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Abstract. In this work we obtain the pointwise almost everywhere convergence
for two families of multilinear operators: (a) the doubly truncated homogeneous
singular integral operators associated with Lq functions on the sphere; and (b) la-
cunary multiplier operators of limited smoothness. The a.e. convergence is deduced
from the L2× · · · ×L2 → L2/m boundedness of the associated maximal multilinear
operators.

1. Introduction and Preliminaries

The pointwise a.e. convergence of sequences of operators is of paramount impor-
tance and has been widely studied in several areas of analysis, such as harmonic
analysis, PDE, and ergodic theory. This area boasts challenging problems, indica-
tively see [5, 6, 12, 24], and is intimately connected with the boundedness of the
associated maximal operators; on this see [27]. Moreover, techniques and tools em-
ployed to study a.e. convergence have led to important developments in harmonic
analysis.

Multilinear harmonic analysis has made significant advances in recent years. The
founders of this area are Coifman and Meyer [8] who realized the applicability of mul-
tilinear operators and introduced their study in analysis in the mid 1970s. Focusing
on operators that commute with translations, a fundamental difference between the
multilinear and the linear theory is the existence of a straightforward characterization
of boundedness at an initial point, usually L2 → L2. The lack of an easy characteri-
zation of boundedness at an initial point in the multilinear theory creates difficulties
in their study. Criteria that get very close to characterization of boundedness have
recently been obtained by the first two authors and Slav́ıková [19] and also by Kato,
Miyachi, and Tomita [25] in the bilinear case. These criteria were extended to the
general m-linear case for m ≥ 2 by the authors of this article in [18]. This reference
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also contains initial L2 × · · · × L2 → L2/m estimates for rough homogeneous multi-
linear singular integrals associated with Lq functions on the sphere and multilinear
multipliers of Hörmander type.

The purpose of this work is to obtain the pointwise a.e. convergence of doubly
truncated multilinear homogeneous singular integrals and lacunary multilinear mul-
tipliers by establishing boundedness for their associated maximal operators.

We first introduce multilinear (singly) truncated singular integral operators. Let
Ω be an integrable function, defined on the sphere Smn−1, satisfying the mean value
zero property

(1.1)

∫
Smn−1

Ω dσmn−1 = 0.

Then we define

K(~y ) :=
Ω(~y ′)

|~y |mn
, ~y 6= 0,

where ~y ′ := ~y /|~y | ∈ Smn−1, and the corresponding truncated multilinear operator

L(ε)
Ω by

L(ε)
Ω

(
f1, . . . , fm

)
(x) :=

∫
(Rn)m\B(0,ε)

K(~y )
m∏
j=1

fj(x− yj) d ~y

acting on Schwartz functions f1, . . . , fm on Rn, where x ∈ Rn, ~y := (y1, . . . , ym) ∈
(Rn)m, and B(0, ε) is the ball centered at zero with radius ε > 0 in (Rn)m. Moreover,
by taking ε↘ 0, we obtain the multilinear homogeneous Calderón-Zygmund singular
integral operator

LΩ

(
f1, . . . , fm

)
(x) := lim

ε↘0
L(ε)

Ω

(
f1, . . . , fm

)
(x)(1.2)

= p.v.

∫
(Rn)m

K(~y )
m∏
j=1

fj(x− yj) d ~y .

This is still well-defined for any Schwartz functions f1, . . . , fm on Rn. In [18] we
showed that if Ω lies in Lq(Smn−1) with q > 2m

m+1
, then the multilinear singular

integral operator LΩ admits a bounded extension from L2(Rn) × · · · × L2(Rn) to
L2/m(Rn). In order words, given fj ∈ L2(Rn), LΩ(f1, . . . , fm) is well-defined and is
in L2/m(Rn).

We now define the doubly truncated multilinear operator L(ε,ε−1)
Ω by

L(ε,ε−1)
Ω

(
f1, . . . , fm

)
:= L(ε)

Ω

(
f1, . . . , fm

)
− L(ε−1)

Ω

(
f1, . . . , fm

)
for Schwartz functions fj, j = 1, . . . ,m. We observe that if Ω ∈ Lq(Smn−1) for
2m
m+1

< q ≤ ∞, then

lim
ε→0
L(ε,ε−1)

Ω

(
f1, . . . , fm

)
= lim

ε→0
L(ε)

Ω

(
f1, . . . , fm

)
for fj in Schwartz class.
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We define for fixed 0 < ε0 < 1

L∗,ε0Ω (ϕ1, . . . , ϕm) := sup
ε≥ε0

∣∣L(ε,ε−1)
Ω (ϕ1, . . . , ϕm)

∣∣
and

(1.3) L∗∗Ω (ϕ1, . . . , ϕm) := sup
ε>0

∣∣L(ε,ε−1)
Ω (ϕ1, . . . , ϕm)

∣∣ = lim
ε0→0
L∗,ε0Ω (ϕ1, . . . , ϕm)

for ϕj in the Schwartz class. One main difficulty to study the boundedness of L∗∗Ω
is to show that the doubly truncated operator is well-defined pointwise a.e. for
fj ∈ L2(Rn). To overcome this difficulty, we need to utilize the boundedness of MΩ

introduced in Section 3; see Section 5 for the detailed proof.
Our first main result is as follows.

Theorem 1.1. Let m ≥ 2, 2m
m+1

< q ≤ ∞ and Ω ∈ Lq(Smn−1) satisfy (1.1). Then

(1.4)
∥∥L∗∗Ω (f1, . . . , fm)

∥∥
L2/m(Rn)

≤ C‖Ω‖Lq(Smn−1)

∞∏
j=1

‖fj‖L2(Rn)

for fj ∈ L2(Rn). Moreover the doubly truncated singular integral L(ε,ε−1)
Ω (f1, . . . , fm)

converges to LΩ(f1, . . . , fm) pointwise a.e. as ε→ 0 when fj ∈ L2(Rn), j = 1, . . . ,m.
That is, the multilinear singular integral LΩ(f1, . . . , fm) is well-defined a.e. when
fj ∈ L2(Rn), j = 1, . . . ,m.

In order to achieve this goal, we initially prove the following result, which provides
the boundedness of the associated maximal singular integral operator

L∗Ω
(
f1, . . . , fm

)
(x) := sup

ε>0

∣∣∣L(ε)
Ω

(
f1, . . . , fm

)
(x)
∣∣∣

for Schwartz functions fj, j = 1, . . . ,m.

Theorem 1.2. Let m ≥ 2, 2m
m+1

< q ≤ ∞ and Ω ∈ Lq(Smn−1) satisfy (1.1). Then
there exists a constant C > 0 such that

(1.5)
∥∥L∗Ω(f1, . . . , fm)

∥∥
L2/m(Rn)

≤ C‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖L2(Rn)

for Schwartz functions f1, . . . , fm on Rn.

This extends and improves a result obtained in [3] which treated the case m =
2 and q = ∞. Theorem 1.2 follows from Propositions 4.1 and 4.2 below, which
are counterparts of Propositions 5 and 4 in [3], respectively. We improve the two
propositions in the m-linear settings. Remark that the assumption Ω ∈ L2(S2n−1)
in Proposition 5 and Theorem 2 in [3] should be Ω ∈ L∞(S2n−1). One of the main
improvements is the Lp1 × · · · × Lpm → Lp estimate for T∗∗K in (4.10) with a bound
‖Ω‖L1(Smn−1), while a simple m-linear extensions of the arguments in [3] requires
the bound ‖Ω‖L∞(Smn−1) for the estimate, which originated simply from the kernel
estimate

(1.6)
∣∣K∗∗τ (~y )

∣∣ .N ‖Ω‖L∞(Smn−1)2
mnτ
(
1 + 2−τ |~y |

)−N
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where T∗∗K is defined in (4.6) and its kernel K∗∗τ is in (4.7). For the improvement,
we incorporate a delicate decomposition, as we are unable to use the kernel esti-
mate (1.6); see (4.8). To obtain the results in Proposition 4.2, we suitably combine
Littlewood-Paley techniques and wavelet decompositions to reduce the boundedness
of L]Ω,µ to estimates for norms of maximal operators associated with lattice bumps
with suitable decay. This is the essential contribution of this article in view of the
fact that the bilinear argument in [3, Proposition 4] does not apply due to the com-
plicated structure of general m-linear operators for m ≥ 3; see (4.14) for the exact
formulation. This result is actually proved in terms of Plancherel type inequalities,
recently developed in [18] and stated in Proposition 2.1.

The tools used to establish Theorem 1.1 turn out to be useful in the study of
pointwise convergence problems of several related operators. As an example let us
take multilinear multipliers with limited decay to demonstrate our idea.

For a smooth function σ ∈ C∞((Rn)m) and ν ∈ Z let

(1.7) Sνσ
(
f1, . . . , fm

)
(x) :=

∫
(Rn)m

σ(2ν~ξ )
( m∏
j=1

f̂j(ξj)
)
e2πi〈x,

∑m
j=1 ξj〉 d ~ξ

for Schwartz functions f1, . . . , fm on Rn, where ~ξ := (ξ1, . . . , ξm) ∈ (Rn)m.
We are interested in the poinwise convergence of Sνσ when ν → −∞. We pay

particular attention to σ satisfying the limited decay property (for some fixed a)∣∣∂βσ(~ξ )
∣∣ .β |~ξ |−a

for sufficiently many β. Examples of multipliers of this type include µ̂, the Fourier
transform of the spherical measure µ; see [4, 9, 26] for the corresponding linear results.

The second contribution of this work is the following result.

