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Abstract. In R2, we consider an analytic family of operators Hz , z ∈ C, whose convolution

kernel is obtained by taking −z − 1 derivatives of arclength measure on the parabola (t, t2)

in a homogeneous way, defined in such a way so that H−1 be the standard parabolic Hilbert

transform. For a fixed z, we study the set of p for which Hz is bounded on Lp(R2) and for

the critical z that captures the degree of singularity of this operator on Lp(R2), we prove a

positive endpoint result.

1. Introduction. The role of curvature in Harmonic Analysis has received increasing
attention in recent years. The point of departure for work in this area has been the
connection between submanifolds of Rn and decay of the Fourier transform of compactly
supported surface distributions. Such decay estimates fail for submanifolds contained
completely in some hyperplane and in general the “amount” of curvature of the submanifold
is related to the rate of decay of the Fourier transform of the distribution.

Well known operators whose Lp boundness is affected by curvature are singular inte-
grals along submanifolds of Rn. Consider for example the case of an operator given by
convolution with a distribution which is singular along a submanifold of codimension 1.
Certain distributions give rise to convolution operators which are bounded on some but
not all Lp. If a distribution depends analytically on a parameter z, for a given z, what is
the set of all p’s for which the associated operator is bounded on Lp?

We study the case where the analytic family of distributions is obtained by taking −z−1
transverse derivatives of arclength measure on the parabola and doing so in a homogeneous
way. For 1 < p ≤ 2, the operators Hz are easily seen to be unbounded on Lp when
Rez < 1/p−2 and one can show using Calderón-Zygmund theory and interpolation thatHz

are bounded on Lp when the above inequality is reversed. For the critical z = 1/p−2+ iθ,
the kernel of Hz lacks the amount of smoothness required by the usual singular integral
theory to establish Lp boundedness. Nevertheless, the curvature of the parabola makes
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up for this lack of smoothness and enables us to prove positive results when the usual
methods don’t apply. For p = 1 we prove that these operators map H1 to weak L1 and
for 1 < p < 2 that they map Lp to weak Lp. We also prove that the first result is sharp in
the sense that for p = 1 all these operators, except one, don’t map L1 to weak L1. Precise
statements of results are given in section 2.

2. Preliminaries and statements of results. We denote by C∞0 the set of smooth
functions with compact support. Fix ψ an even function in C∞0 (R) such that ψ ≥ 0, ψ ≡ 1
on [− 1

2 ,
1
2 ] and ψ ≡ 0 off [−1, 1]. For Re z > −1, define an analytic family of distributions

Dz acting on test functions of the real variable u as follows:

〈Dz, f〉 = 2Γ
(
z+1
2

)−1
∫
|u− 1|z ψ(u− 1)f(u) du .

By analytic continuation, see [GS], Dz may be extended to a distribution–valued entire
function of z. For example, use (2.1) to define Dz for Re z > −2

(2.1) 〈Dz, f〉 = (z + 1)Γ
(
z+3
2

)−1
∫
|u− 1|zψ(u− 1) (f(u)− f(1)) du+ azf(1)

for a suitable constant az . Because of the Γ function normalization we have

(2.2) 〈D−1, f〉 = f(1) .

We now define an analytic family of distributions Kz, acting on the Schwartz class, S(R2),
as follows:

(2.3) 〈Kz, h〉 = pv
∫
〈Dz(u), h(t, ut2)〉

dt

t
,

where the integrand in (2.3) denotes the result of the action of Dz on the function u →
h(t, ut2). Our analytic family Hz is given by convolution with Kz, that is,

(Hzf)(x) = pv
∫
〈Dz(u), f(x1 − t, x2 − ut2〉

dt

t
.

In view of (2.2), H−1 is the Hilbert transform along the parabola (t, t2) studied in [SWA].
Fourier transform calculations and the method of stationary phase give the following:

Theorem 1. For Re z > −2, K̂z(ξ) is a C∞ function on R2 \ {ξ2 = 0} and for fixed
ξ1 = 0 equals

(sgn ξ1)C0,z + C1,z

∣∣∣∣∣
√
|ξ2|
ξ1

∣∣∣∣∣
2z+3

ei
π
2

ξ21
ξ2 +O




∣∣∣∣∣
√
|ξ2|
ξ1

∣∣∣∣∣
2z+4




as ξ2 → 0. (C0,z, C1,z are nonzero constants.)

As a corollary we get that Hz maps L2 to L2 if and only if Re z ≥ −3/2. Our next
result is the following:
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Theorem 2. For Re z = −1, Hz maps H1 to L1,∞.

Here H1 denotes the usual parabolic real Hardy space homogeneous under the family of
dilations (x1, x2)→ (rx1, r2x2) as defined in [CT1]. This result is an extension of Theorem
3 in [C1]. Surprisingly, this theorem is sharp in the sense that Hz are not of weak type
(1, 1) when Re z = −1 and z is not −1. Therefore we have explicit examples of operators
with the same homogeneity as the parabolic Hilbert transform H−1 which are not of weak
type (1, 1). However, we don’t know whether H−1 is of weak type (1, 1).

In section 7 we discuss an interpolation theorem (Theorem 3), that enables us to replace
L1 by H1 in the usual analytic interpolation when the target spaces are arbitrary Lorentz
spaces Lp,q. As a corollary we obtain:

Theorem 4. For Re z = 1/p− 2, 1 < p < 2, Hz maps Lp to Lp,p
′
.

