ON POINTWISE A.E. CONVERGENCE OF MULTILINEAR
OPERATORS

LOUKAS GRAFAKOS, DANQING HE, PETR HONZ{K, AND BAE JUN PARK

ABSTRACT. In this work we obtain the pointwise almost everywhere convergence
for two families of multilinear operators: (a) the doubly truncated homogeneous
singular integral operators associated with L? functions on the sphere; and (b) la-
cunary multiplier operators of limited smoothness. The a.e. convergence is deduced
from the L? x - -- x L? — L?/™ boundedness of the associated maximal multilinear
operators.

1. INTRODUCTION AND PRELIMINARIES

The pointwise a.e. convergence of sequences of operators is of paramount impor-
tance and has been widely studied in several areas of analysis, such as harmonic
analysis, PDE, and ergodic theory. This area boasts challenging problems, indica-
tively see [5, 6, 12, 24|, and is intimately connected with the boundedness of the
associated maximal operators; on this see [27]. Moreover, techniques and tools em-
ployed to study a.e. convergence have led to important developments in harmonic
analysis.

Multilinear harmonic analysis has made significant advances in recent years. The
founders of this area are Coifman and Meyer [8] who realized the applicability of mul-
tilinear operators and introduced their study in analysis in the mid 1970s. Focusing
on operators that commute with translations, a fundamental difference between the
multilinear and the linear theory is the existence of a straightforward characterization
of boundedness at an initial point, usually L? — L2 The lack of an easy characteri-
zation of boundedness at an initial point in the multilinear theory creates difficulties
in their study. Criteria that get very close to characterization of boundedness have
recently been obtained by the first two authors and Slavikova [19] and also by Kato,
Miyachi, and Tomita [25] in the bilinear case. These criteria were extended to the
general m-linear case for m > 2 by the authors of this article in [18]. This reference
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also contains initial L? x --- x L? — L?/™ estimates for rough homogeneous multi-
linear singular integrals associated with L9 functions on the sphere and multilinear
multipliers of Hormander type.

The purpose of this work is to obtain the pointwise a.e. convergence of doubly
truncated multilinear homogeneous singular integrals and lacunary multilinear mul-
tipliers by establishing boundedness for their associated maximal operators.

We first introduce multilinear (singly) truncated singular integral operators. Let
Q2 be an integrable function, defined on the sphere S™ 1 satisfying the mean value
zero property

(1.1) / QO doy_1 = 0.
S§mn—1

Then we define
Qy")

g

K(y) : y#0,

where i’ := /|| € S™ 1, and the corresponding truncated multilinear operator
£y by

LO(frr s fu) (@) = /( o KO =) d7
5€ j=1

acting on Schwartz functions fi,..., f,, on R" where z € R™, § := (y1,...,Ym) €
(R™)™, and B(0, €) is the ball centered at zero with radius € > 0 in (R")™. Moreover,
by taking € \, 0, we obtain the multilinear homogeneous Calderén-Zygmund singular
integral operator

(1.2) Lo(fiseoosfm)(@) = 1{%55>(f1,...,fm)(x)
= p.v. K(y (x—y;) dy.
po | DLt ds

This is still well-defined for any Schwartz functions fi,..., f,, on R™. 1In [18] we
showed that if Q lies in L¢(S™!) with ¢ > 72—27:1, then the multilinear singular
integral operator Lo admits a bounded extension from L?(R") x --- x L*(R") to

L¥™(R™). In order words, given f; € L*(R"), Lo(fi,. .., fm) is well-defined and is
in L2/m(R").
We now define the doubly truncated multilinear operator ES’E_ ) by

LS (Fryee s ) = LS (froee s fn) = L5 ) (frv-e s fn)
for Schwartz functions f;, 7 = 1,...,m. We observe that if Q € LI(S™"!) for

2m
2t < g < oo, then

lim £6 (fir- o fon) = i £8) (fi,- - fon)

e—0

for f; in Schwartz class.
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We define for fixed 0 < ¢y < 1
*,€ o (67671)
L™ (1o pm) = sup L5 (@1, om)]
€€

and
e,e’l : *,€
(1.3) LE (P15 Pm) := sup ‘E& )(gol, . ,gpm)} = lim £5°(p1,. .., ¢m)
>0 eo—0
for ¢, in the Schwartz class. One main difficulty to study the boundedness of L&
is to show that the doubly truncated operator is well-defined pointwise a.e. for
f; € L*(R™). To overcome this difficulty, we need to utilize the boundedness of Mg
introduced in Section 3; see Section 5 for the detailed proof.
Our first main result is as follows.

Theorem 1.1. Let m > 2, 21 < g < oo and Q € LI(S™ ') satisfy (1.1). Then

(1.4) 125 Fre e F) | porm gy < CIQUzamn) T I1f5ll22@n)

j=1
for f; € L*(R™). Moreover the doubly truncated singular integral L’g’e_l)(fl, ey Jm)
converges to Lo(f1, ..., fm) pointwise a.e. as e — 0 when f; € L*(R™), j=1,...,m.
That is, the multilinear singular integral Lo(f1, ..., fm) is well-defined a.e. when

1 ELZ(RH),]'ZL...,m.

In order to achieve this goal, we initially prove the following result, which provides
the boundedness of the associated maximal singular integral operator

L:;Z(fla?fm)(x) = Slil(? Eg)(flamfm)(x)‘
for Schwartz functions f;, j =1,...,m.

Theorem 1.2. Let m > 2, 2% < ¢ < oo and 0 € LY(S™ ") satisfy (1.1). Then
there exists a constant C > 0 such that

(L5) 1281 Fod | oy < Oy TL I e

j=1

for Schwartz functions f1,..., fm on R™.

This extends and improves a result obtained in [3] which treated the case m =
2 and ¢ = oo. Theorem 1.2 follows from Propositions 4.1 and 4.2 below, which
are counterparts of Propositions 5 and 4 in [3], respectively. We improve the two
propositions in the m-linear settings. Remark that the assumption Q € L?(S?" 1)
in Proposition 5 and Theorem 2 in [3] should be Q € L>(S*"!). One of the main
improvements is the LP' x --- x LP» — [P estimate for 57 in (4.10) with a bound
|€2]| L1 (gmn-1y, while a simple m-linear extensions of the arguments in [3] requires
the bound ||| fec(gmn-1y for the estimate, which originated simply from the kernel
estimate

(1.6) K2 ()] S 9]z mn 12 (14 277 17])
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where T3 is defined in (4.6) and its kernel K** is in (4.7). For the improvement,
we incorporate a delicate decomposition, as we are unable to use the kernel esti-
mate (1.6); see (4.8). To obtain the results in Proposition 4.2, we suitably combine
Littlewood-Paley techniques and wavelet decompositions to reduce the boundedness
of L?M to estimates for norms of maximal operators associated with lattice bumps
with suitable decay. This is the essential contribution of this article in view of the
fact that the bilinear argument in [3, Proposition 4] does not apply due to the com-
plicated structure of general m-linear operators for m > 3; see (4.14) for the exact
formulation. This result is actually proved in terms of Plancherel type inequalities,
recently developed in [18] and stated in Proposition 2.1.

