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Abstract. We characterize Lp norms of functions on Rn for 1 < p <∞ in terms of
their Gabor coefficients. Moreover, we use the Carleson-Hunt theorem to show that
the Gabor expansions of Lp functions converge to the functions almost everywhere
and in Lp for 1 < p <∞. In L1 we prove an analogous result: the Gabor expansions
converge to the functions almost everywhere and in L1 in a certain Cesàro sense.
Consequently, we are able to establish that a large class of Gabor families generate
Banach frames for Lp(Rn) when 1 ≤ p <∞.

1. Introduction

It is a well known fact that certain Gabor expansions form frames for the Hilbert
space L2(Rn). In this paper we show that that these expansions also generate Banach
frames for Lp(Rn) when 1 ≤ p < ∞. The case p = 1 must be handled separately
using Cesàro-Fejér summability (instead of Dirichlet summability) of partial sums.
We also establish that certain Gabor expansions of Lp functions converge to the
functions almost everywhere and in Lp(Rn) for 1 ≤ p < ∞, where the convergence
is interpreted in the Cesàro sense when p = 1. Moreover, we obtain frame inequali-
ties, that characterize the Lp(Rn) norm of f (up to equivalence) in terms of certain
sequence-space norms evaluated at the sequence of Gabor coefficients of f .

Recall that a family (fi)i∈I is a frame for a Hilbert space H if there exist constants
A,B > 0 such that

A||f ||2 ≤
∑
i∈I
|〈f, fi〉|2 ≤ B||f ||2, for all f ∈ H .

In this paper the index set I will, as usual, be denumerable. Frames were introduced
by Duffin and Schaeffer [6]. Also see Heil and Walnut [12] for an exposition.

Two analogues of Hilbert space frames for Banach spaces, atomic decomposi-
tions and Banach frames (which include atomic decompositions) were introduced
by Gröchenig [10]. Also, see Christensen and Heil [4], Casazza and Christensen [3],
and Walnut [22]. These papers contain examples of Banach frames, and results on
the stability of Banach frames under perturbation.
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Our results show that Gabor expansions in Lp(Rn), 1 ≤ p < ∞, once we slightly
widen the definition (without altering its essential features), may be viewed as Ba-
nach frames. We restrict our attention to frames that are tight in the special case
of L2(Rn). We remark that Walnut [22] proves analogous results for certain Ga-
bor expansions in weighted L2 spaces i.e. that these Gabor expansions are atomic
decompositions.

Our results for 1 < p < ∞ may also be phrased in terms of a concept introduced
in a paper of Kazarian, Soria and Zink [14]: Gabor systems (φm,l)m,l∈Zn , of the type
described below, form a quasibasis of Lp(Rn) (see [14] for the definition).

We note that simultaneously with this paper, K. Gröchenig and C. Heil [11] recently
obtained frame characterizations of Lp(Rn) related to those of the authors. For
1 < p < ∞, the frame characterizations of Lp in [11] hold for more general φ and
ψ than those we consider. Moreover, the proof techniques used in [11], involving
modulation spaces, are different from ours. Finally, we remark that our paper is
more general than [11] in the sense that it includes a Gabor frame characterization
of L1.

Throughout this section I and J will denote countably infinite index sets. More-
over, Xd will denote a semi-normed vector space of scalar-valued sequences with
domain I, containing c00(I), the space of all finitely non-zero scalar-valued sequences
on I. Let X be a Banach space. We will denote the Banach dual of X by X ∗. The
duality between any x ∈ X and y ∈ X ∗ will be given by 〈x, y〉.

Definition 1.1. Let (fi)i∈I be a sequence in X and (yi)i∈I be a sequence in X ∗. The
pair ((yi)i∈I , (fi)i∈I) is called an atomic decomposition for X with respect to Xd, with
bounds A1 and B1, if
(a) (〈x, yi〉)i∈I ∈ Xd for each x ∈ X ;
(b) A1‖x‖ ≤ ‖ (〈x, yi〉)i∈I ‖Xd ≤ B1‖x‖, for all x ∈ X ; and
(c) x =

∑
i∈I〈x, yi〉fi, for all x ∈ X , with convergence in the norm of X .

Definition 1.2. Suppose we are given a family of linear operators Θ = (Tj)j∈J , where
each Tj : Xd → X , for some countable index set J , and a sequence (yi)i∈I in X ∗. The
pair ((yi)i∈I ,Θ) is called a Banach frame for X with respect to Xd, with bounds A1

and B1, if we have
(a) K(x) := (〈x, yi〉)i∈I ∈ Xd for each x ∈ X ;
(b) A1‖x‖ ≤ ‖ (〈x, yi〉)i∈I ‖Xd ≤ B1‖x‖, for all x ∈ X ; and
(c) for all x ∈ X , limj∈J Tj(K(x)) exists in the norm of X , and equals x.

We remark that in both Definitions 1.1 and 1.2 we have slightly broadened the
definition of Gröchenig [10], where Xd is assumed to be a Banach space. We are
assuming that Xd is merely a seminormed vector space.

Concerning Definition 1.2, in [10] it is assumed that there exists T : Xd → X
that is linear and continuous on Xd, and for which x = T (K(x)), for all x ∈ X .
Moreover, to establish frame perturbation theorems in Christensen and Heil [4], it is
assumed that the usual delta sequence of vectors (ei)i∈I in c00(I) is an unconditional
Schauder basis for Xd. Let us assume that (ei)i∈I is a Schauder basis for Xd (perhaps
not unconditional). For simplicity, and without loss of generality, let I = N. Define
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J := N also. Further, let Θ = (Tj)j∈J , where each Tj : Xd → X , is defined by

Tj(α) :=

j∑
i=1

αi T (ei) , for all α = (αi)i∈N , for all j ∈ N .

Then, clearly,

lim
j∈J

Tj(α)) = T

(
lim
j→∞

j∑
i=1

αi ei

)
= T (α) ,

in the norm of X . Hence,

lim
j∈J

Tj(K(x))) = T (K(x)) = x .

In summary, Definition 1.2 includes the original definition of a Banach frame.
We will be working on Rn. We use the following definitions for the Fourier trans-

form and the inverse Fourier transform of Schwartz functions f on Rn:

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx, f∨(x) = f̂(−x) =

∫
Rn

f(ξ)e2πix·ξdξ,(1)

where x · ξ =
∑n

j=1 xjξj if x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn).

Throughout this article Q = [0, 1]n will denote the unit cube in Rn. Fix three
functions φ, ψ and σ such that

φ, ψ and σ are complex-valued Schwartz functions on Rn ; and(2)

φ̂, ψ̂ and σ̂ are supported in Q.(3)

We will assume the following structural relationship between φ and ψ:∑
l∈Zn

φ̂(ξ − ω0l)ψ̂(ξ − ω0l) = A, ξ ∈ Rn,(4)

for some fixed ω0 and A with 0 < ω0 < 1 and 0 < A < ∞. We remark that (2) (or
(3)) implies that

Bφ := sup
ξ∈Rn

∑
l∈Zn
|φ̂(ξ − ω0l)|2 <∞ and Bψ := sup

ξ∈Rn

∑
l∈Zn
|ψ̂(ξ − ω0l)|2 <∞.(5)

Similarly, Bσ <∞. We will also assume the following concentration condition

c =

∫
Q

ψ̂(ξ)ψ̂(ξ) dξ −
∑

(s1,...,sn)∈Zn\{0}
|sj |<ω−1

0

∣∣∣∣∫
Q

ψ̂(ξ)ψ̂(ξ + ω0s) dξ

∣∣∣∣ > 0,(6)

basically saying the overlap of ψ̂ with all its translates on the grid Zn\{0} is relatively

small compared with ‖ψ‖2L2 . Since the number c in (6) tends to
∫
Q
ψ̂(ξ)ψ̂(ξ) dξ > 0

as ω0 → 1, it follows that (6) is not a serious restriction on ψ if ω0 is near 1.
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Finally, assume

cσ =

∫
Q

σ̂(ξ)σ̂(ξ) dξ −
∑

(s1,...,sn)∈Zn\{0}
|sj |<ω−1

0

∣∣∣∣∫
Q

σ̂(ξ)σ̂(ξ + ω0s) dξ

∣∣∣∣ > 0 .(7)

We define a pair of Gabor families (φm,l)m,l∈Zn and (ψm,l)m,l∈Zn as follows. For all
m, l in Zn, let

φm,l(x) = φ(x−m)e2πiω0x·l, ψm,l(x) = ψ(x−m)e2πiω0x·l.(8)