Theorem 1.3. Let m ≥ 2 and a > (m−1)n
2

. Let σ ∈ C∞((Rn)m) satisfy

(1.8)
∣∣∂βσ(~ξ )

∣∣ .β |~ξ |−a
for all |β| ≤

[
(m−1)n

2

]
+ 1, where [r] denotes the integer part of r. Then for fj in

L2(Rn), j = 1, . . . ,m, the functions Sνσ(f1, . . . , fm) converge to σ(0)f1 · · · fm pointwise
a.e. as ν → −∞ and to zero pointwise a.e. as ν →∞.

The precise definition of the action of the multilinear operator Sνσ on L2 functions
will be discussed after Theorem 1.4.

The a.e. convergence claimed in Theorem 1.3 is related to the boundedness of the
associated m-(sub)linear lacunary maximal multiplier operator defined by:

Mσ

(
f1, . . . , fm

)
:= sup

ν∈Z

∣∣Sνσ(f1, . . . , fm
)∣∣.

Mσ is the so-called multilinear spherical maximal function when σ = µ̂, which was
studied extensively recently by [1, 2, 10, 22, 23]. In particular a bilinear version of
the following theorem was previously obtained in [17].
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Theorem 1.4. Let m ≥ 2 and a > (m−1)n
2

. Let σ ∈ C∞((Rn)m) be as in Theorem 1.3
Then there exists a constant C > 0 such that∥∥Mσ(f1, . . . , fm)

∥∥
L2/m(Rn)

≤ C

m∏
j=1

‖fj‖L2(Rn)

for Schwartz functions f1, . . . , fm on Rn.

One of the main difficulties in dealing with general m-linear cases for m ≥ 3 is that
the target space L2/m is not a Banach space if 2/m < 1. As a result, the condition

a > (m−1)n
2

cannot be exploited by a simple adaptation of the bilinear argument
in [17]. Additional combinatorial complexity arises from the multilinear extension,
and in order to address these issues we apply a more refined decomposition, recently
introduced in [18], so that l-linear Plancherel type estimates (1 ≤ l ≤ m) can be
applied. These key estimates are stated in Proposition 2.1 below.

With the help of Theorem 1.4, we notice that the multilinear operator Sνσ is also
well-defined for fj ∈ L2(Rn). Indeed, given fj in L2(Rn), we find a sequence of
Schwartz functions fkj that converge to fj in L2(Rn) as k → ∞. Then Theorem 1.4
implies that the sequence {

Sνσ(fk1 , . . . , f
k
m)
}
k

is a Cauchy sequence in L2/m and thus it has a unique limit in L2/m which we call
Sνσ(f1, . . . , fm). It is easy to verify that this limit does not depend on the choice of
fkj .

The paper is organized as follows. Section 2 is dedicated to preliminaries, introduc-
ing a wavelet decomposition that is one of the main ingredients to establish maximal
inequalities in Theorems 1.2 and 1.4, and studying general properties of the decom-
position. Another maximal inequality for rough singular integrals will be given in
Section 3. We prove first Theorem 1.2 in Section 4 as it is necessary for the proof of
Theorem 1.1 in Section 5. The proof of Theorems 1.4 and 1.3 will be given in turn
in the last two sections.

2. Preliminary material

We adapt some notations and key estimates from [18]. For the sake of independent
reading we review the main tools and notation. We begin with certain orthonormal
bases of L2 due to Triebel [30], that will be of great use in our work. The idea is as
follows. For any fixed L ∈ N one can construct real-valued compactly supported func-
tions ψF , ψM in CL(R) satisfying the following properties: ‖ψF‖L2(R) = ‖ψM‖L2(R) =
1,
∫
R x

αψM(x)dx = 0 for all 0 ≤ α ≤ L, and moreover, if Ψ~G is a function on Rmn,
defined by

Ψ ~G(~x ) := ψg1(x1) · · ·ψgmn(xmn)

for ~x := (x1, . . . , xmn) ∈ Rmn and ~G := (g1, . . . , gmn) in the set

I :=
{
~G := (g1, . . . , gmn) : gi ∈ {F,M}

}
,
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then the family of functions⋃
λ∈N0

⋃
~k∈Zmn

{
2λmn/2Ψ ~G(2λ~x − ~k ) : ~G ∈ Iλ

}
forms an orthonormal basis of L2(Rmn), where I0 := I and for λ ≥ 1, we set Iλ :=
I \ {(F, . . . , F )}.

We consistently use the notation ~ξ := (ξ1, . . . , ξm) for elements of (Rn)m, ~G :=

(G1, . . . , Gm) ∈ ({F,M}n)m, and Ψ ~G(~ξ ) = ΨG1(ξ1) · · ·ΨGm(ξm). For each ~k :=
(k1, . . . , km) ∈ (Zn)m and λ ∈ N0, let

Ψλ
Gi,ki

(ξi) := 2λn/2ΨGi(2
λξi − ki), 1 ≤ i ≤ m

and
Ψλ
~G,~k

(~ξ ) := Ψλ
G1,k1

(ξ1) · · ·Ψλ
Gm,km(ξm).

We also assume that the support of ψgi is contained in {ξ ∈ R : |ξ| ≤ C0} for some
C0 > 1, which implies that

Supp(Ψλ
Gi,ki

) ⊂
{
ξi ∈ Rn : |2λξi − ki| ≤ C0

√
n
}
.

In other words, the support of Ψλ
Gi,ki

is contained in the ball centered at 2−λki and

radius C0

√
n2−λ. Then we note that for a fixed λ ∈ N0, elements of

{
Ψλ
~G,~k

}
~k

have

(almost) disjoint compact supports.
It is also known in [29] that if L is sufficiently large, then every tempered distribu-

tion H on Rmn can be represented as

(2.1) H(~x ) =
∑
λ∈N0

∑
~G∈Iλ

∑
~k∈Zmn

bλ~G,~k 2λmn/2Ψ ~G(2λ~x − ~k )

and for 1 < q <∞ and s ≥ 0,∥∥∥(∑
~G, ~k

∣∣bλ~G,~kΨλ
~G,~k

∣∣2)1/2∥∥∥
Lq(Rmn)

≤ C2−sλ‖H‖Lqs(Rmn)

where

bλ~G,~k :=

∫
Rmn

H(~x )Ψλ
~G,~k

(~x ) d~x

and Lqs is the Sobolev space of functions H such that (I − ∆)s/2H ∈ Lq(Rmn).
Moreover, it follows from the last estimate and from the (almost) disjoint support
property of the Ψλ

~G,~k
’s that∥∥{bλ~G,~k }~k∈Zmn∥∥`q ≈(2λmn(1−q/2)

∫
Rmn

(∑
~k

∣∣bλ~G,~kΨλ
~G,~k

(~x)
∣∣2)q/2 d~x)1/q

. 2−λ(s−mn/q+mn/2)‖H‖Lqs(Rmn).(2.2)

Now we study an essential estimate in [18] which will play a significant role in the

proof of both Theorems 1.2 and 1.4. We define the operator Lλ,γGi,ki by

(2.3) Lλ,γGi,kif :=
(
Ψλ
Gi,ki

(·/2γ)f̂
)∨
, γ ∈ Z.
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For µ ∈ Z let

(2.4) Uµ :=
{
~k ∈ (Zn)m : 2µ−2 ≤ |~k | ≤ 2µ+2, |k1| ≥ · · · ≥ |km|

}
and split the set into m disjoint subsets Uµl as below:

Uµ1 :=
{
~k ∈ Uµ : |k1| ≥ 2C0

√
n > |k2| ≥ · · · ≥ |km|

}
Uµ2 :=

{
~k ∈ Uµ : |k1| ≥ |k2| ≥ 2C0

√
n > |k3| ≥ · · · ≥ |km|

}
...

Uµm :=
{
~k ∈ Uµ : |k1| ≥ · · · ≥ |km| ≥ 2C0

√
n
}
.

Then we have the following two observations that appear in [18].

• For ~k ∈ Uλ+µ
l ,

(2.5) Lλ,γGj ,kjf = Lλ,γGj ,kjf
λ,γ,µ for 1 ≤ j ≤ l

due to the support of Ψλ
Gj ,kj

, where f̂λ,γ,µ(ξ) := f̂(ξ)χC0
√
n2γ−λ≤|ξ|≤2γ+µ+3 .

• For µ ≥ 1 and λ ∈ N0,

(2.6)
(∑
γ∈Z

∥∥fλ,γ,µ∥∥2

L2

)1/2

. (µ+ λ)1/2‖f‖L2 . µ1/2(λ+ 1)1/2‖f‖L2

where Plancherel’s identity is applied in the first inequality.

Proposition 2.1 ([18, Proposition 2.4]). Let m be a positive integer with m ≥ 2 and

0 < q < 2m
m−1

. Fix λ ∈ N0 and ~G ∈ Iλ. Suppose that {bλ,γ,µ~G,~k
} ~G∈Iλ,γ,µ∈Z,~k∈(Zn)m is a

sequence of complex numbers satisfying

sup
γ∈Z

∥∥{bλ,γ,µ~G,~k
}~k∈(Zn)m

∥∥
`∞
≤ A ~G,λ,µ

and

sup
γ∈Z

∥∥{bλ,γ,µ~G,~k
}~k∈(Zn)m

∥∥
`q
≤ B ~G,λ,µ,q.