The tools used to establish Theorem 1.1 turn out to be useful in the study of
pointwise convergence problems of several related operators. As an example let us
take multilinear multipliers with limited decay to demonstrate our idea.

For a smooth function o € C*((R™)™) and v € Z let

L7 Sy fm) (@) = /( | 0(2”5)(Hfj(gj))e%“%i?iﬁﬂ dé
nym ]:1
for Schwartz functions fi, ..., fm on R", where £ = (&1,...,&m) € (RM)™.
We are interested in the poinwise convergence of S¥ when v — —oo. We pay
particular attention to o satisfying the limited decay property (for some fixed a)

070 ()| Ss €17

for sufficiently many 3. Examples of multipliers of this type include i, the Fourier
transform of the spherical measure p; see [4, 9, 26] for the corresponding linear results.
The second contribution of this work is the following result.

Theorem 1.3. Let m > 2 and a > @ Let o € C*((R™)™) satisfy
(1.8) |070()] <5 l617

for all |B] < [@} + 1, where [r] denotes the integer part of r. Then for f; in
L*(R™), j =1,...,m, the functions S%(f1, ..., fm) converge to a(0) f1 - - - fo, pointwise

a.e. as v — —oo and to zero pointwise a.e. as v — Q.

The precise definition of the action of the multilinear operator S% on L? functions
will be discussed after Theorem 1.4.

The a.e. convergence claimed in Theorem 1.3 is related to the boundedness of the
associated m-(sub)linear lacunary maximal multiplier operator defined by:

Ma(flv"'afm) = Slélg“sg(flvafm)’

M, is the so-called multilinear spherical maximal function when o = ji, which was
studied extensively recently by [1, 2, 10, 22, 23]. In particular a bilinear version of
the following theorem was previously obtained in [17].
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Theorem 1.4. Let m > 2 and a > (m_Tl)” Let o € C>*((R™)™) be as in Theorem 1.3
Then there exists a constant C' > 0 such that

HMJ(flv R fm)HL2/m(Rn) < OH ||f]||L2(R")
j=1

for Schwartz functions fi, ..., f on R™.

One of the main difficulties in dealing with general m-linear cases for m > 3 is that
the target space L?™ is not a Banach space if 2/m < 1. As a result, the condition
a > "0 cannot be exploited by a simple adaptation of the bilinear argument
in [17]. Additional combinatorial complexity arises from the multilinear extension,
and in order to address these issues we apply a more refined decomposition, recently
introduced in [18], so that [-linear Plancherel type estimates (1 < I < m) can be
applied. These key estimates are stated in Proposition 2.1 below.

With the help of Theorem 1.4, we notice that the multilinear operator S” is also
well-defined for f; € L*(R™). Indeed, given f; in L?*(R"), we find a sequence of
Schwartz functions ff that converge to f; in L*(R™) as k — oo. Then Theorem 1.4
implies that the sequence

{Sg(flkv . af'r’fz)}k

is a Cauchy sequence in L?/™ and thus it has a unique limit in L*™ which we call
SY(f1,---, fm)- It is easy to verify that this limit does not depend on the choice of
I

The paper is organized as follows. Section 2 is dedicated to preliminaries, introduc-
ing a wavelet decomposition that is one of the main ingredients to establish maximal
inequalities in Theorems 1.2 and 1.4, and studying general properties of the decom-
position. Another maximal inequality for rough singular integrals will be given in
Section 3. We prove first Theorem 1.2 in Section 4 as it is necessary for the proof of
Theorem 1.1 in Section 5. The proof of Theorems 1.4 and 1.3 will be given in turn
in the last two sections.

2. PRELIMINARY MATERIAL

We adapt some notations and key estimates from [18]. For the sake of independent
reading we review the main tools and notation. We begin with certain orthonormal
bases of L? due to Triebel [30], that will be of great use in our work. The idea is as
follows. For any fixed L € N one can construct real-valued compactly supported func-
tions ¢p, 1y in CL(R) satisfying the following properties: |[Vr| 2wy = |¥m||r2@®) =
1, [pa®y(x)de = 0 for all 0 < o < L, and moreover, if ¥ is a function on R™",
defined by

Va(T) = g, (1) Vgoun (Tmn)
for 7 := (x1,..., Tpmn) € R™ and G = (91, -+, Gmn) in the set

1= {ét: (91,---,9mn) 1 gi € {F>M}}>
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then the family of functions

U U {@™vs2's —k): G e}

AENp | cgmn

forms an orthonormal basis of L?(R™"), where Z° := T and for A\ > 1, we set Z* :=
T\{(F.....F)}. ) )
We consistently use the notation & := (&,...,&,) for elements of (R™)™, G :=

(Gh R Gm) S ({Fa M}n)m) and qjé(&) = Vg, (51) T \Iij(gm) For each k
(k1,...,km) € (Z™")™ and A € Ny, let

U3, 5 (&) =220 (22 — ki), 1<i<m
and .

W) o= W (€)W (6)

We also assume that the support of v, is contained in {£ € R : [¢] < Cy} for some
Cy > 1, which implies that

Supp(¥gy, 1) C {& € R™ 1 [2Y¢ — k;| < Cov/n}.
In other words, the support of \Ifgk is contained in the ball centered at 27*k; and
radius Cypy/n27*. Then we note that for a fixed A\ € Ny, elements of {\I%E}E have

(almost) disjoint compact supports.
It is also known in [29] that if L is sufficiently large, then every tempered distribu-
tion H on R™" can be represented as

(2.1) =D Y 22T — k)

A€No GezX kezmn
and for 1 < ¢ < oo and s > 0,

< C27M H | g onmy

La(Rmn)

where

WA = H(z )\I/G -(7) d¥

]R'mn
and L? is the Sobolev space of functions H such that (I — A)*2H € LI(R™).
Moreover, it follows from the last estimate and from the (almost) disjoint support
property of the \I/g E’s that

H{b/c\“;,/;};;ezmanq %(2)\mn(1—q/2) /mn (Z |b):' 4\11 ( )| )q/Z df)l/q
E

(2.2) S 27 M) || o oy

Now we study an essential estimate in [18] which will play a significant role in the
proof of both Theorems 1.2 and 1.4. We define the operator L)(‘;jkl by

(2.3) Lgka = (qjgk(/QV)ﬂV, v € Z.
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For € Z let
(2.4) U=k e (z"™: 272 < |k| < 2272 |k > - > k| }
and split the set into m disjoint subsets U/ as below:
U =k e : k| >2Cov/n > ky| > -+ > |k}
Uy = {k cU" : k| > |ko| > 2Cov/n > |ks| > -+ > |k}

U =k cU" : k| > - > |kyn| > 2Cov/n}.
Then we have the following two observations that appear in [18].

(2.5) Ly =Ll fA for 1< <1

—_— ~

due to the support of \Ifgjvkj, where fAY(E) = f(§)Xcyymar-r<ig|<2rtnts
e For 1> 1 and A € Ny,

26 (SUPAIE) S o Nl S 2O D2 s

YEZ

where Plancherel’s identity is applied in the first inequality.

