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Abstract

We study interpolation, generated by an abstract method of means, of bilinear operators
between quasi-Banach spaces. It is shown that under suitable conditions on the type of
these spaces and the boundedness of the classical convolution operator between the corre-
sponding quasi-Banach sequence spaces, bilinear interpolation is possible. Applications to
the classical real method spaces, Calderón-Lozanovsky spaces, and Lorentz-Zygmund spaces
are presented.

1 Introduction

Motivated by applications in harmonic analysis, we are interested in interpolation of bilinear
operators defined on products of quasi-Banach spaces. The main aim of this paper is to prove
interpolation theorems for bilinear operators on quasi-Banach spaces generated by certain inter-
polation methods. We study a problem for the abstract method of means as well as for the real
interpolation method.

Let us briefly outline the content of the paper. In Section 2 we establish notation and
recall basic facts concerning quasi-Banach spaces and interpolation. In Section 3 we introduce a
notion of special type of convexity for bilinear operators between quasi-Banach couples and we
prove a bilinear interpolation theorem using the method of means, under the condition that the
associated convolution operator is bounded on the parameter spaces involved in the construction
of these methods. In view of a remarkable result of Kalton [13], the convexity parameters of
the bilinear operators that take values in so called natural quasi-Banach spaces, are nicely
determined by the types of the domains of the quasi-Banach spaces. We also prove continuous
inclusions between spaces generated by the method of means and the Calderón-Lozanovsky
method applied to certain classes of couples of Banach lattices satisfying the upper or lower
lattice estimates. We give applications in the context of weighted Orlicz spaces. In particular,
we obtain that the method of means determined by the corresponding weighted quasi-Banach
spaces `p0 and `p1 and any couple of weighted quasi-Banach lattices (Lp0(w0), Lp1(w1)) coincide,
up to equivalence of norms, with the Calderón-Lozanovsky space ϕ(Lp0(w0), Lp1(w1)).

In Section 4 we discuss applications of these results in the context of interpolation be-
tween quasi-Banach spaces generated by the real method of interpolation as well as to Calderón
Lozanovsky spaces that include, in particular, Orlicz spaces.

∗The author is supported by the National Science Foundation under grant DMS 0099881.
†The author is supported by KBN Grant 1 P03A 013 26.
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In Section 5 we discuss abstract K or J interpolation method of bilinear operators between
quasi-Banach spaces satisfying weaker convexity type conditions. These results are used for
special weighted sequence spaces for which the classical convolution operator is bounded. As a
consequence, bilinear interpolation theorems for Lorentz-Zygmund spaces are obtained.

2 Definitions and notation

A quasi-norm ‖ · ‖ defined on a vector space X (over real or complex field K) is a map X → R+

such that

(i) ‖x‖ > 0 for x 6= 0,

(ii) ‖αx‖ = |α| ‖x‖ forα ∈ K, x ∈ X,

(iii) ‖x+ y‖ ≤ C(‖x‖+ ‖y‖) for all x, y ∈ X,

where C is a constant independent of x, y.

Let 0 < p ≤ 1. We call ‖ · ‖ a p-norm if we also have

(iv) ‖x+ y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ X.

A quasi-Banach space X is said to be p-normable, 0 < p ≤ 1, if there exists an equivalent
p-norm ‖ · ‖∗ on X and a constant C ′ such that

‖x1 + ...+ xn‖∗ ≤ C ′ (‖x1‖p∗ + ...+ ‖xn‖p∗)1/p.

for all x1, ..., xn ∈ X. An 1-normable space is simply called normable. While clearly any p-
normable space is a quasi-normed space, a theorem of Aoki and Rolewicz (see [14]) asserts that
any quasi-normed space X has an equivalent p-norm, where p satisfies C = 21/p−1 with C is as
in (iii), defined by

‖x‖ = inf
(∑

k

‖xk‖pX
)1/p

,

where the infimum is taken over all finite sequences {xk} ⊂ X satisfying
∑

k xk = x.

If ‖ · ‖ is a quasi-norm (resp., p-norm) on X defining a complete metrizable topology, then
X is called a quasi-Banach space (resp., p-Banach space).

We shall use standard notation and notions from interpolation theory, as presented, e.g., in
[2], [3]. Throughout this paper we will let (Ω, µ) = (Ω,Σ, µ) be a complete σ-finite measure
space and L0(µ) will denote, as usual, the space of equivalence classes of real valued measurable
functions on Ω, equipped with the topology of convergence (in the measure µ) on sets of finite
measure. By a quasi-Banach lattice on Ω we mean a quasi-Banach space X which is a subspace
of L0(µ) such that there exists u ∈ X with u > 0 and if |f | ≤ |g| a.e., where g ∈ X and
f ∈ L0(µ), then f ∈ X and ‖f‖X ≤ ‖g‖X . A quasi-Banach lattice X is said to be maximal if
its unit ball BX = {x; ‖x‖ ≤ 1} is a closed subset in L0(µ).

In the special case when Ω = Z is the set of integers and µ is the counting measure then a
quasi-Banach lattice E on Ω is called a quasi-Banach sequence space on Z, and in this case we
denote by E′ a Köthe dual space of E.

If X is a quasi-Banach lattice on (Ω) and w ∈ L0(µ) with w > 0 a.e., we define the weighted
quasi-Banach lattice X(w) by ‖x‖X(w) = ‖xw‖X .

Given 0 < p < ∞ and a quasi-Banach lattice X let Xp denote the p-convexification of X.
Here Xp consists of all x such that |x|p ∈ X and is equipped with the quasi-norm ‖x‖ = ‖|x|p‖1/p.
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Let 0 < t < ∞ and A = (A0, A1) be a couple of quasi-Banach spaces. We equip A0 + A1

(resp., A0 ∩ A1) with the quasi-norm K(1, a) (resp. J(1, a)) where K(t, a) = K(t, a;A) and
J(t, a) = J(t, a;A) are the functionals of J. Peetre, defined by

K(t, a;A) = inf {‖a0‖A0 + t ‖a1‖A1 ; a = a0 + a1}

and
J(t, a;A) = max{‖a‖A0 , t ‖a‖A1}.

It is easy to see that if Aj is pj-normable (j = 0, 1) then both A0+A1 and A0∩A1 are p-normable
with p = min{p0, p1}.

If X = (X0, X1) and Y = (Y0, Y1) are couples of quasi-Banach spaces, we let L(X,Y )
be the quasi-Banach space of all linear operators T : X → Y (which means, as usual, that
T : X0+X1 → Y0+Y1 is linear and the restrictions T |Xj are bounded operators from Xj to Yj for
j = 0, 1). The space is equipped with the quasi-norm ‖T‖X→Y := max {‖T‖X0→Y0 , ‖T‖X1→Y1}.

