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Abstract Weighted norm inequalities for maximal truncated operators of multilinear
singular integrals with non-smooth kernels in the sense of Duong, Grafakos, and
Yan are obtained; this class of operators extends the class of multilinear Calderón-
Zygmund operators introduced by Coifman and Meyer and includes the higher order
commutators of Calderón. The weighted norm inequalities obtained in this work
are with respect to the new class of multiple weights of Lerner, Ombrosi, Pérez,
Torres, and Trujillo-González. The key ingredient in the proof is the introduction of
a new multi-sublinear maximal operator that plays the role of the Hardy-Littlewood
maximal function in a version of Cotlar’s inequality. As applications of these results,
new weighted estimates for the m-th order Calderón commutators and their maximal
counterparts are deduced.

1 Introduction

We consider multilinear operators T initially defined on the m-fold product of Schwartz
spaces on Rn and taking values into the space of tempered distributions,

T :

m times︷ ︸︸ ︷
S × · · · × S → S ′.

Every such operator is associated with a distribution kernel on (Rn)m+1. Throughout the
paper, we assume that the distribution kernel coincides with a function K defined away
from the diagonal y0 = y1 = · · · = ym in (Rn)m+1, and T is associated with the kernel K
in the following way:

T (f1, · · · , fm)(x) =
∫

(Rn)m
K(x, y1, · · · , ym)f1(y1) · · · fm(ym) dy1 · · · dym, (1.1)

whenever x /∈ ∩mj=1 supp fj and f1, · · · , fm are C∞ functions with compact support.
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Recall that T is said to be an m-linear Calderón-Zygmund operator if it satisfies (1.1),
moreover, there exist positive constants A and ε such that K satisfies the size condition

|K(y0, y1, · · · , ym)| ≤ A(∑m
k,`=0 |yk − y`|

)mn (1.2)

for all (y0, y1, · · · , ym) ∈ (Rn)m+1 with y0 6= yj for some j ∈ {1, 2, · · · ,m}; and the
regularity condition

|K(y0, · · · , yj , · · · , ym)−K(y0, · · · , y′j , · · · , ym)| ≤
A|yj − y′j |ε(∑m

k,`=0 |yk − y`|
)mn+ε , (1.3)

whenever 0 ≤ j ≤ m and |yj−y′j | ≤ 1
2 max0≤k≤m |yj−yk|. We denote by m-CZK(A, ε) the

collection of all kernels K satisfying (1.2) and (1.3). A thorough study of such operators
was undertaken in [8].

Recently, Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [10] developed a multi-
ple weight theory that adapts to the multilinear Calderón-Zygmund operators. Precisely,
for ~P = (p1, · · · , pm) and 1

p = 1
p1

+ · · · + 1
pm

with 1 ≤ p1, · · · , pm < ∞, we say that
~w = (w1, · · · , wm) belongs to A~P if

[~w]A~P := sup
cubes Q

(
1
|Q|

∫
Q
ν~w

) m∏
j=1

(
1
|Q|

∫
Q
w

1−p′j
j

)p/p′j
<∞, (1.4)

where ν~w =
∏m
j=1w

p/pj
j ; when pj = 1, ( 1

|Q|
∫
Qw

1−p′j
j )p/p

′
j is understood as (infQwj)−p. In

[10, Corollary 3.9] the following multiple-weight estimate concerning the classical multi-
linear Calderón-Zygmund operators was obtained:

Theorem A Let T be an m-linear operator with a kernel K ∈ m-CZK(A, ε). Suppose
that for some 1 ≤ q1, · · · , qm <∞ and 1

q = 1
q1

+ · · ·+ 1
qm

, T maps Lq1 × · · · × Lqm to Lq.

Let 1 ≤ p1, · · · , pm < ∞, 1
p = 1

p1
+ · · · + 1

pm
, ~P = (p1, · · · , pm), ~w = (w1, · · · , wm) ∈ A~P

and ν~w =
∏m
j=1w

p/pj
j . Then

(i) T can be extended to a bounded operator from Lp1(w1)× · · · × Lpm(wm) to Lp(ν~w)
if all the exponents pj are strictly greater than 1;

(ii) T can be extended to a bounded operator from Lp1(w1)×· · ·×Lpm(wm) to Lp,∞(ν~w)
if some of the exponents pj are equal to 1.

In this paper, we replace the regularity condition (1.3) by weaker regularity conditions
on the kernel K given by assumptions (H1), (H2) and (H3) described below. These
assumptions were introduced in the work of Duong, Grafakos, and Yan; see [6, 5].

Let {At}t>0 be a class of integral operators, which play the role of the approximation to
the identity; see [4]. We always assume that the operators At are associated with kernels
at(x, y) in the sense that for all f ∈ ∪p∈[1,∞]L

p and x ∈ Rn,

Atf(x) =
∫

Rn
at(x, y)f(y) dy,
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and that the kernels at(x, y) satisfy the following size conditions

|at(x, y)| ≤ ht(x, y) := t−n/sh

(
|x− y|
t1/s

)
, (1.5)

where s is a positive fixed constant and h is a positive, bounded, decreasing function
satisfying that for some η > 0,

lim
r→∞

rn+ηh(rs) = 0. (1.6)

Assumption (H1) Assume that for each j ∈ {1, · · · ,m}, there exist operators {A(j)
t }t>0

with kernels {at}t>0 that satisfy conditions (1.5) and (1.6) with constants s and η, and
there exist kernels {K(j)

t }t>0 such that for all t > 0,

T (f1, · · · , A(j)
t fj , · · · , fm)(x)

=
∫

(Rn)m
K

(j)
t (x, y1, · · · , ym)f1(y1) · · · fm(ym) dy1 · · · dym

for all x /∈ ∩mj=1 supp fj and f1, · · · , fm are C∞ functions with compact support. Assume
also that there exist a non-negative function φ ∈ C(R) with suppφ ⊂ [−1, 1] and a positive
constant ε such that for all x, y1, · · · , ym ∈ Rn and t > 0 we have

|K(x, y1, · · · , ym)−K(j)
t (x, y1, · · · , ym)|

≤ A

(
∑m

k=1 |x− yk|)
mn

∑
1≤k≤m,k 6=j

φ

(
|yj − yk|
t1/s

)
+

Atε/s

(
∑m

k=1 |x− yk|)
mn+ε

for some A > 0, whenever 2t1/s ≤ |x− yj |.

Denote by m-GCZK0(A, s, η, ε) the collection of all kernels K that satisfy the size
estimate (1.2) and assumption (H1) with parameters m,A, s, η, ε.

The following weak type endpoint estimate, proved in [6, Proposition 2.1], is the anal-
ogous version of the m-linear Calderón-Zygmund theorem proved in [8, Theorem 1].

Theorem B Let T be an m-linear operator with a kernel K ∈ m-GCZK0(A, s, η, ε)
as in (1.1). Suppose that T maps Lq1 × · · · × Lqm to Lq with norm ‖T‖Lq1×···×Lqm→Lq ,
where 1 ≤ q1, · · · , qm <∞ and 1

q = 1
q1

+ · · ·+ 1
qm

. Then T can be extended to a bounded
operator from the m-fold product space L1 × · · · × L1 to L1/m,∞, with norm at most a
positive constant multiple of A+ ‖T‖Lq1×···×Lqm→Lq .