Proposition 2.1 ({18, Proposition 2.4]). Let m be a positz’ve integer with m > 2 and

0<gq< 2. Fiz)eNyand G € I*. Suppose that {b

sequence of complex numbers satisfying

}GGIA A HEL K €(Zm)™ L

SUP H{b/\ﬁu}ke zn mHﬁoo < Agau

and

sup ”{b)wu}ke zn mng = BG Ao’

Then the following statements hold:
(1) For 1 < r < 2, there exists a constant C > 0, independent of é, A, i, such

that
m
Z Z b/\nu Ay A%M L)w ,T r
G1 k1 Gj,kj J 12/m
V€L Eeypt J=2
Amn/2 MYl T 1r =
< CAg 2 RS IR ) T Milee
YEZ j=2

for Schwartz functions fi,..., fn on R™.
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(2) For 2 <1 < m there exists a constant C' > 0, independent of é,)\,ﬂ, such
that

S| S we(Tns) (1T 2|

L2/m
YEZ kEUAJ'_“
l m
| U=bg (D - s \ 12
<o i omr I (S 1)) 1T 1ol
J=1 ~€Z Jj=l+1
or Schwartz functions fi,. .., fm on R™, where [, is understood as empty.
m+41 y

In view of (2.5), (2.6) and Proposition 2.1, we actually obtain

m 2y 1/2
A, A
I(2] X sz n]) |

VEL Feudte j=1 L2/
(2.7) S Agp P2 (A 4 1)1 ﬁ 151l 2
j=1
and for 2 <1 <m
D> W (1205 ..

YEZ k EUAJ”L

(-1)q
1=

(2.8) SAG T B T u’/22*m"/2<A+1WHHfHLa

7j=1
3. AN AUXILIARY LEMMA

We have the following extension of Lemma 5 in [3].

Lemma 3.1. Let 1 < g < 0o and Q € LI(S™1). Suppose 1 < py,...,pm < 00 and
1/m < p < oo satisfies 1/p=1/p1 + -+ 1/py and
1 1 m
3.1 - <-4+ —.
(3.1) p g q

Given f; € LPi(R™), there is a set of measure zero E such that for x € R"\ E

(3.2) / /|Q _’/|H‘f3x—y]’dy<oo

[7I<R

for all R > 0. Then for x € R™\ E the maximal operator

(3.3)  Ma(fi,..., fm)(2) \H|fj z —y;)| dyf

= su
R
Ig1<R
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is well defined and maps LP*(R"™) x --- x LPm(R™) to LP(R™) with norm bounded by
a constant multiple of ||| pagmn—1). Precisely, there is a constant C' > 0 such that

(3.4) [Mal(fi;- -, fm)llr < ClQU Lamn—) [ fillzes - - || il om
for functions f; € LPi(R™), 1 < j <m.

Proof. Since ||Q||r@gmn-1y S ||| oo (gmn-1) for all 1 < r < 0o and there exists 1 < ¢ <
oo such that 1/p < 1/¢g+m/q <m (— 1/oo +m/1), we may assume 1 < ¢ < o0.
Without loss of generality, we may also assume that ||| pq@gmn-1y = 1.

We split

Q=0+ >
=1
where 2y = x|g<2 and 4 = Qxg|g|<g+1 for [ > 1. Then Holder’s inequality and
Chebyshev’s inequality give

= 14 q
7 77 1L

11 < |Supp Q|7 < Q|2 =27l
and obviously
(3:5) [l < 2.
We first claim that for 1 < r,ry,...,r, < oo with 1/r =1/ry+---4+1/r, we have

m
—14
(36) ||MQZ(Sl7 IR Sm)‘ LT XX [Tm s [,7 S/ 2 H ||Sj||LTj(R”)
j=1
for simple functions S;. To verify this estimate, we choose indices py, . . ., i, satisfy-
ing

Vps 4+ 1 =1

and
1<p;<ry for each 1 <j <m.

Then a direct computation using Holder’s inequality yields
Moy (S, S) () g/ (@) T[ M () do
§mn—1 j:1

where the directional maximal operator /\/li’J is defined by

, I ’ 1/
Miﬂg(x) = sup <_R/o lg(x — tHj)|“ dt) :

R>0
It follows from this that

Mo, (S1, ..., Sm)]

b IHHM

where Minkowski’s inequality and Holder’s 1nequahty are applied. Using the L'
boundedness of ./\/lfﬁj for 0 < p; < r; with constants independent of #; (by the
method of rotations), we obtain (3.6).
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Then the case p > 1 (for which ¢ > 1 implies the assumption (3.1)) in the assertion
follows from summing the estimates (3.6) over [ > 0.

The other case 1/m < p < 1 can be proved by interpolation with the L' x---x L' —
LYm™> estimate. Let M be the Hardy-Littlewood maximal operator. Then, using
(3.5), it is easy to verify the pointwise estimate

MQZ (fh s ,fm)(l’) < 2 Hij(.T)

for fi,..., fm in L*(R™), and this yields that

(3.7) [ Me, <ol

||L1><-~-><L1%L1/mvOo ~

using Holder’s inequality for weak type spaces ([14, p 16]) and the weak (1, 1) bound-
edness of M. Now we fix 0 < py,...,pm < 00 and 1/m < p < 1, and choose r > 1

such that
1 1 m 1 m
-<— 4+ — <<—+—,>,
q g
or, equivalently,
dm—1/p) p—1jr
¢m—1/r) m—1/r '
Interpolating between (3.7) and (3.6) with appropriate (11, . .., r,,) satisfying 1/r =
1/ri 4+ -+ +1/ry (using [15, Theorem 7.2.2]) yields

/p)

_ (m—1
[Ma,(S1, .-+, Sm)|le < C2 eI NSl - 1Sl o

for simple functions S;. The exponential decay in [ obtained above together with the
fact that || - ||7, is a subadditive quantity for 0 < p < 1 implies, for p and ¢ satisfying
(3.1).

(3.8) | Ma(S1, -, Sm)llee < C|Sillzer - - - || Sinll Lom -

for simple functions S, ..., 5,.
Next we extend Mq(fi,..., fi) to functions f; € LP7(R™). To achieve this goal,
we choose nonnegative simple functions Sf that increase pointwise to | f;| as k — oo.
It follows from (3.8) that for any R > 0

L s [ o ﬂ'|Hskw—y]>dy} e} < C Il ol

l7|I<R

and from this we obtain

Nt
L | [ 1o |Hrf’fx—yj 7| d}” < ClAln Ul

l7|<R
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via Lebesgue’s monotone convergence theorem. We conclude that for any R € Z*
there is a set of measure zero Ef such that

(39 o *’IHIf (2~ )| df < o0
I7I<R

for all z € R™\ Ef. Setting £ = U%_, E® we obtain (3.2) for z € R"\ F.
This allows us to define Mq(fi,..., fm)(z) for f; € LP*(R") and x € R"\ E as the

supremum of the expressions in (3.9). Now for z € R" \ E,

Malfureo. fu)la) =sup o [+ [0tz |H\fj ~ )| dj

l7I<R
=sup li Qi SH(x —y;) d
“splin g [ [ 10 T
l7I<R =
<liminf Mq(S¥, ..., Sk)(z).
k—ro0
As Mq(ST,...,S%)(z) is increasing in k, we obtain from (3.8) by Fatou’s lemma
that

IMalfy, - f)llzo@e S liminf | Mo(SF, ., Sp)lle@e S HIIIfJHw )
‘]:

In particular, this shows that for f; € LP/(R™) there is a set £’ of measure zero such
that

]H‘f]x—y] !dy < 00

S

[F1<R

for all x € R™\ E’, and moreover, on R"\ (EUE’), the preceding supremum pointwise
controls all expressions in (3.9).