The Gabor family (σm,l)m,l∈Zn is defined similarly. An easy calculation using (1) gives
that

φ̂m,l(ξ) = φ̂(ξ − ω0l)e
−2πim·(ξ−ω0l)(9)

and similarly with ψ and σ. Let us denote by

〈f, g〉 =

∫
Rn

f(x)g(x) dx

the usual inner product on Rn. We observe that the equality∑
l∈Zn

∑
m∈Zn

〈f, φm,l〉〈f, ψm,l〉 = A‖f‖2L2(10)

is valid for all square integrable functions f on Rn. Identity (10) is a consequence of
Plancherel’s theorem in L2(Rn),

e2πiω0m·l 〈f, φm,l〉 =
(
f̂( · )φ̂( · − ω0l)

)∨
(m)

and

e2πiω0m·l 〈f, ψm,l〉 =
(
f̂( · )ψ̂( · − ω0l)

)∨
(m);

Parseval’s formula in L2(Q),∑
m∈Zn

(
f̂( · )φ̂( · − ω0l)

)∨
(m)

(
f̂( · )ψ̂( · − ω0l)

)∨
(m)

=

∫
Q

(∑
r∈Zn

f̂(ξ − r)φ̂(ξ − r − ω0l)

) (∑
s∈Zn

f̂(ξ − s)ψ̂(ξ − s− ω0l)

)
dξ ;

and of the equalities below∑
l∈Zn

∑
m∈Zn

〈f, φm,l〉〈f, ψm,l〉

=
∑
r∈Zn

∑
s∈Zn

∫
Q

f̂(ξ − r)f̂(ξ − s)
∑
l∈Zn

φ̂(ξ − r − ω0l) ψ̂(ξ − s− ω0l) dξ

=
∑
r∈Zn

∫
Q

|f̂(ξ − r)|2Adξ = A‖f‖2L2(Rn),

applying (4) and the fact that the last sum in l above vanishes when r �= s, by (3).
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Let us just observe that when φ = ψ, (10) reduces to the tight frame identity∑
m∈Zn

∑
l∈Zn
|〈f, φm,l〉|2 = A‖f‖2L2 ,(11)

a well-known fact about Gabor frames under assumption (4) with φ = ψ.
Also, note that condition (5) guarantees (and is equivalent to) the fact that for

each f ∈ L2(Rn), (〈f, φm,l〉)m,l∈Zn and (〈f, ψm,l〉)m,l∈Zn are Bessel sequences. Indeed,
calculations similar to those immediately above show that∑

m∈Zn

∑
l∈Zn
|〈f, φm,l〉|2 ≤ Bφ ‖f‖2L2 and

∑
m∈Zn

∑
l∈Zn
|〈f, ψm,l〉|2 ≤ Bψ ‖f‖2L2 .(12)

Moreover, when combined with (4), (5) tells us that both (φm,l)m,l∈Zn and (ψm,l)m,l∈Zn
are frames for L2(Rn), with frame bounds (A2/Bψ, Bφ) and (A2/Bφ, Bψ), respectively.

In this paper we obtain results analogous to (10) for Lp spaces by characterizing
the Lp norm of a function f on Rn in terms of its Gabor coefficients 〈f, φm,l〉.

We shall now state our results in Lp(Rn), 1 < p < ∞, leaving the proofs and the
L1 case for later sections. We begin with some estimates valid for Schwartz functions.

Theorem 1.3. Let φ and σ satisfy (2). Let 0 < p ≤ ∞. Then there exists a constant
Cp > 0 (depending only on p, n, and the functions φ and σ) such that for all f in
the Schwartz class of Rn we have∥∥∥∥∥ ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
∥∥∥∥∥
Lp

≤ Cp‖f‖Lp .(13)

In the opposite direction we have the following result.

Theorem 1.4. Let φ and σ satisfy (2), (3), (4), and (7). Let 1 ≤ p ≤ ∞. Then
there exists a constant Dp > 0 (depending only on p, n, and on the functions φ, ψ,
and σ) such that for all f in the Schwartz class of Rn we have

‖f‖Lp ≤ Dp

∥∥∥∥∥∥∥
 ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2
1/2

∥∥∥∥∥∥∥
Lp

.(14)

Combining Theorems 1.3 and 1.4 we obtain a characterization of the Lp norm of a
Schwartz function on Rn in terms of its Gabor coefficients 〈f, φm,l〉 for 1 ≤ p ≤ ∞.

Corollary 1.5. Let φ and σ satisfy (2), (3), (4), and (7). Then for all f in the
Schwartz class of Rn and all 1 ≤ p, q ≤ ∞ we have the following equivalence of
norms

‖f‖Lp ≈

∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
q)1/q

∥∥∥∥∥∥
Lp

,(15)

with constants depending on p, n, and on the functions φ, ψ, and σ (but not on q).
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Remark 1.6. Even when p = q = 2, the expression on the right of (15) is not a
constant multiple of the expression on the left in (11). Nevertheless, (15) provides a
generalization of (11) for p �= 2. Moreover, the presence of the functions σm,l indicates
that the equivalent characterization of the Lp-norm of f given in (15) depends only
on the sequence of Gabor coefficients (〈f, φm,l〉)m,l, and not also on the functions φm,l.

Next we show that Schwartz functions are limits of their Gabor expansions.

Theorem 1.7. Let φ and ψ satisfy (2), (3) and (4). Every Schwartz function f
can be represented as the pointwise limit of an absolutely convergent series of Gabor
expansions as follows:

f(x) =
1

A

∑
m∈Zn

∑
l∈Zn
〈f, φm,l〉ψm,l(x), x ∈ Rn.(16)

Having established some basic facts about Gabor expansions of Schwartz functions,
we now pass to the main results of our paper. These results have to do with the
behavior of the Gabor expansions of arbitrary Lp functions on Rn and the description
of the Lp norm of a function in terms of its Gabor coefficients. In the theorem below
we use square summation instead of spherical summation in l in view of the lack
of Lp convergence (in general) of the spherical partials sums of a Fourier series of a
function f ∈ Lp(Rn) when n ≥ 2 and p �= 2. See [8]. We will denote the coordinates
of a lattice point l ∈ Zn by l1, l2, . . . , ln.

Theorem 1.8. Let φ, ψ and σ satisfy (2), (3) (4), (6) and (7). Fix 1 < p <∞ and
f ∈ Lp(Rn). Then

1

A

∑
m∈Zn
|m|≤M

∑
|l1|≤L

· · ·
∑
|ln|≤L

〈f, φm,l〉ψm,l → f(17)

in Lp and almost everywhere as M,L → ∞. Moreover, for every f ∈ Lp(Rn) the
series

∆L
m(f) =

∑
|l1|≤L

· · ·
∑
|ln|≤L

〈f, φm,l〉σm,l(18)

converges in Lp and almost everywhere to some function which we denote by

∆m(f) =
∑
l∈Zn
〈f, φm,l〉σm,l.

Further, for all 1 ≤ q ≤ ∞ we have

‖f‖Lp ≈

∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
q)1/q

∥∥∥∥∥∥
Lp

(19)

with constants depending only on p, n, and on the functions φ, ψ and σ, but not on
q.
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Let us now see how to use Theorem 1.8 to view our Gabor family Φ = (φm,l)m,l∈Zn
as a Banach frame for X := Lp(Rn).

Define Xd to be the set of all scalar-valued sequences α = (αm,l)m,l∈Zn for which,

for all m ∈ N, the sequence (s
(m)
L )L∈N of functions given by

s
(m)
L (α) :=

∑
|l1|≤L

· · ·
∑
|ln|≤L

αm,l ψm,l

converges in Lp(Rn) norm to some function s(m)(α); and moreover, for which the
sequence (s(m)(α))m∈Zn belongs to the Lebesgue-Bochner space Lp(Rn, &2).

We remark that we could replace Lp(Rn, &2) by Lp(Rn, &q) in the definition of Xd

above. See, for example, Diestel and Uhl [5] for more about Lebesgue-Bochner spaces.
Next, for all α ∈ Xd, define

‖α‖Xd : =
∥∥(s(m)(α))m∈Zn

∥∥
Lp(Rn,�2)

=

∥∥∥∥∥∥
( ∑

m∈Zn

∣∣s(m)(α)
∣∣2)1/2

∥∥∥∥∥∥
Lp(Rn)

.