We will deal with vector-valued quasi-Banach sequence spaces. Let E be a quasi-Banach
sequence lattice on Z and let X be a quasi-Banach space. The vector sequence x = {xn}n∈Z
in X is called strongly E-summable if the corresponding scalar sequence {‖xn‖X}n∈Z is in E.
We denote by E(X) the set of all such sequences in X. This is a quasi-Banach space under
pointwise operations, and a natural quasi-norm on it is given by ‖x‖E(X) := ‖{‖xn‖X}‖E . It
is easy to check that if E is p-Banach and X is q-Banach space then E(X) is r-Banach with
r = min{p, q}.

Let X be a quasi-Banach couple. A couple E = (E0, E1) of quasi-Banach sequence lattices
on Z is said to be a parameter of the method of means on X if E0 ∩E1 ↪→ `p for some 0 < p ≤ 1
such that the quasi-Banach space X0 + X1 is p-normable. Throughout the paper, for such
E = (E0, E1) and X, the space denoted by JE(X) = JE0,E1(X) = XE0,E1 is built by the method
of means consisting of all x ∈ X0 +X1 which can be represented in the form

x =
∑
n∈Z

un (convergence in X0 +X1)

with {un} ∈ E0(X0) ∩ E1(X1). We note that JE(X) is a quasi-Banach space under the quasi-
norm

‖x‖ := inf max
{
‖{un}‖E0(X0), ‖{un}‖E1(X1)

}
,

where the infimum is taken over all the above representations of x.
In fact, the continuous inclusion E0 ∩ E1 ↪→ `p implies that there exists a constant C > 0

such that ∑
n∈Z
‖un‖pX0+X1

≤ C ‖{un}‖E0(X0)∩E1(X1)

for any {un} ∈ E0(X0)∩E1(X1). Since X0 +X1 is p-normable, we conclude that the linear map
J defined by J ({xn}) :=

∑
n∈Z xn is continuous from E0(X0) ∩ E1(X1) into X0 + X1. Thus

the quotient space (
E0(X0) ∩ E1(X1)

)/
ker(J )

is a quasi-Banach space. Since it is isometrically isomorphic to JE(X), we conclude that JE(X)
is also a quasi-Banach space.

3 Main results

In this section we prove interpolation theorems for bilinear operators between spaces generated
by the method of means. An operator T defined on a product of two quasi-Banach spaces X×Y
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and taking values in another quasi-Banach space Z is called bilinear if it is linear in each of the
two variables, and bounded, i.e., there is a constant C0 such that for all x ∈ X and y ∈ Y we
have

‖T (x, y)‖Z ≤ C0‖x‖X‖y‖Y .
The smallest C0 so that the above inequality holds for all x ∈ X and y ∈ Y is called the norm
of B and will be denoted by ‖T‖X×Y→Z .

Inspired by a remarkable result of Kalton [13] we introduce the following terminology: we
say that a bilinear operator T : X×Y → Z between quasi-Banach spaces is said to be s-bilinear
convex (0 < s ≤ 1) if there exists a constant C > 0 such that for all finite sequences {xj}nj=1 ⊂ X
and {yj}nj=1 ⊂ Y, we have

∥∥ n∑
j=1

T (xj , yj)
∥∥
Z
≤ C‖T‖X×Y→Z

( n∑
j=1

‖xj‖sX‖yj‖sY
)1/s

.

In the case when s = 1, we say, in short, that B is bilinear convex.
The triple (X,Y, Z) of quasi-Banach spaces is said to be s-bilinear (resp., bilinear) admissible

whenever there exists C = C(X,Y, Z) > 0 such that any bilinear operator T : X × Y → Z is
s-bilinear convex (resp., bilinear convex).

In view of the result of Kalton ([13], p. 311), it follows that if X is a quasi-Banach space of
type p, Y is a quasi-Banach of type q, and Z is a natural quasi-Banach space, then the triple
(X,Y, Z) is s-bilinear admissible where 1/s = 1/p+ 1/q.

Let us recall that a quasi-Banach space X is of type p (0 < p ≤ 2) if there exists a constant
C > 0 so that [

E
(∥∥ n∑

k=1

εkxk
∥∥p)]1/p ≤ C ( n∑

k=1

‖xk‖p
)1/p

,

where {εk} is any sequence of independent Bernoulli random variables with

P (εk = 1) = P (εk = −1) = 1/2.

It is well-known that for 0 < p < 1, X is of type p if (and only if) X is p-normable; if p > 1 and
X is of type p, then X is a Banach space (see [14], p. 99 and p. 107).

A quasi-Banach space is called natural [15] if it is isomorphic to a subspace of an L-convex
quasi-Banach lattice. A quasi-Banach lattice X is said to be L-convex if there exists 0 < ε < 1
so that if u ∈ X, with ‖u‖ = 1 and 0 ≤ xk ≤ u (1 ≤ k ≤ n) satisfy (x1 + ...+ xn)/n ≥ (1− δ)u,
then max1≤k≤n ‖xk‖ ≥ ε.

The following lemma will be useful in the proof of the main result of this section.

Lemma 3.1. Let X be a p-normable quasi-Banach space and let {xk,m} be an infinite matrix in
X with k,m ∈ Z. Assume that the series

∑
k∈Z xk,m−k is unconditionally convergent for every

m ∈ Z and
∑

m∈Z
∥∥∑

k∈Z xk,m−k
∥∥p
X
< ∞. Then the double limit lim

M,N→∞

∑
|k|≤M

∑
|j|≤N xk,j

exists in X and
lim

M,N→∞

∑
|k|≤M

∑
|j|≤N

xk,j =
∑
m∈Z

(∑
k∈Z

xk,m−k

)
.

Proof. Let um :=
∑

k∈Z xk,m−k for m ∈ Z. Fix ε > 0. Since
∑

m∈Z ‖um‖
p
X <∞ and the series∑

k∈Z xk,m−k converges unconditionally, there exists m0 ∈ N such that∥∥ ∑
|m|≤m0

um −
∑
m∈Z

(∑
k∈Z

xk,m−k
)∥∥p
X
< ε/2
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and ∑
|m|>m0

∥∥ ∑
k∈Fm

xk,m−k
∥∥p
X
< ε/4,

where Fm is any finite subset of Z. Furthermore, there exists k0 ∈ N such that for any km ≥ k0

with |m| ≤ m0, we have ∑
|m|≤m0

∥∥ ∑
|k|>km

xk,m−k
∥∥
X
< ε/4.

Let M and N be positive integers with M > k0 and N > m0 + k0. We define two subsets A and
B of Z× Z by setting

A =
{

(k, j) ; |k| ≤M, |j| ≤ N
}

and
B =

{
(k, j) ; |k| ≤ k0, |j + k| ≤ m0

}
.

For m ∈ Z we let Fm =
{
k ∈ Z ; (k,m−k) ∈ A} and km = max

{
k ∈ Z ; k ∈ Fm

}
. Since B ⊂ A,

we conclude that km ≥ k0, whenever |m| ≤ m0. This implies that the two last inequalities hold
for Fm and km just defined. It is easy to verify that∑

|k|≤M

∑
|j|≤N

xk,j =
∑
|m|≤m0

um −
∑
|m|≤m0

∑
|k|>km

xk,m−k +
∑
|m|>m0

∑
k∈Fm

xk,m−k .