Then the following statements hold:

(1) For 1 ≤ r ≤ 2, there exists a constant C > 0, independent of , ~G, λ, µ, such
that ∥∥∥(∑

γ∈Z

∣∣∣ ∑
~k∈Uλ+µ1

bλ,γ,µ~G,~k
Lλ,γG1,k1

fλ,γ,µ1

m∏
j=2

Lλ,γGj ,kjfj

∣∣∣r)1/r∥∥∥
L2/m

≤ CA ~G,λ,µ2λmn/2
(∑
γ∈Z

‖fλ,γ,µ1 ‖rL2

)1/r
m∏
j=2

‖fj‖L2

for Schwartz functions f1, . . . , fm on Rn.
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(2) For 2 ≤ l ≤ m there exists a constant C > 0, independent of ~G, λ, µ, such
that∥∥∥∑

γ∈Z

∣∣∣ ∑
~k∈Uλ+µl

bλ,γ,µ~G,~k

( l∏
j=1

Lλ,γGj ,kjf
λ,γ,µ
j

)( m∏
j=l+1

Lλ,γGj ,kjfj

)∣∣∣∥∥∥
L2/m

≤ CA
1− (l−1)q

2l

~G,λ,µ
B

(l−1)q
2l

~G,λ,µ,q
2λmn/2

[ l∏
j=1

(∑
γ∈Z

‖fλ,γ,µj ‖2
L2

)1/2][ m∏
j=l+1

‖fj‖L2

]
for Schwartz functions f1, . . . , fm on Rn, where

∏m
m+1 is understood as empty.

In view of (2.5), (2.6) and Proposition 2.1, we actually obtain∥∥∥(∑
γ∈Z

∣∣∣ ∑
~k∈Uλ+µ1

bλ,γ,µ~G,~k

m∏
j=1

Lλ,γGj ,kjfj

∣∣∣2)1/2∥∥∥
L2/m

. A ~G,λ,µµ
1/22λmn/2(λ+ 1)1/2

m∏
j=1

‖fj‖L2(2.7)

and for 2 ≤ l ≤ m∥∥∥∑
γ∈Z

∣∣∣ ∑
~k∈Uλ+µl

bλ,γ,µ~G,~k

m∏
j=1

Lλ,γGj ,kjfj

∣∣∣∥∥∥
L2/m

. A
1− (l−1)q

2l

~G,λ,µ
B

(l−1)q
2l

~G,λ,µ,q
µl/22λmn/2(λ+ 1)l/2

m∏
j=1

‖fj‖L2 .(2.8)

3. An auxiliary lemma

We have the following extension of Lemma 5 in [3].

Lemma 3.1. Let 1 < q ≤ ∞ and Ω ∈ Lq(Smn−1). Suppose 1 < p1, . . . , pm <∞ and
1/m < p <∞ satisfies 1/p = 1/p1 + · · ·+ 1/pm and

(3.1)
1

p
<

1

q
+
m

q′
.

Given fj ∈ Lpj(Rn), there is a set of measure zero E such that for x ∈ Rn \ E

(3.2)

∫
· · ·
∫

|~y |≤R

|Ω(~y ′)|
m∏
j=1

∣∣fj(x− yj)∣∣ d~y <∞

for all R > 0. Then for x ∈ Rn \ E the maximal operator

(3.3) MΩ(f1, . . . , fm)(x) = sup
R>0

1

Rmn

∫
· · ·
∫

|~y|≤R

|Ω(~y ′)|
m∏
j=1

∣∣fj(x− yj)∣∣ d~y
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is well defined and maps Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn) with norm bounded by
a constant multiple of ‖Ω‖Lq(Smn−1). Precisely, there is a constant C > 0 such that

(3.4) ‖MΩ(f1, . . . , fm)‖Lp ≤ C‖Ω‖Lq(Smn−1)‖f1‖Lp1 · · · ‖fm‖Lpm
for functions fj ∈ Lpj(Rn), 1 ≤ j ≤ m.

Proof. Since ‖Ω‖Lr(Smn−1) . ‖Ω‖L∞(Smn−1) for all 1 < r <∞ and there exists 1 < q <
∞ such that 1/p < 1/q + m/q′ < m (= 1/∞ + m/1), we may assume 1 < q < ∞.
Without loss of generality, we may also assume that ‖Ω‖Lq(Smn−1) = 1.

We split

Ω = Ω0 +
∞∑
l=1

Ωl,

where Ω0 = Ωχ|Ω|≤2 and Ωl = Ωχ2l<|Ω|≤2l+1 for l ≥ 1. Then Hölder’s inequality and
Chebyshev’s inequality give

‖Ωl‖L1 ≤ |Supp Ωl|
1
q′ ≤ ‖Ω‖

q
q′

Lq2
−l q

q′ = 2
−l q

q′

and obviously

(3.5) ‖Ωl‖L∞ ≤ 2l+1.

We first claim that for 1 < r, r1, . . . , rm <∞ with 1/r = 1/r1 + · · ·+ 1/rm we have

(3.6)
∥∥MΩl(S1, . . . , Sm)

∥∥
Lr1×···×Lrm→Lr . 2

−l q
q′

m∏
j=1

‖Sj‖Lrj (Rn)

for simple functions Sj. To verify this estimate, we choose indices µ1, . . . , µm satisfy-
ing

1/µ1 + · · ·+ 1/µm = 1

and
1 < µj < rj for each 1 ≤ j ≤ m.

Then a direct computation using Hölder’s inequality yields

MΩl

(
S1, . . . , Sm

)
(x) ≤

∫
Smn−1

∣∣Ωl(~θ )
∣∣ m∏
j=1

Mθj
µj
Sj(x) d~θ ,

where the directional maximal operator Mθj
µj is defined by

Mθj
µj
g(x) := sup

R>0

( 1

R

∫ R

0

∣∣g(x− tθj)
∣∣µj dt)1/µj

.

It follows from this that∥∥MΩl(S1, . . . , Sm)
∥∥
Lr
≤
∫
Smn−1

|Ωl(~θ )|
m∏
j=1

∥∥Mθj
µj
Sj
∥∥
Lrj

d~θ,

where Minkowski’s inequality and Hölder’s inequality are applied. Using the Lrj

boundedness of Mθj
µj for 0 < µj < rj with constants independent of θj (by the

method of rotations), we obtain (3.6).
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Then the case p > 1 (for which q > 1 implies the assumption (3.1)) in the assertion
follows from summing the estimates (3.6) over l ≥ 0.

The other case 1/m < p ≤ 1 can be proved by interpolation with the L1×· · ·×L1 →
L1/m,∞ estimate. Let M be the Hardy-Littlewood maximal operator. Then, using
(3.5), it is easy to verify the pointwise estimate

MΩl

(
f1, . . . , fm

)
(x) ≤ 2l+1

m∏
j=1

Mfj(x),

for f1, . . . , fm in L1(Rn), and this yields that

(3.7)
∥∥MΩl

∥∥
L1×···×L1→L1/m,∞ . 2l,

using Hölder’s inequality for weak type spaces ([14, p 16]) and the weak (1, 1) bound-
edness of M. Now we fix 0 < p1, . . . , pm < ∞ and 1/m < p ≤ 1, and choose r > 1
such that

1

p
<

1

rq
+
m

q′

(
<

1

q
+
m

q′

)
,

or, equivalently,

q(m− 1/p)

q′(m− 1/r)
− 1/p− 1/r

m− 1/r
> 0.

Interpolating between (3.7) and (3.6) with appropriate (r1, . . . , rm) satisfying 1/r =
1/r1 + · · ·+ 1/rm (using [15, Theorem 7.2.2]) yields

‖MΩl(S1, . . . , Sm)‖Lp ≤ C2
−l( q(m−1/p)

q′(m−1/r)
− 1/p−1/r

m−1/r
)‖S1‖Lp1 · · · ‖Sm‖Lpm

for simple functions Sj. The exponential decay in l obtained above together with the
fact that ‖ · ‖pLp is a subadditive quantity for 0 < p ≤ 1 implies, for p and q satisfying
(3.1),

(3.8) ‖MΩ(S1, . . . , Sm)‖Lp ≤ C‖S1‖Lp1 · · · ‖Sm‖Lpm .

for simple functions S1, . . . , Sm.
Next we extend MΩ(f1, . . . , fm) to functions fj ∈ Lpj(Rn). To achieve this goal,

we choose nonnegative simple functions Skj that increase pointwise to |fj| as k →∞.
It follows from (3.8) that for any R > 0{∫

Rn

[
1

Rmn

∫
· · ·
∫

|~y |≤R

|Ω(~y ′)|
m∏
j=1

Skj (x− yj) d~y
]p
dx

} 1
p

≤ C ‖f1‖Lp1 · · · ‖fm‖Lpm

and from this we obtain{∫
Rn

[
1

Rmn

∫
· · ·
∫

|~y |≤R

|Ω(~y ′)|
m∏
j=1

|fkj (x− yj)| d~y
]p
dx

} 1
p

≤ C ‖f1‖Lp1 · · · ‖fm‖Lpm
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via Lebesgue’s monotone convergence theorem. We conclude that for any R ∈ Z+

there is a set of measure zero ER such that

(3.9)
1

Rmn

∫
· · ·
∫

|~y |≤R

|Ω(~y ′)|
m∏
j=1

|fkj (x− yj)| d~y <∞

for all x ∈ Rn \ ER. Setting E = ∪∞R=1E
R we obtain (3.2) for x ∈ Rn \ E.

This allows us to defineMΩ(f1, . . . , fm)(x) for fj ∈ Lpj(Rn) and x ∈ Rn \E as the
supremum of the expressions in (3.9). Now for x ∈ Rn \ E,

MΩ(f1, . . . , fm)(x) = sup
R>0

1

Rmn

∫
· · ·
∫

|~y |≤R

|Ω(~y ′)|
m∏
j=1

∣∣fj(x− yj)∣∣ d~y
= sup

R>0
lim
k→∞

1

Rmn

∫
· · ·
∫

|~y |≤R

|Ω(~y ′)|
m∏
j=1

Skj (x− yj) d~y

≤ lim inf
k→∞

MΩ(Sk1 , . . . , S
k
m)(x).