Then (Xd, ‖ · ‖Xd) is a semi-normed vector space. Let J := N × N. Define Θ :=
(TM,L)(M,L)∈J by setting, for each (M,L) ∈ J and each α ∈ Xd,

TM,L(α) :=
1

A

∑
m∈Zn
|m|≤M

∑
|l1|≤L

· · ·
∑
|ln|≤L

αm,l ψm,l .

We have that Θ is a denumerable family of linear operators from Xd into X and
Φ := (ym,l := φm,l)m,l∈Zn is a sequence in X ∗ = Lp′(Rn). Theorem 1.8 now gives
us properties (a), (b) and (c) of Definition 1.2; so that (Φ,Θ) is a Banach frame for
X = Lp(Rn) with respect to Xd.

Finally, we have a version of Theorem 1.8 when p = 1 where the Lp-limit (18) is
replaced by an L1 limit of the square Fejér means of the function f . The details are
in section 6: see Theorem 6.3. We remark that Theorem 6.3 may be viewed as a
discrete analogue of Theorem 1.5 of Benedetto [1].

2. The proof of Theorem 1.3

We will use the Poisson summation formula to rewrite the expression∑
l∈Zn
〈f, φm,l〉σm,l

appearing in (13) in a simpler form. Recall that the Poisson summation formula says∑
l∈Zn

ĝ(l)e2πix·l =
∑
r∈Zn

g(x− r),(20)

whenever g and ĝ satisfy |g(x)|+ |ĝ(x)| ≤ C(1 + |x|)−n−δ for some C, δ > 0. See for
instance [21] p. 252.
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Fix a Schwartz function f on Rn. Observe that∑
l∈Zn
〈f, φm,l〉σm,l(x)

=σ(x−m)
∑
l∈Zn

e2πiω0x·l
∫

Rn

f(y)φ(y −m)e−2πiω0y·ldy

=
σ(x−m)

ωn
0

∑
l∈Zn

e2πiω0x·l
∫

Rn

f( y
ω0

)φ( y
ω0
−m)e−2πiy·ldy

=
σ(x−m)

ωn
0

∑
l∈Zn

e2πiω0x·l
(
f( ·

ω0
)φ( ·

ω0
−m)

)
(̂l)

=
σ(x−m)

ωn
0

∑
r∈Zn

f(x− 1
ω0
r)φ(x− 1

ω0
r −m).(21)

Let us consider the case p = ∞ first. Since φ and σ are Schwartz functions, for all
ν > 0 there exists a constant Cν > 0 such that the estimate below holds:

|φ(x)|+ |σ(x)| ≤ Cν(1 + |x|)−ν .(22)

Using (21) and (22) we obtain the bound

sup
x∈Rn

( ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l(x)

∣∣∣∣∣
)

≤C2
ν

ωn
0

‖f‖L∞ sup
x∈Rn

( ∑
m∈Zn

(1 + |x−m|)−ν
( ∑

r∈Zn
(1 + |x− 1

ω0
r −m|)−ν

) )
=
C2

ν (C
′
ν)

2

ωn
0

‖f‖L∞ ,

since for large enough ν,

sup
y∈Rn

∑
m∈Zn

(1 + |y −m|)−ν = C ′ν <∞.

We continue with the case 0 < p <∞. Let

∆m(f) =
∑
l∈Zn
〈f, φm,l〉σm,l

We have that for all x ∈ Rn,∑
m∈Zn

|∆m(f)(x)|

≤
∑
m∈Zn

|σ(x−m)|
ωn

0

∑
r∈Zn
|f(x− 1

ω0
r)| |φ(x− 1

ω0
r −m)|

≤C2
ν

ωn
0

∑
r∈Zn
|f(x− 1

ω0
r)|

∑
m∈Zn

(1 + |x−m|)−ν(1 + |x− 1
ω0
r −m|)−ν .

(23)
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Now use that (1 + |x − m|)(1 + |x − 1
ω0
r − m|) ≥ (1 + | 1

ω0
r|) to estimate the last

expression in (23) by

C2
ν

ωn
0

∑
r∈Zn

|f(x− r
ω0

)|
(1 + | r

ω0
|)ν/2

∑
m∈Zn

1

(1 + |x−m|)ν/2 ≤
C2

ν C
′
ν/2

ωn
0

∑
r∈Zn

|f(x− r
ω0

)|
(1 + | r

ω0
|)ν/2 .

Note that C ′ν/2 <∞, for large enough ν. Clearly, the positive homogeneous mapping

f �→
∑
r∈Zn

|f(x− r
ω0

)|
(1 + | r

ω0
|)ν/2

is bounded on Lp(Rn) for 1 ≤ p < ∞ by Minkowski’s inequality. For 0 < p < 1 we
have ∥∥∥∥ ∑

r∈Zn

|f(x− r
ω0

)|
(1 + | r

ω0
|)ν/2

∥∥∥∥
Lp
≤

(∫
Rn

∑
r∈Zn

|f(x− r
ω0

)|p

(1 + | r
ω0
|)pν/2dx

)1/p

≤ C ′′ν‖f‖Lp ,

if ν > 2n/p. This gives the required conclusion.

3. The proof of Theorem 1.4 and of Corollary 1.5

A key observation we will use (proven below) is that for all m, l, s ∈ Zn

〈σm,l, σm,s+l〉 =

∫
Rn

σm,l(x)σm,s+l(x) dx(24)

is independent of l. To see this, use Plancherel’s theorem and the simple formula in
(9) to obtain

〈σm,l, σm,s+l〉 = 〈σ̂m,l,\σm,s+l〉

=

∫
Rn

σ̂m,l(ξ)\σm,s+l(ξ) dξ

=

∫
Rn

σ̂(ξ − ω0l) e
−2πim·(ξ−ω0l) σ̂(ξ − ω0s− ω0l) e

2πim·(ξ−ω0s−ω0l) dξ

= e−2πiω0m·s
∫

Rn

σ̂(ξ − ω0l) σ̂(ξ − ω0s− ω0l) dξ

= e−2πiω0m·s βs,

where

βs :=

∫
Rn

σ̂(η) σ̂(η − ω0s) dη .

Note that our hypotheses (7) and (3) imply that for k := 〈σ, σ〉, we have

|k| −
∑

s∈Zn\{0}
|sj |<ω−1

0

|βs| = |k| −
∑

s∈Zn\{0}
|βs| =: c > 0 .

(Here, sj are the coordinates of the lattice point s.)
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By a similar calculation to the derivation of (10) above, or by polarizing (10) using
the identity

〈f, g〉 =
1

4

3∑
k=0

ik‖f + ikg‖2L2 ,

we obtain the formula

〈f, g〉 = A−1
∑
m∈Zn

∑
l∈Zn
〈f, φm,l〉〈g, ψm,l〉,(25)

for f and g Schwartz functions. Now fix 1 ≤ p ≤ ∞ and let p′ be the dual index. To
complete the proof of Theorem 1.4, we will use (25) and duality; i.e.

‖f‖Lp = sup
‖g‖

Lp
′≤1

|〈f, g〉|,

noting that it is sufficient to only consider Schwartz functions g in the above supre-
mum. Then

‖f‖Lp = sup
‖g‖

Lp
′≤1

|〈f, g〉|

= A−1 sup
‖g‖

Lp
′≤1

∣∣∣∣ ∑
m∈Zn

∑
l∈Zn
〈f, φm,l〉〈g, ψm,l〉

∣∣∣∣
≤ A−1 sup

‖g‖
Lp
′≤1

∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉〈g, ψm,l〉

∣∣∣∣∣ .

Now for each Schwartz function g and s ∈ Zn define gs by

gs(x) = g(x) e−2πiω0x·s , for all x ∈ Rn .

Define γ(f, g) by

γ(f, g) := sup
s∈Zn

∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉 〈gs, ψm,l〉

∣∣∣∣∣ .

