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Abstract. A variety of results regarding multilinear Calderón-Zygmund singular
integral operators is systematically presented. Several tools and techniques for the
study of such operators are discussed. These include new multilinear endpoint weak
type estimates, multilinear interpolation, appropriate discrete decompositions, a
multilinear version of Schur’s test, and a multilinear version of the T1 Theorem
suitable for the study of multilinear pseudodifferential and translation invariant
operators. A maximal operator associated with multilinear singular integrals is
also introduced and employed to obtain weighted norm inequalities.

1. Introduction

The seminal work on singular integrals by Calderón and Zygmund, as originated in
[5], and the real variable methods later developed have played a crucial and influen-
tial role in modern harmonic analysis. Singular integrals nowadays appear in partial
differential equations, several complex variables, operator theory, and other areas
of analysis. The theory of Calderón-Zygmund singular integrals has expanded and
interacted with many areas of mathematics and, as several articles in these proceed-
ings show, it continues to be a very strong and active area of research. Moreover, the
Calderón-Zygmund theory has been over the years one of the predominant themes at
the El Escorial meetings. This article attempts to present many old and new results
as well as some current developments in the multilinear aspects of this theory.

Multilinear operators arise in numerous situations involving product-like opera-
tions. Their study is also motivated by many linear and nonlinear problems in which
multilinear operators naturally appear as terms of series expansions. This last point
of view was pioneered and extensively pursued by Coifman and Meyer in [13], [14],
[15], [16], and [47]. See also the work of Coifman, Deng, and Meyer [8], Fabes, Jeri-
son, and Kenig [21], and Christ and Kiselev [7] where multilinear operators are used
in the study of specific problems in partial differential equations. The recent proof of
the boundedness of the bilinear Hilbert transform by Lacey and Thiele [43], [44], has
again ignited interest in multilinear singular integrals and also in the delicate analysis
of time-frequency decompositions. The latter was introduced by C. Fefferman in [22]
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in this context. Although we do not attempt to describe the whole history of the
subject of multilinear Calderón-Zygmund singular integrals, we retake some aspects
of it from the point they were left several years ago. We refocus on the theory from
a more systematic viewpoint that includes later developments as well as some new
progress.

Several of the results we will describe have been developed in our articles [36], [37],
[38], and some are scattered throughout the literature. We present all these here
in a unified way. We prefer to follow an expository style and only describe some of
the main ideas involved. Specific details can be found in the references given in the
text. The results about maximal singular integrals, however, were first presented at
this meeting and they are given here including some technical details. Additionally,
some new examples have been added and extensions of results not found elsewhere in
the literature have been included. Overall, our approach is intended to make readily
available in the multilinear setting some of the techniques that have proved to be
useful in the treatment of linear singular integrals.

Littlewood-Paley decompositions are very powerful tools in the study of function
spaces and are intrinsically tied to the linear Calderón-Zygmund theory. Such decom-
positions have taken over the years the simple and elegant form of discrete wavelet
expansions. To some extent, wavelets simultaneously diagonalize all linear Calderón-
Zygmund operators with appropriate cancellation and sufficiently smooth kernels.
Wavelets have become very practical building blocks in synthesizing the behavior
of such operators as described in the books by Meyer [46] or Frazier, Jawerth, and
Weiss [26]. For example, pseudodifferential operators in the Hörmander’s classes can
be easily studied using such techniques, [57] and [35]. We shall describe a similar
approach in the multilinear setting.

The already mentioned work on the bilinear Hilbert transform clearly shows that a
more refined time-frequency analysis than the one provided by wavelets is necessary to
study singular multipliers, but it is still of interest to check to what extent wavelets or
Littlewood-Paley theory can be pushed in the study of multilinear operators. Along
these lines, we use wavelets to associate multilinear operators with discrete tensors
and we find sufficient conditions on the entries of these tensors so that the associated
operators are bounded on products of Lp spaces. Theorem 1 presents these results
in the form of almost diagonal estimates. The method applies to certain multilinear
pseudodifferential operators. In particular, we are also able to extend a classical
multilinear multiplier result of Coifman and Meyer for Lp spaces with p > 1 to the
full range of Hp spaces p > 0, see Corollary 1.

In the process of carrying through the approach above to other spaces of functions
admitting Littlewood-Paley type characterizations, we were led to study positive
multilinear tensors on weighted Lp spaces. We came up with a form of Schur’s test
for positive multilinear integral operators, Theorem 3, which is useful for this purpose
and of interest in its own.

The almost diagonal conditions we obtain for Lp spaces are “p independent” for
p > 1. This is not surprising given the close connection with Littlewood-Paley the-
ory. However, since the multilinear operators we study behave like multiplication,
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the restriction to Lebesgue spaces with exponent bigger than one in the target is then
a limitation of the methods used (for p ≤ 1, Littlewood-Paley decompositions char-
acterize the Hardy Hp spaces not the Lp spaces). For example, in the bilinear case
one should expect to have operators mapping Lp × Lq into Lr where, as dictated by
Hölder’s inequality, 1/p+1/q = 1/r. Thus, for p, q ≥ 1 one expects to obtain an end-
point result when p = 1, q = 1, and r = 1/2. Again, the recent work on the bilinear
Hilbert transform provided (at least to the authors) part of the inspiration to push
the previously known results on multilinear Calderón-Zygmund theory below r = 1.
To achieve this, one needs to avoid Littlewood-Paley theory and go back to arguments
based on the classical Calderón-Zygmund decomposition. Such an approach was used
already by Coifman and Meyer [13] in obtaining weak type estimates when r = 1 for
certain operators. The full range of exponents, however, was achieved in two recent
works: of Kenig and Stein in [42] and of the authors in [38]. In [42] the same homoge-
neous multilinear multipliers studied by Coifman and Meyer for r ≥ 1 are considered
while general multilinear operators with singular kernels or x-dependent symbols are
studied in [38]. Moreover, it is shown in Theorem 4 below that multilinear operators
whose kernels satisfy standard size and smoothness estimates and which are bounded
on a single product of Lp spaces, must also satisfy a suitable weak endpoint estimate.
This result is combined with multilinear interpolation in Theorem 5, which says that
such operators are also bounded on all products of Lp spaces with indices satisfying
the natural relationship dictated by homogeneity. We also obtain an endpoint result
from a product of L∞ spaces into BMO. These results justify the name multilinear
Calderón-Zygmund operators that we use; things happen just as in the linear case,
where the boundedness of Calderón-Zygmund operators on one Lq for 1 < q < ∞
implies boundedness on all Lq spaces with q in the same range, as well as weak type
(1, 1) and L∞ to BMO endpoint estimates.

Next, we consider the problem of finding easily verifiable necessary and suffi-
cient conditions for multilinear operators with Calderón-Zygmund type kernels to
be bounded on products of Lp spaces. A solution to this problem is provided by
the multilinear version of the T1 Theorem that we give in Theorem 6. We express
this result in terms of the action of an operators and its multilinear transposes on
the quintessential building blocks of Fourier analysis: the characters x → e2πix·ξ.
A different formulation of a T1 Theorem for multilinear forms was given before by
Christ and Journé [6]. Our version is very well-suited for a couple of applications to
pseudodifferential and translation invariant operators that we describe in Corollary 2
and Corollary 3.

Finally, we introduce a maximal operator associated to truncated singular integrals
which we use to obtain almost everywhere convergence results and weighted norm
estimates. These results are based on a multilinear version of Cotlar’s inequality,
Theorem 7, and a good-λ inequality, Theorem 8. We conclude this article with some
other recent developments in the multilinear theory and a variety of open problems.