O
4. PROOF OF THEOREM 1.2

Let 2% < g < 2and Q in L9(S™'). We use a dyadic decomposition introduced
by Duoandlkoetxea and Rubio de Francia [13] We choose a Schwartz function @™

n (R™)™ such that its Fourier transform q)(m) is supported in the annulus {€ €
(E)m 12 < €] < 2} and satisfies Y, <I>j )(5) =1 for £ # 0 where q)j )(f) =
O(m) (¢ /27). For v € Z let

K'(y) == oW (27)K(7), ¥ € (R")"
and then we observe that K7 () = 27" K%(27y/). For u € Z we define

(4.1) K1(y) = oY« K(7) = 27 [0 5 K°)(275).
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It follows from this definition that
KJ(€) = &tm (278 Ko(277€) = Ki(27E),

which implies that [/(TZ is bounded uniformly in v while they have almost disjoint
supports, so it is natural to add them together as follows:

=> K)(i])

4.1. Reduction. We introduce the maximal operator

Z/nm g)l:j[lfj(fﬂ—yj)dQ‘

L(f1y- oy fin) (@) = sup

TEL

for x € R™. Then we claim that

(4.2) Lo(frs-e s fn) S Moy fun) @)+ Lo (frs - fn)

To prove (4.2) we introduce the notation
K9G) = K({)xigze.  K9F) = K(

setting ©)(7) :==1— 3" &;)(gj/?’) so that

<
SN—
—~
—_
|
@
S
—~
<
RN
@)
S—
~—

—

Supp(0™) C {y € (R")™ : [§] < 2}

and O (y) =1 for 7| < 1.
Given € > 0 choose p € Z such that 2° < e < 2°T!. Then we write

K@)l filx—v)) dy‘
‘ /(R")m\B(O €) H

(13 <| L, 6@ &G Lo =) a5
(1.4 . f?@”@)f[lfj(x - di|

Term (4.4) is clearly less than

> /nm JHI} —y;) dy

YEL:y<—p

while (4.3) is controlled by Mg (fl, ooy fm) () as

<Lh(fiye s fm)(2),

(")

men

[KOG) = K2 @)| S 1K) xgi=er S

Xlgls2e-

Thus (4.2) follows after taking the supremum over all € > 0.
Since the boundedness of Mg follows from Lemma 3.1 with the fact that ¢ > nf—Tl

implies 5 < % + g, matters reduce to the boundedness of ng-
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For each v € Z let

:ZK;.

YEZ
In the study of multilinear rough singular integral operators L in [18] whose kernel

i8> en K7 =200 en K = > ,cz Ky, the part where yu is less than a constant
is relatively simple because the Fourier transform of K, satisfies the estimate

(4.5) 0K, (E)| S 112 pagmn 1 |E1Q), 1< g <00

for all multiindices o and € € R™ \ {0}, where Q(u) = 2™ if 4, > 0 and
Q(u) = 209 if 4 < 0 for some 0 < &' < 1/¢/, which is the condition of the Coifman-
Meyer multiplier theorem [7], [15, Theorem 7.5.3] with constant ||€2|zegmn-1)Q(1).
The remaining case when p is large enough was handled by using product-type wavelet
decompositions. We expect a similar strategy would work in handling E?}-

To argue strictly, we write

L?)(fl)afm)gzgl(fhufM)_’_ Z ng#(fl?"'vfm)?
WEZ:2H—10>Ch/mn

where we set

Gl @ = [ S S g@]Lae-w di]
el R V<T pueZ:2+=10<Co/mn Jj=1
and
Lh (oo f) @) 1= sup Z/ K1) T e —v) dy?\.
7€ <1 j=1

Then Theorem 1.2 follows from the following two propositions:

Proposition 4.1. Let 1 <py,...,pm <00 and 1/p =1/p1+---+1/pm. Suppose that
1 <q<ooandQ e LYS™ 1) with men,l Qdo = 0. Then there exists a constant
C' > 0 such that

1L (frs - fo) || < ClQ Loy [T 15020

j=1
for Schwartz functions fi, ..., fm on R™.

Proposition 4.2. Let 2+1 < q < o0 and Q € LIS™) with [y, Qdo = 0.
Suppose that 1 € Z satisfies 24719 > Con/mn. Then there exist C,eq > 0 such that

H‘Ct(i),#(fla ceey fm HLQ/m ~ 760u|‘Qy‘Lq(Sm”_l) H HfjHL2

j=1

for Schwartz functions fi,..., f, on R™.
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4.2. Proof of Proposition 4.1. We decompose E?z further so that the Coifman-
Meyer multiplier theorem is involved: Setting

K@) = Y K= Y S K@),
WEZ:2h—10<Co/mn WEZ:2h—10<Co/mn YEZ

Zg) (fl, e fm) (x) is controlled by the sum of

T(fryo s fm —Sup)/ K(7) Hfj(w—y])dy]‘
TEL ly|>2—7 j=1
and
46 Tl d)@ = [ K@ [ w) 7]
T nym J=1
where

(47) K@= Y K@) - K@y

WEZ:2h—10Coy/mn Y<T

To obtain the boundedness of 1%, we claim that K is an m-linear Calderén-

Zygmund kernel with constant C/||€Q|¢gmn-1y for 1 < ¢ < oo. Indeed, it follows
from (4.5) that

K@< Y (K] S 1€

WEZ:2n=10<Co/mn

as the sum of Q(u) over u satisfying 2#710 < Cy/mn converges. Then K satisfies
the size and smoothness conditions for m-linear Calderén-Zygmund kernel with con-
stant C||Q||a@mn-1y, as mentioned in the proof of [21, Proposition 6]. Since K is a
Calderén-Zygmund kernel, Cotlar’s inequality in [20, Theorem 1] yields that T% is
bounded on the full range of exponents with constant C'||€2|za(gmn-1y.