As MΩ(Sk1 , . . . , S
k
m)(x) is increasing in k, we obtain from (3.8) by Fatou’s lemma

that

‖MΩ(f1, . . . , fm)‖Lp(Rn) . lim inf
k→∞

‖MΩ(Sk1 , . . . , S
k
m)‖Lp(Rn) .

m∏
j=1

‖fj‖Lpj (Rn).

In particular, this shows that for fj ∈ Lpj(Rn) there is a set E ′ of measure zero such
that

sup
R>0

1

Rmn

∫
· · ·
∫

|~y|≤R

|Ω(~y ′)|
m∏
j=1

∣∣fj(x− yj)∣∣ d~y <∞

for all x ∈ Rn\E ′, and moreover, on Rn\(E∪E ′), the preceding supremum pointwise
controls all expressions in (3.9).

�

4. Proof of Theorem 1.2

Let 2m
m+1

< q < 2 and Ω in Lq(Smn−1). We use a dyadic decomposition introduced

by Duoandikoetxea and Rubio de Francia [13]. We choose a Schwartz function Φ(m)

on (Rn)m such that its Fourier transform Φ̂(m) is supported in the annulus {~ξ ∈
(Rn)m : 1/2 ≤ |~ξ | ≤ 2} and satisfies

∑
j∈Z Φ̂

(m)
j (~ξ ) = 1 for ~ξ 6= ~0 where Φ̂

(m)
j (~ξ ) :=

Φ̂(m)(~ξ /2j). For γ ∈ Z let

Kγ(~y ) := Φ̂(m)(2γ~y )K(~y ), ~y ∈ (Rn)m

and then we observe that Kγ(~y ) = 2γmnK0(2γ~y ). For µ ∈ Z we define

(4.1) Kγ
µ(~y ) := Φ

(m)
µ+γ ∗Kγ(~y ) = 2γmn[Φ(m)

µ ∗K0](2γ~y ).
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It follows from this definition that

K̂γ
µ(~ξ ) = Φ̂(m)(2−(µ+γ)~ξ )K̂0(2−γ~ξ ) = K̂0

µ(2−γ~ξ ),

which implies that K̂γ
µ is bounded uniformly in γ while they have almost disjoint

supports, so it is natural to add them together as follows:

Kµ(~y ) :=
∑
γ∈Z

Kγ
µ(~y ).

4.1. Reduction. We introduce the maximal operator

L]Ω
(
f1, . . . , fm

)
(x) := sup

τ∈Z

∣∣∣∣∑
γ<τ

∫
(Rn)m

Kγ(~y )
m∏
j=1

fj(x− yj) d ~y
∣∣∣∣

for x ∈ Rn. Then we claim that

(4.2) L∗Ω
(
f1, . . . , fm

)
≤MΩ

(
f1, . . . , fm

)
(x) + L]Ω

(
f1, . . . , fm

)
To prove (4.2) we introduce the notation

K(ε)(~y ) := K(~y )χ|~y |≥ε, K̃(ε)(~y ) := K(~y )
(
1− Θ̂(m)(~y/ε)

)
,

setting Θ̂(m)(~y ) := 1−
∑

γ∈N Φ̂(m)(~y /2γ) so that

Supp(Θ̂(m)) ⊂ {~y ∈ (Rn)m : |~y | ≤ 2}

and Θ̂(m)(~y ) = 1 for |~y | ≤ 1.
Given ε > 0 choose ρ ∈ Z such that 2ρ ≤ ε < 2ρ+1. Then we write∣∣∣∣ ∫

(Rn)m\B(0,ε)

K(~y )
m∏
j=1

fj(x− yj) d ~y
∣∣∣∣

≤
∣∣∣∣ ∫

(Rn)m

(
K(ε)(~y )− K̃(2ρ)(~y )

) m∏
j=1

fj(x− yj) d ~y
∣∣∣∣(4.3)

+

∣∣∣∣ ∫
(Rn)m

K̃(2ρ)(~y )
m∏
j=1

fj(x− yj) d ~y
∣∣∣∣.(4.4)

Term (4.4) is clearly less than∣∣∣∣ ∑
γ∈Z:γ<−ρ

∫
(Rn)m

Kγ(~y )
m∏
j=1

fj(x− yj) d ~y
∣∣∣∣ ≤ L]Ω(f1, . . . , fm

)
(x),

while (4.3) is controlled by MΩ

(
f1, . . . , fm

)
(x) as∣∣K(ε)(~y )− K̃(2ρ)(~y )

∣∣ . |K(~y )|χ|~y |≈2ρ .
|Ω(~y ′)|
2ρmn

χ|~y |.2ρ .

Thus (4.2) follows after taking the supremum over all ε > 0.
Since the boundedness ofMΩ follows from Lemma 3.1 with the fact that q > 2m

m+1

implies m
2
< 1

q
+ m

q′
, matters reduce to the boundedness of L]Ω.
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For each γ ∈ Z let

Kµ :=
∑
γ∈Z

Kγ
µ .

In the study of multilinear rough singular integral operators LΩ in [18] whose kernel
is
∑

γ∈ZK
γ =

∑
µ∈Z
∑

γ∈ZK
γ
µ =

∑
µ∈ZKµ, the part where µ is less than a constant

is relatively simple because the Fourier transform of Kµ satisfies the estimate

(4.5)
∣∣∂αK̂µ(~ξ )

∣∣ . ‖Ω‖Lq(Smn−1)|~ξ |−|α|Q(µ), 1 < q ≤ ∞

for all multiindices α and ~ξ ∈ Rmn \ {0}, where Q(µ) = 2(mn−δ′)µ if µ ≥ 0 and
Q(µ) = 2µ(1−δ′) if µ < 0 for some 0 < δ′ < 1/q′, which is the condition of the Coifman-
Meyer multiplier theorem [7], [15, Theorem 7.5.3] with constant ‖Ω‖Lq(Smn−1)Q(µ).
The remaining case when µ is large enough was handled by using product-type wavelet
decompositions. We expect a similar strategy would work in handling L]Ω.

To argue strictly, we write

L]Ω
(
f1, . . . , fm

)
≤ L̃]Ω

(
f1, . . . , fm

)
+

∑
µ∈Z:2µ−10>C0

√
mn

L]Ω,µ
(
f1, . . . , fm

)
,

where we set

L̃]Ω
(
f1, . . . , fm

)
(x) := sup

τ∈Z

∣∣∣∣ ∫
(Rn)m

∑
γ<τ

∑
µ∈Z:2µ−10≤C0

√
mn

Kγ
µ(~y )

m∏
j=1

fj(x− yj) d ~y
∣∣∣∣

and

L]Ω,µ
(
f1, . . . , fm

)
(x) := sup

τ∈Z

∣∣∣∣∑
γ<τ

∫
(Rn)m

Kγ
µ(~y )

m∏
j=1

fj(x− yj) d ~y
∣∣∣∣.

Then Theorem 1.2 follows from the following two propositions:

Proposition 4.1. Let 1 < p1, . . . , pm ≤ ∞ and 1/p = 1/p1+· · ·+1/pm. Suppose that
1 < q < ∞ and Ω ∈ Lq(Smn−1) with

∫
Smn−1 Ωdσ = 0. Then there exists a constant

C > 0 such that ∥∥L̃]Ω(f1, . . . , fm)
∥∥
Lp
≤ C‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖Lpj

for Schwartz functions f1, . . . , fm on Rn.

Proposition 4.2. Let 2m
m+1

< q ≤ ∞ and Ω ∈ Lq(Smn−1) with
∫
Smn−1 Ωdσ = 0.

Suppose that µ ∈ Z satisfies 2µ−10 > C0

√
mn. Then there exist C, ε0 > 0 such that∥∥L]Ω,µ(f1, . . . , fm)

∥∥
L2/m . 2−ε0µ‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖L2

for Schwartz functions f1, . . . , fm on Rn.



14 LOUKAS GRAFAKOS, DANQING HE, PETR HONZÍK, AND BAE JUN PARK

4.2. Proof of Proposition 4.1. We decompose L̃]Ω further so that the Coifman-
Meyer multiplier theorem is involved: Setting

K̃(~y ) :=
∑

µ∈Z:2µ−10≤C0
√
mn

Kµ(~y ) =
∑

µ∈Z:2µ−10≤C0
√
mn

∑
γ∈Z

Kγ
µ(~y ),

L̃]Ω
(
f1, . . . , fm

)
(x) is controlled by the sum of

T ∗
K̃

(
f1, . . . , fm

)
(x) := sup

τ∈Z

∣∣∣ ∫
|y|>2−τ

K̃(~y )
m∏
j=1

fj(x− yj) d ~y
∣∣∣

and

(4.6) T∗∗K
(
f1, . . . , fm

)
(x) := sup

τ∈Z

∣∣∣ ∫
(Rn)m

K∗∗τ (~y )
m∏
j=1

fj(x− yj) d ~y
∣∣∣,

where

(4.7) K∗∗τ (~y ) :=
( ∑
µ∈Z:2µ−10≤C0

√
mn

∑
γ<τ

Kγ
µ(~y )

)
− K̃(~y )χ|~y |>2−τ .