We would like to take this opportunity to thanks our colleagues in Spain for their
warm hospitality during the conference. It has been, as usual, a pleasure to partici-
pate in the recent El Escorial meeting.
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2. Examples and some previous work in the subject

Let D(Rn) be the space of C∞ functions with compact support and let S(Rn) be
the space of Schwartz rapidly decreasing smooth functions. Their duals are the spaces
of distributions D′(Rn) and S ′(Rn). Let T be a continuous and m-linear operator

T : S(Rn)× · · · × S(Rn)→ S ′(Rn).

Every such operator T has an associated Schwartz kernel K so that, formally, we
have

(1) T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f(y1) . . . fm(ym) dy1 . . . dym.

However, the above integral is not always absolutely convergent or well-defined and,
in more precise distributional language, it should be interpreted as

〈T (f1, . . . , fm), g〉 = 〈K, g ⊗ f1 ⊗ · · · ⊗ fm〉,
where we use the notation 〈·, ·〉 for the pairing of distributions and test functions and
g ⊗ f1 ⊗ · · · ⊗ fm for the function (x, y1, . . . , ym)→ g(x)f1(y1) . . . fm(ym).

Using the Fourier transform in Rn,

Fn(f) = f̂(ξ) =

∫
Rn

f(x)e−2πix·ξdx,

we can write, at least formally,

T (f1, . . . , fm)(x) =

∫
(Rn)m

σ(x, ξ1, . . . , ξm)f̂1(ξ1) . . . f̂m(ξm) e2πix·(ξ1+···+ξm)dξ1 . . . dξm.

The symbol σ(x, ξ1, . . . , ξm) above is related to the kernel K in (1) via the identity

F−1
mn(σ(x, ·, . . . , ·))(y1, . . . , ym) = K(x, y1, . . . , ym).

We will refer to x-independent symbols σ(ξ1, . . . , ξm) as (Fourier) multipliers. For
such symbols, the corresponding kernel takes the simple form of a function K0 of m
variable such that

K(x, y1, . . . , ym) = K0(x− y1, . . . , x− ym).

Thus, multilinear Fourier multiplier operators have the form

(2) T (f1, . . . , fm)(x) =

∫
(Rn)m

K0(y1, . . . , ym)f(x− y1) . . . fm(x− ym) dy1 . . . dym.

Operators as in (2) will also be called multilinear translation invariant, even though
they only commute with simultaneous translations.

An m-linear operator has m formal transposes defined for j = 1, . . . ,m by

〈T ∗j(f1, . . . , fm) , h〉 = 〈T (f1, . . . , fj−1, h, fj+1, . . . , fm) , fj〉.
The kernel K∗j of T ∗j is related to the kernel K of T via

K∗j(x, y1, . . . , yj−1, yj, yj+1, . . . , ym) = K(yj, y1, . . . , yj−1, x, yj+1, . . . , ym).

Some operators are most naturally given by their symbols while some others are
better understood using their kernels. The symbols of the transposes of multiplier
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operators are easy to compute; these sometimes facilitate the analysis of the opera-
tors. For example, in the bilinear case, if an operator T has symbols σ(ξ, η) then the
symbols of its two transposes T ∗1 and T ∗2 are given by σ∗1(ξ, η) = σ(−(ξ+η), η) and
σ∗2(ξ, η) = σ(ξ,−(ξ+ η)). On the other hand, for x-dependent symbols, the symbols
of the transpose operators are not so easy to explicitly compute. For this reason, it
is occasionally convenient to work instead with the kernel and the singular integral
representation of the operator.

We want to describe conditions on the operators and/or their kernels or symbols
that warranty boundedness on Lebesgue and other functions spaces. The most trivial
example of multilinear operator is, of course, pointwise multiplication given by the
symbol σ ≡ 1. If one wants to study operators whose behavior resembles multiplica-
tion, then one should consider boundedness results of the form

T : Lq1 × · · · × Lqm → Lq,

where 1 ≤ qj ≤ ∞ and

(3)
1

q1

+ · · ·+ 1

qm
=

1

q
,

as dictated by Hölder’s inequality. There are numerous examples and known results
in the literature. We will just review a few of them.

(i) Smooth Fourier multipliers. Coifman and Meyer studied in the 70’s [13],[14],
[15], operators with symbols σ(ξ1, . . . , ξm) ∈ C∞((Rn)m) satisfying the esti-
mates

(4) |∂α1
ξ1
. . . ∂αmξm σ| ≤ C(1 + |ξ1|+ · · ·+ |ξm|)−(|α1|+···+|αm|)

for all multi-indices α. The boundedness properties of these operators are

Lp1(Rn)× · · · × Lpm(Rn)→ Lp(Rn),

for all pj > 1 and 1
p1

+ · · · + 1
pm

= 1
p
. The case p < 1 was treated in [42]

and [38]. It should be noted that condition (4) introduced by Coifman and
Meyer can be improved by replacing the quantity 1+|ξ1| by |ξ1| in (4) without
affecting any of these results.

(ii) (m+1)-linear singular integral forms. Christ and Journé [6] studied multilin-
ear forms U , so that the bilinear forms obtained by fixing all but two of their
arguments,

Uij(f1, . . . , fi−1, fi+1, . . . , fj−1, fj+1, . . . , fm+1)(fi, fj) = U(f1, . . . , fm+1),

are given by Uij(f, g) = 〈g, Tijf〉, where Tij is a linear operator with a
Calderón-Zygmund kernel having appropriate weak cancellations. (More pre-
cise details will be given in the section about the T1 Theorem below.) In this
case the following continuity property holds

U : (L∞(Rn))(m−1) × L2(Rn)× L2(Rn)→ C.
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(iii) Tensor products of Calderón-Zygmund operators. The known results are not
restricted only to Lp spaces. Coifman, Lions, Meyer, and Semmes [12] studied
bilinear operators given by expressions of the form∑

j

(Tjf)(Sjg),

where the Tj and Sj are linear Calderón-Zygmund operators. They obtained
the boundedness result

Lp1 × L
q
1 → Hr

for 1
p

+ 1
q

= 1
r
, p, q > 1 and r > 2/3. Under additional cancellation conditions

on the operators depending on r, Coifman and Grafakos [11] established

Hp ×Hq → Hr

for all positive r.
(iv) Smooth multipliers in Besov spaces. There are also results available for certain

spaces of smooth functions. Coifman, Dobyinsky, and Meyer [9], Dobyinsky
[20], and Youssfi [60] among others, extended the results about smooth mul-
tipliers in (i) to Besov spaces. Again additional cancellation conditions are
imposed on the operators.

(v) The bilinear Hilbert transform. As mentioned in the introduction, a renewed
interest in multilinear operators arose with the results on the operator

(f, g)→ 1

π
p.v.

∫ +∞

−∞
f(x+ t)g(x− t) dt

t
,

which has symbol

σ(ξ, η) = −i sgn (ξ − η).

Lacey and Thiele [43], [44], proved that this operator maps

Lp(R)× Lq(R)→ Lr(R),

for 1/p+ 1/q = 1/r, 1 < p, q ≤ ∞, and 2/3 < r <∞.
(vi) Singular multipliers. The type of singularity that the symbol of the bilinear

Hilbert transform presents requires a delicate time-frequency analysis. Such
techniques have been recently extended to other bilinear singular multiplier
operators by Gilbert and Nahmod [30], [31] and also to m-linear operators by
Muscalu, Tao, and Thiele [48]. For example, in the bilinear case the symbols
satisfy the estimates

|∂ασ(ξ, η)| ≤ C(dist((ξ, η), ∂P )−|α|,

where P is an appropriate half-plane in the (ξ, η)-plane. The boundedness
properties of these operators are

Lp(R)× Lq(R)→ Lr(R),

where again 1/p+ 1/q = 1/r, 1 < p, q ≤ ∞, and 2/3 < r <∞.
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The results in (i)-(iv) depend, to some extend, on Littlewood-Paley decompositions
or closely related techniques. We will push such techniques forward in the next section
using discrete decompositions. The results in (v) and (vi) on the other hand, escape
such an analysis but they are not unrelated. In the last section of this article we will
indicate some connections with the multilinear Calderón-Zygmund operators that we
study.