To handle the boundedness of the operator T3, we observe that the kernel K**
can be written as

s K@= > (K@ — D K@)

WEZ:2h—10<Coy/mn  Y<T y>7
and thus
T (fr, s fm) (2) < sup Z L, () + T (2)
T€L emon-10<Cymn
where

>=Z!/ K30 [ 15— w) d|
N<r J1gl<2TT

]:
Tur(x ’/
lg7|>2-

_::]3

filx —y;) dy’
J:
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We claim that there exists € > 0 such that
(4.9) Tr + Tr Scomn 219 rmn—ry [[ M uniformly in 7 € Z
j=1

for u satisfying 2#719 < Cy/mn, where we recall M is the Hardy-Littlewood maximal
operator. Then, using Holder’s inequality and the boundedness of M, we obtain

[IMm5),
j=1

for 1 < p1,...,pm < o0 and 0 < p < oo satisfying 1/p = 1/py + -+ + 1/p,, as
> pan—10<cymn 2 converges. Therefore, let us prove (4.9).
Using (4.1), we have

S A (R
l7|<2-7 J|Z|~1

1 —
i [ T wlag
l71<277 54

< 2|6 agmn-y | [ Mf(2)

j=1

(4.20) ([T (1o fon) | 1o SN L2 gmn1y

m
SN2 wrmnsy [T 152
j=1

S 2Hmn||Q||L1(Smn71)

as desired.
In addition,

T (z) < Z/ﬁ|>2 gymn
Fl>2-7

v>T

[ i
|Z'|~1

Since (2 has vanishing mean, we have

]/ O, (27 — 7)) dF
|Z|~1

1
< 2u(mn+1)/ / ‘v@@u—wy—’ _ Qutg)‘ dt [Q(Z")| dz.
|Z]~1

H|fj —y)l dy.

Now we choose a constant M such that mn < M < mn + 1 and see that
1

(1 + |20ty — 2042 | )M

<, N 1 1 1

SComaM (g[S 2 [

as |Z] = 1,0 <t <1, and 2#7'9 < Cy/mn. This yields that
Ton() S 20O 4 g ( S 2*’7(Mfmn)>

y>T

(VO (2475 — 247)| S
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></ Hlfg —yi)l dy.
|7|>2-7 |y

7(M—mn)

Since M > mn, the sum over v > T converges to 2~ and the integral over

|| > 277 is estimated by

oo
E / |||f]x_y]’dy
—0 V2 TH L | <2-THAL |y
1
< 2T(M—mn) § 2—l(M—mn)< / | | d )
~ 2(=7+l+1)mn \7|<a-H+1 o |f] y] | Y

=0

5 27'(M—mn) H Mf](ﬂf)
j=1

Finally, we have

jﬂf” 5 QN(mn+1—M) ||Q||L1(Sm"71) H Mf],
j=1
which completes the proof of (4.9).

4.3. Proof of Proposition 4.2. The proof is based on the wavelet decomposition
and the recent developments in [18]. Recalling that K) € L7 we apply the wavelet
decomposition (2.1) to write

=D 2 > k(&) Y, )
AeNy GezA ke(Zn)m
where
By = /( 6 aE
It is known in [18] that for any 0 < § < 1/¢/,
(4.11) H{b,\,u }kH < 9—=0n9— (M+1+mn)||Q||Lq(Smn71)

g0

where M is the number of vanishing moments of W 5. Moreover, it follows from the
inequality (2.2), the Hausdorff-Young inequality, and Young’s inequality that

A, —Amn —1/¢") |1 770 —Amn -
(4.12) ||{b@%}g}|£q/ < 9—Amn(1/2 1/q)||KB||Lq, < 9=Xmn(l/q 1/2)||Q||Lq(gmn71)‘

Y

Now we may assume that 2 #2 < \E | < 2M#*+2 due to the compact supports of [/(75’
and \IJ . In addition, by symmetry, it suffices to focus on the case |k1| > -+ > |ky,|.

Since K Z(f ) = Kg(f /27), the boundedness of Egz is reduced to the inequality

IDIDIIDIEDD WH 67, o

TEL ANy GeTr YEZLT | ey 1




ON POINTWISE A.E. CONVERGENCE OF MULTILINEAR OPERATORS 17

(4.13) < 27 gagmny [T 151122

where the operators Lngj and the set U are defined as in (2.5) and (2.4). We

split U into m disjoint subsets Z/{IH“ (1 <1< 'm) as before such that for k € Ul’\ﬂ‘
we have

k1| > - > k| > 2C0v/n > ki > -+ > k.
Then the left-hand side of (4.13) is estimated by

2/m N\ m/2
(2 % |l ¥ = sl
I=1 XeNy Get NEL<T L2/m
where 727’“ is defined by
)‘7 ) Pp— A? )‘7
Tar" (e dn) = 3 b (1T 2600,59):
Fagte | inl

We claim that for each 1 <1 < m there exists ¢y, My > 0 such that

sup’ Z 'TAA”L .,fm)’

e . L2/m
(4.14) o 5
< 27002 MO gy [ [ 115l 22,
7=1

which concludes (4.13). Therefore it remains to prove (4.14).

Proof of (4.14). When 2 < [ < m, we apply (2.8) with 2 < ¢’ < = along with
(4.11), and (4.12) to obtain

sup Z 7:7“ . Z|7')‘7“ . fm)|

TEZL L2hn L2/m

YEL:LT YEZ
1_ ) mn
S Il bl 2 ) T
j=1
_ (m—1)q" 1) m m
S HQ||L‘1(Sm"—1)2 (11— q )# /22 )\Canq()\ + 1 /2 H H-f]HLQ
7j=1
where
(m —1)¢ (m—1)¢ mn

CMmm,g = (M +1+mn)(1— )+mn(l/qg—1/2)—"— — —.

2m 2m 2
Here we used the fact that l;—ll < ”;—:nl for [ < m. Then (4.14) follows from choosing
M sufficiently large so that Chy ., > 0 since 1 — (m;_nll)f/ < 0.
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Now let us prove (4.14) for [ = 1. In this case, we first see the estimate

o\ 1/2 e i
(4.15) H(Z‘ G?jf’“(flv'-wfm)}) ‘W < 272NN Q| Logmn 1y [T 1122

YEZ j=1

for some €y, My > 0, which can be proved, as in [18, Section 6], by using (2.7) and
(4.11).

Choose a Schwartz function I' on R™ whose Fourier transform is supported in the
ball {¢€ € R™ : |¢| < 2} and is equal to 1 for [£] < 1, and define 'y := 28T(2%.) so

that Supp(Iy) C {&€ € R™ : [¢] < 2041} and Ty (€) = 1 for [¢] < 2*.
Since the Fourier transform of TGS\IW‘ (f1,- .., fm) is supported in the set {f € R™:

205 e < 20 we can write
ST T i Sn) = Crra (0 T S
YEZL:y<T YEL:NLT
and then split the right-hand side into
T+M+3*<ZT“’YH fm)) r+u+3*( Z /\7# 1 -7fm)>‘
YEZL:y>T

Due to the Fourier support conditions of I';1,43 and ’Té\;“‘ (fi,.., fm), the sum in

the second term can be actually taken over 7 < v < 7+ 9. Therefore, the left-hand
side of (4.14) is controlled by the sum of

416 I= < T (o m)‘
(416 up|Tes (272 ...
and
9
L AT+,
(4.17) IT:= Z “EEE|FT+M+3*T671 VM(fl’,,,7fm)” Lo

First of all, when 0 < v <9, the Fourier supports of both I'~ 15 and quﬂ’“(ﬁ, ey fm)
are {£ € R™: |£] ~ 27#}. This implies that for any 0 < r < 1,

o * TET 7 (fro o f) (@)

<2 ([ 0o = 11570 dO) )

< (MOTT fm>r><x>) "

where the Nikolskii inequality (see [28, Proposition 1.3.2]) is applied in the first
inequality. Setting 0 < r < 2/m, and using the maximal inequality for M and the
embedding ¢? < (> we obtain

(4.18) 115 || sup [ T5T* (s S|
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<[(Z i)™

Then the L?™ norm is bounded by the right-hand side of (4.14), thanks to (4.15).
This completes the estimate for I1 defined in (4.17) and we turn our attention to
defined in (4.16).