Combining this identity with the above three norm inequalities, we deduce∥∥ ∑
|k|≤M

∑
|j|≤N

xk,j −
∑
m∈Z

(∑
k∈Z

xk,m−k
)
‖X < ε.

for M > k0 and N > m0 + k0. This proves the assertion.

Let X = (X0, X1), Y = (Y0, Y1) and Z = (Z0, Z1) be quasi-Banach couples. We will say
that T = (T0, T1) is a bilinear operator from X × Y into Z, and write T ∈ B(X,Y ;Z) if
Tj : Xj × Yj → Zj is a bounded bilinear operator (j = 0, 1) and T0(x, y) = T1(x, y) for any
x ∈ X0 ∩X1 and y ∈ Y0 ∩ Y1. If additionally X, Y and Z are intermediate quasi-Banach spaces
with respect to X, Y and Z, respectively, then we say that T ∈ B(X,Y ;Z) extends to a bilinear
operator from X × Y into Z provided that T0 has a bilinear extension from X × Y into Z.

Note that any (T0, T1) ∈ B(X,Y ;Z) defines a bilinear operator T 0 (resp., T 1) which will
be called in the sequel a natural bilinear extension of (T0, T1) from (X0 + X1) × (Y0 ∩ Y1) into
Z0 + Z1 (resp., (X0 ∩X1)× (Y0 + Y1)→ Z0 + Z1) by

T 0(x, y) := T0(x0, y) + T1(x1, y)

for any x = x0 + x1 and y ∈ Y0 ∩ Y1 (resp., T 1(x, y) := T0(x, y0) + T1(x, y1) for any x ∈ X0 ∩X1

and y = y0 + y1 ∈ Y0 + Y1 with y0 ∈ Y0 and y1 ∈ Y1. It is easy to see that T 0 (resp., T 1) does
not depend on the representations of x ∈ X0 +X1 (resp., y ∈ Y0 + Y1).

An operator T = (T0, T1) ∈ B(X,Y ;Z) is said to be (s0, s1)-bilinear convex (0 < s0, s1 ≤ 1) if
there exists a constant C > 0 such that for any finite sequences {xj} ⊂ X0∩X1 and {yj} ⊂ Y0∩Y1

the following holds for k = 0, 1∥∥∑
j

Tk(xj , yj)
∥∥
Zk
≤ C ‖Tk‖Xk×Yk→Zk

(∑
j

‖xj‖skXk
‖yj‖skYk

)1/sk .
In the case when s0 = s1 (resp., s0 = s1 = 1), we say, in short, that T is s-bilinear convex (resp.,
bilinear convex).
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Throughout the paper we will consider the convolution operator τ of sequences defined for
x = {ξk}∞−∞ and y = {ηk}∞−∞ by

τ(x, y)n =
∑
k∈Z

ξk ηn−k, n ∈ Z.

We now state the main theorem of this section:

Theorem 3.1. Let X = (X0, X1), Y = (Y0, Y1), and Z = (Z0, Z1) be quasi-Banach spaces and
let T = (T0, T1) ∈ B(X,Y ;Z) be (s0, s1)-bilinear convex. Assume that Ej, Fj and Gj are quasi-
Banach sequence spaces on Z such that (Es00 , E

s1
1 ), (F s00 , F s11 ), and (Gs00 , G

s1
1 ) are parameters of

the method of means on X, Y and Z, respectively. If the convolution operator τ is bounded from
Ej ×Fj to Gj (j = 0, 1), then T extends to a bilinear operator T̂ from XE

s0
0 ,E

s1
1
× Y F

s0
0 ,F

s1
1

into

ZGs0
0 ,G

s1
1

with the norm estimate

‖T̂‖ ≤ max
j=0,1

[
Cj ‖τ‖Ej×Fj→Gj ‖Tj‖Xj×Yj→Zj

]
for some Cj > 0 (j = 0, 1).

Proof. Let x ∈ X := XE
s0
0 ,E

s1
1

and y ∈ Y := Y F
s0
0 ,F

s1
1

. For ε > 0 pick {uk} ∈ Es00 (X0)∩Es11 (X1)

and {vk} ∈ F s00 (Y0) ∩ F s11 (Y1) such that

x =
∑
k∈Z

uk (convergence in X0 +X1), y =
∑
k∈Z

vk (convergence in Y0 + Y1)

and
‖{uk}‖Esj

j (Xj)
≤ (1 + ε)‖x‖X , ‖{vk}‖F sj

j (Yj)
≤ (1 + ε)‖y‖Y .

Since the convolution operator τ is bounded from Ej × Fj → Gj and T = (T0, T1) is (s0, s1)-
bilinear convex, we immediately deduce that if S := T0, then the series∑

k∈Z
S(uk, vm−k)

converges unconditionally in both spaces Z0 and Z1 for all m ∈ Z, and thus also in Z0 + Z1.
Furthermore if we set zm :=

∑
k∈Z S(uk, vm−k) for m ∈ Z, we obtain for some Cj > 0

‖{‖zm‖Zj}‖Gj
sj ≤ Cj ‖Tj‖Xj×Yj→Zj

∥∥τ({‖uk‖
sj
X0
}, {‖vk‖

sj
Yj
})
∥∥1/sj
Gj

≤ Cj ‖Tj‖Xj×Yj→Zj ‖τ‖Ej×Fj→Gj‖{uk}‖Esj (Xj) ‖{vk}‖F sj (Yj)

≤ (1 + ε)2Cj ‖τ‖Ej×Fj→Gj ‖Tj‖Xj×Yj→Zj ‖x‖X ‖y‖Y .

These calculations show that the sequence {zm}m∈Z lies in Gs00 (Z0) ∩Gs11 (Z1) and

‖{zm}‖Gs0
0 (Z0)∩Gs1

1 (Z1) ≤ (1 + ε)2 max
j=0,1

[Cj ‖Tj‖Xj×Yj→Zj ‖τ‖Ej×Fj→Gj ] ‖x‖X ‖y‖Y .

Our hypothesis that (Gs0 , Gs1) is a parameter of the method of means on (Z0, Z1) implies that
for some 0 < p ≤ 1 ∑

m∈Z
‖zm‖pZ0+Z1

<∞.
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Applying Lemma 3.1, we deduce that the double limit

T̂ (x, y) := lim
m,n→∞

∑
|k|≤m

∑
|j|≤n

S(uk, vj)

exists in Z0 + Z1 and

T̂ (x, y) =
∑
m∈Z

zm (convergence in Z0 + Z1).

Combining the above remarks yield T̂ (x, y) ∈ Z := ZGs0
0 ,G

s1
1

with

‖T̂ (x, y)‖Z ≤ C(1 + ε)2 ‖x‖X ‖y‖Y ,

where C = maxj=0,1 [Cj ‖Tj‖Xj×Yj→Zj ] ‖τ‖Ej×Fj→Gj .