To obtain the boundedness of T ∗
K̃

, we claim that K̃ is an m-linear Calderón-

Zygmund kernel with constant C‖Ω‖Lq(Smn−1) for 1 < q < ∞. Indeed, it follows
from (4.5) that∣∣∂α ̂̃K(~ξ )

∣∣ ≤ ∑
µ∈Z:2µ−10≤C0

√
mn

∣∣∂αK̂µ(~ξ )
∣∣ . ‖Ω‖Lq(Smn−1)|~ξ |−|α|

as the sum of Q(µ) over µ satisfying 2µ−10 ≤ C0

√
mn converges. Then K̃ satisfies

the size and smoothness conditions for m-linear Calderón-Zygmund kernel with con-

stant C‖Ω‖Lq(Smn−1), as mentioned in the proof of [21, Proposition 6]. Since K̃ is a
Calderón-Zygmund kernel, Cotlar’s inequality in [20, Theorem 1] yields that T ∗

K̃
is

bounded on the full range of exponents with constant C‖Ω‖Lq(Smn−1).
To handle the boundedness of the operator T∗∗K , we observe that the kernel K∗∗τ

can be written as

(4.8) K∗∗τ (~y ) =
∑

µ∈Z:2µ−10≤C0
√
mn

(∑
γ<τ

Kγ
µ(~y )χ|~y |≤2−τ −

∑
γ≥τ

Kγ
µ(~y )χ|~y |>2−τ

)
and thus

T∗∗K
(
f1, . . . , fm

)
(x) ≤ sup

τ∈Z

∑
µ∈Z:2µ−10≤C0

√
mn

Iµ,τ (x) + Jµ,τ (x)

where

Iµ,τ (x) :=
∑
γ<τ

∣∣∣ ∫
|~y |<2−τ

Kγ
µ(~y )

m∏
j=1

fj(x− yj) d ~y
∣∣∣,

Jµ,τ (x) :=
∑
γ≥τ

∣∣∣ ∫
|~y |≥2−τ

Kγ
µ(~y )

m∏
j=1

fj(x− yj) d ~y
∣∣∣.
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We claim that there exists ε > 0 such that

(4.9) Iµ,τ + Jµ,τ .C0,m,n 2εµ‖Ω‖L1(Smn−1)

m∏
j=1

Mfj uniformly in τ ∈ Z

for µ satisfying 2µ−10 ≤ C0

√
mn, where we recallM is the Hardy-Littlewood maximal

operator. Then, using Hölder’s inequality and the boundedness of M, we obtain

(4.10)
∥∥T∗∗K (f1, . . . , fm

)∥∥
Lp
. ‖Ω‖L1(Smn−1)

∥∥∥ m∏
j=1

Mfj

∥∥∥
Lp
. ‖Ω‖L1(Smn−1)

m∏
j=1

‖fj‖Lpj

for 1 < p1, . . . , pm ≤ ∞ and 0 < p ≤ ∞ satisfying 1/p = 1/p1 + · · · + 1/pm as∑
µ:2µ−10≤C0

√
mn 2εµ converges. Therefore, let us prove (4.9).

Using (4.1), we have

Iµ,τ (x) .
∑
γ<τ

∫
|~y |<2−τ

∫
|~z |≈1

2γmn2µmn|Ω(~z ′)|d~z
m∏
j=1

|fj(x− yj)| d ~y

. 2µmn‖Ω‖L1(Smn−1)

1

2−τmn

∫
|~y |<2−τ

m∏
j=1

|fj(x− yj)| d ~y

. 2µmn‖Ω‖L1(Smn−1)

m∏
j=1

Mfj(x)

as desired.
In addition,

Jµ,τ (x) ≤
∑
γ≥τ

∫
|~y |≥2−τ

2γmn
∣∣∣ ∫
|~z |≈1

Φµ(2γ~y − ~z )Ω(~z ′)d~z
∣∣∣ m∏
j=1

|fj(x− yj)| d ~y .

Since Ω has vanishing mean, we have∣∣∣ ∫
|~z |≈1

Φµ(2γ~y − ~z ) Ω(~z ′) d~z
∣∣∣

. 2µ(mn+1)

∫
|~z |≈1

∫ 1

0

∣∣∇Φ(2µ+γ~y − 2µt~z )
∣∣ dt |Ω(~z ′)| d~z .

Now we choose a constant M such that mn < M < mn+ 1 and see that∣∣∇Φ(2µ+γ~y − 2µt~z )
∣∣ .M 1

(1 + |2µ+γ~y − 2µt~z |)M

.C0,m,n,M
1

(1 + 2µ+γ|~y |)M
≤ 1

2M(µ+γ)

1

|~y |M

as |~z | ≈ 1, 0 < t < 1, and 2µ−10 ≤ C0

√
mn. This yields that

Jµ,τ (x) . 2µ(mn+1−M)‖Ω‖L1(Smn−1)

(∑
γ≥τ

2−γ(M−mn)
)
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×
∫
|~y |≥2−τ

1

|~y |M
m∏
j=1

|fj(x− yj)| d ~y .

Since M > mn, the sum over γ ≥ τ converges to 2−τ(M−mn) and the integral over
|~y | ≥ 2−τ is estimated by

∞∑
l=0

∫
2−τ+l≤|~y |<2−τ+l+1

1

|~y |M
m∏
j=1

|fj(x− yj)| d ~y

. 2τ(M−mn)

∞∑
l=0

2−l(M−mn)
( 1

2(−τ+l+1)mn

∫
|~y |≤2−τ+l+1

m∏
j=1

|fj(x− yj)| d ~y
)

. 2τ(M−mn)

m∏
j=1

Mfj(x).

Finally, we have

Jµ,τ . 2µ(mn+1−M)‖Ω‖L1(Smn−1)

m∏
j=1

Mfj,

which completes the proof of (4.9).

4.3. Proof of Proposition 4.2. The proof is based on the wavelet decomposition

and the recent developments in [18]. Recalling that K̂0
µ ∈ Lq

′
, we apply the wavelet

decomposition (2.1) to write

K̂0
µ(~ξ ) =

∑
λ∈N0

∑
~G∈Iλ

∑
~k∈(Zn)m

bλ,µ~G,~kΨλ
G1,k1

(ξ1) · · ·Ψλ
Gm,km(ξm)

where

bλ,µ~G,~k :=

∫
(Rn)m

K̂0
µ(~ξ )Ψλ

~G,~k
(~ξ ) d ~ξ .

It is known in [18] that for any 0 < δ < 1/q′,

(4.11)
∥∥{bλ,µ~G,~k }~k ∥∥`∞ . 2−δµ2−λ(M+1+mn)‖Ω‖Lq(Smn−1)

where M is the number of vanishing moments of Ψ~G. Moreover, it follows from the
inequality (2.2), the Hausdorff-Young inequality, and Young’s inequality that∥∥{bλ,µ~G,~k }~k ∥∥`q′ . 2−λmn(1/2−1/q′)‖K̂0

µ‖Lq′ . 2−λmn(1/q−1/2)‖Ω‖Lq(Smn−1).(4.12)

Now we may assume that 2λ+µ−2 ≤ |~k| ≤ 2λ+µ+2 due to the compact supports of K̂0
µ

and Ψλ
~G,~k

. In addition, by symmetry, it suffices to focus on the case |k1| ≥ · · · ≥ |km|.

Since K̂γ
µ(~ξ ) = K̂0

µ(~ξ /2γ), the boundedness of L]Ω,µ is reduced to the inequality∥∥∥∥ sup
τ∈Z

∣∣∣ ∑
λ∈N0

∑
~G∈Iλ

∑
γ∈Z:γ<τ

∑
~k∈Uλ+µ

bλ,µ~G,~k

m∏
j=1

Lλ,γGj ,kjfj

∣∣∣∥∥∥∥
L2/m
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. 2−ε0µ‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖L2(4.13)

where the operators Lλ,γGj ,kj and the set Uλ+µ are defined as in (2.5) and (2.4). We

split Uλ+µ into m disjoint subsets Uλ+µ
l (1 ≤ l ≤ m) as before such that for k ∈ Uλ+µ

l

we have

|k1| ≥ · · · ≥ |kl| ≥ 2C0

√
n ≥ |kl+1| ≥ · · · ≥ |km|.

Then the left-hand side of (4.13) is estimated by( m∑
l=1

∑
λ∈N0

∑
~G∈Iλ

∥∥∥∥ sup
τ∈Z

∣∣∣ ∑
γ∈Z:γ<τ

T λ,γ,µ~G,l
(f1, . . . , fm)

∣∣∣∥∥∥∥2/m

L2/m

)m/2
where T λ,γ,µ~G,l

is defined by

T λ,γ,µ~G,l

(
f1, . . . , fm

)
:=

∑
~k∈Uλ+µl

bλ,µ~G,~k

( m∏
j=1

Lλ,γGj ,kjfj

)
.

We claim that for each 1 ≤ l ≤ m there exists ε0,M0 > 0 such that∥∥∥∥ sup
τ∈Z

∣∣∣ ∑
γ∈Z:γ<τ

T λ,γ,µ~G,l
(f1, . . . , fm)

∣∣∣∥∥∥∥
L2/m

. 2−ε0µ02−λM0‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖L2 ,

(4.14)

which concludes (4.13). Therefore it remains to prove (4.14).

Proof of (4.14). When 2 ≤ l ≤ m, we apply (2.8) with 2 < q′ < 2m
m−1

, along with
(4.11), and (4.12) to obtain∥∥∥∥ sup

τ∈Z

∣∣∣ ∑
γ∈Z:γ<τ

T λ,γ,µ~G,l

(
f1, . . . , fm

)∥∥∥∥
L2/m

≤
∥∥∥∥∑
γ∈Z

∣∣T λ,γ,µ~G,l

(
f1, . . . , fm

)∣∣∥∥∥∥
L2/m

.
∥∥{bλ,µ~G,~k }~k ∥∥1− (m−1)q′

2m

`∞

∥∥{bλ,µ~G,~k }~k ∥∥ (m−1)q′
2m

`q′
2λmn/2(λ+ 1)l/2µl/2

m∏
j=1

‖fj‖L2

. ‖Ω‖Lq(Smn−1)2
−δµ(1− (m−1)q′

2m
)µm/22−λCM,m,n,q(λ+ 1)m/2

m∏
j=1

‖fj‖L2 ,

where

CM,m,n,q := (M + 1 +mn)(1− (m− 1)q′

2m
) +mn(1/q − 1/2)

(m− 1)q′

2m
− mn

2
.

