2(x)
of the Fourier series expansion is equal to

1

(2π)4n

∫
[−π,π]4n

σ(x, y1, y2, 2
jξ1, 2

jξ2)ζ(ξ1, ξ2)e−i(`1·y1+`2·y2+k1·ξ1+k2·ξ2) d~y d~ξ .
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To estimate cj`1,`2,k1,k2(x) we integrate by parts and we use the fact that σ is a Hörmander
symbol of order m to obtain the estimate

|cj`1,`2,k1,k2(x)| ≤
4N∑
r=0

CN,r 2jr(1 + 2j|ξ1|+ 2j|ξ2|)m−rχ1/4<|ξ1|2+|ξ2|2<4

(1 + |`1|2)N(1 + |`2|2)N(1 + |k1|2)N(1 + |k1|2)N

≤ CN 2jm

(1 + |`1|2)N(1 + |`2|2)N(1 + |k1|2)N(1 + |k1|2)N
.

We define

c̃j,N`1,`2,k1,k2(x) = 2−jmcj`1,`2,k1,k2(x)(1 + |`1|2)N(1 + |`2|2)N(1 + |k1|2)N(1 + |k1|2)N

and we note that
|c̃j,N`1,`2,k1,k2(x)| ≤ CNχQ(x) . (21)

We introduce modulation operators M`(g)(x) = g(x)ei`·x and a smooth function with
compact support a(x) which is bounded by 1 in absolute value and is equal to 1 on the
set Q. Using the above decomposition, we express

∞∑
j=1

Tσj(f1, f2) =
∑

1,2,3,4

∞∑
j=1

2jm c̃j,N`1,`2,k1,k2(x)F 1
j (M`1(f1η))(x)F 2

j (M`2(f2η))(x) ,

where∑
1,2,3,4

=
∑
k1∈Zn

(1 + |k1|2)−N
∑
k2∈Zn

(1 + |k2|2)−N
∑
l1∈Zn

(1 + |l1|2)−N
∑
l2∈Zn

(1 + |l2|2)−N ,

F 1
j and F 2

j are FIOs with non-degenerate phases −y1 · ξ1 + φ1(x, ξ1), −y2 · ξ2 + φ2(x, ξ2)

and symbols a(x)ei2
−jk1·ξ1η(2−jξ1), a(x)ei2

−jk2·ξ2η(2−jξ2) , respectively.
We now fix indices 1 < p1, p2 < 2 and 1/2 < p < 1 where 1/p = 1/p1 + 1/p2. To obtain

the required estimate for the Lp quasi-norm of the operator
∑∞

j=1 Tσj(f1, f2), due to the

rapid convergence of the sums in
∑

1,2,3,4, it suffices to obtain the same estimate the Lp

quasi-norm of the expression∥∥∥ ∞∑
j=1

2jmc̃j,N`1,`2,k1,k2F
1
j (M`1(f1η))F 2

j (M`2(f2η))
∥∥∥
Lp
.

Setting m = m1 + m2, for some m1,m2 < 0 and using (21), we control the preceding
expression by

CN

∥∥∥( ∞∑
j=1

|2jm1F 1
j (M`1(f1η))|2

)1/2( ∞∑
j=1

|2jm2F 2
j (M`2(f2η))|2

)1/2
∥∥∥
Lp

and this is at the most

CN

∥∥∥( ∞∑
j=1

|2jm1F 1
j (M`1(f1η))|2

)1/2
∥∥∥
Lp1

∥∥∥( ∞∑
j=1

|2jm2F 2
j (M`2(f2η))|2

)1/2
∥∥∥
Lp2

(22)

via Hölder’s inequality (1/p = 1/p1 + 1/p2).
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To control each of these terms, we make use of the following lemma:

Lemma 6.1. Let m1 < 0. Then we have the estimate∥∥∥( ∞∑
j=1

|2jm1F 1
j (g)|2

)1/2
∥∥∥
Lp1
≤ Cr(1 + |k1|)b‖g‖Lp1 (23)

whenever 1
p1
− 1

2
= − m1

n−1
and 1 < p1 < 2. Here b is a positive constant that depends only

on p1 and n.

Proof. By Khinchine’s inequality matters reduce to estimating∥∥∥ ∞∑
j=1

εj2
jm1F 1

j (g)
∥∥∥
Lp1

where εj = ±1. This is a FIO with the following symbol of order m1 < 0

(x, ξ1) 7→ a(x)
∞∑
j=1

εj2
jm1ei2

−jk1·ξ1η(2−jξ1) .

A careful examination of the proof of Theorem 2.2 in [SSS] shows that the constant
depends only on finitely many derivatives of the symbol and thus it grows at most poly-
nomially in |k1|. By interpolation the same assertion is valid on Lp1 for p1 ∈ (1, 2) and
thus the claimed estimate (23) folllows. �

Using this lemma for F 1
j and F 2

j and choosing N large enough (say bigger than (b+n)/p)
we obtain that expression (22) is bounded by a constant multiple of

(1 + |k1|)b(1 + |k2|)b‖M`1(f1η)‖Lp1‖M`2(f2η)‖Lp2 .
Consequently, we deduce the estimate∥∥∥ ∞∑

j=1

Tσj(f1, f2)
∥∥∥
Lp
≤ C ‖f1‖Lp1‖f2‖Lp2 ,

where
1

p
− 1 =

(
1

p1

− 1

2

)
+

(
1

p2

− 1

2

)
= − m1

n− 1
− m2

n− 1
= − m

n− 1
when 1 < p1, p2 < 2. This completes the proof of Proposition 2.4

Remark 6.2. Proposition 2.4 can be extended to the range 1 ≤ p1, p2 < 2, when Lpi is
replaced by the local Hardy space h1 whenever pi = 1.

Indeed, Corollary 2.3 in [SSS] says that FIOs with symbols of order −(n− 1)/2 map h1

to h1, in particular they map h1 to L1 (and an examination of the proof there indicates
that the constant depends on finitely many derivatives of the symbol). Consequently, one
has the estimate ∥∥∥( ∞∑

j=1

|2jm1F 1
j (g)|2

)1/2
∥∥∥
L1
≤ Cr(1 + |k1|)b‖g‖h1 (24)
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when m1 = −(n−1)/2. Taking g = M`1(f1η) and noting that h1 preserves multiplications
by smooth bumps and modulations, we obtain the required conclusion. �

The authors would like to acknowledge the recent work of Bernicot and Germain [BG]
on bilinear oscillatory integrals which seems to mildly overlap with our present work.
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