By (12),

γ(f, g) := sup
s∈Zn

∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉 〈gs, ψm,l〉

∣∣∣∣∣
≤ sup

s∈Zn

∑
m∈Zn

∑
l∈Zn

∣∣∣〈f, φm,l〉 〈gs, ψm,l〉
∣∣∣

≤ sup
s∈Zn

( ∑
m∈Zn

∑
l∈Zn
|〈f, φm,l〉|2

)1/2 ( ∑
m∈Zn

∑
l∈Zn
|〈gs, ψm,l〉|2

)1/2

≤ sup
s∈Zn

√
Bφ Bψ ‖f‖L2 ‖gs‖L2

=
√

Bφ Bψ ‖f‖L2 ‖g‖L2 <∞ .
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Fix Schwartz functions f and g. Then,

|k|
∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉 〈g, ψm,l〉

∣∣∣∣∣
=

∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉 〈g, ψm,l〉〈σm,l, σm,l〉

∣∣∣∣∣ ≤ U + Γ ; where

U :=
∑
m∈Zn

∣∣∣∣∣∑
l∈Zn

∑
l′∈Zn

〈f, φm,l〉 〈g, ψm,l′〉〈σm,l, σm,l′〉
∣∣∣∣∣ , and

Γ :=
∑
m∈Zn

∣∣∣∣∣∣
∑
l∈Zn

∑
l′∈Zn\{l}

〈f, φm,l〉 〈g, ψm,l′〉〈σm,l, σm,l′〉

∣∣∣∣∣∣ .

Now,

U ≤
∫

Rn

∑
m∈Zn

∣∣∣∣∣
( ∑

l∈Zn
〈f, φm,l〉σm,l(x)

)( ∑
l′∈Zn

〈g, ψm,l′〉σm,l′(x)

)∣∣∣∣∣ dx
≤

∫
Rn

( ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l(x)

∣∣∣∣∣
2 )1/2( ∑

m∈Zn

∣∣∣∣∣ ∑
l′∈Zn
〈g, ψm,l′〉σm,l′(x)

∣∣∣∣∣
2 )1/2

dx

≤
∥∥∥∥( ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp

∥∥∥∥( ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈g, ψm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
′

≤
∥∥∥∥( ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp

∥∥∥∥ ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈g, ψm,l〉σm,l

∣∣∣∣∣
∥∥∥∥
Lp
′

≤
∥∥∥∥( ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
Cp′ ‖g‖Lp′ .

On the other hand, from the definition of Γ and the verification of (24) above,

Γ =
∑
m∈Zn

∣∣∣∣∣∣
∑
l∈Zn

∑
s∈Zn\{0}

〈f, φm,l〉 〈g, ψm,s+l〉〈σm,l, σm,s+l〉

∣∣∣∣∣∣
≤

∑
s∈Zn\{0}

|βs|
∑
m∈Zn

∣∣∣∣∣e−2πiω0m·s
∑
l∈Zn
〈f, φm,l〉 〈g, ψm,s+l〉

∣∣∣∣∣
=

∑
s∈Zn\{0}

|βs|
∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉 〈gs, ψm,l〉

∣∣∣∣∣
≤

( ∑
s∈Zn\{0}

|βs|
)
γ(f, g) .
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Again, fix Schwartz functions f and g. Then fix t ∈ Zn. Applying our argument
immediately above to f and gt instead of f and g yields

|k|
∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉 〈gt, ψm,l〉

∣∣∣∣∣
≤

∥∥∥∥( ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
Cp′ ‖gt‖Lp′ +

 ∑
s∈Zn\{0}

|βs|

 γ(f, gt)

=

∥∥∥∥( ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
Cp′ ‖g‖Lp′ +

 ∑
s∈Zn\{0}

|βs|

 γ(f, g) .

Since t ∈ Zn is arbitrary, we may conclude that

|k| γ(f, g) ≤
∥∥∥∥( ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
Cp′ ‖g‖Lp′ +

 ∑
s∈Zn\{0}

|βs|

 γ(f, g) ;

and therefore

c γ(f, g) ≤
∥∥∥∥( ∑

m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
Cp′ ‖g‖Lp′ .

Now f and g are arbitrary Schwartz functions on Rn. So, recalling the duality
introduced above, we see that

‖f‖Lp = sup
‖g‖

Lp
′≤1

|〈f, g〉|

= A−1 sup
‖g‖

Lp
′≤1

∣∣∣∣ ∑
m∈Zn

∑
l∈Zn
〈f, φm,l〉〈g, ψm,l〉

∣∣∣∣
≤ A−1 sup

‖g‖
Lp
′≤1

∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉〈g, ψm,l〉

∣∣∣∣∣
≤ A−1 sup

‖g‖
Lp
′≤1

γ(f, g)

≤
(
Cp′

Ac

)
sup

‖g‖
Lp
′≤1

∥∥∥∥( ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
‖g‖Lp′

=

(
Cp′

Ac

) ∥∥∥∥( ∑
m∈Zn

∣∣∣∣∣∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
2 )1/2∥∥∥∥

Lp
.

This proves the converse inequality with constant Dp ≤ Cp′/(Ac) and completes the
proof of Theorem 1.4.

Let us now discuss Corollary 1.5. For a Schwartz function f recall our notation

∆m(f) =
∑
l∈Zn
〈f, φm,l〉σm,l.
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It follows from Theorems 1.3 and 1.4 that∥∥∥∥∥ ∑
m∈Zn

∣∣∆m(f)
∣∣ ∥∥∥∥∥

Lp

≤ CpDp

∥∥∥∥∥∥
( ∑

m∈Zn
|∆m(f)|2

)1/2
∥∥∥∥∥∥
Lp

.

To introduce the &q norm, 1 ≤ q ≤ ∞, inside the Lp norm above we argue as follows∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∆m(f)
∣∣2)1/2

∥∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥
(

sup
m∈Zn

∣∣∆m(f)
∣∣)1/2

( ∑
m∈Zn

∣∣∆m(f)
∣∣)1/2

∥∥∥∥∥∥
Lp

≤
∥∥∥∥ sup
m∈Zn

∣∣∆m(f)
∣∣ ∥∥∥∥1/2

Lp

∥∥∥∥∥ ∑
m∈Zn

∣∣∆m(f)
∣∣ ∥∥∥∥∥

1/2

Lp

≤
∥∥∥∥ sup
m∈Zn

∣∣∆m(f)
∣∣∥∥∥∥1/2

Lp
(Cp Dp)

1/2

∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∆m(f)
∣∣2)1/2

∥∥∥∥∥∥
1/2

Lp

,

which implies that∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∆m(f)
∣∣2)1/2

∥∥∥∥∥∥
Lp

≤ Cp Dp

∥∥∥∥ sup
m∈Zn

∣∣∆m(f)
∣∣ ∥∥∥∥

Lp
.

Therefore

‖f‖Lp ≤ Dp

∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∆m(f)
∣∣2)1/2

∥∥∥∥∥∥
Lp

≤ Dp Cp Dp

∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∆m(f)
∣∣q)1/q

∥∥∥∥∥∥
Lp

,

while the converse inequality follows from Theorem 1.3.

4. The proof of Theorem 1.7

The absolute convergence of the series in (16) follows in a straightforward manner
from hypotheses (2) and (3), and the fact that f is a Schwartz class function.

Let us now verify (16) for a given Schwartz class function f . We have∑
m∈Zn

∑
l∈Zn
〈f, φm,l〉ψm,l(x)

=
∑
m∈Zn

∑
l∈Zn
〈f̂ , φ̂m,l〉ψm,l(x)

=

∫
Rn

f̂(ξ)
∑
l∈Zn

φ̂(ξ − ω0l) e
2πix·ξ

∑
m∈Zn

δξ,l(x−m) dξ ,
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where δξ,l(x) := ψ(x) e−2πix·(ξ−ω0l), for each x ∈ Rn. Applying the Poisson summation
formula, we see that∑

m∈Zn

∑
l∈Zn
〈f, φm,l〉ψm,l(x)

=

∫
Rn

f̂(ξ)
∑
l∈Zn

φ̂(ξ − ω0l) e
2πix·ξ

∑
s∈Zn

δ̂ξ,l(s) e
2πix·s dξ

=

∫
Rn

f̂(ξ)
∑
l∈Zn

φ̂(ξ − ω0l) e
2πix·ξ

∑
s∈Zn

ψ̂(s + ξ − ω0l) e
2πix·s dξ

=

∫
Rn

f̂(ξ)
∑
l∈Zn

(∑
s∈Zn

φ̂(ξ − ω0l) ψ̂(ξ − ω0l + s) e2πix·s

)
e2πix·ξ dξ

=

∫
Rn

f̂(ξ)
∑
l∈Zn

φ̂(ξ − ω0l) ψ̂(ξ − ω0l) e
2πix·ξ dξ

=

∫
Rn

f̂(ξ)Ae2πix·ξ dξ

=Af(x) .

The interchange of summation and integration above, and the use of the Poisson
summation formula, are justified by the fact that the functions φ, ψ and f are in the
Schwartz class.

5. The proof of Theorem 1.8

This theorem will be a consequence of the following Lemma.