Recall that the j-th transpose T ∗j of T is defined via

〈T ∗j(f1, · · · , fm), h〉 = 〈T (f1, · · · , fj−1, h, fj+1, · · · , fm), fj〉

for all f1, · · · , fm, h in S(Rn). Notice that the kernel K∗j of T ∗j is related to the kernel
K of T via the identity

K∗j(x, y1, · · · , yj−1, yj , yj+1, · · · , ym) = K(yj , y1, · · · , yj−1, x, yj+1, · · · , ym).
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If a multilinear operator T maps a product of Banach spaces, X1 × · · · ×Xm, to another
Banach space X, then the transpose T ∗j maps X1× · · · ×Xj−1×X ×Xj+1× · · · ×Xm to
Xj . Moreover, the norms of T and T ∗j are equal. To maintain uniform notation, we may
occasionally denote T by T ∗0 and K by K∗0.

Assumption (H2) Assume that for each i ∈ {1, · · · ,m}, there exist operators {A(i)
t }t>0

with kernels {a(i)
t }t>0 that satisfy conditions (1.5) and (1.6) with constants s and η, and

that for every j ∈ {0, 1, · · · ,m}, there exist kernels {K∗,j,(i)t }t>0 such that for all t > 0
and all f1, · · · , fm, g in S(Rn) with ∩mk=1 supp fk ∩ supp g = ∅,

〈T ∗j(f1, · · · , A(i)
t fi, · · · , fm), g〉

=
∫

Rn

∫
(Rn)m

K
∗,j,(i)
t (x, y1, · · · , ym)f1(y1) · · · fm(ym)g(x) dy1 · · · dym dx.

Moreover, assume that there exist a non-negative function φ ∈ C(R) with suppφ ⊂ [−1, 1]
and a positive constant ε so that for every j ∈ {0, 1, · · · ,m}, every i ∈ {1, 2, · · · ,m}, all
t > 0 and all x, y1, · · · , ym ∈ Rn, we have∣∣∣K∗j(x, y1, · · · , ym)−K∗,j,(i)t x, y1, · · · , ym)

∣∣∣
≤ A

(
∑m

k=1 |x− yk|)
mn

∑
1≤k≤m, k 6=i

φ

(
|yi − yk|
t1/s

)
+

Atε/s

(
∑m

k=1 |x− yk|)
mn+ε

whenever t1/s ≤ |x− yi|/2.

Kernels K that satisfy the size estimate (1.2) and assumption (H2) with parameters
m,A, s, η, ε are called generalized Calderón-Zygmund kernels, and their collection is de-
noted by m-GCZK(A, s, η, ε). We say that T is of class m-GCZO(A, s, η, ε) if T is asso-
ciated with a kernel K in m-GCZK(A, s, η, ε). The following boundedness property was
proved in [6, Theorems 3.1 and 3.2].

Theorem C Assume that T is a multilinear operator in m-GCZO(A, s, η, ε). Assume
that for some 1 ≤ q1, q2, · · · , qm−1 ≤ ∞, qm ∈ (1,∞) and q ∈ (0,∞) satisfying 1

q =
1
q1

+ · · ·+ 1
qm

, T maps Lq1 × · · ·Lqm to Lq. Let 1/m ≤ p <∞, 1 ≤ p1, · · · , pm ≤ ∞ satisfy
1
p = 1

p1
+ · · ·+ 1

pm
. Then the following hold:

(i) T can be extended to a bounded operator from Lp1 × · · · × Lpm to Lp if all the
exponents pj are strictly greater than 1;

(ii) T can be extended to a bounded operator from Lp1 × · · · × Lpm to Lp,∞ if some of
the exponents pj are equal to 1.

In either case, the norm of T is bounded by C(A + ‖T‖Lq1×···×Lqm→Lq), where C is a
positive constant depending on A, s, η, ε.

As in [9], we define the maximal truncated operator by

T ∗(~f )(x) := sup
δ>0
|Tδ(f1, · · · , fm)(x)|, (1.7)
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where, using the notation ~y := (y1, · · · , ym) and d~y := dy1 · · · dym, we set

Tδ(f1, · · · , fm)(x) :=
∫

Pm
j=1 |x−yj |2>δ2

K(x, y1, · · · , ym)f1(y1) · · · fm(ym) d~y.

Such maximal truncated operators for multilinear integrals were first introduced in [9].
The size condition of K (see (1.2)) implies that T ∗(f1, · · · , fm) is well-defined pointwise
when every fj ∈ Lqj with qj ∈ [1,∞]; see [9, p. 1263].

It was proved in [9] that if T is an m-linear operator associated with a kernel K ∈ m-
CZK(A, ε), then boundedness of T on one point, say T : Lq1 × · · · × Lqm → Lq for some
1 ≤ q1, · · · , qm <∞ and 1

q = 1
q1

+· · ·+ 1
qm

, implies that T ∗ : Lp1(w)×· · ·×Lpm(w)→ Lp(w)
provided that w ∈ ∩1≤j≤mApj , where 1 < p1, · · · , pm < ∞ and 1

p = 1
p1

+ · · · + 1
pm

. In
[5], all results of [9] were generalized to multilinear operators of class m-GCZO(A, s, η, ε)
with additional properties that their kernels satisfy the following assumption.

Assumption (H3) Assume that there exist operators {Bt}t>0 with kernels {bt}t>0 that
satisfy conditions (1.5) and (1.6) with constants s and η, and also that there exist kernels
{K(0)

t }t>0 such that for all x, y1, · · · , ym ∈ Rn,

K
(0)
t (x, y1, · · · , ym) =

∫
Rn
K(z, y1, · · · , ym)bt(x, z) dz

and that there exist a non-negative function φ ∈ C(R) with suppφ ⊂ [−1, 1] and a positive
constant ε such that for all x, y1, · · · , ym ∈ Rn and t > 0 we have

|K(x, y1, · · · , ym)−K(0)
t (x, y1, · · · , ym)|

≤ A

(
∑m

k=1 |x− yk|)
mn

∑
1≤k≤m

φ

(
|x− yk|
t1/s

)
+

Atε/s

(
∑m

k=1 |x− yk|)
mn+ε (1.8)

for some A > 0, whenever 2t1/s ≤ max1≤j≤m |x − yj |. Moreover, assume that for all
x, y1, · · · , ym ∈ Rn,

|K(0)
t (x, y1, · · · , ym)| ≤ A

(
∑m

k=1 |x− yk|)
mn , (1.9)

whenever 2t1/s ≤ min1≤j≤m |x− yj |, and for all x, x′, y1, · · · , ym ∈ Rn,

|K(0)
t (x, y1, · · · , ym)−K(0)

t (x′, y1, · · · , ym)| ≤ Atε/s

(
∑m

k=1 |x− yk|)
mn+ε , (1.10)

whenever 2|x− x′| ≤ t1/s and 2t1/s ≤ min1≤j≤m |x− yj |.