Here we used the fact that l−1
2l
≤ m−1

2m
for l ≤ m. Then (4.14) follows from choosing

M sufficiently large so that CM,m,n,q > 0 since 1− (m−1)q′

2m
> 0.
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Now let us prove (4.14) for l = 1. In this case, we first see the estimate

(4.15)
∥∥∥(∑

γ∈Z

∣∣T λ,γ,µ~G,1
(f1, . . . , fm)

∣∣2)1/2∥∥∥
L2/m

. 2−ε0µ2−M0λ‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖L2

for some ε0,M0 > 0, which can be proved, as in [18, Section 6], by using (2.7) and
(4.11).

Choose a Schwartz function Γ on Rn whose Fourier transform is supported in the
ball {ξ ∈ Rn : |ξ| ≤ 2} and is equal to 1 for |ξ| ≤ 1, and define Γk := 2knΓ(2k·) so

that Supp(Γ̂k) ⊂ {ξ ∈ Rn : |ξ| ≤ 2k+1} and Γ̂k(ξ) = 1 for |ξ| ≤ 2k.

Since the Fourier transform of T λ,γ,µ~G,1
(f1, . . . , fm) is supported in the set

{
ξ ∈ Rn :

2γ+µ−5 ≤ |ξ| ≤ 2γ+µ+4
}

, we can write∑
γ∈Z:γ<τ

T λ,γ,µ~G,1
(f1, . . . , fm) = Γτ+µ+3 ∗

( ∑
γ∈Z:γ<τ

T λ,γ,µ~G,1
(f1, . . . , fm)

)
and then split the right-hand side into

Γτ+µ+3 ∗
(∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm)

)
− Γτ+µ+3 ∗

( ∑
γ∈Z:γ≥τ

T λ,γ,µ~G,1
(f1, . . . , fm)

)
.

Due to the Fourier support conditions of Γτ+µ+3 and T λ,γ,µ~G,1
(f1, . . . , fm), the sum in

the second term can be actually taken over τ ≤ γ ≤ τ + 9. Therefore, the left-hand
side of (4.14) is controlled by the sum of

(4.16) I :=

∥∥∥∥ sup
ν∈Z

∣∣∣Γν ∗ (∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm)

)∣∣∣∥∥∥∥
L2/m

and

(4.17) II :=
9∑

γ=0

∥∥∥ sup
τ∈Z

∣∣Γτ+µ+3 ∗ T λ,τ+γ,µ
~G,1

(f1, . . . , fm)
∣∣∥∥∥
L2/m

.

First of all, when 0 ≤ γ ≤ 9, the Fourier supports of both Γτ+µ+3 and T λ,τ+γ,µ
~G,1

(f!, . . . , fm)

are {ξ ∈ Rn : |ξ| ∼ 2τ+µ}. This implies that for any 0 < r < 1,∣∣Γτ+µ+3 ∗ T λ,τ+γ,µ
~G,1

(f1, . . . , fm)(x)
∣∣

. 2(τ+µ)(n/r−n)
(∫

Rn

∣∣Γτ+µ+3(x− y)
∣∣r∣∣T λ,τ+γ,µ

~G,1
(f1, . . . , fm)(y)

∣∣r dy)1/r

.
(
M
(
|T λ,τ+γ,µ

~G,1
(f1, . . . , fm)|r

)
(x)
)1/r

where the Nikolskii inequality (see [28, Proposition 1.3.2]) is applied in the first
inequality. Setting 0 < r < 2/m, and using the maximal inequality for M and the
embedding `2 ↪→ `∞ we obtain

II .
∥∥ sup
τ∈Z

∣∣T λ,τ,µ~G,1
(f1, . . . , fm)

∣∣∥∥
L2/m(4.18)
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≤
∥∥∥(∑

γ∈Z

∣∣T λ,γ,µ~G,1
(f1, . . . , fm)

∣∣2)1/2∥∥∥
L2/m

.

Then the L2/m norm is bounded by the right-hand side of (4.14), thanks to (4.15).
This completes the estimate for II defined in (4.17) and we turn our attention to I
defined in (4.16).

In the sequel we will make use of the following inequality: if ĝγ is supported on
{ξ ∈ Rn : C−12γ+µ ≤ |ξ| ≤ C2γ+µ} for some C > 1 and µ ∈ Z, then

(4.19)
∥∥∥{Φ

(1)
j ∗
(∑
γ∈Z

gγ

)}
j∈Z

∥∥∥
Lp(`q)

.C
∥∥{gj}j∈Z∥∥Lp(`q)

uniformly in µ

for 0 < p <∞. The proof of (4.19) is elementary and standard, so it is omitted here;
see [16, (13)] and [31, Theorem 3.6] for related arguments.

To obtain the bound of I, we note that

I ≈
∥∥∥∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm)

∥∥∥
H2/m

where H2/m is the Hardy space. We refer to [15, Corollary 2.1.8] for the above
estimate. Then, using the Littlewood-Paley theory for Hardy space (see for instance

[15, Theorem 2.2.9]) and (4.19), there exists a unique polynomial Qλ,µ, ~G(x) such that∥∥∥∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm)−Qλ,µ, ~G

∥∥∥
H2/m

.
∥∥∥(∑

γ∈Z

∣∣T λ,γ,µ~G,1
(f1, . . . , fm)

∣∣2)1/2∥∥∥
L2/m

. 2−ε0µ2−M0λ‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖L2(4.20)

where (4.15) is applied. Furthermore,∥∥∥∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm)

∥∥∥
H2/m

≈
∥∥∥∥ sup
ν∈Z

∣∣∣Γν ∗ (∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm)

)∣∣∣∥∥∥∥
L2/m

=

∥∥∥∥ sup
ν∈Z

∣∣∣Γν ∗ ( ∑
γ∈Z:γ≤ν−µ+5

T λ,γ,µ~G,1
(f1, . . . , fm)

)∣∣∣∥∥∥∥
L2/m

.

∥∥∥∥ sup
ν∈Z

∣∣∣ ∑
γ∈Z:γ≤ν−µ+5

T λ,γ,µ~G,1
(f1, . . . , fm)

∣∣∣∥∥∥∥
L2/m

≤
∥∥∥∑
γ∈Z

∣∣T λ,γ,µ~G,1
(f1, . . . , fm)

∣∣∥∥∥
L2/m

where the argument that led to (4.18) is applied in the first inequality. As we have dis-
cussed in [18, Section 6.1], this quantity is finite for all Schwartz functions f1, . . . , fm.
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Accordingly, we have ∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm)−Qλ,µ, ~G ∈ H2/m

and ∑
γ∈Z

T λ,γ,µ~G,1
(f1, . . . , fm) ∈ H2/m,

and thus Qλ,µ, ~G = 0. Now it follows from (4.20) that

I . 2−ε0µ2−M0λ‖Ω‖Lq(Smn−1)

m∏
j=1

‖fj‖L2 ,

as expected. This completes the proof of (4.14).

5. Proof of Theorem 1.1

We now prove Theorem 1.1 by making use of Theorem 1.2. Recall that in Theo-
rem 1.2 we established the boundedness only for Schwartz functions. An important
obstacle we address is the pointwise definition of the maximal operator L∗∗ (see (1.3))
for general L2 functions. This definition can be given via an abstract extension (see
[11]), this is not as useful for our purposes. We provide below a concrete approach
that preserves the pointwise bounds provided by the supremum.

5.1. A variant of Theorem 1.2 for general L2 functions. We note that when
fj ∈ L2(Rn), by Lemma 3.1, there exists a set EΩ

f1,...,fm
of measure 0 such that

MΩ

(
f1, . . . , fm

)
(x) <∞

when x /∈ EΩ
f1,...,fm

. Therefore for x /∈ EΩ
f1,...,fm

we have

(5.1)

∫
ε0≤|~y |≤ε−1

0

|Ω(~y ′)|
|~y |mn

m∏
j=1

∣∣fj(x− yj)∣∣ d~y ≤ C
1

ε2mn0

MΩ

(
f1, . . . , fm

)
(x),

and thus L(ε,ε−1)
Ω (f1, . . . , fm)(x) and L∗,ε0Ω (f1, . . . , fm)(x) are well-defined, for fj in

L2(Rn) and Ω in Lq(Smn−1). Moreover,

L(ε,ε−1)
Ω (f1, . . . , fm)(x) ≤ L∗,ε0Ω (f1, . . . , fm)(x)

pointwise for x ∈ Rn \ EΩ
f1,...,fm

.

For given fj ∈ L2(Rn), we pick sequences of Schwartz functions fkj converging to

fj in L2 as k →∞, by density. Using the identity

(5.2) a1a2 · · · am − b1b2 · · · bm =
m∑
j=1

b1 · · · bj−1(aj − bj)aj+1 · · · am

(with the obvious modification when j = 1 or j = m), the inequality

L∗,ε0Ω

(
f1, . . . , fm

)
≤ 2L∗Ω(fk1 , . . . , f

k
m) +

m∑
j=1

L∗,ε0Ω (fk1 , . . . f
k
j−1, fj − fkj , fj+1 . . . , fm)
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is valid poinwisely on the complement of the set

(5.3) EΩ := EΩ
f1,...,fm

∪
( ∞⋃
k=1

EΩ
fk1 ,...,f

k
m

)
∪
( m⋃
j=1

∞⋃
k=1

EΩ
fk1 ,...f

k
j−1,fj−fkj ,fj+1...,fm

)
which is a set of measure zero. Now we take the L2/m quasi-norm on both sides
and apply Theorem 1.3 for Schwartz functions and the estimate (5.1), combined with
Lemma 3.1, for the terms in the sum. Taking k →∞, we obtain∥∥L∗,ε0Ω (f1, . . . , fm)

∥∥
L2/m(Rn)

≤ C‖Ω‖Lq(Smn−1)

∞∏
j=1

‖fj‖L2(Rn).