Lemma 5.1. Fix 1 < p <∞. Then for any f ∈ Lp(Rn) the expressions

∆L
m(f) =

∑
|l1|≤L

· · ·
∑
|ln|≤L

〈f, φm,l〉σm,l

converge in Lp and almost everywhere to some function ∆m(f) as L→∞. Let

K(f) = sup
L>0

∑
m∈Zn

∣∣∆L
m(f)

∣∣ .(26)

Then there exists a constant Cp,n > 0 such that for all f ∈ Lp(Rn) we have

‖K(f)‖Lp ≤ Cp,n‖f‖Lp .

Let us prove Theorem 1.8 assuming Lemma 5.1.

Proof. Denote by

SM,L(f) =
1

A

∑
m∈Zn
|m|≤M

∑
|l1|≤L

· · ·
∑
|ln|≤L

〈f, φm,l〉ψm,l.
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Given ε > 0, there exists a Schwartz function f0 such that ‖f − f0‖Lp(Rn) < ε. Then

‖SM,Lf − f‖Lp
≤‖ sup

M,L
|SM,L(f − f0)| ‖Lp + ‖SM,L(f0)− f0‖Lp + ‖f − f0‖Lp

≤Cp,n

A
ε + ‖SM,L(f0)− f0‖Lp + ε,

which can be made arbitrarily small if SM,L(f0)→ f0 in Lp(Rn) as M,L→∞. But
Theorem 1.7 gives that SM,L(f0)→ f0 a.e. (in fact everywhere). Since

|SM,L(f0)| ≤
1

A
K(f0) ∈ Lp, for all M,L > 0,

by Lemma 5.1, we use the Lebesgue dominated convergence theorem to conclude that
‖SM,L(f0)− f0‖Lp < ε for M,L large enough.

To prove that SM,Lf → f almost everywhere as M,L → ∞ we first define the
oscillation Of of an Lp function f as follows:

Of (x) = lim sup
M→∞

lim sup
M ′→∞

lim sup
L→∞

lim sup
L′→∞

|SM,L(f)(x)− SM ′,L′(f)(x)|

If we can show that for any f ∈ Lp(Rn) and δ > 0 we have

|{x ∈ Rn : Of (x) > δ}| = 0,(27)

then the doubly indexed sequence SM,L(f) would be almost everywhere Cauchy and
thus it would converge almost everywhere, to some measurable function h. But, since
we also have Lp-norm convergence to f , it would follow that h = f . Given ε > 0,
find f0 a Schwartz function as before. Then

Of (x) ≤ Of0(x) + Of−f0(x) = Of−f0(x)

since Of0(x) ≡ 0 identically. Then for δ > 0 we have

|{x ∈ Rn : Of (x) > δ}|
≤|{x ∈ Rn : Of−f0(x) > δ}|
≤|{x ∈ Rn : 2 sup

M,L
|SM,L(f − f0)(x)| > δ}|

≤2p
‖K(f − f0)‖pLp

Apδp
≤ 2pCp

p,n

‖f − f0‖pLp
Apδp

= 2pCp
p,n

εp

Apδp
,

in view of the Lp boundedness ofK. Since the first term of this sequence of inequalities
is independent of ε, letting ε → 0 we obtain (27). This completes the first part of
the proof of Theorem 1.8.

Let’s now prove (19). From Lemma 5.1, for all m ∈ Zn, ∆L
m(f) → ∆m(f) a.e. as

L → ∞. Thus, |∆L
m(f)| → |∆m(f)| a.e. as L → ∞. By Fatou’s lemma in &1, the

following inequality holds a.e.:∑
m∈Zn

∣∣∆m(f)
∣∣ ≤ lim inf

L

∑
m∈Zn

∣∣∆L
m(f)

∣∣ ≤ K(f) .
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Thus, ∥∥∥∥∥ ∑
m∈Zn

∣∣∆m(f)
∣∣ ∥∥∥∥∥

Lp

≤ ‖K(f)‖Lp ≤ Cp,n‖f‖Lp ;

which proves one direction in (19) since∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∆m(f)
∣∣q)1/q

∥∥∥∥∥∥
Lp

≤
∥∥∥∥∥ ∑
m∈Zn

∣∣∆m(f)
∣∣ ∥∥∥∥∥

Lp

≤ Cp,n‖f‖Lp .(28)

To prove the other direction in (19), we fix ε > 0 and pick a Schwartz function f0

such that ‖f − f0‖Lp ≤ ε. Then ‖f‖Lp ≤ ε + ‖f0‖Lp and Corollary 1.5 gives

‖f‖Lp ≤ε + ‖f0‖Lp ≤ ε + C ′p,n
∥∥(

∑
m∈Zn

|∆m(f0)|q
)1/q∥∥

Lp

≤ε + C ′p,n
∥∥(

∑
m∈Zn

|∆m(f)|q
)1/q∥∥

Lp
+ C ′p,n

∥∥(
∑
m∈Zn

|∆m(f0 − f)|q
)1/q∥∥

Lp

≤C ′p,n
∥∥(

∑
m∈Zn

|∆m(f)|q
)1/q∥∥

Lp
+ ε + C ′p,nCp,nε,

where the last inequality follows from (28). Since ε > 0 was arbitrary, (19) is proved.

We next prove Lemma 5.1.

Proof. It is here where the Carleson-Hunt theorem is needed. Let us first discuss
some background material. For a positive integer L and x = (x1, . . . , xn) ∈ Rn, let

DL(x1, . . . , xn) =
n∏

j=1

(
L∑

k=−L
e2πikxj

)
=

n∏
j=1

sin(2π(L + 1
2
)xj)

sin(πxj)
(29)

be the square Dirichlet kernel on the n-dimensional torus Tn which we are denoting
by Q in this article. When n = 1, the Carleson-Hunt theorem [2], [13] says that for
1 < p < ∞, there exists a constant Cp > 0 such that for all 1-periodic functions F
on R the inequality below holds∥∥∥∥sup

N>0
|DN ∗ F |

∥∥∥∥
Lp([0,1])

≤ Cp‖F‖Lp([0,1]).

The extension to higher dimensions for the summing of Fourier series over squares is
a rather straightforward consequence of the one-dimensional result, and was obtained
independently by Fefferman [7], Sjölin [16], and Tevzadze [20]. This result says that
the inequality ∥∥∥∥sup

L>0
|DL ∗ F |

∥∥∥∥
Lp([0,1]n)

≤ Cp‖F‖Lp([0,1]n)(30)

holds for all functions F on Rn which are 1-periodic in each variable. We will use
this result to prove Lemma 5.1.
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Let us denote by C the Carleson operator

C(F ) = sup
L>0
|DL ∗ F |,

acting on functions F on Rn that are 1-periodic in each variable, where DL is the
square Dirichlet kernel on Q defined in (29).

Now fix f ∈ Lp(Rn) for some 1 < p < ∞. Our Gabor function φ ∈ L∞(Rn) ∩
Lp′(Rn), and so f(·)φ(· −m) ∈ Lp(Rn) ∩ L1(Rn). So, we have

∆L
m(f)(x) =σ(x−m)

∑
|lj |≤L

∫
Rn

f(y)φ(y −m) e2πiω0(x−y)·ldy

=σ(x−m)

∫
Rn

DL(ω0(x− y))f(y)φ(y −m) dy

=σ(x−m)

∫
Rn

DL(ω0x− y)f( y
ω0

)φ( y
ω0
−m)

dy

ωn
0

=σ(x−m)

∫
Q

DL(ω0x− y)
∑
k∈Zn

f(y+k
ω0

)φ(y+k
ω0
−m)

dy

ωn
0

=
1

ωn
0

σ(x−m)

(( ∑
k∈Zn

f( ·+k
ω0

)φ( ·+k
ω0
−m)

)
∗DL

)
(ω0x),

(31)

where we used the periodicity of DL. Set

Fm(f)(x) =
∑
k∈Zn

f(x+k
ω0

)φ(x+k
ω0
−m).

Then Fm(f) is 1-periodic and belongs to Lp(Q). By the Carleson-Hunt theorem,
Fm(f) ∗DL converges almost everywhere in Rn to the 1-periodic function Fm(f) as
L→∞. We conclude that

∆L
m(f)(x)→ 1

ωn
0

σ(x−m)Fm(f)(ω0x)(32)

for almost all x ∈ Rn as L→∞. We now show that the convergence in (32) is also
valid in the Lp(Rn)-norm. Observe that the calculation in (31) implies that

K(f)(x) = sup
L>0

∑
m∈Zn

|∆L
m(f)(x)|

≤
∑
m∈Zn

|σ(x−m)| sup
L>0

∣∣∣∣ ∑
|lj |≤L

∫
Rn

f(y)φ(y −m)e2πiω0(x−y)·ldy

∣∣∣∣
=

1

ωn
0

∑
m∈Zn

|σ(x−m)| C (Fm(f)) (ω0x) =: K̃(f)(x).