Using some ideas of [9, 5], we obtain the following multiple weighted variant of [5,
Proposition 3.3].
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Theorem 1.1 Assume that T is a multilinear operator in m-GCZO(A, s, η, ε) and its
kernel satisfies assumption (H3). Moreover, for some 1 ≤ q1, q2, · · · , qm−1 ≤ ∞, qm ∈
(1,∞) and q ∈ (0,∞) satisfying 1

q = 1
q1

+ · · · + 1
qm

, T maps Lq1 × · · ·Lqm to Lq. Let

1 ≤ p1, · · · , pm < ∞, 1
p = 1

p1
+ · · ·+ 1

pm
, ~w = (w1, · · · , wm) ∈ A~P with ~P = (p1, · · · , pm),

and T ∗ be as in (1.7). Then,

(i) T ∗ can be extended to a bounded operator from Lp1(w1)× · · · × Lpm(wm) to Lp(ν~w)
if all the exponents pj are strictly greater than 1;

(ii) T ∗ can be extended to a bounded operator from Lp1(w1)×· · ·×Lpm(wm) to Lp,∞(ν~w)
if some exponent pj is equal to 1.

In either case, the norm of T ∗ is bounded by C(A + ‖T‖Lq1×···×Lqm→Lq), where C is a
positive constant depending on A, s, η, ε and [w]A~P .

We remark that under the same assumptions as in Theorem 1.1 on T , Duong et al. in
[5, Proposition 3.3] proved that if w1 = · · · = wm = ν~w ∈ ∩1≤j≤mApj , then (i) of Theorem
1.1 holds.

To prove Theorem 1.1, we introduce in (2.2) modified versions of the multilinear max-
imal operator M used in [10, Definition 3.1] (see also (2.1) below), called M`, with
` ∈ {0, 1, . . . ,m}. In Proposition 2.1 below, we show that these new operators M` have
the same weighted boundedness properties as those of M. The proof of Theorem 1.1 is
based on the boundedness properties of M` and the following Cotlar-type inequality:

T ∗(~f )(x) ≤ C

{[
M(|T (~f )|γ)(x)

]1/γ
+ (A+W )

m∑
`=1

M`(~f )(x)

}
,

where γ is some small positive number; see Proposition 3.1 below. Consequently, this
inequality implies that Theorem 1.1 holds when all wj ≡ 1, 1 ≤ j ≤ m. The general result
of Theorem 1.1 is proved in Section 4.

The weighted boundedness of T follows from Theorem 1.1 and a standard argument as
that used in [9, Corollary 3.5].

Theorem 1.2 With the hypothesis of Theorem 1.1, the following hold:

(i) T extends to a bounded operator from Lp1(w1)× · · · × Lpm(wm) to Lp(ν~w) if all the
exponents pj are strictly greater than 1;

(ii) T extends to a bounded operator from Lp1(w1)× · · · ×Lpm(wm) to Lp,∞(ν~w) if some
exponent pj is equal to 1.

In either case, the norm of T is bounded by C(A + ‖T‖Lq1×···×Lqm→Lq), where C is a
positive constant depending on A, s, η, ε and [w]A~P .

Remark 1.1 Since classical Calderón-Zygmund kernels K in m-CZK(A, ε) satisfy as-
sumptions (H1), (H2) and (H3), Theorems 1.1 and 1.2 are also valid for the maximal
truncated operators of m-linear Calderón-Zygmund singular integrals.
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Finally, we apply Theorems 1.1 and 1.2 to deduce the multiple weighted norm inequal-
ities for the commutator of A. P. Calderón and the corresponding truncated maximal
operators. Recall that the m-th Calderón commutator is given by

Cm+1(a1, · · · , am, f)(x) :=
∫

R

∏m
j=1(Aj(x)−Aj(y))

(x− y)m+1
f(y) dy, ∀x ∈ R, (1.11)

where A′j =: aj for all j ∈ {1, 2, · · · ,m}. These operators first appeared in the study
of Cauchy integrals along Lipschitz curves and, in fact, led to the first proof of the L2-
boundedness of the latter.

When m = 1, it is well known that C2 is bounded from Lp(R)× Lq(R) to Lr(R) when
1 < p, q ≤ ∞ and 0 < r < ∞ satisfying 1

r = 1
p + 1

q ; and moreover, it is bounded from
Lp(R) × Lq(R) to Lr,∞(R) if either p = 1 or q = 1 and in particular it is bounded from
L1(R) × L1(R) to L1/2,∞(R); see [1] and [2]. The corresponding result that C3 maps
L1 × L1 × L1 → L1/3,∞ was proved by Coifman and Meyer; see [3], while the analogous
result for the m-th commutator Cm+1, m ≥ 3, appeared in Duong, Grafakos, and Yan [6].

These estimates are consequences of the boundedness of the commutators Cm+1 at a
single m+ 1 tuple of points, such as

‖Cm+1(a1, · · · , am, f)‖L2 ≤ Cm‖f‖L2

m∏
j=1

‖aj‖L∞ ,

a classical inequality proved by Calderón for m = 1, and Coifman and Meyer for m ≥ 2.
Define e(x) := χ(0,∞)(x) for all x ∈ R \ {0}. Since A′j = aj , we write Cm+1 in (1.11) as

Cm+1(a1, · · · , am, f)(x)

=
∫

Rm+1

K(x, y1, · · · , ym+1)a1(y1) · · · am(ym)fm+1(ym+1) dy1 · · · dym+1,

where the kernel K is

K(x, y1, · · · , ym+1) =
(−1)me(ym+1−x)

(x− ym+1)m+1

m∏
j=1

χ(min{x, ym+1},max{x, ym+1})(yj). (1.12)

It was proved in [6, Theorem 4.1] that such a kernel K is of class (m+1)-GCZK(A, 1, 1, 1)
for some constant A > 0. Consequently, for 1 ≤ p1, · · · , pm+1 ≤ ∞ and 0 < p < ∞
satisfying 1

p = 1
p1

+ · · ·+ 1
pm+1

, the m-th commutator Cm+1 maps Lp1(R)× · · · ×Lpm+1(R)
to Lp,∞(R); and moreover, it maps Lp1(R) × · · · × Lpm+1(R) to Lp(R) if all pj ∈ (1,∞);
see [6, Corollary 4.2]. It was proved in [5, Proposition 4.1] that the kernel K as in (1.12)
satisfies assumption (H3). As an application of Theorems 1.1 and 1.2 we have the following
conclusion.

Corollary 1.1 Let Cm+1 be as in (1.11) and C∗m+1 the corresponding maximal truncated
operator as defined in (1.7). Let 1 ≤ p1, · · · , pm+1 < ∞, 1

p = 1
p1

+ · · · + 1
pm+1

and

~w = (w1, · · · , wm+1) ∈ A~P with ~P = (p1, · · · pm+1). Then,
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(i) both Cm+1 and C∗m+1 extend to bounded operators from Lp1(w1)×· · ·×Lpm+1(wm+1)
to Lp(ν~w) if all the exponents pj are strictly greater than 1;

(ii) both Cm+1 and C∗m+1 extend to bounded operators from Lp1(w1)×· · ·×Lpm+1(wm+1)
to Lp,∞(ν~w) if some exponent pj is equal to 1.