3. Discrete decompositions and almost diagonal estimates

We can discretize multilinear operators using wavelets and obtain boundedness
results. For simplicity in the notation we will consider only the bilinear case and we
will use the following almost orthogonal wavelets.

Fix a function φ in S(Rn) whose Fourier transform is compactly supported away
from the origin. Moreover, select φ as in the works of Frazier and Jawerth [24] and
[25], so that the functions φνk(x) = 2νn/2φ(2νx− k) can be used to represent each f
in Lp, 1 < p <∞, via

f =
∑

ν∈Z, k∈Zn
〈f, φνk〉φνk,

with convergence in Lp. In this representation, the wavelet coefficients 〈f, φνk〉 satisfy

(5) cp ‖f‖Lp(Rn) ≤
∥∥∥∥(∑

ν

(∑
k

|〈f, φνk〉|2νn/2χQνk
)2)1/2

∥∥∥∥
Lp(Rn)

≤ Cp ‖f‖Lp(Rn),

where χQνk is the characteristic function of the dyadic cube with lower left corner
2−νk and side length 2−ν . The collection of functions {φνk} is not an orthogonal
system, but we still call it a family of (almost orthogonal) wavelets. As usual, we
can think of each element φνk in the family as being essentially localized on Qνk;
that is scale 2−ν and position 2−νk. In addition to Lp, all the spaces of functions
and distributions that admit Littlewood-Paley decompositions can be characterized
in terms of their wavelets coefficients.

Given a bilinear operator T and a pair of functions f and g in spaces of functions
characterized by wavelets, we can write

f =
∑
νk

〈f, φνk〉φνk,

g =
∑
µl

〈g, φµl〉φµl,

and then

T (f, g) =
∑
λm

〈T (f, g), φλm〉φλm

=
∑
λm

∑
νk

∑
µl

〈T (φνk, φµl), φλm〉〈f, φνk〉〈g, φµl〉φλm.

Thus, we can associate to T the infinite array of scalars, that we call a tensor,

a(λm, νk, µl) = 〈T (φνk, φµl), φλm〉.
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Conversely, any tensor A = {a(λm, νk, µl)} as above gives rise to a bilinear operator
T defined by

T (f, g) =
∑
λ,m

∑
ν,k

∑
µ,l

a(λm, νk, µl)〈f, φνk〉〈g, φµl〉φλm.

We can obtain boundedness results for T by looking at its associated tensor.
If an operator behaves like multiplication and preserves the wavelets building

blocks, one can expect to have

T (φνk, φµl) ≈ φνk · φµl
and

a(λm, νk, µl) ≈ 〈φνk · φµl, φλm〉.
Then, because of the orthogonality properties of wavelets, the tensor associated to
such an operator will be almost diagonal. That is, its entries will get smaller as the
wavelets involved have substantially different scales and positions. We will quantify
these observations in a precise way in terms of estimates on the entries of a.

Before we state the main result in this direction, it will be illustrative to consider
the kind of estimates that can be obtained when one integrates the product of three
wavelets at different scales and positions. We state this in the following proposition.
We denote by med(ν, µ, λ) one of the integer numbers ν, µ, λ, so that min(ν, µ, λ) ≤
med(ν, µ, λ) ≤ max(ν, µ, λ).

Proposition 1. Let ψν, ψµ, ψλ be functions satisfying

|ψν(x)| ≤CN
2νn/2

(1 + 2ν |x− xν |)N
,

|ψµ(x)| ≤CN
2µn/2

(1 + 2µ|x− xµ|)N
,

|ψλ(x)| ≤CN
2λn/2

(1 + 2λ|x− xλ|)N
,

for some xν, xµ, xλ in Rn and for all N > n.
Then, ∣∣∣∣∫

Rn

ψν(x)ψµ(x)ψλ(x) dx

∣∣∣∣ ≤
CN 2−max(µ,ν,λ)n/2 2med(µ,ν,λ)n/2 2min(µ,ν,λ)n/2

((1+2min(ν,µ)|2−νk−2−µl|)(1+2min(µ,λ)|2−µl−2−λm|)(1+2min(λ,ν)|2−λm−2−νk|))N
.

The proof of this proposition is tedious but elementary; details can be found in
[36]. It clearly shows that if the ψj’s are localized far away from each other, then, as
expected, the integral of their products is very small. Moreover if we impose on the
functions ψj of Proposition 1 the kind of smoothness and cancellation that wavelets
have, then this estimate can be improved. This is done in a standard way by using
cancellation to subtract appropriate Taylor polynomials of the functions. The result
is that when the functions have very different associated scales the integrals are even
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smaller. In this way, for example, one can obtain in the estimate above an extra
factor of the form 2−(max(µ,ν,λ)−min(µ,ν,λ))ε. This improvement is all we need to obtain
the result in our main theorem below regarding almost diagonal operators.

Theorem 1. Suppose that the entries of a tensor {a(λm, νk, µl)} associated to a
bilinear operator T satisfy the almost diagonal estimate

|a(λm, νk, µl)| ≤
C 2−(max(µ,ν,λ)−min(µ,ν,λ))ε 2−max(µ,ν,λ)n/2 2med(µ,ν,λ)n/2 2min(µ,ν,λ)n/2

((1+2min(ν,µ)|2−νk−2−µl|)(1+2min(µ,λ)|2−µl−2−λm|)(1+2min(λ,ν)|2−λm−2−νk|))N

for some C > 0, N > n, and ε > 0. Then the corresponding operator T can be
extended to be a bounded operator from Lp(Rn) × Lq(Rn) into Lr(Rn) when 1/p +
1/q = 1/r and 1 < p, q, r <∞.

The theorem is proved following some of the ideas of Frazier and Jawerth [24] and
using the vector-valued Hardy-Littlewood maximal estimates of Fefferman and Stein
[23] in a crucial way. We refer again to [36] for details.

In order to verify the estimates in the theorem above on a particular operator, we
want to check its action on a pair of wavelets. We introduce the notion of bilinear
smooth molecules. These are functions localized at two different scales which possess
certain smoothness and cancellation properties. More precisely, a collection of func-
tions {ψµl,λm}, with µ, λ ∈ Z and l, m ∈ Zn is a family of bilinear smooth molecules
for Lp if

(6) |∂γψµl,λm(x)| ≤ CN,γ2
µn/22λn/2 max(2µ, 2λ)|γ|

(1 + 2µ|x− 2−µl|)N(1 + 2λ|x− 2−λm|)N

and ∫
Rn

ψµl,λm(x) dx = 0,

for all µ, λ, l, and m. Note that estimates (6) on a bilinear molecule are clearly
satisfied by the product of two wavelets φµl and φλm. It is not hard to check that
operators that map pairs of wavelets into bilinear molecules are almost diagonal and,
hence, bounded on product of Lp spaces. We have from [36],

Theorem 2. Let T be a bilinear operator so that {T (φµl, φλm)}, {T ∗1(φµl, φλm)},
and {T ∗2(φµl, φλm)} are families of bilinear smooth molecules. Then, T : Lp(Rn) ×
Lq(Rn)→ Lr(Rn) for 1/p+ 1/q = 1/r and 1 < p, q, r <∞.

This approach to bilinear operators applies to several classes of bilinear pseudodif-
ferential operators of the form

(7) T (f, g)(x) =

∫
Rn

∫
Rn

σ(x, ξ, η)f̂(ξ)ĝ(η) e2πix·(ξ+η)dξdη.