Since ε is arbitrary, to onclude it is enough to show that T̂ defines a required bilinear extension
of T . To see this recall that the natural extensions T 0 : (X0 + X1) × (Y0 ∩ Y0) → Z0 + Z1 and
T 1 : (X0 ∩ X1) × (Y0 + Y0) → Z0 + Z1 are bilinear operators. This implies that the following
limits exist in Z0 + Z1 for all k, j ∈ Z

lim
m→∞

∑
|k|≤m

S(uk, vj) = T 0(x, vj),

and
lim
n→∞

∑
|j|≤n

S(uk, vj) = T 1(uk, y).

Combining this with the fact that double limit z := limm,n→∞
∑
|k|≤m

∑
|j|≤n S(uk, vj) exists

in Z0 + Z1, we easily obtain

z = lim
n→∞

∑
|j|≤n

(
lim
m→∞

∑
|k|≤m

S(uk, vj)
)

= lim
n→∞

T 0
(
x,
∑
|j|≤n

vj
)

and
z = lim

m→∞

∑
|k|≤m

(
lim
n→∞

∑
|j|≤n

S(uk, vj)
)

= lim
m→∞

T 1
( ∑
|k|≤m

uk, y
)
.

This shows that the double limit

T̂ (x, y) := lim
m,n→∞

∑
|k|≤m

∑
|j|≤n

S(uk, vj)

is independent of the representations of x =
∑

k∈Z uk and y =
∑

k∈Z vk. Therefore, we conclude

that T̂ is a bilinear operator from X × Y into Z. Since T̂ is an extension of T , the proof is
complete.

From the point of view of applications the following corollary is of independent interest.

Corollary 3.1. Assume X = (X0, X1), Y = (Y0, Y1) are couples of Banach spaces of type 2 and
Z = (Z0, Z1) is a couple of natural quasi-Banach spaces. Let (E0, E1), (F0, F1) and (G0, G1) be
parameters of the method of means on X, Y , and Z, respectively. If the convolution operator τ
is bounded from Ej × Fj to Gj, for j = 0, 1, then any T = (T0, T1) ∈ B(X,Y ;Z) extends to a

bilinear operator T̂ from XE0,E1 × Y F0,F1 into ZG0,G1 which satisfies the norm estimate

‖T̂‖ ≤ max
j=0,1

[
Cj ‖τ‖Ej×Fj→Gj ‖Tj‖Xj×Yj→Zj

]
for some Cj = C(Xj , Yj , Zj) > 0 (j = 0, 1).
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Proof. Using Kalton’s [13] result, we conclude that both triples (X0, Y0, Z0) and (X1, Y1, Z1) are
bilinear admissible, thus Theorem 3.1 applies.

We conclude this section by giving applications to methods of means generated by weighted
quasi-Banach sequence spaces determined by quasi-concave functions. Recall that a positive
function ρ on (0,∞) is said to be quasi-concave if ρ is non-decreasing and the function t 7→ ρ(t)/t
is non-increasing. A quasi-concave function ρ is called a quasi-power if sρ(t) = o(max{1, t}) as
t→ 0 and t→∞, where sρ(t) := supu>0

(
ρ(tu)/ρ(u)

)
for t > 0.

Lemma 3.2. Let ρ be a quasi-power function and let Φ0, Φ1 be quasi-Banach sequence spaces on
Z such that Φj ↪→ `∞ (j = 0, 1). Then the following statements are true for E0 = Φ0(1/ρ(qn))
and E1 = Φ1(qn/ρ(qn)) and any q > 1:

(i) E0 ∩ E1 ↪→ `r for any r > 0.

(ii) XE0,E1 is a quasi-Banach space for any quasi-Banach couple X.

(iii) If ρ(t) = tθ, 0 < θ < 1 and Φj = `pj , 0 < pj ≤ ∞, then for any q > 1 and any

quasi-Banach space X
XE0,E1 = Xθ,p,

where 1/p = (1− θ)/p0 + θ/p1.

Proof. (i). Since ρ is a quasi-power function, it follows (see, e.g., [17], p. 80–81)(∫ ∞
0

(
min

{
1,
s

t

}
ρ(s)

)r ds
s

)1/r
� ρ(t)

for any r > 0. In particular, this implies that for any q > 1

C(r) :=
(∑
n∈Z

(
min{1, q−n}ρ(qn)

)r)1/r
<∞.

Thus if Φj ↪→ `∞ for j = 0, 1, it follows that

E0 ∩ E1 ↪→ `∞(1/ρ(qn)) ∩ `∞(qn/ρ(qn)) = `∞(max{1/ρ(qn), qn/ρ(qn)}).

Consequently there exists a constant K > 0 such that for any ‖{ξn}‖E0∩E1 ≤ 1, we have

|ξn| ≤ K min{ρ(qn), ρ(qn)/qn}

for all n ∈ Z. Thus ‖{ξn}‖`r ≤ C(r)K, i.e., E0 ∩ E1 ↪→ `r.
Clearly that (ii) follows by (i) and the remarks in Section 2.
(iii). It is shown in [27] that if 1/p = (1− θ)/p0 + θ/p1, then the formula

XE0,E1 = Xθ,p,

holds with q = e. It is easy to see that the proof works for any q > 1.
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Theorem 3.2. Assume that X = (X0, X1), Y = (Y0, Y1) and Z = (Z0, Z1) are quasi-Banach
spaces and T = (T0, T1) ∈ B(X,Y ;Z) is (s0, s1)-bilinear convex. If pj , qj , rj ∈ [1,∞) and 1/rj =
1/pj + 1/qj −1 for j = 0, 1 and 1/p = (1− θ)/(s0p0) + θ/(s1p1), 1/q = (1− θ)/(s0q0) + θ/(s1q1),

1/r = (1 − θ)/(s0r0) + θ/(s1r1) and 0 < θ < 1, then T extends to a bilinear operator T̂ from
Xθ,p × Y θ,q into Zθ,r which satisfies the norm estimate

‖T̂‖ ≤ max
j=0,1

Cj ‖Tj‖Xj×Yj→Zj ,

for some constant Cj > 0 (j = 0, 1).

Proof. The hypothesis on the indices imply by Young’s theorem that the convolution operator
is bounded from `pj × `qj into `rj , and thus also from `pj (a

jθ) × `qj (ajθ) into `rj (a
jθ) for any

a > 0, j = 0, 1. Applying Theorem 3.1 and Lemma 3.2, the required conclusion follows.

We note that the triple (Lp, Lq, Z) is s-bilinear admissible for any natural quasi-Banach space
Z, when 1/s = 1/u + 1/v, with (u, v) = (p, q) whenever 0 < p, q ≤ 2, (u, v) = (2, 2) whenever
2 ≤ p, q < ∞, and (u, v) = (p, 2) whenever 0 < p ≤ 2 ≤ q < ∞. Thus the obtained results
may be applied to many bilinear operators such as bilinear multipliers. Recall that a bounded
measurable function σ on Rn × Rn gives rise to a bilinear operator Wσ defined by

Wσ(f, g) =

∫
Rn

∫
Rn

σ(ξ, η)f̂(ξ) ĝ(η)e2πi〈x,ξ+η〉 dξdη

where f, g are Schwartz functions and 〈, 〉 denotes the inner product in Rn. In this case σ is
called the symbol of Wσ.