Finally, letting ε0 → 0 and using the monotone convergence theorem, we conclude

(5.4)
∥∥L∗∗Ω (f1, . . . , fm)

∥∥
L2/m(Rn)

≤ C‖Ω‖Lq(Smn−1)

∞∏
j=1

‖fj‖L2(Rn)

for fj ∈ L2(Rn).

5.2. Proof of Theorem 1.1. Let f1, . . . , fm be given L2 functions and pick se-
quences {fkj } of Schwartz functions such that fkj converges to fj in L2(Rn) as k →
∞. Recall that LΩ(f1, . . . , fm) is defined as the L2/m limit of LΩ(fk1 , . . . , f

k
m) as

k → ∞. Then there exists a subsequence {kl} of {k} such that LΩ(fkl1 , . . . , f
kl
m ) →

LΩ(f1, . . . , fm) pointwise on Rn \ E, for some set E of measure zero. Let us denote
the subsequence {kl} still by {k} for notational convenience. Then on Rn \ (E ∪EΩ),
where EΩ is as in (5.3), we have∣∣L(ε,ε−1)

Ω (f1, . . . , fm)− LΩ(f1, . . . , fm)
∣∣

≤
∣∣L(ε,ε−1)

Ω (f1, . . . , fm)− L(ε,ε−1)
Ω (fk1 , . . . , f

k
m)
∣∣

+
∣∣L(ε,ε−1)

Ω (fk1 , . . . , f
k
m)− LΩ(fk1 , . . . , f

k
m)
∣∣

+
∣∣LΩ(fk1 , . . . , f

k
m)− LΩ(f1, . . . , fm)

∣∣.
We first take the lim supε→0 on both sides and then the middle term on the right
vanishes. Then we apply lim infk→∞ so that the last term vanishes. Consequently,
we have

lim sup
ε→0

|L(ε,ε−1)
Ω (f1, . . . , fm)− LΩ(f1, . . . , fm)|

≤ lim inf
k→∞

m∑
j=1

L∗∗Ω (f1, . . . , fj−1, fj − fkj , fkj+1, . . . , f
k
m)

on Rn \
(
E ∪ EΩ

)
, where the identity (5.2) is applied. It follows that∣∣∣{x : lim sup
ε→0

|L(ε,ε−1)
Ω (f1, . . . , fm)− LΩ(f1, . . . , fm)| > λ

}∣∣∣
≤
∣∣∣{x : lim inf

k→∞

m∑
j=1

L∗∗Ω (f1, . . . , fj−1, fj − fkj , fkj+1, . . . , f
k
m) > λ

}∣∣∣
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≤ λ−
2
m

m∑
j=1

∥∥∥ lim inf
k→∞

m∑
j=1

L∗∗Ω (f1, . . . , fj−1, fj − fkj , fkj+1, . . . , f
k
m)
∥∥ 2
m

L
2
m

by Chebyshev’s inequality. But this last expression tends to zero as k →∞ in view
of Fatou’s lemma and (5.4). We conclude that

lim sup
ε→0

|L(ε,ε−1)
Ω (f1, . . . , fm)− LΩ(f1, . . . , fm)|

equals zero a.e. and this finishes the proof.

6. Proof of Theorem 1.4

Let µ0 be the smallest integer satisfying 2µ0−3 > C0

√
mn and

Θ̂
(m)
µ0−1(~ξ ) := 1−

∞∑
µ=µ0

Φ̂
(m)
µ (~ξ ).

Clearly,

Θ̂
(m)
µ0−1(~ξ ) +

∞∑
µ=µ0

Φ̂
(m)
µ (~ξ ) = 1

and thus we can write

σ(~ξ ) = Θ̂
(m)
µ0−1(~ξ )σ(~ξ ) +

∞∑
µ=µ0

Φ̂
(m)
µ (~ξ )σ(~ξ ) =: σµ0−1(~ξ ) +

∞∑
µ=µ0

σµ(~ξ ).

Note that σµ0−1 is a compactly supported smooth function and thus the corresponding
maximal multiplier operator Mσµ0−1 , defined by

Mσµ0−1

(
f1, . . . , fm

)
(x)

:= sup
ν∈Z

∣∣∣ ∫
(Rn)m

σµ0−1(2ν~ξ )
( m∏
j=1

f̂j(ξj)
)
e2πi〈x,

∑m
j=1 ξj〉d~ξ

∣∣∣,
is bounded by a constant multiple of Mf1(x) · · ·Mfm(x) where M is the Hardy-
Littlewood maximal operator on Rn as before. Using Hölder’s inequality and the
L2-boundedness of M, we can prove∥∥Mσµ0−1(f1, . . . , fm)

∥∥
L2/m .

m∏
j=1

‖fj‖L2 .

It remains to show that

(6.1)
∥∥∥ ∞∑
µ=µ0

Mσµ(f1, . . . , fm)
∥∥∥
L2/m

.
m∏
j=1

‖fj‖L2 .

Using the decomposition (2.1), write

(6.2) σµ(~ξ ) =
∑
λ∈N0

∑
~G∈Iλ

∑
~k∈(Zn)m

bλ,µ~G,~kΨλ
G1,k1

(ξ1) · · ·Ψλ
Gm,km(ξm)
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where

bλ,µ~G,~k :=

∫
(Rn)m

σµ(~ξ )Ψλ
~G,~k

(~ξ )d~ξ .

Let M :=
[

(m−1)n
2

]
+ 1 and choose 1 < q < 2m

m−1
such that

(6.3)
(m− 1)n

2
<
mn

q
< min (a,M).

In view of (2.2), we have∥∥{bλ,µ~G,~k }~k∈(Zn)m

∥∥
`q
. 2−λ(M−mn/q+mn/2)‖σµ‖LqM ((Rn)m)

. 2−λ(M−mn/q+mn/2)2−µ(a−mn/q)(6.4)

where the assumption (1.8) is applied in the last inequality.

We observe that if µ ≥ µ0, then bλ,µ~G,~k vanishes unless 2λ+µ−2 ≤ |~k | ≤ 2λ+µ+2 due

to the compact supports of σµ and Ψλ
~G,~k

, which allows us to replace the sum over

~k ∈ (Zn)m in (6.2) by the sum over 2λ+µ−1 ≤ |~k | ≤ 2λ+µ+1. Moreover, we may
consider only the case |k1| ≥ · · · ≥ |km| as in the previous section. Therefore, in the
rest of the section, we assume

σµ(~ξ ) =
∑
λ∈N0

∑
~G∈Iλ

∑
~k∈Uλ+µ

bλ,µ~G,~kΨλ
G1,k1

(ξ1) · · ·Ψλ
Gm,km(ξm)

=
m∑
l=1

∑
λ∈N0

∑
~G∈Iλ

∑
~k∈Uλ+µl

bλ,µ~G,~kΨλ
G1,k1

(ξ1) · · ·Ψλ
Gm,km(ξm)

=:
m∑
l=1

∑
λ∈N0

∑
~G∈Iλ

σλ,
~G

µ,l (~ξ )

where the sets Uλ+µ, Uλ+µ
l are defined as before. Then the left-hand side of (6.1) can

be controlled by

(6.5)
( m∑
l=1

∞∑
µ=µ0

∑
λ∈N0

∑
~G∈Iλ

∥∥M
σλ,

~G
µ,l

(f1, . . . , fm)
∥∥2/m

L2/m

)m/2
.

Now we claim that∥∥M
σλ,

~G
µ,l

(f1, . . . , fm)
∥∥
L2/m

. 2−λ(M−mn/q)(λ+ 1)l/22−µ(a−mn/q)µl/2
m∏
j=1

‖fj‖L2 .(6.6)

Then (6.5) is less than a constant multiple of
∏m

j=1 ‖fj‖L2 as desired, due to the

choice of q in (6.3).
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In order to prove (6.6), we use the estimates (2.7) and (2.8). We first rewrite

M
σλ,

~G
µ,l

(
f1, . . . , fm

)
(x) = sup

γ∈Z

∣∣∣ ∑
~k∈Uλ+µl

bλ,µ~G,~k

( m∏
j=1

Lλ,γGj ,kjfi(x)
)∣∣∣

where Lλ,γG,k is defined as in (2.3).

When l = 1, applying the embeddings `2 ↪→ `∞, `q ↪→ `∞, and (2.7), the left-hand
side of (6.6) is less than∥∥∥∥(∑

γ∈Z

∣∣∣ ∑
~k∈Uλ+µ1

bλ,µ~G,~k

m∏
j=1

Lλ,γGj ,kjfj

∣∣∣2)1/2∥∥∥∥
L2/m

.
∥∥{bλ,µ~G,~k }~k∈(Zn)m

∥∥
`q
µ1/22λmn/2(λ+ 1)1/2

m∏
j=1

‖fj‖L2

. 2−λ(M−mn/q)(λ+ 1)1/22−µ(a−mn/q)µ1/2

m∏
j=1

‖fj‖L2

where (6.4) is applied in the last inequality.
For the case 2 ≤ l ≤ m, we can bound the left-hand side of (6.6) by∥∥∥∥∑

γ∈Z

∣∣∣ ∑
~k∈Uλ+µl

bλ,µ~G,~k

m∏
j=11

Lλ,γGj ,kjfj

∣∣∣∥∥∥∥
L2/m

.
∥∥{bλ,µ~G,~k }~k∈(Zn)m

∥∥
`q
µl/22λmn/2(λ+ 1)l/2

m∏
j=1

‖fj‖L2 .