In fact a simple integration by parts argument shows that the functions T (φµl, φλm)
satisfy the estimates corresponding to bilinear molecules if the symbols σ merely
satisfy the conditions

(8) |∂αx∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cα,β,γ|ξ|−|β||η|−|γ|(|ξ|+ |η|)|α|,
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for all α, β, γ n-tuples of nonnegative integers. The cancellation conditions on the
molecules are in general not satisfied by pseudodifferential operators and they need
to be imposed as we will see in the next corollary. Alternative weaker cancellations
involving BMO conditions will be described in Section 6. Nevertheless, we are able
with our methods to treat the multipliers of Coifman and Meyer described in (i) of
the previous section, and also more general operators with x-dependent symbols.

Moreover, the wavelets decomposition and the characterization in (5) generalize to
Hp spaces and actually to all Triebel-Lizorkin and Besov spaces. See the books by
Triebel [59] and Peetre [51] for properties of these spaces and the ones by Meyer [46]
and Frazier, Jawerth, and Weiss [26] for details about their wavelets characteriza-
tions. Theorem 1 and Thereom 2 can be extended to other spaces of functions. For
brevity in the exposition we do not present such extensions, but we state one of their
consequences, the extension of the results of Coiman and Meyer in (i) to Hp spaces.

Corollary 1. Assume that 0 < p, q, r <∞, 1/p+ 1/q = 1/r, and r ≤ 1. Let σ(ξ, η)
be a C∞ function on Rn ×Rn − {(0, 0)} satisfying

|∂γξ ∂
β
η σ(ξ, η)| ≤ Cγ,β(|ξ|+ |η|)−|γ|−|β|,

for all n-tuples of nonnegative integers γ and β, and the cancellation conditions

∂ρξ (σ(ξ,−ξ)) = ∂ρξ (σ(ξ, 0)) = ∂ρξ (σ(0, ξ)) = 0,

for all |ρ| ≤ L = [n(1
r
− 1)] + 1. Then the corresponding bilinear operator T with

symbol σ is bounded from Hp(Rn)×Hq(Rn) into Hr(Rn).

We note that this class of operators is closed under the transpose operation and
that the cancellation conditions on the symbols produce the required cancellation
on the bilinear molecules. For 1 < p, q, r < ∞ this result is due to Coifman and
Meyer and the cancellation condition is not needed. For p = q = 2 the cancellation
is necessary to map into the Besov space Ḃ0,1

1 (Rn) as proved by Coifman, Dobyinsky
and Meyer [9]; see also the work of Youssfi [60]. For other results involving Hp spaces
and singular multipliers in dimension n = 1 see the article by Gilbert and Nahmod
[29].

In the rest of this article we will focus on a class of operators which are invariant
under taking transposes and have p-independent boundedness properties. This is
consistent with the properties of the almost diagonal estimates. Such operators will
be given by singular Calderón-Zygmund type kernels. Before we discuss them we
present a a byproduct of our work that applies to positive multilinear operators.

4. The Multilinear Schur test (a byproduct)

Certain Besov spaces can be characterized using wavelets coefficients in such a way
that the corresponding middle expression in (5) takes the form of a weighted lp norm
on the wavelets coefficients. For example, for f ∈ Ḃα,p

p ,

f =
∑

ν∈Z, k∈Zn
〈f, φνk〉φνk,
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one has that the coefficients of f satisfy

c ‖f‖Bα,pp
≤
(∑

ν

∑
k

(
|〈f, φνk〉|2ν(α+n/2−n/p))p )1/p ≤ C ‖f‖Bα,pp

.

Since the almost diagonal estimates depend only on size, we can reduce the study
of multilinear operators on Besov spaces to the study of positive tensors on lp spaces
(even though the singular integral operators themselves are not positive). We can
readily obtain boundedness results on products of Besov spaces using a multilinear
Schur’s test. For brevity, we only state here a version of this test for general measure
spaces which is of interest in its own.

Theorem 3. Let S be a positive multilinear operator. Let X,X1, . . . , Xm be σ-finite
measure spaces with non-negative measures, and let 1 < q, q1, . . . , qm <∞ be numbers
that satisfy (3). The following are equivalent.
(a) S maps Lq1(X1)× · · · × Lqm(Xm) to Lq(X) with norm less than or equal to A.
(b) For all B > A there exist measurable functions hj on Xj with 0 < h1, . . . , hm <∞
a.e., such that

S∗j(h1, . . . , hj−1, S(h1, . . . , hm)q−1, hj+1, . . . , hm) ≤ Bqh
qj−1
j a.e.

for all 1 ≤ j ≤ n.
(c) For all B > A there exist measurable functions uj on Xj and w on X with
0 < u1, . . . , um, w <∞ a.e., such that

S(u
q′1
1 , u

q′2
2 , . . . , u

q′m
m ) ≤ B wq

′
a.e.

S∗1(wq, u
q′2
2 , . . . , u

q′m
m ) ≤ B uq11 a.e.

. . .

S∗m(u
q′1
1 , u

q′2
2 , . . . , w

q) ≤ B uqmm a.e.

The conditions in (b) are motivated by the work of Howard and Schep [40]. Another
multilinear form of Schur’s test was obtained by Cwikel and Kerman [17] in terms
of a different and independent set of 3m + 5 conditions involving (m + 1)(m + 2)
auxiliary functions. That (c) implies the boundedness of the operator S was also
recently obtained by Bekollé, Bonami, Peloso, and Ricci [1]. This follows from an
application of Hölder’s inequality as in the linear case. The necessity of the conditions
in (c) is, however, substantially more complicated than in the linear case. Certain
auxiliary functions need to be constructed and ideas of Gagliardo [28] are used. The
details can be found in [37] where a brief historical account of the linear Schur test
is presented. We also note that if in (c) we add the extra condition∫

X

S(uq11 , . . . , u
qm
m )(x)wq(x) dx ≤ B,

then we obtain boundedness in the off-diagonal case

1

q
>

m∑
j=1

1

qj
.
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We give a simple application of this test to the positive m-linear Hilbert operator

S(f1, . . . , fm)(x) =

∫ ∞
0

. . .

∫ ∞
0

f1(x1) . . . fm(xm)

(x+ x1 + · · ·+ xm)m
dx1 . . . dxm.

Just observe that S coincides with all of its transposes and that the functions

uj(xj) = x
−1/qjq

′
j

j , and w(x) = x−1/qq′ .

satisfy the conditions in (c). Hence, S maps Lq1(0,∞)×· · ·×Lqm(0,∞) into Lq(0,∞).
Applications of the test to multilinear multipliers can be found in [37].

5. Calderón-Zygmund kernels, interpolation, and endpoint estimates

Let T be a multilinear operator initially defined on smooth functions. Assume
that the restriction of its distributional kernel away from the diagonal x = y1 = y2 =
· · · = ym in (Rn)m+1, coincides with a function, still denoted by K, satisfying the
size estimate

(9) |K(y0, y1, . . . , ym)| ≤ A

(
∑m

k,l=0 |yk − yl|)mn
,

the smoothness estimate, for some positive ε,

(10) |K(y0, . . . , yj, . . . , ym)−K(y0, . . . , y
′
j, . . . , ym)| ≤

A|yj − y′j|ε

(
∑m

k,l=0 |yk − yl|)mn+ε
,

whenever 0 ≤ j ≤ m and |yj − y′j| ≤ 1
2

max0≤k≤m |yj − yk|, and such that

T (f1, . . . , fm)(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym,

whenever f1, . . . , fm ∈ D(Rn) and x /∈ ∩mj=1supp fj. In particular, the above condi-
tions imply that for f1, . . . , fm, g in D(Rn) with ∩mj=1supp fj ∩ supp g = ∅, we have

〈T (f1, . . . , fm), g〉 = 〈K, g ⊗ f1 ⊗ · · · ⊗ fm〉

=

∫
Rn

∫
(Rn)m

K(x, y1, . . . , ym)g(x)f(y1) . . . fm(ym) dy1 . . . dym dx,

as an absolutely convergent integral.
Under the above assumptions we will says that T is an m-linear operator with

Calderón-Zygmund kernel K. The collection of functions satisfying (9) and (10) with
parameters m, A, and ε will be denoted by m-CZK(A, ε). Note that if K is in
m-CZK(A, ε), then so are functions K∗j associated with the transposes of T . Note
also that the smoothness assumptions are clearly satisfied if, for example,

|∂yjK(y0, . . . , ym)| ≤ A

(
∑m

k,l=0 |yk − yl|)mn+1
.