The study of such bilinear multiplier operators was initiated by Coifman and Meyer. A
theorem of them [6] says that if 1 < p, q <∞, 1/r = 1/p+ 1/q and the function σ on Rn × Rn
satisfies

|∂αξ ∂βη σ(ξ, η)| ≤ Cα,β(|ξ|+ |η|)−|α|−|β|,
for sufficiently large multi-indices α and β, then Wσ extends to a bilinear operator from Lp(Rn)×
Lq(Rn) into Lr,∞(Rn) whenever r ≥ 1. Here as usual Lr,∞ denotes the space weak Lr. This result
was later extended to the range 1 > r ≥ 1/2 by Grafakos and Torres [8] and Kenig and Stein
[16]. Multipliers that satisfy the Marcinkiewicz condition were studied by Grafakos and Kalton
[9]. The first significant boundedness results concerning non-smooth symbols were proved by
Lacey and Thiele [18], [19] who established that Wσ, with σ(ξ, η) = sign(ξ + αη), α ∈ R \ {0, 1}
has a bounded extension from Lp(Rn) × Lq(Rn) to Lr(Rn)) when r > 2/3. Extensions of this
result were subsequently obtained by Gilbert and Nahmod [7]. Bilinear operators can also be
defined on quasi-Banach spaces, such as the Hardy spaces Hp; see for instance [10] for the action
of bilinear Calderón-Zygmund operators on real Hardy spaces.

We discuss here only a general application.

Theorem 3.3. Let pj , qj , rj ∈ [1,∞) and 1/rj = 1/pj + 1/qj − 1 for j = 0, 1 and let 1/p =
(1 − θ)/p0 + θ/(2p1), 1/q = (1 − θ)/q0 + θ/(2q1), 1/r = (1 − θ)/r0 + θ/(2r1) and 0 < θ < 1.
If X = (X0, X1), Y = (Y0, Y1) are Banach spaces such that both X0 and Y0 are of type 2 and
Z = (Z0, Z1) is a couple of natural quasi-Banach spaces, then any T ∈ B(X,Y ;Z) extends to a
bilinear operator T̂ from Xθ,p × Y θ,q into Zθ,r which satisfies the norm estimate

‖T̂‖ ≤ C max
j=0,1

‖Tj‖Xj×Yj→Zj

for some constant C > 0.
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Proof. Using the aforementioned result of Kalton’s, we conclude that the triple (X0, Y0, Z0) is
admissible and (X1, Y1, Z1) is 1/2-admissible, thus Theorem 3.1 applies.

Using the well-known results on interpolation by the real method method between Lp spaces
(see, e.g., [2], Theorem 5.3.1) and the facts that any Lp-space with 2 ≤ p <∞ is of type 2 and
any Lq,∞ with 0 < q <∞ is L-convex, we obtain the following corollary for Lorentz spaces:

Corollary 3.2. Let pj , qj , rj ∈ [1,∞) and 1/rj = 1/pj + 1/qj − 1 for j = 0, 1 and also let
1/p = (1− θ)/p0 + θ/2p1, 1/q = (1− θ)/q0 + θ/q1, 1/r = (1− θ)/r0 + θ/r1 and 0 < θ < 1. If 2 ≤
uj , vj <∞ (j = 0, 1) and 0 < t0, t1 ≤ ∞, then any bilinear operator T : (Lu0 , Lu1)×(Lv0 , Lv1)→
(Lt0,∞, Lt1,∞) has a bounded extension from Lu,p×Lv,q into Lt,r, where 1/u = (1−θ)/u0 +θ/u1,
1/v = (1− θ)/v0 + θ/v1 and 1/t = (1− θ)/t0 + θ/t1, when t0 6= t1, u0 6= u1, and v0 6= v1.

Corollary 3.2 yields, in particular, bounds for the bilinear Hilbert transforms and bilinear
Calderón-Zygmund operators from products of Lorentz spaces into another Lorentz space.

4 Applications to Calderón-Lozanovsky spaces

In this section we prove a bilinear interpolation theorem for Calderón-Lozanovsky spaces. We
show that under certain geometric conditions continuous inclusions hold between the method
of means spaces and the Calderón-Lozanovsky spaces. In the case of quasi-Banach couples of
weighted Lp-spaces, we obtain equalities of these spaces. Certain results in this direction for
Banach spaces were shown in [24]. Following these ideas we extend some of these results for
quasi-Banach lattices (see, Theorem 4.1).

Throughout this paper we denote by P (resp., U) the set of all functions ϕ : R+×R+ → R+

that are positive (resp., concave), non-decreasing in each variable, and homogeneous of degree
one (that is, ϕ(λs, λt) = λϕ(s, t) for all λ, s, t ≥ 0).

Let ϕ ∈ U and X = (X0, X1) be a couple of quasi-Banach spaces on a measure space
(Ω, µ). Following Calderón [4] and Lozanovsky [21], we define the space ϕ(X) = ϕ(X0, X1) of
all x ∈ L0(µ) such that |x| = ϕ(|x0|, |x1|) for some xj ∈ Xj , j = 0, 1. We note that ϕ(X)
is a quasi-Banach (resp., Banach whenever X is a Banach couple) lattice equipped with the
quasi-norm (resp., norm)

‖x‖ = inf
{

max{‖x0‖X0 , ‖x1‖X1}; |x| = ϕ(|x0|, |x1|) xj ∈ Xj , j = 0, 1
}
.

In particular, if we take ϕ(s, t) = s1−θtθ, 0 < θ < 1, we obtain in this way the spaces X1−θ
0 Xθ

1

introduced by Calderón [4]. The properties of the Banach lattice ϕ(X) have been studied in
Lozanovsky (see [21] and references given therein).

Following Kalton [13], a quasi-Banach lattice X is said to be p-convex, 0 < p < ∞, respec-
tively q-concave, 0 < q <∞, if there exists a constant C > 0 such that

∥∥( n∑
k=1

|xk|p
)1/p∥∥ ≤ C ( n∑

k=1

‖xk‖p
)1/p

respectively, ( n∑
k=1

‖xk‖q
)1/q ≤ C ∥∥( n∑

k=1

|xk|q
)1/q∥∥

for every choice of elements x1, ..., xn ∈ X.
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A quasi-Banach lattice X is said to be satisfy an upper p-estimate, 0 < p <∞, respectively
a lower q-estimate, 0 < q < ∞, if there exists a constant C > 0 such that for any choice of
elements ∥∥ sup

1≤k≤n
|xk|

∥∥ ≤ C ( n∑
k=1

‖xk‖p
)1/p

,

respectively ( n∑
k=1

‖xk‖q
)1/q ≤ C ∥∥ n∑

k=1

|xk|
∥∥.