2 Multilinear maximal operators

Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [10] introduced the following
multi(sub)linear operator M in order to control the multilinear Calderón-Zygmund op-
erators. The operator M is defined by that for all locally integrable functions ~f =
(f1, · · · , fm) and x ∈ Rn,

M(~f )(x) := sup
Q3x

m∏
j=1

1
|Q|

∫
Q
|fj(yj)| dyj , (2.1)

where the supremum is taken over all cubes Q containing x; see [10, Definition 3.1].
Characterizations of the multiple weights in terms of M are proved in Theorem 3.3 and
Theorem 3.7 of [10].

Lemma 2.1 Let 1 ≤ p1, · · · , pm <∞, 1
p = 1

p1
+ · · ·+ 1

pm
, and ~P = (p1, · · · , pm).

(i) If 1 < p1, · · · , pm <∞, then M is bounded from Lp1(w1)×· · ·×Lpm(wm) to Lp(ν~w)
if and only if ~w = (w1, · · · , wm) ∈ A~P .

(ii) If 1 ≤ p1, · · · , pm <∞, thenM is bounded from Lp1(w1)×· · ·×Lpm(wm) to Lp,∞(ν~w)
if and only if ~w = (w1, · · · , wm) ∈ A~P .

For any τ > 0 and cube Q, denote by `(Q) the side length of Q, and by τQ the cube
with the same center as Q and of side length τ`(Q). Motivated by [10], for any 1 ≤ ` < m,
we define

M`(~f )(x) := sup
Q3x

∞∑
k=0

2−kn`
(∏̀
i=1

1
|Q|

∫
Q
|fi|

) m∏
j=`+1

1
|2kQ|

∫
2kQ
|fj |

 , (2.2)

where the supremum is taken over all cubes Q containing x. For the convenience of
notation, we set Mm(~f ) :=M(~f ).

Recall that the Hardy-Littlewood maximal function M is defined for all locally inte-
grable functions f and all x ∈ Rn by

M(f)(x) := sup
Q3x

1
|Q|

∫
Q
|f(y)| dy.

Obviously, for all 1 ≤ ` ≤ m, ~f = (f1, · · · , fm) and x ∈ Rn,

M(~f )(x) ≤M`(~f )(x) ≤ 2
m∏
j=1

M(fj)(x).

The modified maximal operatorM` has the same boundedness properties as those ofM.
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Proposition 2.1 Let 1 ≤ p1, · · · , pm < ∞, 1
p = 1

p1
+ · · · + 1

pm
, ~P = (p1, · · · , pm) and

~w ∈ A~P . Let 1 ≤ ` < m and M` be as in (2.2). Then,
(i) M` is bounded from Lp1(w1)× · · · × Lpm(wm) to Lp(ν~w) if all the exponents pj are

strictly greater than 1;
(ii) M` is bounded from Lp1(w1)× · · · ×Lpm(wm) to Lp,∞(ν~w) if some of the exponents

pj are equal to 1.

Proof. We first prove (ii). It suffices to show that

M`(~f )(x) ≤ C
m∏
j=1

{
M c
ν~w

(|fj |pjwj/ν~w)(x)
}1/pj , (2.3)

where M c
ν~w

denotes the weighted centered Hardy-Littlewood maximal function, that is,

M c
ν~w

(f)(x) := sup
r>0

1
ν~w(Q(x, r))

∫
Q(x,r)

|f(y)|ν~w(y) dy,

where Q(x, r) denotes the cube centered at x and of side length r. In fact, if (2.3) holds,
then by an argument similar to that used in the proof of [10, Theorem 3.3] we obtain (ii).

Now we show (2.3). For any given j ∈ {1, · · · ,m}, by Hölder’s inequality, we obtain
that for all cubes Q,

1
|Q|

∫
Q
|f(yj)| dyj

≤ 1
|Q|

[∫
Q
|f(yj)|pjwj(yj) dyj

]1/pj [∫
Q
wj(yj)−p

′
j/pj dyj

]1/p′j

≤
{
M c
ν~w

(|fj |pjwj/ν~w)(x)
}1/pj

[
ν~w(Q)
|Q|

]1/pj [ 1
|Q|

∫
Q
wj(yj)−p

′
j/pj dyj

]1/p′j
,

where ( 1
|Q|
∫
Qwj(yj)

−p′j/pj dyj)1/p′j is understood as (essinf Qwj)−1 if pj = 1. Therefore,

M`(~f )(x) ≤
m∏
j=1

{
M c
ν~w

(|fj |pjwj/ν~w)(x)
}1/pj

×


∞∑
k=0

2−kn`
(∏̀
j=1

[
ν~w(Q)
|Q|

]1/pj [ 1
|Q|

∫
Q
wj(yj)−p

′
j/pj dyj

]1/p′j

×
m∏

j=`+1

[
ν~w(2kQ)
|2kQ|

]1/pj [ 1
|2kQ|

∫
2kQ

wj(yj)−p
′
j/pj dyj

]1/p′j
) . (2.4)

For k ≥ 0, denote by I`,k the quantity in the square bracket. Notice that for all k ≥ 0,
(essinf Qwj)−1 ≤ (essinf 2kQwj)−1. Then,

I`,k ≤ [~w]1/pA~P

∏̀
j=1

[
ν~w(Q)
|Q|

]1/pj [ |2kQ|
|Q|

]1/p′j
[
|2kQ|

ν~w(2kQ)

]1/pj
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≤ [~w]1/pA~P
2kn`

[
ν~w(Q)
ν~w(2kQ)

]P`
j=1

1
pj

.

Since ν~w ∈ Amp ⊂ A∞ (see [10, Theorem 3.6]), properties of A∞ weights imply that there
exists some θ ∈ (0, 1) such that for all cubes Q and all sets E ⊂ Q,

ν~w(E)
ν~w(Q)

≤ C
(
|E|
|Q|

)θ
. (2.5)

Therefore,

∞∑
k=0

2−kn`I`,k ≤ C
∞∑
k=0

[
ν~w(Q)
ν~w(2kQ)

]P`
j=1

1
pj

≤ C. (2.6)

Inserting (2.6) into (2.4) we obtain (2.3). Hence, (ii) holds.

To prove (i), the assumption ~w ∈ A~P and [10, Theorem 3.6] imply that w
− 1
pj−1

j satisfies
the reverse Hölder inequality, that is, there exist rj > 1 and C̃ > 0 such that for all
r ∈ [1, rj ] and all cubes Q,[

1
|Q|

∫
Q
wj(x)

− r
pj−1 dx

]1/r

≤ C̃

|Q|

∫
Q
wj(x)

− 1
pj−1 dx.

Let ξ := min1≤j≤m rj and

q := max
1≤j≤m

pm

pm+ (1− 1/ξ)(pj − 1)
.