Operators with Calderón-Zygmund kernels are plentiful. Simple examples are the
bilinear Riesz transforms on R×R, given for j = 1, 2 by

Rj(f1, f2)(x) = p.v.

∫
R

∫
R

x− yj
|(x− y1, x− y2)|3

f1(y1)f2(y2) dy1dy2.
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By homogeneity considerations, multilinear operators with Calderón-Zygmund ker-
nels may map T : Lq1 × · · · × Lqm → Lq, only when

(11)
1

q1

+ · · ·+ 1

qm
=

1

q
.

It follows form the work of Coifman and Meyer in the 70’s that general operators of
the form

TK(f1, . . . , fm)(x) = p.v.

∫
K(y1, . . . , ym)f1(x− y1), . . . , fm(x− ym) dy1, . . . dym

with smooth homogeneous kernels of degree −mn having mean zero on the unit
sphere map

Lq1 × · · · × Lqm → Lq,

for indices satisfying 1 < q1, . . . , qm, q <∞ and (11).
For linear Calderón-Zygmund singular integrals one has the classical endpoint esti-

mate L1 → L1,∞. Coifman and Meyer also proved a week estimate in the multilinear
case when q = 1, [13], [14], and, as pointed out in [42], they also treated the case
when (m − 1) of the q1 are infinity, [15], [16]. Actually, more can be proved. For
m-linear operators, the endpoint result is from the m-fold product of L1 spaces into
L1/m,∞. One can also show using the above example of the bilinear Riesz transforms
that, in general, the corresponding strong type L1/m estimate is not possible. The
most complete weak endpoint result is as follows.

Theorem 4. Let T be a multilinear operator with kernel K in m-CZK(A, ε). Assume
that for some numbers 1 ≤ q1, q2, . . . , qm ≤ ∞ and some 0 < q < ∞ satisfying (11),
T maps Lq1 × · · · × Lqm into Lq,∞. Then T can be extended to a bounded operator
from the m-fold product L1×· · ·×L1 into L1/m,∞. Moreover, for some constant Cn,m
(that depends only on the parameters indicated) we have that

‖T‖L1×···×L1→L1/m,∞ ≤ Cn,m
(
A+ ‖T‖Lq1×···×Lqm→Lq,∞

)
.

This theorem is proved using the Calderón-Zygmund decomposition, which is ap-
plied to each of the functions in the arguments of the operator at an appropriate
height. Details can be found in [38]. For interpolation purposes we have kept track
of the constants in the estimates of the operator norms as indicated. We mention
again that for operators given by homogeneous kernels, a weak type estimate was
also obtained by Kenig and Stein [42].

One single estimate provides boundedness for all possible values of the parameters
given by (11) as the next theorem shows. We will use the notation L∞c for the space
of L∞ functions with compact support.

Theorem 5. Let T be a multilinear operator with kernel K in m-CZK(A, ε). Let
1 ≤ q1, q2, . . . , qm, q <∞ be given numbers satisfying (11). Suppose that either (i) or
(ii) below hold:
(i) T maps Lq1,1 × · · · × Lqm,1 into Lq,∞ if q > 1,
(ii) T maps Lq1,1 × · · · × Lqm,1 into L1 if q = 1.
Let p, pj be numbers satisfying 1/m ≤ p < ∞, 1 ≤ pj ≤ ∞, and 1

p
= 1

p1
+ · · · + 1

pm
.

Then all the statements below are valid:
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(iii) when all pj > 1, then T can be extended to a bounded operator from Lp1×· · ·×Lpm
into Lp, where Lpk should be replaced by L∞c if some pk =∞;
(iv) when some pj = 1, then T can be extended to a bounded map from Lp1×· · ·×Lpm
into Lp,∞, where again Lpk should be replaced by L∞c if some pk =∞.
(v) when all pj = ∞, then T can be extended to a bounded map from the m-fold
product L∞c × · · · × L∞c into BMO.

Moreover, there exists a constant Cn,m,pj ,qi such that under either assumption (i)
or (ii), we have the estimate

(12) ‖T‖Lp1×···×Lpm→Lp ≤ Cn,m,pj ,qi
(
A+B

)
,

where B = ‖T‖Lq1×···×Lqm→Lq,∞ if q > 1, and B = ‖T‖Lq1×···×Lqm→L1 if q = 1.
Furthermore, conclusions (iii), (iv), and (v) as well as estimate (12) are also valid

for all the transposes T ∗j, 1 ≤ j ≤ m.

To explain the theorem, a geometric description is convenient. Identify expo-
nents p1, . . . , pm, p with points (1/p1, . . . , 1/pm, 1/p) in Rm+1. We need to show
that the operator T is bounded for (1/p1, . . . , 1/pm, 1/p) in the convex hull of the
m + 2 points given by E = (1, 1, . . . , 1,m), O = (0, 0, . . . , 0, 0), C1 = (1, 0, . . . , 0, 1),
C2 = (0, 1, . . . , 0, 1), . . . , and Cm = (0, 0, . . . , 1, 1). We consider several polyhe-
dra with these points as vertices. The equilateral polyhedron C1C2 . . . Cm is con-
tained in an (m − 1)-dimensional plane. Fix a point Q with coordinates given by
(1/q1, . . . , 1/qm, 1/q) as in the assumptions of the theorem. Then (i) says that Q is
in the interior of OC1 . . . Cm while assumption (ii) says that Q lies in the interior of
C1 . . . Cm. Conclusion (iii) means that T satisfies a strong type bound in the closure
of OC1C2 . . . Cm minus its vertices union the interior of EC1C2 . . . Cm. Conclusion
(iv) implies that T satisfies a weak type bound on the vertices C1, . . . , Cm and on
the exterior faces of EC1 . . . Cm. The main idea of the proof of the theorem is to
obtain appropriate bounds in each of the faces of the polyhedron EC1 . . . CmO by
reducing matters to (m−1)-linear operators and then proceed by induction. Using a
refinement of Theorem 4 we first obtain a weak type estimate for T at the point E.
We can then show that that T satisfies a strong type bound in the interior of each of
the m faces Sj = OC1 . . . Cj−1Cj+1 . . . Cm of OC1 . . . Cm and weak type bounds at the
vertices C1, . . . , Cj−1, Cj+1, . . . , Cm We obtain in this way the m + 1 starting points
needed for multilinear real interpolation. See the articles of Grafakos and Kalton
[32], Janson [41], and also Strichartz [55] for a reference on multilinear interpolation.
For the weak type estimates on each of the edges ECj we use complex interpolation.
Duality arguments give the results for the transposes T ∗j.