In the sequel we will make use of the following inequality: if g, is supported on
{£ e R : C127Tm < €] < C277#} for some C > 1 and p € Z, then

i {5 (L)),

for 0 < p < 0o. The proof of (4.19) is elementary and standard, so it is omitted here;
see [16, (13)] and [31, Theorem 3.6] for related arguments.
To obtain the bound of I, we note that

1| ST o f|

YEZL

L2/m )

Lp([q) S"C H {gj}jEZHLP(KLI) Unlformly 1n M

H2/m

where H?/™ is the Hardy space. We refer to [15, Corollary 2.1.8] for the above
estimate. Then, using the Littlewood-Paley theory for Hardy space (see for instance

[15, Theorem 2.2.9]) and (4.19), there exists a unique polynomial Q**C(z) such that

|Z o=@, 2 (S a0l

[2/m
YEZ
(420) 5 2_EOILL2_MO>\||Q||Lq(Smn71) H ||fjl|L2
j=1
where (4.15) is applied. Furthermore,
Avu
IS 7]
YEZL
~ || sup |, * (Z'T)‘WL fl,,fm)>‘
vEeZ ~EZ L2/m
= ||sup |[', * ( Z 72’3’“(f1,~-,fm)>‘
vel YEL:y<v—p+5 7 L2/m
5 sup Z 727?/#(f1a'~'7fm)’

vEZ ’YEZ"7<V—/L+5 L2/m

< S o o

YEZL

L2/m

where the argument that led to (4.18) is applied in the first inequality. As we have dis-
cussed in [18, Section 6.1], this quantity is finite for all Schwartz functions fi,..., fi.
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Accordingly, we have
SSTET (frr s fn) = QM € HY
VeZ

and

Z )\’Yﬂ f1>"'7fm)€H2/m7

YEZ
and thus QM¢ = 0. Now it follows from (4.20) that

1< 2702 MoN(Q| ygmn—sy [T I £l 2.
j=1

as expected. This completes the proof of (4.14).

5. PROOF OF THEOREM 1.1

We now prove Theorem 1.1 by making use of Theorem 1.2. Recall that in Theo-
rem 1.2 we established the boundedness only for Schwartz functions. An important
obstacle we address is the pointwise definition of the maximal operator £** (see (1.3))
for general L? functions. This definition can be given via an abstract extension (see
[11]), this is not as useful for our purposes. We provide below a concrete approach
that preserves the pointwise bounds provided by the supremum.

5.1. A variant of Theorem 1.2 for general L? functions. We note that when
f; € L*(R™), by Lemma 3.1, there exists a set E ..... 1., of measure 0 such that

Mo (fi,--, fm)(2) < o0

when z ¢ E . Therefore for z ¢ EY  ; we have
12 17
(5.1) -~ H\f] x—y)|dj <C 2T,m/\/lg(fl,...7f ) (),
eo<|y\<571 |y|

and thus 596’( (fis- oy fm)(@) and LG (f1, ..., fm)(x) are well-defined, for f; in
L*(R™) and Q in L9(S™1). Moreover,

cs 6_1’(f1, o fn)@) S LEO(frs s S (@)

.....

For given f; € L2(R”), we ple sequences of Schwartz functions f]k converging to
f; in L? as k — oo, by density. Using the identity

(52) aiag - Qpy — ble cee bm == Z bl cee bj_1<aj — bj)aj+1 s Uy
=1
(with the obvious modification when j = 1 or j = m), the inequality

Lgﬁo(flv-wafm) Szca(ff77f2)+zﬁgeo<ff7 Jj— 1’f3 ka’fj"'l”"fm)
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is valid poinwisely on the complement of the set

(5.3) E%:=E} ;U (U Ep. fJ%) (U U Bl gt o=t fyir fm>

which is a set of measure zero. Now we take the L2/ ™ quasi-norm on both sides
and apply Theorem 1.3 for Schwartz functions and the estimate (5.1), combined with
Lemma 3.1, for the terms in the sum. Taking k — oo, we obtain

|5 (fr-- -, fm)HLz/m(Rn) < C||[ pagmn—1y H | f5ll 22 mny-
j=1
Finally, letting ¢y — 0 and using the monotone convergence theorem, we conclude

(5.4) L5 (frs-- - fm)HLz/m(Rn) < C[|Q[ Laggmn-1y H £l 22 @ny

j=1
for f; € L*(R").

5.2. Proof of Theorem 1.1. Let fi,..., f,, be given L? functions and pick se-
quences {f;'} of Schwartz functions such that fF converges to f; in L*(R") as k —
oo. Recall that Lqo(fi,..., fm) is defined as the L?>™ limit of EQ(fl oo fRE) as
k — co. Then there exists a subsequence {k;} of {k} such that Lo(f",..., ff) —
Lao(fi,..., fm) pointwise on R"\ E, for some set £ of measure zero. Let us denote
the Subsequence {k;} still by {k} for notational convenience. Then on R*\ (EU E*),
where E is as in (5.3), we have

|£§2€7E_1)<f17"'7f )_ Q(fl,;fm)‘
<1ES T Py f) = L5 1)
LG ) = LalfE o 1))

+‘['Q fl?af:;)_‘CQ(flaafm)’

We first take the limsup,_,, on both sides and then the middle term on the right
vanishes. Then we apply liminf;_,,, so that the last term vanishes. Consequently,
we have

hmsup ’£g7€7 )<f17 .- 7fm) - ‘CQ(fb .- 7fm)‘

e—0
Sli;gglfz;ﬁ*g*(fh-- i £ = £ ffen s 1)
J:

on R™\ (E U EQ), where the identity (5.2) is applied. It follows that

(o Hmsup €5 (e fn) = Lalfiso o f)] > A}

< |{e: Bl 3 L5 o fioss s = A5 S ) )> 2
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ZHhH_l}gleC (fio-oos fimn, i — +1>-- ) Hm

by Chebyshev’s inequality. But this last expression tends to zero as k — oo in view
of Fatou’s lemma and (5.4). We conclude that

lims(}lp |£S’E_1)(f1, v fm) = Lalfr, ooy fn)
€—>

equals zero a.e. and this finishes the proof.

6. PROOF OF THEOREM 1.4

Let 19 be the smallest integer satisfying 2#0=3 > Cyy/mn and

9510 1 5 Z (I)
p=pio

Clearly,

O () + > e () =

p=Hto
and thus we can write
o(€) =00, (§)a(€) +Z<1>”” () =t 041 () + Y 0ul€)
H=p0 K=o

Note that 0,,,-1 is a compactly supported smooth function and thus the corresponding

maximal multiplier operator M, _,, defined by

Mauo—l (fh ey fm) (l’)

=swp| [ o) (T[],

VEL

is bounded by a constant multiple of M fi(x)--- M f,,(z) where M is the Hardy-
Littlewood maximal operator on R"™ as before. Using Holder’s inequality and the
L?-boundedness of M, we can prove

HMUHO—1(f1a BRI fm>HL2/m S H HfjHLQ'
j=1

It remains to show that

(6.1) (DRI

p=po

m

o STIIA e,
j=1

Using the decomposition (2.1), write

(6.2) =D > D UG (&)U, g, (6n)

AeNo Gezr e(zn)m



ON POINTWISE A.E. CONVERGENCE OF MULTILINEAR OPERATORS 23

where

—

bggzzt[‘) (£ ().
= 7

Let M := [@] + 1 and choose 1 < ¢ < -=* such that

(m—1n mn _
(6.3) s < v < min (a, M).