If we knew that the map f �→ K̃(f) was a bounded operator on Lp(Rn), then we
would be able to use the Lebesgue dominated convergence theorem to deduce that

the convergence in (32) is also valid in Lp(Rn). But the Lp boundedness of K̃ would
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also imply that of K, giving the second conclusion of Lemma 5.1. It therefore suffices

to prove the boundedness of K̃ to finish the proof of Lemma 5.1.
Pick ν > 4n a large positive integer in the argument below. Fix f ∈ Lp(Rn). By

the fact that

Dν := sup
x∈Rn

∑
m∈Zn

1

(1 + |x−m|)ν <∞ ,

and the convexity of the function (·)p on [0,∞), we have∫
Rn

K̃(f)(x)p dx ≤Cν,n,ω0,p

∫
Rn

∑
m∈Zn

1

(1 + |x−m|)ν C(Fm(f))(ω0x)p dx

=
Cν,n,ω0,p

ωn
0

∫
Rn

∑
m∈Zn

1

(1 + | x
ω0
−m|)ν C(Fm(f))(x)p dx

=
Cν,n,ω0,p

ωn
0

∑
r∈Zn

∫
Q

∑
m∈Zn

1

(1 + |x−r
ω0
−m|)ν C(Fm(f))(x− r)p dx

≤C ′ν,n,ω0,p

∑
r∈Zn

∑
m∈Zn

1

(1 + | r
ω0

+ m|)ν
∫
Q

C(Fm(f))(x− r)p dx.

Now using the multidimensional Carleson-Hunt inequality (30) we obtain that the
last expression above is controlled by

C ′′ν,n,ω0,p

∑
r∈Zn

∑
m∈Zn

1

(1 + | r
ω0

+ m|)ν
∫
Q

|Fm(f)(x− r)|p dx

≤C ′′′ν,n,ω0,p

∑
r∈Zn

∑
m∈Zn

1

(1 + | r
ω0

+ m|)ν
∫
Q

∑
k∈Zn

1

(1 + |x−r+k
ω0
−m|)ν |f(x−r+k

ω0
)|p dx

≤C ′′′′ν,n,ω0,p

∑
r∈Zn

∑
m∈Zn

∑
k∈Zn

1

(1 + | r
ω0

+ m|)ν
1

(1 + | r−k
ω0

+ m|)ν
∫
Q

|f(x−r+k
ω0

)|p dx .

Next we observe that the following inequality is valid

1

(1 + | r
ω0

+ m|)ν
1

(1 + | r−k
ω0

+ m|)ν

≤ 1

(1 + | r
ω0

+ m|) ν2
1

(1 + | r−k
ω0

+ m|) ν2
1

(1 + | k
ω0
|) ν2 .

Using this fact and summing over m ∈ Zn in the last triple sum above we obtain∫
Rn

K̃(f)(x)p dx ≤ C ′′′′′ν,n,ω0,p

∑
r∈Zn

∑
k∈Zn

1

(1 + | k
ω0
|) ν2

∫
Q

|f(x−r+k
ω0

)|p dx .

Summing first over r ∈ Zn we obtain∫
Rn

K̃(f)(x)p dx ≤ C ′′′′′′ν,n,ω0,p

∑
k∈Zn

1

(1 + | k
ω0
|) ν2

∫
Rn

|f(x+k
ω0

)|p dx = C ′′′′′′′ν,n,ω0,p
‖f‖pLp .

This concludes the proof of the boundedness of K̃ and hence that of Lemma 5.1
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6. The L1 case

For g ∈ L1(Rn), it is easy to check that the periodization G of g,

G(t) :=
∑
r∈Zn

g(t− r) , t ∈ Rn .

belongs to L1(Q). For H ∈ L1(Q) we define the Fourier coefficient sequence
�
H by

�
H(l) :=

∫
Q

H(t) e−2πit·l dt , for all l ∈ Zn .

It is easy to verify that
�
G(l) = ĝ(l), for all l ∈ Zn.

Let ΩN be the N -th Fejér kernel defined by

ΩN(t) :=
1

(N + 1)n

[
sin ((N + 1)πt1)

sin(πt1)

]2

. . .

[
sin ((N + 1)πtn)

sin(πtn)

]2

for all t = (t1, . . . , tn) ∈ Rn, with the usual convention for evaluating the function
t �→ sin(ct)/ sin(t) at t = 0. It is easy to see that for all H ∈ L1(Q) we have

(H ∗ ΩN)(x) =
1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

�
H(l) e2πix·l .

It is well-known that ΩN is an approximate identity as N → ∞. This implies that
for all H ∈ L1(Q) we have H ∗ΩN ∈ L1(Q) and ‖H −H ∗ΩN‖L1(Q) → 0 as N →∞.

Consider now a fixed member f ∈ L1(Rn). As in the previous section, for all
m ∈ Zn let

Fm(f)(t) =
∑
k∈Zn

f
(

t+k
ω0

)
φ

(
t+k
ω0
−m

)
, t ∈ Rn .

Fm(f) is the periodization of the function f(·/ω0)φ((·/ω0)−m), and therefore Fm(f) ∈
L1(Q). In a similar manner to the previous section, we can show that for all x ∈ Rn,

1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉σm,l(x) =
σ(x−m)

ωn
0

(Fm(f) ∗ ΩN) (ω0x).

Let’s also consider the L1(Rn) function

Γm(f)(x) =
σ(x−m)

ωn
0

Fm(f)(ω0x) .(33)

This function coincides with
∑

l∈Zn 〈f, φm,l〉σm,l pointwise when f is in Schwartz
class. For general f ∈ L1(Rn), we are about to show that

1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉σm,l
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converges in L1(Rn) to the function Γm(f)(x). We will indicate this fact by writing

Cesàro-L1(Rn)
∑
l∈Zn
〈f, φm,l〉σm,l = Γm(f)

throughout the subsequent discussion.

Theorem 6.1. For all f ∈ L1(Rn) and for all m ∈ Zn, we have that

lim
N→∞

∥∥∥∥∥Γm(f)− 1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉σm,l

∥∥∥∥∥
L1(Rn)

= 0 .

Proof. Fix f ∈ L1(Rn) and m ∈ Zn. Then

E
(m)
N :=

∥∥∥∥∥Γm(f)− 1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉σm,l

∥∥∥∥∥
L1(Rn)

=

∥∥∥∥σ(· −m)

ωn
0

[Fm(f)(ω0(·))− (Fm(f) ∗ ΩN)(ω0(·))]
∥∥∥∥
L1(Rn)

≤ Cν,ω0

∫
Rn

|Fm(f)(ω0x)− (Fm(f) ∗ ΩN)(ω0x)|
(1 + |x−m|)ν dx

= C(1)
ν,ω0

∫
Rn

|Fm(f)(y)− (Fm(f) ∗ ΩN)(y)|(
1 +

∣∣∣ y
ω0
−m

∣∣∣)ν dy

= C(1)
ν,ω0

∑
r∈Zn

∫
Q

|Fm(f)(z)− (Fm(f) ∗ ΩN)(z)|(
1 +

∣∣∣ z
ω0

+ r
ω0
−m

∣∣∣)ν dz

=

∫
Q

|Fm(f)(z)− (Fm(f) ∗ ΩN)(z)| Qm(z) dz .

Here we set

0 ≤ Qm(z) := C(1)
ν,ω0

∑
r∈Zn

1(
1 +

∣∣∣ z
ω0

+ r
ω0
−m

∣∣∣)ν ≤ B ,

where B is finite and independent of z and m, for large enough ν ∈ N. Therefore,

E
(m)
N ≤ B ‖Fm(f)− Fm(f) ∗ ΩN‖L1(Q) → 0 .

as N →∞.

Fix f ∈ L1(Rn). For all M ∈ N we define

PM(f) :=
∑
|m|≤M

Γm(f) ,

where each Γm(f) is defined as in (33). We will show that the series (PM)M∈N
converges absolutely, for almost all x ∈ R. We will do this, and prove that (PM)M
converges in L1(Rn)-norm, by proving that the corresponding series of absolute values
is Cauchy in L1(Rn).
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Theorem 6.2. For all f ∈ L1(Rn), there exists a function Γ(f) ∈ L1(Rn) such that

lim
M→∞

‖PM(f)− Γ(f)‖L1(Rn) = 0 .