Observe that q < 1 and qpj > 1 for all 1 ≤ j ≤ m. We claim that for all x ∈ Rn,

M`(~f )(x) ≤ C
m∏
j=1

{
M c
ν~w

([|fj |pjwj/ν~w]q)(x)
} 1
qpj . (2.7)

If (2.7) holds, then by Hölder’s inequality and boundedness of M c
ν~w

together with an
argument as that used in the proof of [10, theorem 3.7] we obtain (i). Therefore, it suffices
to show (2.7).

The estimates of (4.12) through (4.14) in [10] imply that for all cubes Q and 1 ≤ j ≤ m,

1
|Q|

∫
Q
|fj(yj)| dyj

≤ C̃

|Q|ν~w(Q)
1−q
qpj

[∫
Q
|fj(yj)|qpjwj(yj)qν~w(yj)1−q dyj

] 1
qpj

[∫
Q
wj(yj)

− 1
pj−1 dyj

]1−1/pj

≤ C̃
{
M c
ν~w

([|fj |pjwj/ν~w(yj)]q)(x)
} 1
qpj

[
ν~w(Q)
|Q|

]1/pj [ 1
|Q|

∫
Q
wj(yj)−p

′
j/pj dyj

]1/p′j
.
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From this, the definition of M` and (2.6), it follows that

M`(~f )(x) ≤ C̃
{
M c
ν~w

([|fj |pjwj/ν~w]q)(x)
} 1
qpj

{ ∞∑
k=0

2−kn`I`,k

}

≤ C
{
M c
ν~w

([|fj |pjwj/ν~w]q)(x)
} 1
qpj ,

which proves (2.7). This finishes the proof of (i) and hence Proposition 2.1. �

3 Cotlar’s inequality

The main aim of this section is to prove the following Cotlar-type inequality.

Proposition 3.1 Suppose that T is as in Theorem 1.1. Then, for all γ > 0, there exists
a positive constant C = C(γ, n,m, η, s, ε, ‖φ‖L∞) such that for all ~f in the product space
Lp1 × · · · × Lpm with 1 ≤ p1, · · · , pm <∞ and all x ∈ Rn,

T ∗(~f )(x) ≤ C

{[
M(|T (~f )|γ)(x)

]1/γ
+ (A+W )

m∑
`=1

M`(~f )(x)

}
, (3.1)

where W := ‖T‖L1×···×L1→L1/m,∞.

Proof. By Hölder’s inequality, it suffices to show that (3.1) holds for γ ∈ (0, 1
m). Fix

γ ∈ (0, 1
m) and x ∈ Rn. Set

Sδ(x) :=
{
~y = (y1, · · · , ym) ∈ (Rn)m : min

1≤j≤m
|x− yj | ≤ δ/

√
m

}
, (3.2)

and

Uδ(x) :=
{
~y ∈ Sδ(x) :

m∑
j=1

|x− yj |2 > δ2

}
.

From (1.2), it follows that

sup
δ>0

∣∣∣∣∣
∫
Uδ(x)

K(x, y1, · · · , ym)f1(y1) · · · fm(ym) d~y

∣∣∣∣∣
≤ sup

δ>0

∫
Uδ(x)

A(∑m
j=1 |x− yj |

)mn |f1(y1) · · · fm(ym)| d~y. (3.3)

For any y ∈ Uδ(x), there exist j1, · · · , j` with ` < m such that |x−yj | ≤ δ/
√
m if and only

if j ∈ {j1, · · · , j`}. Thus, the last integral in (3.3) can be written as a sum of integrals over
sets Rj1,··· ,j` in (Rn)m for some {j1, · · · , j`} ⊂ {1, 2, · · · ,m} and 1 ≤ ` < m such that for
~y := (y1, · · · , ym) ∈ Rj1,··· ,j` , we have that |x− yj | ≤ δ/

√
m if and only if j ∈ {j1, · · · , j`}.

Set {k1, · · · , km−`} := {1, 2, · · · ,m} \ {j1, · · · , j`} and

Ωk1,··· ,km−` :=
{

(yk1 , · · · , ykm−`) ∈ (Rn)m−` : |x− yki | > δ/
√
m, ∀ i = 1, 2, · · · ,m− `

}
.
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Then,∫
Rj1,··· ,j`

A(∑m
j=1 |x− yj |

)mn |f1(y1) · · · fm(ym)| d~y

≤
∏̀
i=1

∫
|x−yji |≤δ/

√
m
|fji(yji)| dyji

∫
Ωk1,··· ,km−`

A
∏m−`
i=1 |fki(yki)|(∑m−`

i=1 |x− yki |
)mn dyk1 · · · dykm−` .

Since ∫
Ωk1,··· ,km−`

A
∏m−`
i=1 |fki(yki)|(∑m−`

i=1 |x− yki |
)mn dyk1 · · · dykm−`

≤ C
∞∑
ν=0

A

(2νδ)mn

∫
2νδ/

√
m<

Pm−`
i=1 |x−yki |≤2ν+1δ/

√
m

m−`∏
i=1

|fki(yki)| dyk1 · · · dykm−` ,

we have ∫
Rj1,··· ,j`

A(∑m
j=1 |x− yj |

)mn |f1(y1) · · · fm(ym)| d~y

≤ CA
∞∑
ν=0

2ν(m−`)

(2ν)mn
∏̀
i=1

1
|B(x, δ/

√
m)|

∫
|x−yji |≤δ/

√
m
|fji(yji)| dyji

×
m−`∏
i=1

1
B(x, 2ν+1δ/

√
m)

∫
|x−yki |≤2ν+1δ/

√
m
|fki(yki)| dyk1 · · · dykm−`

≤ CAM`(~f )(x),

which combined with (3.3) gives that

sup
δ>0

∣∣∣∣ ∫
Uδ(x)

K(x, y1, · · · , ym)f1(y1) · · · fm(ym) d~y
∣∣∣∣ ≤ CAm−1∑

`=1

M`(~f )(x). (3.4)

Also, notice that

|Tδ(~f )(x)| ≤
∣∣∣∣ ∫

Uδ(x)
K(x, y1, · · · , ym)f1(y1) · · · fm(ym) d~y

∣∣∣∣
+
∣∣∣∣ ∫
{~y/∈Sδ(x):

Pm
j=1 |x−yj |2>δ2}

K(x, y1, · · · , ym)f1(y1) · · · fm(ym) d~y
∣∣∣∣.

By this and (3.4), it suffices to prove that (3.1) holds with T ∗(~f ) replaced by

T̃ ∗(~f )(x) := sup
δ>0
|T̃δ(f1, · · · , fm)(x)|, (3.5)
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where

T̃δ(f1, · · · , fm)(x) :=
∫
~y/∈Sδ(x)

K(x, y1, · · · , ym)f1(y1) · · · fm(ym) d~y.

Fix δ > 0 and let B := B(x, δ
9
√
m

) be the ball centered at x with radius δ
9
√
m

. Since
~f ∈

∏m
j=1 L

pj , it follows from Theorem C that T (~f ) ∈ Lp,∞, where 1
p = 1

p1
+ · · · + 1

pm
,

and consequently T (~f ) is finite almost everywhere. Set

Gδ(~f )(x, z) :=
∫
~y/∈Sδ(x)

K(z, y1, · · · , ym)f1(y1) · · · fm(ym) d~y ∀ z ∈ Rn,

and

Ũδ(x) :=
{
~y ∈ (Rn)m : min

1≤j≤m
|x− yj | ≤

δ√
m
< max

1≤j≤m
|x− yj |

}
.