The restriction to L∞c is of technical nature and is needed only to compute the
kernel of (m− 1)-linear operators obtained from T by “freezing one variable”. Nev-
ertheless, this restriction can be removed. In fact, at the point O we obtain the
result L∞ × · · · × L∞ → BMO, which is the multilinear version of the theorem of
Peetre [50], Spanne [52], and Stein [53] on the L∞ → BMO boundedness of singular
integrals.
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Full details about the theorem are given in [38], nevertheless, we want to illustrate
here some of the arguments in the bilinear case in a somehow simplified form that
clearly indicates the main ideas. In this case, the region of exponents 1/p, 1/q and
1/r on which we want to prove boundedness estimates is shown in Figure 1 and
Figure 2, while the steps in the interpolation process are illustrated in Figures 3-8.

We explain the argument very briefly since the figures speak for themselves. We
start from a strong point estimate at the point A in the lower triangle in Figure 3
and by complex interpolation we obtain weak boundedness on the segment connect-
ing A with the point (1, 1, 2) (weak boundedness at this last endpoint follows from
Theorem 4). By dualizing the point B we obtain restricted boundedness at the point
C for the transpose T ∗1. Again by complex interpolation we obtain restricted weak
boundedness on the segment connecting C and (1, 1, 2) for T ∗1, Figure 4. Using du-
ality we get restricted weak boundedness for the point E for T in Figure 5. We now
have three points for T at which we know restricted weak boundedness. Using real
multilinear interpolation we obtain strong boundedness in the region showed in Fig-
ure 6. Repeating this procedure we can get the entire region represented in Figure 7
and using a similar argument with the other transpose we get the region in Figure 8.
Since the whole process works for any of the transposes of T , we can obtain a similar
region for one of them and, again by duality, we can complete the whole picture of
Figure 2. Note also that by freezing one variable we can get a point on, say, the
inside of the segment from (0, 0, 0) to (0, 1, 1) and the linear theory gives then strong
estimates on the interior of that side and a weak estimate at the endpoint (0, 1, 1).
With this point and (1, 1, 2) we can use again complex interpolation to obtain weak
estimates on the side with those two vertices. The other sides are obtained in a
similar way. Finally at the point (0, 0, 0) we get L∞ × L∞ → BMO.

6. The multilinear T1 theorem

Theorem 5 say that if a multilinear operator with kernel in m-CZK(A, ε) maps
Lq1 × · · · × Lqm into Lq for a single point (1/q1, . . . , 1/qm, 1/q) with q > 1, then it
maps Lp1×· · ·×Lpm into Lp in the full range of possible exponents. A necessary and
sufficient condition for this to happen is given by the following result. For convenience
in the notation, we set T ∗0 = T .

Theorem 6. Fix 1 < q1, . . . , qm, q < ∞ satisfying (11). Let T be a continuous
multilinear operator from S(Rn) × · · · × S(Rn) into S ′(Rn) with kernel K in m-
CZK(A, ε). Then T has a bounded extension from Lq1 × · · · × Lqm into Lq if and
only if

(13) sup
ξ1∈Rn

. . . sup
ξm∈Rn

‖T ∗j(e2πiξ1·( · ), . . . , e2πiξm·( · ))‖BMO ≤ B

for all j = 0, 1, . . . ,m. Moreover, if (13) holds then we have that

‖T‖Lq1×···×Lqm→Lq ≤ cn,m,qj(A+B),

for some constant cn,m,qj depending only on the parameters indicated.
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The conditions in (13) are motivated by one of the well-known versions of the
original T1 Theorem of David and Journé [18]. The necessity of the conditions follows
from Theorem 5. To show that they are sufficient, we first use the conditions and the
action of T and its transposes on characters (properly defined via a limiting argument)
to obtain uniform BMO estimates on normalized bump functions as denoted by Stein
in [54]. In fact, one can obtain estimates of the form

(14) ‖T ∗j(φR1,x1

1 , . . . , φRm,xmm )‖BMO ≤ C,

where the normalize bumps φRj ,xj are functions given by φRj ,xj = φ(
x−xj
Rj

), and they

satisfy supp φ ⊂ B(0, 1), and ‖∂αφ‖∞ ≤ 1 for all |α| ≤ [n/2] + 1. The result then
follows by an induction argument combined again with Theorem 5. For example, in
the linear case the conditions in (14) give the estimates on T and its transpose T ∗,

(15) ‖T (φR,z)‖L2(Rn) + ‖T ∗(φR,z)‖L2(Rn) ≤ CRn/2,

uniformly for all normalized bumps, which is known to be equivalent to the L2 bound-
edness of T . We remark that actually it would be enough in some cases to prove the
multilinear analogue of (15) for normalized characteristic function of cubes as done
in the linear case (see e.g. the work of Nazarov, Treil, and Volberg [49]), but in our
general situation T is only a priori defined on smooth functions.

Using different arguments, Christ and Journé established in [6] another version of
the multilinear T1 Theorem. Consider the (m + 1)-linear form defined on functions
in D(Rn) via

U(f1, . . . , fm, fm+1) = 〈T (f1, . . . , fm), fm+1〉.
The results in [6] imply, in particular, that the estimates

|U(f1, . . . , fm+1)| ≤ C
( ∏
j 6=k,l

‖fj‖L∞
)
‖fk‖L2‖fl‖L2

are equivalent to certain multilinear weak-boundedness condition on U (that we will
not describe here), together with the hypotheses that Uj(1) ∈ BMO. The dis-
tributions Uj(1) are defined by 〈Uj(1), g〉 = U(1, . . . , 1, g, 1, . . . , 1), with g a test
function with mean zero in the j-position. Our version of the multilinear T1 Theo-
rem expressed in terms of the conditions (13) on characters is well-suited for several
applications including the following.

We use the notation ~z = (z1, . . . , zm) and d~z = dz1 . . . dzm. Consider multilinear
pseudodifferential operators

(16) T (f1, . . . , fm)(x) =

∫
Rn

. . .

∫
Rn

σ(x, ~ξ)f̂1(ξ1) . . . f̂m(ξm) e2πix·(ξ1+···+ξm)d~ξ

and translation invariant operators

(17) T (f1, . . . , fm)(x) =

∫
Rn

. . .

∫
Rn

K0(x− y1, . . . , x− ym)f1(y1) . . . fm(ym)d~y,

where the integrals should be interpreted in an appropriate manner.
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Corollary 2. Let T be initially defined on Schwartz functions by (16) with a symbol
σ in the class m-S0

1,1, i.e.

|∂αx∂
β1

ξ1
. . . ∂βmξm σ(x, ξ1, . . . , ξm)| ≤ Cα,β(1 + |ξ1|+ · · ·+ |ξm|)|α|−(|β1|+···+|βm|),

for all α, β1, . . . , βm n-tuples of nonnegative integers. Suppose that all of the trans-
poses T ∗j are also given in the form of (16) with symbols in m-S0

1,1. Then T extends
as bounded operator from Lq1 ×· · ·×Lqm into Lq, when 1 < q1, . . . , qm, q <∞ satisfy
(11). Moreover, if we let some of the qj = 1, then T maps Lq1 × · · · ×Lqm into Lq,∞.

In what follows |(u1, . . . , um)| will denote the Euclidean norm of ~u = (u1, . . . , um)
as an element in Rnm.

Corollary 3. Let K0(u1, . . . , um) be a locally integrable function on (Rn)m − {0}
which satisfies the size estimate

|K0(u1, . . . , um)| ≤ A|(u1, . . . , um)|−nm,
the cancellation condition∣∣∣∣ ∫

R1<|(u1,...,um)|<R2

K0(u1, . . . , um) d~u

∣∣∣∣ ≤ A <∞,

for all 0 < R1 < R2 <∞, and the smoothness condition

|K0(u1, . . . , uj, . . . , um)−K0(u1, . . . , u
′
j, . . . , um)| ≤ A

|uj − u′j|ε

|(u1, . . . , um)|nm+ε
,

whenever |uj − u′j| < 1
2
|uj|. Suppose that for some sequence εj ↓ 0 the limit

lim
j→∞

∫
εj<|~u|≤1

K0(u1, . . . , um) d~u

exists. Let T be the operator given by (17) as a principal value using the sequence εj
and kernel K0. Then T maps Lq1 × · · · × Lqm into Lq, when 1 < qj <∞ and (11) is
satisfied. Moreover, if some of the qj = 1, then T maps Lq1 × · · · × Lqm into Lq,∞.