In view of (2.2), we have

||{b }keZ" ol <2 MM — mn/CI+mn/2)HO-u||L?M (@Y™
(6.4) < 9 MM =mn/qtmn/2)g—p(a=mn/q)

where the assumption (1.8) is applied in the last inequality.
We observe that if u > pg, then bg% vanishes unless 2*#2 < |k | < 22#F2 due

to the compact supports of o, and ‘Ilg 7 which allows us to replace the sum over

k € (Z")™ in (6.2) by the sum over 2:t+=1 < |k| < 2X#+1 Moreover, we may
consider only the case |k1| > -+ > |k,,| as in the previous section. Therefore, in the
rest of the section, we assume

Z Z Z b):liqjcﬁ lﬁ ) Gm,k (Sm)

AeNo FezX k eur+n

:ZZ Z Z b):’li\llGlJﬂ ) ”\IIAm,km(fm)

=1 AeNg GezA keu)\+ﬂ

ZZZO

=1 AeNo Gez

where the sets UM, Z/{l’\+“ are defined as before. Then the left-hand side of (6.1) can
be controlled by

(65) (XY Y path - sln)

I=1 p=po AeNg GEIA

Now we claim that

HMUZ‘:?(-]CD SRR fm)HLQ/m

(66) 5 2—)\(M—mn/q)(/\ + 1)1/22—p(a—mn/q)'ul/2 H Hfj||L2-

J=1

Then (6.5) is less than a constant multiple of [[7_, || f;l[z2 as desired, due to the
choice of ¢ in (6.3).
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In order to prove (6.6), we use the estimates (2.7) and (2.8). We first rewrite

Z by ( i)

MJA)@(fl,...,f ) = sup
,l

YEZL

where Lg”k is defined as in (2.3).
When [ = 1, applying the embeddings ¢* < (>, (7 — (> and (2.7), the left-hand
side of (6.6) is less than
2) 1/2

(S| = weIles
7j=1
S eyl 222 2O+ D TT 1 il

V€L Eeu}tr
j=1

L2/m

< Q—A(M—mn/q)()\ + 1)1/22—u(a—mn/q)ul/2 H I £ill 22
j=1
where (6.4) is applied in the last inequality.
For the case 2 <[ < m, we can bound the left-hand side of (6.6) by

A u Ay
Z ’ b LGj,kj 1i
1

YEZ kEZ/IAJr” j 1

L2/m

S I e camm o222 2O+ 2 TT 1A e

j=1
Here, we used the inequality (2.8) and the embedding ¢? < ¢*°. Then the preceding
expression is estimated by

Q_A(M_m”/Q)()\ + 1)1/22—u(a—mn/q)ul/2 H I £ill2
7j=1
in view of (6.4). This completes the proof of (6.6).
7. PROOF OF THEOREM 1.3

We now prove Theorem 1.3 taking Theorem 1.4 for granted.
First of all, it is easy to see that if f; are Schwartz functions on R", then

(7.1) i SY(frr- o fu) () = 0(0) fi(2) -+ finl)

and
I}L)I{Qlo Sclr/(flv R fm)(x) = 07
using the Lebesgue dominated convergence theorem and the property that

lim 0(27€) =
V—00
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7.1. Extension of Theorem 1.4 to general f; € L*(R"). Let fi,..., fm be given
L? functions on R". As S¥(fi,..., fm) is finite a.e. for each v € Z, there exists a set
E, of measure zero so that |Sg(f1, ceey fm)‘ < oo on the complement of F,. Since v
ranges over a countable set Z, the measure of F :=|J,_, F, is clearly zero and thus
we can define

VEZ

MU(fh"’?f“’L) :Sup‘S(lJ/(flv"wfmﬂ

VEZ
on E°. That is, M,(f1,..., fm) is well-defined pointwise a.e. Morever, it controls
every ‘Sg( fioo ey fm)| pointwise, whenever the latter is finite.

We now extend Theorem 1.5 to f; € L*(R") using the above definition. Without
loss of generality we only consider the case when v — —o0 as the case v — oo follows
similarly. As every sequence that converges in L*™ has a subsequence that converges
a.e., there are a set of measure zero Ej,  ; and a subsequence

ki <kyg<hks<---<ky<--

of the sequence of k’s such that

1 k% kg -1
SO(f o ) (@) = ST (fry s f) (@)
for all x € R™\ E}ﬁf Next, there are a set of measure zero Egl,...,fm and a
subsequence
B <kl<ki<--<kl<-.
of
ki <ky<ky<---<hy<--
such that , ,
S fud) @) = S (fr e ) (@)
for all z € R* \ (E7, _; UE} ;). There are a set of measure zero £}, and a
subsequence
k< kS <ki<--<kl<--
of
<kl <hki<---<ki<--
such that , ,
So A Fud) (@) = S (frs s ) ()
for all z € R*\ (E},  , UE; , UE} ). Iterating this process, we can take a
diagonal sequence
kl<k2<kd< - <ki<---,
0
which is a subsequence of all subsequences, for which ff‘ (x) = fj(z)foralll <j<m
and

v ki kg v
Sa(flej T >fml)(x) - Sa(flv T >fM)(x)
as{ v ooforz e R\ UL, BY  ; andallv=-1,-2,....
Now on the set R" \ |J 2, B, , we have

[SUCF, s fo)| = lim [SECAY o )] = timinf [S2(AY, . fof)|
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for every v = —1,—2,..., and thus
. kS kg
S5 (fr oo fon)| < iminf Mo (£, fod)-
This deduces
£ £
Mo (i Sl < limint (o f)
—00
on R*"\ U2, B . . Taking the L*™ quasi-norm on the both sides and using
Fatou’s lemma and Theorem 1.4 for Schwartz functions, we finally obtain

(72) HMa(fla s fm)HLQ/m(Rn) 5 H ||fj”L2(R")
j=1

for fj € LQ(Rn)

7.2. Proof of Theorem 1.3. Let f;, j = 1,...,m, be functions in L?(R") and
. v okt k¢ v

(7.3) ZlirgoSg(fl‘f,...,fnf):Sa(fl,...,fm)

foreach v =—-1,-2,....
On (U2, Ef, _4.)¢, we write

S5 (frs-- s fu) (@) = 0(0) fu(z) -+ ful()|
v v 34 )34
< |Sa<f17' : 7fm) - So(flzv SR )ane){
v Kl 24 34 34
+ ’Scr(flew . 7an£) - 0-(0>f12 ’ fﬂ’f}
k¢ K¢
+ o) fi" - fud = (0)fr- - ful.
We first take limsup,_, . and use (7.1) to make the middle term on the right vanish,
and then apply liminf, .., to handle the last term on the right which will vanish as
well. As a result, we obtain
lim sup }S(’,’(fl, coisfm) —a(0)fr--- fm‘

V——00

.....

k¢ k¢
< liminfsup [SY(f1,. ... fn) = SUUfL", - fud)]-

l—=00 <0
Using the identity (5.2), we control the preceding expression pointwise by
m 4 4 4
o k kS Lk
llZH_lxl)gleMg(fll, AR fi—zla fz £ = fi7 f”H—la R fm)
i=1

on the complement of the set
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which has full measure. Since

R K Kk op (
hzrgg}lfzmaotl 7"'7fi—17fz' f17fz+17"'>fm)

i=1

L2/m(Rn) B

in view of Fatou’s lemma and (7.2), we finally obtain
thU_p |Sclr/(f17 cee fm) - U(O)fl T fml =0

V—r—00

for almost all points in R”, which proves one part of the claimed a.e. convergences.