Observe that for all z ∈ B we have

|T̃δ(~f )(x)| ≤ |T̃δ(~f )(x)−Gδ(~f )(x, z)|+ |T (~f )(z)− T (~f0)(z)|

+

∣∣∣∣∣
∫

eUδ(x)
K(z, y1, · · · , ym)f1(y1) · · · fm(ym) d~y

∣∣∣∣∣ , (3.6)

where ~f0 := (f1χ9B, · · · , fmχ9B). By an argument similar to the proof of (3.4) we obtain
that for all z ∈ B(x, δ

9
√
m

),∣∣∣∣∣
∫

eUδ(x)
K(x, y1, · · · , ym)f1(y1) · · · fm(ym) d~y

∣∣∣∣∣ ≤ CA
m−1∑
`=1

M`(~f )(x). (3.7)

For all z ∈ B and all t > 0, write

|T̃δ(~f )(x)−Gδ(~f )(x, z)|

≤
∫
~y/∈Sδ(x)

|K(x, y1, · · · , ym)−K(0)
t (x, y1, · · · , ym)|

m∏
j=1

|fj(yj)| d~y

+
∫
~y/∈Sδ(x)

|K(0)
t (x, y1, · · · , ym)−K(0)

t (z, y1, · · · , ym)|
m∏
j=1

|fj(yj)| d~y

+
∫
~y/∈Sδ(x)

|K(0)
t (z, y1, · · · , ym)−K(z, y1, · · · , ym)|

m∏
j=1

|fj(yj)| d~y

=: Z1 + Z2 + Z3.

Let t := ( δ
4
√
m

)s. Then, for all z ∈ B and ~y /∈ Sδ(x),

4|z − x| < 4δ
9
√
m
< 2t1/s ≤ min

{
min

1≤j≤m
|z − yj |, min

1≤j≤m
|x− yj |

}
.
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Thus, we can apply assumption (H3) to estimate Z1,Z2 and Z3. In fact, by (1.8), we have

Z1 ≤
∫
~y/∈Sδ(x)

A

(
∑m

k=1 |x− yk|)
mn

m∑
k=1

φ

(
|x− yk|
t1/s

) m∏
j=1

|fj(yj)| d~y

+
∫
~y/∈Sδ(x)

Atε/s

(
∑m

k=1 |x− yk|)
mn+ε

m∏
j=1

|fj(yj)| d~y

=: Z1,1 + Z1,2.

For all 1 ≤ k ≤ m, since ~y /∈ Sδ(x), it follows that |x − yk| > δ√
m
> t1/s, which together

with the support condition of φ implies that φ
(
|x−yk|
t1/s

)
= 0. Hence, Z1,1 = 0. From this

and the definition of Sδ(x), we deduce that

Z1 = Z1,2 ≤
∞∑
ν=0

∫
2νδ/

√
m<

Pm
k=1 |x−yk|≤2ν+1δ/

√
m

CAδε

(
∑m

k=1 |x− yk|)
mn+ε

m∏
j=1

|fj(yj)| d~y

≤
∞∑
ν=0

CAδε

(2νδ)mn+ε

∫
Pm
k=1 |x−yk|≤2ν+1δ/

√
m

m∏
j=1

|fj(yj)| d~y

≤
∞∑
ν=0

2−νε
m∏
j=1

1
|B(x, 2ν+1δ/

√
m)|

∫
B(x,2ν+1δ/

√
m)
|fj(yj)| dyj

≤ CAM(~f )(x).

To estimate Z2, notice that (1.10) implies that

Z2 ≤
∫
~y/∈Sδ(x)

Atε/s

(
∑m

k=1 |x− yk|)
mn+ε

m∏
j=1

|fj(yj)| d~y = Z1,2 ≤ CAM(~f )(x).

An argument similar to that of Z1 gives that Z3 ≤ CAM(~f )(x).
Combining the estimates of Z1 through Z3, (3.6) and (3.7) gives that for all z ∈ B,

|T̃δ(~f )(x)| ≤ CA
m∑
`=1

M`(~f )(x) + |T (~f )(z)|+ |T (~f0)(z)|. (3.8)

Raising (3.8) to the power γ, taking integral average over the ball B with respect to the
variable z, we obtain

|T̃δ(~f )(x)|γ ≤

[
CA

m∑
`=1

M`(~f )(x)

]γ
+M(|T (~f )|γ)(x) +

1
|B|

∫
B
|T (~f0)(z)|γ dz.(3.9)

Since T is bounded from L1 × · · · × L1 to L1/m,∞, by Kolmogorov’s inequality, we have∫
B
|T (~f0)(z)|γ dz = mγ

∫ ∞
0

λmγ−1|{z ∈ B : |T (~f0)(z)|1/m > λ}| dλ
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≤ mγ
∫ ∞

0
λmγ−1 min

|B|, λ−1W 1/m
m∏
j=1

‖fjχ9B‖1/mL1

 dλ

≤ C|B|1−mγW γ
m∏
j=1

‖fjχ9B‖γL1 ,

which further implies that{
1
|B|

∫
B
|T (~f0)(z)|γ dz

}1/γ

≤ CW
m∏
j=1

‖fjχ9B‖L1

|B|
≤ CWM(~f )(x).

Inserting this estimate into (3.9) we obtain (3.1), which concludes the proof of Proposition
3.1. �

Corollary 3.1 Let T be as in Theorem 1.1 and T ∗ as in (1.7), 1 ≤ p1, · · · , pm <∞ and
1
p = 1

p1
+ · · ·+ 1

pm
. Then,

(i) T ∗ has a bounded extension from Lp1 × · · · × Lpm to Lp if all the exponents pj are
strictly greater than 1;

(ii) T ∗ has a bounded extension from Lp1 × · · · × Lpm to Lp,∞ if some of the exponents
pj are equal to 1.

In either case, the norm of T ∗ is bounded by C(A + ‖T‖Lq1×···×Lqm→Lq), where C is a
positive constant depending on A, s, η, ε.

Proof. In fact, (i) and (ii) follow from Theorem C, Propositions 2.1 and 3.1, and an
argument similar to that used in [9, Corollary 2.3]. We omit the details. �

4 Weighted norm inequalities

In what follows, we denote by L∞c the collection of all functions in L∞ with compact
support.

Proposition 4.1 Let T be as in Theorem 1.1 and T̃ ∗ as in (3.5). Let w ∈ A∞ and
θ be given as in (2.5). Then, there exists a positive constant C such that for all γ >
0 sufficiently small, and all α > 0, and ~f = (f1, · · · , fm) in the m-fold product space
L∞c × · · · × L∞c ,

w

({
x ∈ Rn : T̃ ∗(~f )(x) > 2m+1α,

m∑
`=1

M`(~f )(x) ≤ γα

})
≤ C(A+W )θ/mγθ/mw

({
x ∈ Rn : T̃ ∗(~f )(x) > α

})
, (4.1)

where W := ‖T‖Lq1×···×Lqm→Lq .