Both corollaries follow from Theorem 6 because the operators considered have
kernels in m-CZK and their actions on the characters produce uniformly bounded
functions. For example, in Corollary 2, the kernel of the operators is given by

K(x, y1, . . . , ym) = F−1(a(x, ·, . . . , ·))(y1, . . . , ym)

which satisfies

|∂αK(y0, y1, . . . , ym)| ≤ Cα
(
∑m

k,l=0 |yk − yl|)mn+|α| .

In addition,

T (e2πiξ1·( · ), . . . , e2πiξm·( · ))(x) = a(x, ξ1, . . . , ξm)e2πix·(ξ1+···+ξm),

and similarly with T ∗j. Corollary 2 can be interpreted as a multilinear formulation
of a results of Bourdaud [4] about linear pseudodifferential operators in the so-called
exotic class. In Corollary 3 the conditions (13) follow from a simple calculation. This
corollary extends results of Benedek, Calderón, and Panzone [2] in the multilinear
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setting. Corollary 3 applies, in particular, to kernels given by homogeneous Lipschitz
functions with mean value zero on the unit sphere Snm−1, considered by Coifman and
Meyer [13] when m = 2 and n = 1.

7. Maximal operator and weighted norm inequalities

The operators with Calderón-Zygmund kernels studied in the previous section
which are bounded on a product of Lp spaces will be called multilinear Calderón-
Zygmund operators. As in the linear case it is of interest to study weighted norm
inequalities for such operators. To do so we introduce the truncated maximal singular
integral operator

T∗(f1, . . . , fm)(x) = sup
δ>0
|Tδ(f1, . . . , fm)(x)|,

where

Tδ(f1, . . . , fm)(x) =

∫
|x−y1|2+···+|x−ym|2>δ2

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) d~y.

The boundedness of T∗ will be a consequence of the following pointwise estimate

which is a multilinear version of Cotlar’s inequality. We will use the notation ~f =
(f1, . . . , fm).

Theorem 7. Let T be an m-linear Calderón-Zygmund operator. Then for all ~f in
any product of Lqj(Rn) spaces, with 1 ≤ qj <∞, we have

(18) T∗(~f )(x) ≤ C

(
(M(|T (~f )|1/m)(x))m +

m∏
j=1

Mfj(x)

)
.

Actually, a better estimate also holds. Namely, for all 0 < η,

(19) T∗(~f )(x) ≤ Cη

(
(M(|T (~f )|η)(x))1/η +

m∏
j=1

Mfj(x)

)
.

The proof of this improved estimate will appear in [39]. For brevity, here we present
a different argument which applies only for η = 1/m, but which is rather simple and
still illustrates some of the ideas.

First, observe that it suffices to prove (18) for

T̃∗(~f )(x) = sup
δ>0
|T̃δ(f1, . . . , fm)(x)|,

where

T̃δ(f1, . . . , fm)(x) =

∫
~y/∈Sδ(x)

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) d~y,

Sδ(x) = {~y : sup
1≤j≤m

|x− yj| ≤ δ},

and
Uδ = {~y ∈ Sδ(x) : |x−y1|2 + · · ·+ |x−ym|2 > δ2}.

(The difference between the two operators is clearly bonded by C
∏m

j=1Mfj(x).)
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Fix δ > 0 and let B = B(x, δ/2) be the ball of center x and radius δ/2. Then, for
z ∈ B we have

(20) T̃δ(~f )(z) = T (~f )(z)− T (~f0)(z),

where ~f0 = (f1χB(0,δ), . . . , fmχB(0,δ)). Using the regularity of the kernel we obtain

(21) |T̃δ(~f )(x)− T̃δ(~f )(z)| ≤
∫
~y/∈Sδ(x)

A|x− z|ε
∏m

j=1 |fj(yj)|
(|x− y1|+ · · ·+ |x− ym|)nm+ε

d~y.

The region of integration in right hand side of (21) can be written as a sum of sets
Rj1,...,jl in (Rn)m so that for ~y = (y1, . . . , ym) ∈ Rj1,...,jl exactly the l components yjk
with jk ∈ {j1, . . . , jl} satisfy |x− yjk | ≤ δ, and we can easily estimate∫

~y∈Rj1,...,jl

A|x− z|ε

(|x− y1|+ · · ·+ |x− ym|)nm+ε

m∏
j=1

|fj(yj)| d~y

≤Aδε
∏

j∈{j1,...,jl}

∫
|x−yj |≤δ

|fj(yj)| dyj
∏

j /∈{j1,...,jl}

∫
|x−yj |>δ

|fj(yj)|
|x− yj|

nm+ε
m−l

dyj

≤CA
∏

j∈{j1,...,jl}

Mfj(x)
∏

j /∈{j1,...,jl}

δ
n+ε
m−l

∫
|x−yj |>δ

|fj(yj)|
|x− yj|

nm+ε
m−l

dyj

≤CA
m∏
j=1

Mfj(x).

Therefore, for z in B(x, δ/2)

(22) |T̃δ(~f )(x)| ≤ CA
m∏
j=1

Mfj(x) + |T (~f )(z)− T (~f0)(z)|.

We may assume then that T̃δ ~f(x) 6= 0 and that there exists λ such that

(23) 0 < 2
(
CA

m∏
j=1

Mfj(x)
)1/m ≤ λ < (T̃δ ~f(x))1/m;

or there is nothing to prove. Note that the above assumption implies that for z ∈ B,

|T ~f(z)−T ~f0(z)|1/m > λ/2. Since T is a Calderón-Zygmund operator, it satisfies also
a weak estimate

L1 × · · · × L1 → L1/m,∞

with a certain bound W . We have

|{z ∈ B(x, δ/2) : |T ~f0(z)|1/m > λ/4}|

≤CW 1/mλ−1

( m∏
j=1

‖fjχB(x,δ/2)‖L1

)1/m

≤CW 1/mλ−1δn
( m∏

j=1

Mfj(x)

)1/m

.

(24)
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In addition, Chebychev’s inequality gives

(25) |{z ∈ B(x, δ/2) : |T ~f(z)|1/m > λ/4}| ≤ Cλ−1δnM(|T ~f |1/m)(x).

For all λ satisfying (23), we now have

B(x, δ
2
) = {z ∈ B(x, δ

2
) : |T ~f0(z)|1/m > λ/4} ∪ {z ∈ B(x, δ

2
) : |T ~f(z)|1/m > λ/4},

and therefore (24) and (25) give

λ ≤ C

(( m∏
j=1

Mfj(x)

)1/m

+M(|T ~f |1/m)(x)

)
.

Taking the supremum over all λ < (T̃δ ~f(x))1/m in (23) we obtain estimate (18) for

T̃∗. As we have previously observed, this suffices to obtain the estimate for T∗.
An immediate corollary is the following.

Corollary 4. Let T be an m-linear Calderón-Zygmund operator. Then for indices
1 < q1, . . . , qm ≤ ∞, q <∞ satisfying 1/q1 + · · ·+ 1/qm = 1/q we have

T∗ : Lq1 × · · · × Lqm → Lq

Also
T∗ : Lq1 × · · · × Lqm → Lq,∞

when at least one qj is equal to one.