Proof. Fix f ∈ L1(Rn) and M ∈ N. Define F := {m ∈ Zn : |m| ≤M}. Then

ΛM(f) :=

∥∥∥∥ ∑
m∈Zn\F

|Γm(f)|
∥∥∥∥
L1(Rn)

≤
∥∥∥∥ ∑

m∈Zn\F

|σ(· −m)|
ωn

0

∑
r∈Zn

∣∣∣f (
· − r

ω0

)∣∣∣ ∣∣∣φ(
· − r

ω0
−m

)∣∣∣ ∥∥∥∥
L1(Rn)

≤ Cν

∑
m∈Zn\F

∑
r∈Zn

∫
Rn

∣∣∣f (
x− r

ω0

)∣∣∣
(1 + |x−m|)ν

(
1 +

∣∣∣x− r
ω0
−m

∣∣∣)ν dx

= Cν

∑
m∈Zn\F

∑
r∈Zn

∫
Rn

|f(y)|(
1 +

∣∣∣y + r
ω0
−m

∣∣∣)ν

(1 + |y −m|)ν
dy

≤ Cν

∑
m∈Zn\F

∑
r∈Zn

1(
1 +

∣∣∣ r
ω0

∣∣∣)ν/2

∫
y∈Rn

|f(y)|
(1 + |y −m|)ν/2 dy

=

∫
y∈Rn

|f(y)| δM(y) dy ;

where, for all y ∈ Rn,

δM(y) :=
( ∑

r∈Zn

1(
1 +

∣∣ r
ω0

∣∣)ν/2) ∑
m∈Zn\F

Cν

(1 + |y −m|)ν/2 ≤ C
′
ν .

Now, for large enough ν ∈ N, C
′
ν < ∞, and so 0 ≤ |f(·)| δM(·) ≤ C

′
ν |f(·)| ∈

L1(Rn), for all M ∈ N. Moreover, |f(y)| δM(y)→ 0 pointwise almost everywhere as
M →∞. Thus, via the dominated convergence theorem, we see that ΛM(f)→ 0 as
M →∞.

When we let σ := ψ, it follows from Theorem 1.7 that Γ(f) = Af pointwise on
Rn for all Schwartz class functions f . The rest of this section is mainly devoted to
establishing the following convergence result.

Theorem 6.3. For every f ∈ L1(Rn), we have that

1

A

∑
|m|≤M

1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉ψm,l → f

in L1(Rn) and almost everywhere as N and M independently tend to ∞.
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Proof. We will first show that for every f ∈ L1(Rn), we have that∥∥∥∥∥∥
∑
|m|≤M

1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉σm,l − Γ(f)

∥∥∥∥∥∥
L1(Rn)

(34)

tends to zero, as N and M independently tend to ∞.
Recall the operator PM is defined, for all f ∈ L1(Rn), by

PMf :=
∑
|m|≤M

Γm(f) .

Theorem 6.2 gives that

lim
M→∞

‖PM(f)− Γ(f)‖L1(Rn) = 0 .(35)

In view of (35), to establish (34) it is sufficient to show that for every f ∈ L1(Rn),
we have that

∥∥∥∥∥∥
∑
|m|≤M

(
Γm(f)− 1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉σm,l

)∥∥∥∥∥∥
L1(Rn)

→ 0

as N →∞, uniformly in M . Let us denote the expression above by D
(M)
N (f).

Fix f ∈ L1(Rn) and N,M ∈ N. Then we have

D
(M)
N (f) =

∥∥∥∥ ∑
|m|≤M

σ(· −m)

ω0

[Fm(f)(ω0(·))− (Fm(f) ∗ ΩN)(ω0(·))]
∥∥∥∥
L1(Rn)

≤ Cν,ω0

∫
Rn

∑
m∈Zn

|Fm(f)(ω0x)− (Fm(f) ∗ ΩN)(ω0x)|
(1 + |x−m|)ν dx

= C(1)
ν,ω0

∫
Rn

∑
m∈Zn

|Fm(f)(y)− (Fm(f) ∗ ΩN)(y)|(
1 +

∣∣∣ y
ω0
−m

∣∣∣)ν dy

= C(1)
ν,ω0

∑
r∈Zn

∫
Q

∑
m∈Zn

|Fm(f)(z)− (Fm(f) ∗ ΩN)(z)|(
1 +

∣∣∣ z
ω0

+ r
ω0
−m

∣∣∣)ν dz

=

∫
Q

∑
m∈Zn

|Fm(f)(z)− (Fm(f) ∗ ΩN)(z)| Qm(z) dz .

Here,

0 ≤ Qm(z) := C(1)
ν,ω0

∑
r∈Zn

1(
1 +

∣∣∣ z
ω0

+ r
ω0
−m

∣∣∣)ν ≤ Bν ,



CHARACTERIZATION OF Lp(Rn) USING THE GABOR FRAME 23

where Bν is finite and independent of z and m, for large enough ν ∈ N. Therefore,

D
(M)
N (f) ≤ Bν

∫
Q

∑
m∈Zn

∣∣∣∣∣
∫

[− 1
2
, 1
2
]n

(Fm(f)(z)− Fm(f)(z − u)) ΩN(u) du

∣∣∣∣∣ dz
≤ Bν

∫
[− 1

2
, 1
2
]n

∫
Q

( ∑
m∈Zn

|Fm(f)(z)− Fm(f)(z − u)|
)

dz ΩN(u) du .

Fix z and u, and let us consider the integrand

W (z, u) :=
∑
m∈Zn

|Fm(f)(z)− Fm(f)(z − u)|

=
∑
m∈Zn

∣∣∣∣∣∑
r∈Zn

f
(

z−r
ω0

)
φ

(
z−r
ω0
−m

)
−

∑
r∈Zn

f
(

z−u−r
ω0

)
φ

(
z−u−r

ω0
−m

)∣∣∣∣∣
≤

∑
r∈Zn

∣∣∣f (
z−r
ω0

)
− f

(
z−u−r

ω0

)∣∣∣ ∑
m∈Zn

∣∣∣φ(
z−r
ω0
−m

)∣∣∣
+

∑
r∈Zn

∣∣∣f (
z−u−r

ω0

)∣∣∣ ∑
m∈Zn

∣∣∣φ(
z−r
ω0
−m

)
− φ

(
z−u−r

ω0
−m

)∣∣∣
≤Cν

(∑
r∈Zn

∣∣∣f (
z−r
ω0

)
− f

(
z−u−r

ω0

)∣∣∣ +
∑
r∈Zn

∣∣∣f (
z−u−r

ω0

)∣∣∣ |u|
ω0

)
.

Here Cν is a finite constant, for sufficiently large ν ∈ N. Note that ταf := f(· − α),
for all α ∈ Rn. It follows that

D
(M)
N (f) ≤ Bν

∫
[− 1

2
, 1
2
]n

∫
Q

W (z, u) dz ΩN(u) du

≤ Bν C
′
ν

∫
[− 1

2
, 1
2
]n

(∥∥f − τu/ω0f
∥∥
L1(Rn)

+ |u| ‖f‖L1(Rn)

)
ΩN(u) du .

We see that the integrand in parentheses, J(u) say, is a bounded function that is con-
tinuous at u = 0. A standard argument using Lebesgue’s dominated convergence the-

orem (see, for example, Kicey [15], Appendix 2), now yields that

∫
[− 1

2
, 1
2
]n
J(u)ΩN(u) du

converges to 0; and so D
(M)
N (f) → 0 uniformly in M as N → ∞, as desired. Thus,

(34) is true.
Finally, note that the bounded linear operators PM,N defined by

PM,N(f) :=
∑
|m|≤M

1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

〈f, φm,l〉σm,l

all map L1(Rn) into L1(Rn). Since for all f ∈ L1(Rn),

‖PM,N(f)− Γ(f)‖L1(Rn) → 0 ,
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as N and M independently tend to∞, it follows from the Banach-Steinhaus theorem
that

B := sup
M,N∈N

‖PM,N‖L1,L1 <∞ .