Proof. Set Ω := {x ∈ Rn : T̃ ∗(~f )(x) > α}. Since Ω is an open proper subset of Rn, we
consider the Whitney decomposition of Ω. We write
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(a) Ω =
⋃
ν Qν and these Qν ’s have disjoint interiors;

(b)
√
n`(Qν) ≤ dist(Qν ,Ω{) ≤ 4

√
n`(Qν);

(c) If the boundaries of two cubes Qν and Qµ touch, then 1/4 ≤ `(Qν)/`(Qµ) ≤ 4;

(d) For any given Qν there exist at most 12n Qµ’s that touch it.

By this and (2.5), it suffices to show that for all Qν ,∣∣∣∣∣
{
x ∈ Qν : T̃ ∗(~f )(x) > 2m+1α,

m∑
`=1

M`(~f )(x) ≤ γα

}∣∣∣∣∣
≤ C(A+W )1/mγ1/m|Qν |. (4.2)

Denote by E the set in the left hand side of (4.2). We may as well assume that there
exists ξν ∈ Qν such that

∑m
`=1M`(~f )(ξν) ≤ γα; otherwise E = ∅ and (4.2) holds trivially.

Property (b) implies that 9
√
nQν intersects Ω{. For each Whitney cube Qν we fix

Q∗ν := 100nQν and yν ∈ Ω{ ∩Q∗ν such that

max
z∈Qν

|z − yν | ≤ 9n`(Qν) < 40n`(Qν) < dist(yν , (Q∗ν){). (4.3)

For each j ∈ {1, · · · ,m}, we set f0
j := fjχQ∗ν and f∞j := fj − f0

j . Then E is contained
in the union of 2m sets of the form

Eα1,··· ,αm :=

{
x ∈ Qν : T̃ ∗(fα1

1 , · · · , fαmm )(x) > 2α,
m∑
`=1

M`(~f )(x) ≤ γα

}
,

where αj ∈ {0,∞} for all 1 ≤ j ≤ m. Applying the boundedness of T ∗ from L1× · · · ×L1

to L1/m,∞ (see Corollary 3.1) we obtain

|E0,··· ,0| ≤
C(A+W )1/m

α1/m

∫
(Rn)m

m∏
j=1

|f0
j (yj)| d~y

1/m

≤ C(A+W )1/m

α1/m

[
M(~f )(ξν)

]1/m
|Qν |

≤ C(A+W )1/mγ1/m|Qν |.

Thus, to obtain (4.1), it suffices to show that the remaining 2m − 1 sets Eα1,··· ,αm are
empty if γ is chosen to be very small.

Suppose that there are exactly ` of {α1, · · · , αm} are 0, where 1 ≤ ` < m. By symmetry,
we may as well assume that α1 = · · · = α` = 0 and α`+1 = · · · = αm = ∞. Then, for all
δ > 0, x ∈ Qν and Sδ(x) as in (3.2),∣∣∣∣∣∣
∫
~y/∈Sδ(x)

K(x, ~y )
∏̀
j=1

f0
j (yj)

m∏
i=`+1

f∞i (yi) d~y

∣∣∣∣∣∣
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≤ CA
∏̀
j=1

∫
Q∗ν

|fj(yj)| dyj
∫

(Rn\Q∗ν)m−`

∏m
i=`+1 |fi(yi)|

(
∑m

i=`+1 |x− yi|)mn
dy`+1 · · · dym

≤ CA
∞∑
k=0

∏̀
j=1

∫
Q∗ν

|fj(yj)| dyj

×
∫
{(y`+1,··· ,ym)∈(Rn)m−`: 2k−1`(Q∗ν)<

Pm
i=`+1 |x−yi|≤2k`(Q∗ν)}

∏m
i=`+1 |fi(yi)|

(2k`(Q∗ν))mn
dy`+1 · · · dym

≤ CAM`(~f )(ξν)
≤ CAγα,

which is bounded by 2α if we choose γ > 0 small enough. In this way, we have that
Eα1,··· ,αm = ∅ when there exist some αi = 0 and some αj =∞.

Now it remains to prove that E∞,··· ,∞ = ∅. Set ~f∞ := (f∞1 , · · · , f∞m ). Observe that for
all δ > 0 and all x ∈ Qν ,

|T̃δ(~f∞)(x)| ≤ |T̃δ(~f∞)(x)−Gδ(~f∞)(x, yν)|+ |Gδ(~f∞)(x, yν)|, (4.4)

where

Gδ(~f∞)(x, yν) :=
∫
y/∈Sδ(x)

K(yν , ~y)
m∏
j=1

f∞j (yj) d~y.

Let t := (18n`(Qν))s. Then,

|T̃δ(~f∞)(x)−Gδ(~f∞)(x, yν)| ≤

∣∣∣∣∣∣
∫
y/∈Sδ(x)

[K(x, ~y )−K(0)
t (x, ~y )]

m∏
j=1

f∞j (yj) d~y

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
y/∈Sδ(x)

[K(0)
t (x, ~y )−K(0)

t (yν , ~y )]
m∏
j=1

f∞j (yj) d~y

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
y/∈Sδ(x)

[K(0)
t (yν , ~y )−K(yν , ~y )]

m∏
j=1

f∞j (yj) d~y

∣∣∣∣∣∣
=: Z1 + Z2 + Z3.

By (4.3) and the support condition of ~f∞, we have that for any ~y ∈ supp ~f∞ and x ∈ Qν ,

2|x− yν | ≤ t1/s, 2t1/s ≤ min
1≤j≤m

|yν − yj |, 2t1/s ≤ min
1≤j≤m

|x− yj |.

Thus, we can apply assumption (H3) to estimate Z1,Z2 and Z3. Indeed, by (1.8),

Z1 ≤
∫

(Rn)m

A

(
∑m

k=1 |x− yk|)
mn

m∑
k=1

φ

(
|x− yk|
t1/s

) m∏
j=1

|f∞j (yj)| d~y
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+
∫

(Rn)m

Atε/s

(
∑m

k=1 |x− yk|)
mn+ε

m∏
j=1

|f∞j (yj)| d~y.

The support condition of φ and the fact 2t1/s ≤ min1≤j≤m |x− yj | imply that

m∑
k=1

φ

(
|x− yk|
t1/s

) m∏
j=1

|f∞j (yj)| = 0, ∀ ~y ∈ (Rn)m.

For x ∈ Qν , ξν ∈ Qν and yk /∈ Q∗ν , we always have |x− yk| ≈ |ξν − yk|. Therefore,

Z1 ≤
∫

(Rn\Q∗ν)m

Atε/s

(
∑m

k=1 |x− yk|)
mn+ε

m∏
j=1

|fj(yj)| d~y

≤ C
∫

(Rn\Q∗ν)m

Atε/s

(
∑m

k=1 |ξν − yk|)
mn+ε

m∏
j=1

|fj(yj)| d~y

≤ C
∞∑
i=0

∫
{~y∈(Rn)m: 2i−1`(Q∗ν)<

Pm
k=1 |ξν−yk|≤2i`(Q∗ν)}

Atε/s
∏m
j=1 |fj(yj)|

(
∑m

k=1 |x− yk|)
mn+ε d~y

≤ CAM(~f )(ξν).