The improved estimate (19) is needed to obtain the result for q < 1/m.
The boundedness of T∗ can be used, as in the linear case, to show that if T is given

by

T (f1, . . . , fm)(x) = lim
δ→0

∫
~y/∈Sδ(x)

K(x, y1, . . . , ym)f1(y1) . . . fm(ym)d~y.

for functions in S, then the integral is actually pointwise a.e. convergent for functions
fj ∈ Lqj .

In order to obtain weighted norm estimates for multilinear Calderón-Zygmund
operators, we prove a good-λ inequality for the associated T∗. Our approach is
motivated by the work of Coifman and C. Fefferman [10] in the linear case.

Recall that a weight w is in the class A∞ if there exist c, θ > 0 such that for every
cube Q and every measurable set E ⊂ Q,

(26)
w(E)

w(Q)
≤ c

(
|E|
|Q|

)θ
,

where, for a measurable set F , w(F ) =
∫
F
w(x) dx.

Theorem 8. Let T be an m-linear Calderón-Zygmund operator. Let ~f be in any
product of Lqj(Rn), with 1 ≤ qj < ∞, w ∈ A∞, and let θ be as in (26). Then, for
α > 0 and all γ > 0 sufficiently small

w

({
T∗(~f ) > 2m+1α

}⋂{ m∏
j=1

Mfj ≤ γα
})
≤Cγ

θ
mw
({
T∗(~f ) > α

})
.
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We refer to [39] for the details and we just observe here that by standard methods,
a consequence of this last theorem is the following result.

Corollary 5. Fix exponents 1 < p1, . . . , pm, p < ∞, such that 1/p1 + · · · + 1/pm =

1/p, and w ∈ A∞. Then, for ~f = (f1, . . . , fm) with each fj bounded and compactly
supported

‖T (~f )‖Lp(w) ≤ Cp,n

m∏
j=1

‖Mfj‖Lpj (w).

Moreover, if w ∈ Ap0, with p0 = min(p1, . . . , pm), then

‖T (~f )‖Lp(w) ≤ Cp,n

m∏
j=1

‖fj‖Lpj (w)

and, in particular, T extends as a bounded operator from Lp1(w)× · · · ×Lpm(w) into
Lp(w)

8. Concluding remarks and open problems

We have systematically presented a study of general multilinear operators with
kernels possessing singularities analogous to the ones of linear Calderón-Zygmund
operators. In the process we have extended some known results and we have brought
to surface some new ones involving, in particular, interpolation, endpoint estimates,
and weighted norm inequalities.

There are many other aspects of the Calderón-Zygmund theory that one could pay
attention to. We conclude by briefly mentioning some of them.

• Further Hp results. Linear Calderón-Zygmund operators map H1 into L1.
Similar endpoint results holds in the multilinear setting. For example m-
linear Calderón-Zygmund operators maps H1 × · · · ×H1 into L1/m. See the
work of Grafakos and Kalton [33].
• Multilinear T1 Theorem on other function spaces. A powerful way to prove

the boundedness of linear Calderón-Zygmund operators on function spaces is
by showing that they map appropriate smooth atoms into smooth molecules.
See for example the works of Frazier, Torres, and Weiss [27], or Torres [58]. A
similar approach is feasible in the multilinear setting. Some progress in this
direction has been made by Bényi [3].
• Is there a multilinear Tb Theorem?. Probably the conditions on the multilin-

ear T1 theorem can be further relaxed along the lines of the linear Tb theorem
of David, Journé, and Semmes [19].
• Is there a multilinear theory for kernels K that merely satisfy Hörmander’s

smoothness integrability condition?. For some aspects of the theory this is not
even known in the linear case.
• Is there a multiple weight theory?. The most appropriate multilinear maximal

function or multiple weights to work with in this direction are not yet clear.
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• Multilinear singular integrals with rough kernels. Suppose that the kernel of
a bilinear operator is given by

K0(y1, y2) = Ω((y1, y2)/|(y1, y2)|)/|(y1, y2)|2n,

where Ω is a function on S2n−1 with mean value zero. Are Ω ∈ Lq, q > 1 or
Ω ∈ L logL sufficient to imply boundedness results?

As in the classical linear theory we may apply the method of rotations when
Ω is an odd function to write

TΩ(f1, f2)(x) =

∫ ∫ Ω
( (y1,y2)
|(y1,y2)|

)
|(y1, y2)|2n

f1(x− y1)f2(x− y2) dy1dy2

=
1

2

∫
S2n−1

Ω(θ1, θ2)

{∫ +∞

−∞
f1(x−tθ1)f2(x−tθ2)

dt

t

}
d~θ

The expression inside the curly brackets above is called the bilinear directional
Hilbert transform (BHT) in the direction (θ1, θ2). The BHTs play the role of
the linear directional Hilbert transforms. The uniform estimates on the bilin-
ear Hilbert transforms were obtained by Thiele [56], Grafakos and Li [34] and
also by Li [45] for a certain range of exponents when n = 1. These results are
based on ideas developed in [56]. Uniform estimates imply the boundedness
of rough singular integrals with odd kernels. It would be interesting to know
whether the corresponding higher dimensional bilinear Hilbert transforms are
bounded. This is still an open question.
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[3] Á. Bényi, Bilinear singular integral operators, smooth atoms and molecules, submitted.
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[46] Y. Meyer, Ondelettes et opérateurs I and II, Hermann Ed., Paris, 1990.
[47] Y. Meyer and R. R. Coifman Wavelets: Calderón-Zygmund and multilinear operators, Cam-

bridge Univ. Press, Cambridge, United Kingdom, 1997.
[48] C. Muscalu, T. Tao, and C. Thiele, Multilinear operators with singular multipliers, J. Amer.

Math. Soc. 15 (2002), 469-496.
[49] F. Nazarov, S. Treil, and A. Volberg, Cauchy integral and Calderón-Zygmund operators on

nonhomogeneous spaces, Internat. Math. Res. Notices 15 (1997), 703-726.
[50] J. Peetre, On convolution operators leaving Lp,λ spaces invariant, Ann. Mat. Pura Appl. 72

(1966), 295-304.
[51] J. Peetre, New thoughts on Besov spaces, Duke University Math. Series 1, Durham, 1976.
[52] S. Spanne, Sur l’interpolation entre les espaces Lkp,Φ, Ann. Scuola Norm. Sup. Pisa 20 (1966),

625-648.
[53] E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions

of several variables, in Singular integrals, Proc. Sympos. Pure Math. 10, 1966.
[54] E. M. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals,

Princeton University Press, Princeton NJ, 1993.
[55] R. Strichartz, A multilinear version of the Marcinkiewicz interpolation theorem, Proc. Amer.

Math. Soc. 21 (1969), 441-444.
[56] C. Thiele, A uniform estimate, submitted.
[57] R. H. Torres, Continuity properties of pseudodifferential operators of type 1,1, Comm. Partial

Diff. Eq. 15 (1990), 1313-1328.
[58] R. H. Torres, Boundedness results for operators with singular kernels on distribution spaces,

Mem. Amer. Math. Soc. 442 (1991).
[59] H. Triebel, Theory of function spaces, Monographs in Mathematics, Vol. 78, Birkhauser Verlag,

Basel, 1983.
[60] A. Youssfi, Bilinear operators and the Jacobian-determinant on Besov spaces, Indiana Univ.

Math. J. 45 (1996), 381-396.

Loukas Grafakos, Department of Mathematics, University of Missouri, Columbia,
MO 65211, USA

E-mail address: loukas@math.missouri.edu

Rodolfo H. Torres, Department of Mathematics, University of Kansas, Lawrence,
KS 66045, USA

E-mail address: torres@math.ukans.edu