It is clear that if X is maximal, then the notion of an upper p-estimation is equivalent to the
condition that ∥∥ sup

k≥1
|xk|

∥∥ ≤ C ( ∞∑
k=1

‖xk‖p
)1/p

holds for all disjointly supported infinite sequences.
We note that p-convexity implies p-normability and this in turn yields an upper p-estimate.

For p = 1, 1-convexity is equivalent to normability (as a Banach lattice).
In the sequel, a function ϕ ∈ P is said to be a quasi-power provided that the function

t 7→ ϕ(1, t) is a quasi-power. It follows by Lemma 3.2 that if ϕ is a quasi-power, then for any
0 < p0, p1 ≤ ∞ the couple (E0, E1) = (`p0(1/ϕ(1, 2n)), `p1(2n/ϕ(1, 2n))) is a parameter of the
method of means on any couple (X0, X1) of quasi-Banach spaces. The space (X0, X1)E0,E1 is
denoted by ϕ(X0, X1)p0,p1 .

If X is an intermediate quasi-Banach space with respect to a quasi-Banach couple X =
(X0, X1), we define its Gagliardo completion Xc to be the space of all limits in X0 + X1 of
sequences {xn} that are bounded in X, equipped with the quasi-norm

‖x‖Xc = inf
{xn}

sup
n≥1
‖xn‖X ,

where {xn} ⊂ X has the same meaning as above. It is easy to check that if X is a maximal
quasi-Banach lattice on a measure space, then its Gagliardo completion Xc equals to X.

We have the following result:

Theorem 4.1. Assume that (X0, X1) is a couple of quasi-Banach lattices on a measure space
(Ω, µ). Then the following continuous inclusions hold for any quasi-power function ϕ ∈ U :

(i) If Xj satisfy an upper pj-estimate (j = 0, 1), then

ϕ(X0, X1)p0,p1 ↪→ ϕ(X0, X1)c.

(ii) If Xj is maximal and satisfy an upper pj-estimate (j = 0, 1), then

ϕ(X0, X1)p0,p1 ↪→ ϕ(X0, X1).

(iii) If Xj satisfy a lower qj-estimate (j = 0, 1), then

ϕ(X0, X1) ↪→ ϕ(X0, X1)q0,q1 .
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Proof. (i). Let x ∈ ϕ(X0, X1)p0,p1 with ‖x‖ < 1. Then

x = lim
m,n→∞

m∑
k=−n

uk (convergence in X0 +X1)

with ‖{un/ϕ(1, 2n)}‖`p0 (X0) ≤ 1 and ‖{2nun/ϕ(1, 2n)}‖`p1 (X1) ≤ 1. Since ϕ is a quasi-power, the
series

∑
n∈Z un is r-absolutely convergent in X0 +X1 for some 0 < r ≤ 1. Thus, in particular,

{|un(ω)|} ∈ `1 for almost all ω ∈ Ω. Since Xj satisfy an upper pj-estimate (j = 0, 1), there are
positive constants C0 and C1 such that for

x0
n := sup

|k|≤n

|uk|
ϕ(1, 2k)

∈ X0

and

x1
n := sup

|k|≤n

2k|uk|
ϕ(1, 2k)

∈ X1

and we have ‖x0
n‖X0 ≤ C0 and ‖x1

n‖X1 ≤ C1 for all n ∈ N.
We apply Carlson’s inequality (see [12], Corollary 3.1) which states that for any quasi-power

function ϕ ∈ U there exists a constant C > 0 such that for any finite positive sequence {an} the
following inequality holds with ρ = ϕ(1, ·):

∑
k

ak ≤ C ϕ
(

sup
k

ak
ϕ(1, 2k)

, sup
k

2k ak
ϕ(1, 2k)

)
.

Combining this inequality with the above estimates yields

∣∣ n∑
k=−n

uk
∣∣ ≤ Cϕ(x0

n, x
1
n),

i.e.,
∑n

k=−n uk ∈ ϕ(X0, X1) with
∥∥∑n

k=−n uk
∥∥ ≤ C maxj=0,1 Cj for all n ∈ N. Since

lim
n→∞

∥∥ n∑
k=−n

uk − x
∥∥
X0+X1

= 0

the proof of (i) is complete.
(ii). The result follows by a minor modification of the proof of (i).
(iii). Let 0 ≤ x ∈ ϕ(X) and ‖x‖ϕ(X) < 1. Then x = ϕ(x0, x1) for some 0 ≤ xj ∈ Xj such

that ‖xj‖Xj < 1, j = 0, 1. Since ϕ is a quasi-power function, it follows that the support of x is
contained in the intersection of the supports of x0 and x1. Hence, without loss of generality, we
may suppose that x, x0, x1 are not equal to zero on the domain Ω.

Define for any k ∈ Z,

Ak =
{
ω ∈ Ω; 2k ≤ x1(ω)/x0(ω) < 2k+1

}
and

yk = xχAk
, uk = x0χAk

, vk = x1χAk
.

Clearly yk ∈ X0 ∩X1. Is is easily seen that for any k ∈ Z, we have

yk ≤ 2ϕ(1, 2k)uk

12



and

yk ≤
ϕ(1, 2k)

2k
vk.

This implies that for any positive integer n the following estimates hold

0 ≤
∑
k≤−n

yk ≤ ϕ(1, 2−n)
∑
k≤−n

yk
ϕ(1, 2k)

≤ 2ϕ(1, 2−n)x0,

0 ≤
∑
k≥n

yk ≤
ϕ(1, 2n)

2n

∑
k≥n

2kyk
ϕ(1, 2k)

≤ ϕ(2−n, 1)x1.

Combining these estimates, we obtain∥∥∥x− N∑
k=−M

yk

∥∥∥
X0+X1

≤ C
(∥∥∥−M−1∑

k=−∞
yk

∥∥∥
X0

+
∥∥∥ ∞∑
k=N+1

yk

∥∥∥
X1

)

≤ 2C ϕ(1, 2−M−1) + 2C ϕ(2−N−1, 1)

for any positive integers M and N . Since ϕ is quasi-power, the right hand of the above inequality
approaches 0 whenever M,N → ∞ This implies that the series

∑
k∈Z yn converges to x in

X0 + X1. Furthermore, by the fact that {An} is a sequence of pairwise disjoint measurable
subsets whose union is equal to Ω, we have∑

k

|yk|
ϕ(1, 2k)

≤
∑
k

2uk ≤ 2x0

and ∑
k

2k|yk|
ϕ(1, 2k)

≤
∑
k

vk ≤ x1.

Now assume that Xj satisfy a lower qj-estimate (j = 0, 1). Combining the above inequalities
yields {

xk/ϕ(1, 2k)
}
∈ `q0(X0) and

{
2kxk/ϕ(1, 2k)

}
∈ `q1(X1).

Consequently x ∈ ϕ(X0, X1)q0,q1 .

Since any Lp-space is maximal and satisfies both a lower p-estimate and an upper p-estimate
for any 0 < p <∞, the following corollary is an immediate consequence of Theorem 4.1.