Likewise, we have
Z3 ≤ CAM(~f )(ξν).

In view of (1.10), by using |yν − yk| ≈ |ξν − yk|, we estimate Z2 by

Z2 ≤
∫

(Rn\Q∗ν)m

Atε/s

(
∑m

k=1 |yν − yk|)
mn+ε

m∏
j=1

|fj(yj)| d~y ≤ CAM(~f )(ξν).

Combining the estimates for Z1 through Z3 yields that

|T̃δ(~f∞)(x)−Gδ(~f∞)(x, yν)| ≤ CAM(~f )(ξν). (4.5)

Finally, we claim that |Gδ(~f∞)(x, yν)| ≤ (1 +CAγ)α. If this claim holds, then by (4.5)
and (4.4), there exists γ > 0 small enough such that T̃ ∗(~f∞)(x) ≤ 2α. For such small
positive γ, we have E∞,··· ,∞ = ∅.

Now it remains to show the claim. Observe that

∣∣∣Gδ(~f∞)(x, yν)
∣∣∣ =

∣∣∣∣∣∣
∫

(Rn)m
K(yν , ~y)

m∏
j=1

fj(yj)χ(B(x,δ)∪Q∗ν){(yj) d~y

∣∣∣∣∣∣ . (4.6)

We consider the following two cases.
Case 1: δ ≥ 18n`(Qν). In this case, by ξν ∈ Qν and x ∈ Qν , there exists a large

constant a1 > 1 such that

B(ξν , a−1
1 δ) ⊂ (B(x, δ) ∪Q∗ν) ⊂ B(ξν , a1δ),
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and that for all yj /∈ B(x, δ) ∪Q∗ν , by (4.3), we have

|yj − yν | ≥ |yj − x| − |x− yν | > δ/2,

which implies that min1≤j≤m |yν − yj | > δ/2 for all ~y ∈ (Rn \ (B(x, δ) ∪Q∗ν))m. Thus,

∣∣∣Gδ(~f∞)(x, yν)
∣∣∣ ≤

∣∣∣∣∣∣
∫

min
1≤j≤m

|yν−yj |>δ/2
K(yν , ~y )

m∏
j=1

fj(yj) d~y

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
U1

K(yν , ~y )
m∏
j=1

fj(yj) d~y

∣∣∣∣∣∣
=: Z4 + Z5,

where

U1 :=
{
~y ∈ (Rn)m : min

1≤j≤m
|yν − yj | >

δ

2
, ∃ j ∈ {1, · · · ,m} s. t. yj ∈ B(x, δ) ∪Q∗ν

}
.

Obviously, Z4 ≤ T̃ ∗(yν) ≤ α since yν /∈ Ω. To estimate Z5, we may as well assume that,
for some 1 ≤ ` ≤ m, yj ∈ B(x, δ) ∪ Q∗ν when 1 ≤ j ≤ ` and yj /∈ B(x, δ) ∪ Q∗ν for the
remaining yj ’s. Notice that when ` = m, we have yj ∈ B(x, δ) ∪ Q∗ν for all 1 ≤ j ≤ m.
Thus, by (1.2) and |yν − yk| ≈ |ξν − yk|,

Z5 ≤ CA
m∏
j=1

∫
B(ξν ,a1δ)

∏m
j=1 |fj(yj)|
δmn

dyj

+
m−1∑
`=1

∏̀
j=1

∫
B(ξν ,a1δ)

|fj(yj)|dyj
∫

Pm
k=`+1 |yν−yk|>

δ
2

A
∏m
j=`+1 |fj(yj)|

(
∑m

k=`+1 |yν − yk|)mn
dy`+1 · · · dym

≤ CA
m∑
`=1

M`(~f )(ξν)

≤ CAγα.

Combining the estimates of Z4 and Z5 yields that |Gδ(~f∞)(x, yν)| ≤ (1 + CAγ)α.
Case 2: δ < 18n`(Qν). In this case, there exists a large constant a2 > 1, independent

of x ∈ Qν and δ, such that

a−1
2 Qν ⊂ (B(x, δ) ∪Q∗ν) ⊂ a2Qν .

By this and (4.3), we have

∣∣∣Gδ(~f∞)(x, yν)
∣∣∣ ≤

∣∣∣∣∣∣
∫

min
1≤j≤m

|yν−yj |>40n`(Qν)
K(yν , ~y )

m∏
j=1

fj(yj) d~y

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
U2

K(yν , ~y )
m∏
j=1

fj(yj) d~y

∣∣∣∣∣∣
=: Z6 + Z7,
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where

U2 :=
{
~y ∈ (Rn)m : min

1≤j≤m
|yν−yj | > 40n`(Qν), ∃ j ∈ {1, · · · ,m} s. t. yj ∈ B(x, δ)∪Q∗ν

}
.

Obviously, Z6 ≤ T̃ ∗(yν) ≤ α. Furthermore, similarly to the estimate of Z5 and with the
same assumptions, we have

Z7 ≤ CA
m∏
j=1

∫
a2Qν

∏m
j=1 |fj(yj)|
`(Qν)mn

dyj

+
m−1∑
`=1

∏̀
j=1

∫
a2Qν

|fj(yj)|dyj
∫

Pm
k=`+1 |yν−yk|>`(Qν)

A
∏m
j=`+1 |fj(yj)|

(
∑m

k=`+1 |yν − yk|)mn
dy`+1 · · · dym

≤ CA
m∑
`=1

M`(~f )(ξν)

≤ CAγα.

The estimates for Z6 and Z7 also give that |Gδ(~f∞)(x, yν)| ≤ (1 + CAγ)α. This proves
the claim, and concludes the proof of Proposition 4.1. �

Proof of Theorem 1.1. To show (i), for all ~f = (f1, · · · , fm) ∈ L∞c ×· · ·×L∞c , applying
(3.4), Proposition 4.1 and Proposition 2.1 yields that

‖T ∗(~f )‖Lp(ν~w) ≤ C

(
A

∥∥∥∥ m∑
`=1

M`(~f )
∥∥∥∥
Lp(ν~w)

+
∥∥∥∥T̃ ∗(~f )

∥∥∥∥
Lp(ν~w)

)

≤ C(A+W )
∥∥∥∥ m∑
`=1

M`(~f )
∥∥∥∥
Lp(ν~w)

≤ C(A+W )
m∏
j=1

‖fj‖Lpj(wj) .

Then, the density of L∞c in Lpj (wj) for all 1 ≤ j ≤ m together with a standard argument
implies (i). The weak-type estimate (ii) follows from an similar argument. We omit the
details. �

Proof of Theorem 1.2. The proof for Theorem 1.2 follows from an argument similar
to that used in [9, Corollary 3.5]. We omit the details. �
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