Suppose now that σ := ψ. Because Γ(f0) = Af0 pointwise on Rn for all Schwartz
class functions f0, it follows from a standard ε

3
-style argument, that

‖PM,N(f)− Af‖L1(Rn) → 0 ,

as N and M independently tend to ∞, for every f ∈ L1(Rn).
We have now established convergence of the Cesàro means in L1(Rn) and we turn

our attention to their a.e. convergence, in the case where σ := ψ.
We will need to know that the operator

F �→ sup
N>0
|F ∗ ΩN |

maps L1(Q) to L1,∞(Q), where the latter space denotes weak L1. This result is
classical (at least in dimension one) but let us discuss its proof in general. We first
observe that for x ∈ [−1

2
, 1

2
]n we have

ΩN(x1, . . . , xn) ≤ Cn
N + 1

1 + ((N + 1)x1)2
. . .

N + 1

1 + ((N + 1)xn)2

for all N > 0. It is easy to show that the weak type (1, 1) boundedness of the
operator F �→ supN>0 |F ∗ ΩN | on [−1

2
, 1

2
]n is a simple consequence of the weak type

(1, 1) boundedness of the operator

f �→ sup
ε>0
|f ∗ Φε|

on Rn, where Φε(x) = ε−nΦ(ε−1x) and Φ(x) =
1

1 + x2
1

. . .
1

1 + x2
n

. For a proof of this

last fact we refer to Stein [18], page 69. See also [19] page 82 and [17].
Let us now denote the operator (HF ) := supN>0 |F ∗ ΩN | acting on 1-periodic

functions F . As in the proof of the almost everywhere result in Theorem 1.8 it will
suffice to show that the operator

(Gf)(x) =
∑
m∈Zn

∣∣∣σ (
x
ω0
−m

)∣∣∣ sup
N>0
|(Fm(f) ∗ ΩN)(x)|,

maps L1(Rn) to L1,∞(Rn), where as before we set

Fm(f)(x) =
∑
k∈Zn

f(x+k
ω0

)φ(x+k
ω0
−m).

Once this is established, the argument using the oscillation function Of in the proof
of Theorem 1.8, applied with p = 1, gives the required result: i.e. PM,Nf → Γ(f)
a.e. as M,N →∞; and so PM,Nf → Af a.e. as M,N →∞ when σ := ψ.

Pick a number cn such that

1

cn

∑
m∈Zn

1

(1 + |m|)n+1
= 1.
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Then

|{x ∈ Rn : |(Gf)(x)| > λ}| ≤
∣∣∣∣∣{x ∈ Rn :

∑
m∈Zn

Cν (H(Fm(f)))(x)

(1 + | x
ω0
−m|)ν > λ}

∣∣∣∣∣
≤

∑
m∈Zn

∣∣∣∣∣{x ∈ Rn :
Cν (H(Fm(f)))(x)

(1 + | x
ω0
−m|)ν >

λ

cn

1

(1 + |m|)n+1
}
∣∣∣∣∣

≤
∑
m∈Zn

∑
r∈Zn

∣∣∣∣{x ∈ Q− r : (H(Fm(f)))(x) >
λ

cn,ν

(1 + | r
ω0

+ m|)ν

(1 + |m|)n+1
}
∣∣∣∣

≤
c′n,ν
λ

∑
m∈Zn

∑
r∈Zn

(1 + |m|)n+1

(1 + | r
ω0

+ m|)ν
∫
Q−r
|Fm(f)(x)| dx

≤
c′′n,ν
λ

∑
m∈Zn

∑
r∈Zn

(1 + |m|)n+1

(1 + | r
ω0

+ m|)ν
∫
Q

∑
k∈Zn

|f(x−r+k
ω0

)|
(1 + |x−r+k

ω0
−m|)ν dx

≤
c′′′n,ν
λ

∑
m∈Zn

∑
r∈Zn

∑
k∈Zn

(1 + |m|)n+1

(1 + | r
ω0

+ m|)ν
1

(1 + | r−k
ω0

+ m|)ν
∫
Q

|f(x−r+k
ω0

)| dx.

Now this expression is the same as the one that appears in the proof of Lemma 5.1
except for the harmless factor (1+ |m|)n+1. The same proof as in that argument gives
that the last expression above is bounded by a constant multiple of ‖f‖L1(Rn).

The next corollary easily follows from the results and techniques developed so far.
We leave the details of the proof to the reader.

Corollary 6.4. Suppose that φ and σ satisfy (2), (3), (4), and (7). Then for all f
in L1(Rn) and all 1 ≤ q ≤ ∞ we have the following equivalence of norms

‖f‖L1 ≈

∥∥∥∥∥∥
( ∑

m∈Zn

∣∣∣∣∣Cesàro-L1(Rn)
∑
l∈Zn
〈f, φm,l〉σm,l

∣∣∣∣∣
q)1/q

∥∥∥∥∥∥
L1

,

with constants depending on n, and the functions φ, ψ and σ, but not on q.

Let us now see how to use Theorems 6.1 and 6.3, with Corollary 6.4, to view
Φ := (φm,l)m,l∈Zn as a Banach frame for X := L1(Rn). This time we define Xd to be
the set of all scalar-valued sequences α = (αm,l)m,l∈Zn for which, for all m ∈ N, the

sequence (c
(m)
N )N∈N of functions given by

c
(m)
N (α) :=

1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

αm,l ψm,l

converges in L1(Rn) norm to some function c(m); and moreover, for which the se-
quence (c(m)(α))m∈Zn belongs to L1(Rn, &2).
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Now, for all α ∈ Xd, define

‖α‖Xd :=
∥∥(c(m)(α))m∈Zn

∥∥
L1(Rn,�2)

=

∥∥∥∥∥∥∥
 ∑

m∈Zn

∣∣∣∣∣Cesàro-L1(Rn)
∑
l∈Zn

αm,l ψm,l

∣∣∣∣∣
2
1/2

∥∥∥∥∥∥∥
L1(Rn)

.

Then (Xd, ‖ · ‖Xd) is a semi-normed vector space. Let J := N × N. Define Θ :=
(TM,N)(M,N)∈J by setting, for each (M,N) ∈ J and each α ∈ Xd,

TM,N(α) :=
1

A

∑
m∈Zn
|m|≤M

1

(N + 1)n

N∑
k1=0

k1∑
l1=−k1

· · ·
N∑

kn=0

kn∑
ln=−kn

αm,l ψm,l .

We have that Θ is a denumerable family of linear operators from Xd into X and
Φ := (ym,l := φm,l)m,l∈Zn is a sequence in X ∗ = L∞(Rn). Our results 6.1, 6.3 and 6.4
now tell us that (Φ,Θ) is a Banach frame for L1(Rn) with respect to Xd, in the sense
of Definition 1.2.

7. Discussion of the continuous case

One motivation for considering the &q expression appearing in (15) comes from
the wavelet (or φ-transform) characterizations of Lp(Rn) of Frazier and Jawerth [9].
Another motivation for considering this &q expression is the continuous case, where
matters are much simpler.

Let us fix two nonzero Schwartz functions ζ and η on Rn and let us define the
Gabor families associated with ζ and η

ζy,ξ(x) =e2πiξ·xζ(x− y)

ηy,ξ(x) =e2πiξ·xη(x− y)

by suitably translating and modulating (i.e. conjugating) the functions ζ and η, in a
way similar to the discrete case.

The following identities can be easily checked

Proposition 7.1. Let ζ and η as before. Then for all f Schwartz functions on Rn

we have ∫
Rn

〈f, ζy,ξ〉ηy,ξ(x)dξ = f(x)ζ(x− y) η(x− y).(36)

As a consequence we obtain∫
Rn

∫
Rn

〈f, ζy,ξ〉ηy,ξ(x)dξdy =

{∫
Rn

η(z)ζ(z)dz

}
f(x).(37)

It follows that{∫
Rn

∣∣∣∣∫
Rn

〈f, ζy,ξ〉ηy,ξ(x)dξ

∣∣∣∣s dy}1/s

=

{∫
Rn

|ζ(z)η(z)|sdz
}1/s

|f(x)|(38)
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and that ∥∥∥∥∥
{∫

Rn

∣∣∣∣∫
Rn

〈f, ζy,ξ〉ηy,ξdξ
∣∣∣∣s dy}1/s

∥∥∥∥∥
Lp

= C(ζ, η)‖f‖Lp ,

for all 0 < p, s ≤ ∞, an identity that provides motivation for the consideration of
the expression in (15).

Let us now indicate why Proposition 7.1 is valid. Identity (36) is just a restatement

of Fourier inversion for the function x �→ f(x)ζ(x− y), while (37) and (38) are trivial
consequences of (36).
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