Corollary 4.1. If ϕ ∈ U is a quasi-power function, then for any 0 < p0, p1 < ∞ and weights
w0 and w1

ϕ(Lp0(w0), Lp1(w1))p0,p1 = ϕ(Lp0(w0), Lp1(w1)).

It is well known (see, e.g., [26]) that for any ϕ ∈ U and any couple (Lp0(w0), Lp1(w1)) on
(Ω, µ) with 0 < p0 < p1 ≤ ∞, the Calderón-Lozanovsky space ϕ(Lp0(w0), Lp1(w1)) coincides up
to equivalence of norms with the generalized Orlicz space of all f ∈ L0(µ) such that∫

Ω
M
(
w

1/p1
1 w

−1/p0
0 )q |f |/λ

)
(w0/w1)q dµ

for some λ > 0. Here 1/q = 1/p0 − 1/p1 and M is an Orlicz function such that M−1(t)
� ϕ(t1/p0 , t1/p1) for t > 0.

We conclude this section by showing a particular application of Theorems 4.1 and 3.1 to
bilinear operators on Orlicz spaces. For others results we refer to [23].

13



Theorem 4.2. Let ϕ0, ϕ1, ϕ ∈ U be quasi-power functions such that ϕ(1, st) ≥ C ϕ0(1, s)ϕ1(1, t)
for some C > 0 and all s, t > 0. If 1 ≤ pj , qj <∞, 1 ≤ rj ≤ ∞ (j = 0, 1) are such that 1/rj =
1/pj+1/qj−1, then any operator T : (Lp0(u0), Lp1(u1))×(Lq0(v0), Lq1(v1))→ (Lr0(w0), Lr1(w1))
extends to a bounded bilinear operator from ϕ0(Lp0(u0), Lp1(u1)) × ϕ1(Lq0(v0), Lq1(v1)) into
ϕ(Lr0(w1), Lr1(w1)).

Proof. It is easy to see that if the convolution operator τ is bounded from E × F into G, then
it is bounded from E(u) × F (v) into G(w) whenever there exists a constant C > 0 such that
the sequences u = {uk}, v = {vk} and w = {wk} satisfy the condition wn ≤ Cun−k vk for some
C > 0 and all k, n ∈ Z. Our hypothesis implies that the convolution operator is bounded from
`pj × `qj into `rj (j = 0, 1), and thus Theorem 3.1 and Corollary 4.1 apply.

5 Bilinear interpolation between J and K-method spaces

In this section we show that bilinear interpolation is possible under weaker assumptions on
quasi-Banach couples. We recall that if X = (X0, X1) is a couple of quasi-Banach spaces and
E is a parameter of the K-method (i.e., E is a quasi-Banach sequence space on Z such that
{min(1, 2n)} ∈ E), then the K-method space is a quasi-Banach space KE(X) (denoted also by
XE) consists of all x ∈ X0 +X1 such that {K(2n, x;X)} ∈ E. The space is equipped with the
quasi-norm ‖x‖ := ‖{K(2n, x;X)}‖E .

In what follows the method of means JE(X) (on a quasi-Banach couple X) generated by
a couple E = (E,E(2n)) is called J-method space (on X) and is denoted by JE(X) and E is
called a parameter of the J-method on X (resp., a parameter of J-method if it is a parameter of
J-method on any quasi-Banach couple X). For the study of abstract J and K Banach method
spaces we refer to [5] and [3].

In the spirit of the previous terminology we introduce the following: Let X = (X0, X1),
Y = (Y0, Y1), and (Z0, Z1) be couples of quasi-Banach spaces. We say that a bilinear operator
T = (T0, T1) : X × Y → Z is right (resp., left) s-convex (0 < s ≤ 1) if there exists a constant
C > 0 such that, for any x ∈ X0 ∩ X1 and any finite sequence {yj} ⊂ Y0 ∩ Y1 (resp., any
y ∈ Y0 ∩ Y1 and any finite sequence {xj}nj=1 ⊂ X0 ∩X1) we have

∥∥ n∑
j=1

T0(x, yj)
∥∥
Z0
≤ C‖T0‖X0×Y0→Z0 ‖x‖X0

( n∑
j=1

‖yj‖sY0
)1/s

(
resp., ∥∥ n∑

j=1

T1(xj , y)
∥∥
Z1
≤ C ‖T1‖X1×Y1→Z1 ‖y‖Y1

( n∑
j=1

‖xj‖sX1

)1/s)
.

In the case when s = 1, we simply say that T is right (resp., left) convex.

Clearly if T ∈ B(X,Y ;Z) is (s, s)-convex, then it is right and left s-convex. In particular
if X = (X0, X1), Y = (Y0, Y1) are couples of Banach spaces of type 2 and Z is any couple of
natural quasi-Banach spaces, then any operator T ∈ B(X,Y ;Z) is convex.

If a quasi-Banach space X is intermediate with respect to a quasi-Banach couple (X0, X1),
the closed convex hull of X0 ∩X1 in X is denoted by X◦.

The following theorem is an extension of the classical Lions-Peetre result (see, e.g., Bergh
and Löfstrom [2], Theorem 4.4.1 and Exercise 3.13.5, or Lions and Peetre [20], Zafran [28] and
Astashkin [1]).
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Theorem 5.1. Let X = (X0, X1), Y = (Y0, Y1) and Z = (Z0, Z1) be quasi-Banach space.
Assume that Es is a parameter of the J-method space on X and both F s, Gs with 0 < s < 1 are
parameters of the K-method such that the convolution operator τ is bounded from E × F into
G. Then the following statements are valid:

(i) If T ∈ B(X,Y ;Z) is left s-convex, then it extends to a bilinear operator from JEs(X) ×
KF s(Y )◦ into KEs(Z).

(ii) If T ∈ B(X,Y ;Z) is right s-convex, then it extends to a bilinear operator from JEs(X)×
KF s(Y )◦ into KGs(Z).

Proof. (i). Fix ε > 0, x ∈ JEs(X) and y ∈ Y0 ∩ Y1. Then there exists {uk} ⊂ X0 ∩X1 such that
{J(2k, uk;X)} ∈ E with

‖x‖JE(X) ≤ (1 + ε) ‖{J(2k, uk;X)}‖E .

Let T 0 : (X0 + X1) × (Y0 ∩ Y1) → Z0 + Z1 be a natural bilinear extension of T . Since T is
s-convex, there exists a constant C > 0 such that for any n ∈ Z, y0 ∈ Y0 and y1 ∈ Y1 with
y0 + y1 = y, we have with ‖T‖ := maxj=0,1 ‖Tj‖Xj×Yj→Zj

K(2n, T 0(x, y);Z)s ≤ ‖T 0(x, y0)‖sZ0
+ 2sn ‖T 0(x, y1)‖sZ1

≤ C ‖T‖
(∑
k∈Z
‖uk‖sX0

‖y0‖sY0 + 2sn ‖uk‖sX1
‖y1‖sY1

)
≤ 21−sC ‖T‖

(∑
k∈Z

J(2k, uk;X)s (‖y0‖Y0 + 2n−k ‖uk‖Y1)s
)
.