8. CONCLUDING REMARKS

As of this writing, we are uncertain how to extend Theorem 1.4 in the non-lacunary
case. A new ingredient may be necessary to accomplish this.

We have addressed the boundedness of several multilinear and maximal multilinear
operators at the initial point L? x --- x L? — L?™. Our future investigation related
to this project has two main directions: (a) to extend this initial estimate to many
other operators, such as the general maximal multipliers considered in [17, 26], and
(b) to obtain LP' x --- x LPm — LP bounds for all of these operators in the largest
possible range of exponents possible. Additionally, one could consider the study of
related endpoint estimates. We hope to achieve this goal in future publications.

REFERENCES

[1] T. Anderson, E. Palsson. Bounds for discrete multilinear spherical mazimal functions. Collect.
Math. 73 (2022), no. 1, 75-87.
[2] J. Barrionuevo, L. Grafakos, D. He, P. Honzik, and L. Oliveira. Bilinear spherical mazimal
function. Math. Res. Lett. 25 (2018), no. 5, 1369-1388.
[3] E. Buridnkova and P. Honzik, Rough mazimal bilinear singular integrals, Collect. Math. 70
(2019), 431-446.
[4] C. Calderén, Lacunary spherical means, lllinois J. Math. 23 (1979), no. 3, 476-484.
[5] A. Carbery, J. Rubio de Francia, L. Vega. Almost everywhere summability of Fourier integrals.
J. London Math. Soc. 38 (1988), no. 3, 513-524.
[6] L. Carleson. On convergence and growth of partial sums of Fourier series. Acta Math. 116
(1966), 135-157.
[7] R. R. Coifman, Y. Meyer, Commutateurs d’ intégrales singuliéres et opérateurs multilinéaires,
Ann. Inst. Fourier (Grenoble) 28 (1978), 177-202.
[8] R. R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals,
Trans. Amer. Math. Soc. 212 (1975), 315-331.
[9] R. Coifman, G. Weiss, Book Review: Littlewood-Paley and multiplier theory, Bull. Amer. Math.
Soc. 84 (1978), no. 2, 242-250.
[10] G. Dosidis. Multilinear spherical mazimal function. Proc. Amer. Math. Soc. 149 (2021), no. 4,
1471-1480.
[11] G. Dosidis and L. Grafakos, On families between the Hardy-Littlewood and spherical mazimal
functions, Ark. Mat. 59 (2021), no. 2, 323-343.
[12] X. Du, L. Guth, X. Li. em A sharp Schrédinger maximal estimate in R? . Ann. of Math. 186
(2017), no. 2, 607-640.
[13] J. Duoandikoetxea and J.-L. Rubio de Francia, Mazimal and singular integral operators via
Fourier transform estimates, Invent. Math. 84 (1986) 541-561.



28

14]
15]
16]
17)
18]
19]
20]
21]
22]
23]
24]

[25]

LOUKAS GRAFAKOS, DANQING HE, PETR HONZIK, AND BAE JUN PARK

L. Grafakos, Classical Fourier Analysis, 3rd edition, Graduate Texts in Mathematics 249,
Springer, New York, 2014.

L. Grafakos, Modern Fourier Analysis, 3rd edition, Graduate Texts in Mathematics 250,
Springer, New York, 2014.

L. Grafakos, D. He, and P. Honzlk, Rough bilinear singular integrals, Adv. Math. 326 (2018)
54-78.

L. Grafakos, D. He, and P. Honzik, Maximal operators associated with bilinear multipliers of
limited decay, J. Anal. Math. 143 (2021) 231-251.

L. Grafakos, D. He, P. Honzik, and B. Park, Initial L?x- - - x L? bounds for multilinear operators,
Trans. Amer. Math. Soc. 376 (2023) 3445-3472.

L. Grafakos, D. He, and L. Slavikov4, L? x L? — L' boundedness criteria, Math. Ann. 376
(2020) 431-455.

L. Grafakos and R. H. Torres, Mazimal operator and weighted norm inequalities for multilinear
singular integrals, Indiana Univ. Math. J. 51 (2002), 1261-1276.

L. Grafakos and R. H. Torres, Multilinear Calderén-Zygmund Theory, Adv. Math. 165 (2002),
124-164.

Y.Heo, S. Hong, C. Yang. Improved bounds for the bilinear spherical mazximal operators. Math.
Res. Lett. 27 (2020), no. 2, 397—434.

E. Jeong, S. Lee. Maximal estimates for the bilinear spherical averages and the bilinear Bochner-
Riesz operators. J. Funct. Anal. 279 (2020), no. 7, 108629, 29 pp.

B. Jessen, J. Marcinkiewicz, and A. Zygmund. Note on the differentiability of multiple integrals.
Fundamenta Mathematicae 25 (1935) no.1, 217-234.

T. Kato, A. Miyachi, N. Tomita, Boundedness of bilinear pseudo-differential operators of Sy o-
type on L? x L2, J. Pseudo-Differ. Oper. Appl. 12 (2021), 38pp.

J. L. Rubio de Francia, Mazimal functions and Fourier transforms, Duke Math. J. 53 (1986)
395-404.

E. Stein. On limits of sequences of operators. Ann. of Math. 74 (1961), no.2 140-170.

H. Triebel, Theory of Function Spaces, Birkhduser, Basel-Boston-Stuttgart, 1983.

H. Triebel, Theory of function spaces. III, Birkhaduser, Basel-Boston-Stuttgart, 2006.

H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, EMS
Tracts in Mathematics, vol. 11, European Mathematical Society (EMS), Ziirich, 2010.

M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on
spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 33 (1986) 131-174.

L. GRAFAKOS, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO
65211, USA

Email address: grafakosl@missouri.edu

D. HE, SCHOOL OF MATHEMATICAL SCIENCES, FUDAN UNIVERSITY, PEOPLE’S REPUBLIC OF
CHINA
Email address: hedanging@fudan.edu.cn

P. HoNzik, DEPARTMENT OF MATHEMATICS, CHARLES UNIVERSITY, 116 36 PRAHA 1, CZECH
REPUBLIC
Email address: honzik@gmail.com

B. PARK, DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON 16419,
REPUBLIC OF KOREA
Email address: bpark43@skku.edu