Here, we used the inequality (2.8) and the embedding `q ↪→ `∞. Then the preceding
expression is estimated by

2−λ(M−mn/q)(λ+ 1)l/22−µ(a−mn/q)µl/2
m∏
j=1

‖fj‖L2

in view of (6.4). This completes the proof of (6.6).

7. Proof of Theorem 1.3

We now prove Theorem 1.3 taking Theorem 1.4 for granted.
First of all, it is easy to see that if fj are Schwartz functions on Rn, then

(7.1) lim
ν→−∞

Sνσ(f1, . . . , fm)(x) = σ(0)f1(x) · · · fm(x)

and
lim
ν→∞

Sνσ(f1, . . . , fm)(x) = 0,

using the Lebesgue dominated convergence theorem and the property that

lim
ν→∞

σ(2ν~ξ ) = 0.
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7.1. Extension of Theorem 1.4 to general fj ∈ L2(Rn). Let f1, . . . , fm be given
L2 functions on Rn. As Sνσ(f1, . . . , fm) is finite a.e. for each ν ∈ Z, there exists a set
Eν of measure zero so that

∣∣Sνσ(f1, . . . , fm)
∣∣ <∞ on the complement of Eν . Since ν

ranges over a countable set Z, the measure of E :=
⋃
ν∈ZEν is clearly zero and thus

we can define
Mσ(f1, . . . , fm) = sup

ν∈Z
|Sνσ(f1, . . . , fm)|

on Ec. That is, Mσ(f1, . . . , fm) is well-defined pointwise a.e. Morever, it controls
every

∣∣Sνσ(f1, . . . , fm)
∣∣ pointwise, whenever the latter is finite.

We now extend Theorem 1.5 to fj ∈ L2(Rn) using the above definition. Without
loss of generality we only consider the case when ν → −∞ as the case ν →∞ follows
similarly. As every sequence that converges in L2/m has a subsequence that converges
a.e., there are a set of measure zero E1

f1,...,fm
and a subsequence

k1
1 < k1

2 < k1
3 < · · · < k1

` < · · ·
of the sequence of k’s such that

S−1
σ (f

k1`
1 , . . . , f

k1`
m )(x)→ S−1

σ (f1, . . . , fm)(x)

for all x ∈ Rn \ E1
f1,...,fm

. Next, there are a set of measure zero E2
f1,...,fm

and a
subsequence

k2
1 < k2

2 < k2
3 < · · · < k2

` < · · ·
of

k1
1 < k1

2 < k1
3 < · · · < k1

` < · · ·
such that

S−2
σ (f

k2`
1 , . . . , f

k2`
m )(x)→ S−2

σ (f1, . . . , fm)(x)

for all x ∈ Rn \ (E2
f1,...,fm

∪ E2
f1,...,fm

). There are a set of measure zero E3
f1,...,fm

and a
subsequence

k3
1 < k3

2 < k3
3 < · · · < k3

` < · · ·
of

k2
1 < k2

2 < k2
3 < · · · < k2

` < · · ·
such that

S−3
σ (f

k3`
1 , . . . , f

k3`
m )(x)→ S−3

σ (f1, . . . , fm)(x)

for all x ∈ Rn \ (E1
f1,...,fm

∪E2
f1,...,fm

∪E3
f1,...,fm

). Iterating this process, we can take a
diagonal sequence

k1
1 < k2

2 < k3
3 < · · · < k`` < · · · ,

which is a subsequence of all subsequences, for which f
k``
j (x)→ fj(x) for all 1 ≤ j ≤ m

and

Sνσ(f
k``
1 , . . . , f

k``
m )(x)→ Sνσ(f1, . . . , fm)(x)

as `→∞ for x ∈ Rn \
⋃∞
ρ=1E

ρ
f1,...,fm

and all ν = −1,−2, . . . .

Now on the set Rn \
⋃∞
ρ=1E

ρ
f1,...,fm

, we have∣∣Sνσ(f1, . . . , fm)
∣∣ = lim

`→∞

∣∣Sνσ(f
k``
1 , . . . , f

k``
m )
∣∣ = lim inf

`→∞

∣∣Sνσ(f
k``
1 , . . . , f

k``
m )
∣∣
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for every ν = −1,−2, . . . , and thus∣∣Sνσ(f1, . . . , fm)
∣∣ ≤ lim inf

`→∞
Mσ(f

k``
1 , . . . , f

k``
m ).

This deduces

Mσ(f1, . . . , fm)| ≤ lim inf
`→∞

Mσ(f
k``
1 , . . . , f

k``
m )

on Rn \
⋃∞
ρ=1E

ρ
f1,...,fm

. Taking the L2/m quasi-norm on the both sides and using
Fatou’s lemma and Theorem 1.4 for Schwartz functions, we finally obtain

(7.2)
∥∥Mσ(f1, . . . , fm)

∥∥
L2/m(Rn)

.
m∏
j=1

‖fj‖L2(Rn)

for fj ∈ L2(Rn).

7.2. Proof of Theorem 1.3. Let fj, j = 1, . . . ,m, be functions in L2(Rn) and

{fk
`
`

j }` be sequences that appeared above so that on (
⋃∞
ρ=1 E

ρ
f1,...,fm

)c,

(7.3) lim
`→∞

Sνσ(f
k``
1 , . . . , f

k``
m ) = Sνσ(f1, . . . , fm)

for each ν = −1,−2, . . . .
On (

⋃∞
ρ=1 E

ρ
f1,...,fm

)c, we write∣∣Sνσ(f1, . . . , fm)(x)− σ(0)f1(x) · · · fm(x)
∣∣

≤
∣∣Sνσ(f1, . . . , fm)− Sνσ(f

k``
1 , . . . , f

k``
m )
∣∣

+
∣∣Sνσ(f

k``
1 , . . . , f

k``
m )− σ(0)f

k``
1 · · · f

k``
m

∣∣
+
∣∣σ(0)f

k``
1 · · · f

k``
m − σ(0)f1 · · · fm

∣∣.
We first take lim supν→−∞ and use (7.1) to make the middle term on the right vanish,
and then apply lim inf`→∞ to handle the last term on the right which will vanish as
well. As a result, we obtain

lim sup
ν→−∞

∣∣Sνσ(f1, . . . , fm)− σ(0)f1 · · · fm
∣∣

≤ lim inf
`→∞

sup
ν<0

∣∣Sνσ(f1, . . . , fm)− Sνσ(f
k``
1 , . . . , f

k``
m )
∣∣.

Using the identity (5.2), we control the preceding expression pointwise by

lim inf
`→∞

m∑
i=1

Mσ(f
k``
1 , . . . , f

k``
i−1, f

k``
i − fi, fi+1, . . . , fm)

on the complement of the set

∞⋃
ρ=1

[
Eρ
f1,...,fm

∪
( m⋃
i=1

∞⋃
`=1

Eρ

f
k`
`

1 ,...,f
k`
`
i−1,f

k`
`
i −fi,fi+1,...,fm

)]
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which has full measure. Since∥∥∥ lim inf
`→∞

m∑
i=1

Mσ(f
k``
1 , . . . , f

k``
i−1, f

k``
i − fi, fi+1, . . . , fm)

∥∥∥
L2/m(Rn)

= 0

in view of Fatou’s lemma and (7.2), we finally obtain

lim sup
ν→−∞

∣∣Sνσ(f1, . . . , fm)− σ(0)f1 · · · fm
∣∣ = 0

for almost all points in Rn, which proves one part of the claimed a.e. convergences.

8. Concluding remarks

As of this writing, we are uncertain how to extend Theorem 1.4 in the non-lacunary
case. A new ingredient may be necessary to accomplish this.

We have addressed the boundedness of several multilinear and maximal multilinear
operators at the initial point L2 × · · · ×L2 → L2/m. Our future investigation related
to this project has two main directions: (a) to extend this initial estimate to many
other operators, such as the general maximal multipliers considered in [17, 26], and
(b) to obtain Lp1 × · · · × Lpm → Lp bounds for all of these operators in the largest
possible range of exponents possible. Additionally, one could consider the study of
related endpoint estimates. We hope to achieve this goal in future publications.
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Ann. Inst. Fourier (Grenoble) 28 (1978), 177–202.
[8] R. R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals,

Trans. Amer. Math. Soc. 212 (1975), 315–331.
[9] R. Coifman, G. Weiss, Book Review: Littlewood-Paley and multiplier theory, Bull. Amer. Math.

Soc. 84 (1978), no. 2, 242–250.
[10] G. Dosidis. Multilinear spherical maximal function. Proc. Amer. Math. Soc. 149 (2021), no. 4,

1471–1480.
[11] G. Dosidis and L. Grafakos, On families between the Hardy-Littlewood and spherical maximal

functions, Ark. Mat. 59 (2021), no. 2, 323–343.
[12] X. Du, L. Guth, X. Li. em A sharp Schrödinger maximal estimate in R2 . Ann. of Math. 186

(2017), no. 2, 607–640.
[13] J. Duoandikoetxea and J.-L. Rubio de Francia, Maximal and singular integral operators via

Fourier transform estimates, Invent. Math. 84 (1986) 541–561.



28 LOUKAS GRAFAKOS, DANQING HE, PETR HONZÍK, AND BAE JUN PARK
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