Taking the infimum over all decompositions y = y0 + y1, we obtain

K(2n, T 0(x, y);Z)s ≤ 21−sC ‖T‖
∑
k∈Z

J(2k, uk;X)sK(2n−k, y;Y )s.

Combining these relations with the fact that the convolution operator τ is bounded from E×F
into G and ε is arbitrary we obtain

‖T 0(x, y)‖KGs (Z) ≤ 21−sC ‖T‖ ‖τ‖E×F→G ‖x‖JEs (X) ‖y‖KFs (X)

This concludes the proof of (i). Using a natural bilinear extension T 1 : (X0 ∩X1)× (Y0 +Y1)→
Z0 + Z1, we prove (ii) in a similar way.

From the point of view of applications in the above theorem the case E = F = G seems
interesting. Let us remark that from the proof of Lemma 3.2, it follows that for any quasi-power
function ρ and 0 < p ≤ ∞ the weighted quasi-Banach sequence space E = `p(1/ρ(2n)) is a
parameter of both the J and K-methods of interpolation. Moreover, we have JE(X) = KE(X)
for any quasi-Banach couple X = (X0, X1) (see [11], [22]), and therefore we write Xρ,p instead
of JE(X) or KE(X). It is easy to check that X0 ∩ X1 is dense in Xρ,p whenever 0 < p < ∞.
Combining these remarks with Theorem 5.1, we obtain immediately the following:

Corollary 5.1. If 1 ≤ p, q, r ≤ ∞ satisfy 1/r = 1/p + 1/q − 1, then any left or right convex
operator T ∈ B(X,Y ;Z) extends to a bilinear operator from Xθ,p × Y θ,q into Zθ,r for any
0 < θ < 1.

15



Corollary 5.2. If 0 < p ≤ ∞ and ρ is a quasi-power function such that

C(ρ) := sup
n∈Z

1

ρ(2n)

∥∥∥{ρ(2k) ρ(2n−k)
}
k

∥∥∥
(`p)′

<∞,

then any left or right convex operator T ∈ B(X,Y ;Z) extends to a bilinear operator from Xρ,p×
Y ρ,p into Zρ,p.

Proof. The proof closely follows the proof of the result of [1] for the Banach case. Let E :=
`p(1/ρ(2n)), 0 < p ≤ ∞. Fix x = {ξn} ∈ E and y = {ηn} ∈ E. Then we have

∣∣τ(x, y)n
∣∣ ≤ ∑

k∈Z

∣∣∣ ξk
ρ(2k)

ηn−k
ρ(2n−k)

∣∣∣ ρ(2k) ρ(2n−k))

≤
∥∥∥{ ξk

ρ(2k)

ηn−k
ρ(2n−k

}
k

∥∥∥
`p

∥∥∥{ρ(2k) ρ(2n−k)
}
k

∥∥∥
(`p)′

.

This implies that
‖τ(x, y)‖E ≤ C(ρ) ‖x‖E ‖y‖E .

Therefore the convolution operator τ is bounded from E×E into E, and Theorem 5.1 applies.

We conclude the paper by discussing some applications to Lorentz-Zygmund spaces. Let
(Ω, µ) be a measure space. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and γ ∈ R. Recall that the Lorentz-
Zygmund space Lp,q(logL)γ is defined as the space of all functions that satisfy

‖f‖p,q,γ :=
(∫ µ(Ω)

0

(
t1/p(1 + | log t|)γf∗(t)

)q dt
t

)1/q
<∞

for 0 < q <∞ and

‖f‖p,∞,γ := sup
0<t<µ(Ω)

(
t1/p(1 + | log t|)γ f∗(t)

)
<∞

whenever q =∞. This space coincides with the classical Lorentz space Lp,q if γ = 0.
In the next and final result all considered couples are defined on any finite measure space.

Theorem 5.2. Assume that 2 ≤ p0 < p1 < ∞, 2 ≤ q0 < q1 < ∞, 0 < r0 < r1 ≤ ∞ and
1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1, 1/r = (1 − θ)/r0 + θ/r1 with 0 < θ < 1.
If T : (Lp0 , Lp1) × (Lq0 , Lq1) → (Lr0 , Lr1), then T has a bounded extension from Lp,s(logL)γ ×
Lq,s(logL)γ to Lr,s(logL)γ for any γ < −1 and 0 < s ≤ ∞.

Proof. It is easy to check that if f(t) = tα(1 + | log t|)γ , where 0 < α < ∞, γ ∈ R, then
sf (t) = tα(1 + | log t|)|γ|. Thus f is a quasi-power function whenever 0 < α < 1, γ ∈ R. Further
it is well known (see, e.g., [25]) that if 0 < v, u0, u1 ≤ ∞, u0 6= u1 and f(t) = tθ(1 + | log t|)−γ
(0 < θ < 1, γ ∈ R), then

(Lu0 , Lu1)f,v = Lu,v(logL)γ

where 1/u = (1− θ)/u0 + θ/u1.
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Now, following [1] we define a function ψ by ψ(t) = ta lnc(C1/t) for 0 < t ≤ 1 and ψ(t) =
tb lnd(C2 t) for t > 1, where 0 < a < b < 1, c > 1, d > 1 and C1 > ec/a, C2 > edd/(1− b). Then
ψ is a quasi-power function and for 0 < p ≤ ∞ the function ρ defined by ρ(t) = t/ψ(t) satisfies

C(ρ) = sup
n∈Z

1

ρ(2n)

∥∥∥{ρ(2k) ρ(2n−k)
}
k

∥∥∥
(`p)′

<∞.

Observe that if A = (A0, A1) is a quasi-Banach space such that A1 ↪→ A0, the K functional
is constant for t > 1. This easily implies that for any quasi-power function ρ and 0 < p ≤ ∞
the real method space (A0, A1)ρ,p consists of all a ∈ A0 equipped with the quasi-norm

‖a‖ =
(∫ 1

0

(K(t, a;A)

ρ(t)

)pdt
t

)1/p
.

Now, fix 0 < θ < 1 and γ < −1. Taking a = 1 − θ and c = −γ, we conclude that the
real method space (A0, A1)ρ,p generated by a quasi-power function ρ = t/ψ(t) defined above
depends only on ρ restricted to (0, 1). Clearly on the interval (0, 1) the function ρ is equivalent
to f(t) = tθ(1 + | log t|)γ , thus using the interpolation formula of Merucci [25] and the fact that
our hypothesis 2 ≤ p0 <∞, 2 ≤ q0 <∞ implies by Kalton’s result [13] (by Lpj and Lqj , j = 0, 1
are of type 2) that T is bilinear convex, we may apply Corollary 5.2 to conclude the proof of
the theorem.

References

[1] S.V. Astashkin On interpolation of bilinear operators by the real method of interpolation,
Mat. Zametki 52 (1992), 15–24 (Russian).
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