Our result is the best possible in the sense that Hz doesn’t map Lp to Lp,∞ when
Re z < 1/p− 2. However, we don’t know whether Hz maps Lp → Lp when Re z = 1/p− 2.

Finally we would like to make the following notational convention. Throughout this
paper, Cz, cz will denote constants positive or complex that depend only on the fixed
parameters of the problem and on z and are allowed to grow at most exponentially in Im z
as |Im z| → ∞.

3. Fourier transform asymptotics and L2 estimate. In this section we will
compute the Fourier transforms K̂z of our distributions Kz. It will turn out that

(3.1) K̂z(ξ1, ξ2) = lim
δ→0
N→∞

∫
δ≤|t|≤N

D̂z(t2ξ2)e−2πitξ1
dt

t
,

when Re z > −2. Before we prove (3.1) we will study the functions

Gz,δ,N (ξ1, ξ2) =
∫
δ≤|t|≤N

D̂z(t2ξ2)e−2πitξ1
dt

t

and
Gz(ξ) = lim

δ→0
N→∞

Gz,δ,N (ξ) .

We start with the following

Lemma 3.1. For all z with Re z > −2 and all ξ ∈ R2 ,

lim
δ→0
N→∞

Gz,δ,N (ξ) = Gz(ξ) exists .

3



Proof. Fix z with Re z > −2. First note that

(3.2) D̂z(v) = 2

(
|u|zψ(u)
Γ

(
z+1
2

)
)∧

(v)e−2πiv .

By a formula on page 359 in [GS], (3.2) is equal to

(3.3) c
2z

Γ
(
− z

2

) (| · |−z−1 ∗ ψ̂)(v)e−2πiv, c = 0 .

Let’s call
Lz(v) = c

2z

Γ
(
− z

2

) (| · |−z−1 ∗ ψ̂)(v) .

Lz is a C∞ even function on the real line because ψ was chosen to be even. We will need
the following lemma whose proof we postpone until the end of this section.

Lemma 3.2. There exists a nonzero constant Cz such that Lz(v) = Cz|v|−z−1 +Rz(v)
where Rz(v) as well as all of its derivatives are

O(|v|−M ) ∀ M > 0 as |v| → ∞

with bounds that grow at most exponentially in |Im z| as |Im z| → ∞.

We now continue the proof of Lemma 3.1. Fix (ξ1, ξ2) = ξ ∈ R2. If ξ2 = 0 the assertion
of Lemma 3.1 is trivial. We may therefore assume that ξ2 = 0. Set λ = ξ1/

√
|ξ2| . Also

set ε1 = sgn ξ1, ε2 = sgn ξ2, δ′ = δ|ξ2|−1/2, N ′ = N |ξ2|−1/2. (sgnx is by definition 1 if
x > 0, −1 if x < 0 and 0 if x = 0.) We then have

(3.4)

Gz,δ,N (ξ) =
∫
δ≤|t|≤N

Lz(t2ξ2)e−2πi(tξ1+t
2ξ2)

dt

t

=
∫
δ′≤|t|≤N ′

Lz(t2)e−2πi(tλ+ε2t
2) dt

t

where we used the evenness of Lz in the change of variables in (3.4). Since δ → 0, N →∞
and ξ is fixed we can assume that δ′ ≤ 1 ≤ N ′. Write (3.4) as (3.5) + (3.6) where

(3.5)
∫
δ′≤|t|≤1

Lz(t2)e−2πi(tλ+ε2t
2) dt

t

and

(3.6)
∫

1≤|t|≤N ′
Lz(t2)e−2πi(tλ+ε2t

2) dt

t
.
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(3.5) is equal to

(3.7)

∫
δ′≤|t|≤1

(Lz(t2)e−2πiε2t
2 − Lz(0))e−2πiλt dt

t

+ Lz(0)
∫
δ′≤|t|≤1

e−2πiλt − 1
t

dt .

Because of the smoothness of Lz, (3.7) has a limit as δ′ → 0 (equivalently δ → 0) equal to

(3.8)
∫
|t|≤1

(Lz(t2)e−2πiε2t
2 − Lz(0))e−2πiλt dt

t
+ Lz(0)

∫
|t|≤1

e−2πiλt − 1
t

dt .

We now treat (3.6). We make use of Lemma 3.2 to rewrite (3.6) as

(3.9) cz

∫
1≤|t|≤N ′

|t|−2z−2e−2πi(tλ+ε2t
2) dt

t
+R1

z(λ,N
′)

where
R1
z(λ,N

′) =
∫

1≤|t|≤N ′
Rz(t2)e−2πi(tλ+ε2t

2) dt

t

(Rz as in Lemma 3.2). The estimates for Rz show that the integrand above decays like
|t|−M ∀ M > 0 as |t| → 0 as therefore R1

z(λ,N
′) has a limit as N ′ →∞ (or N →∞). We

now prove a similar result for the main term in (3.9). We write it as

(3.10) cz

[
Aλ(t)e−2πiε2t

2
]N ′
|t|=1

− cz
∫ N ′

|t|=1

dAλ(t)
dt

e−2πiε2t
2
dt

where Aλ(t) = (−4πiε2)−1|t|−2z−4e−2πitλ . We integrate by parts again to write (3.10) as

(3.11)

cz,1ε
−1
2

[
|t|−2z−4e−2πi(tλ+ε2t

2)

]N ′
|t|=1

+ cz,2ε−2
2

[
t−1|t|−2z−5e−2πi(tλ+ε2t

2)

]N ′
|t|=1

+ cz,3ε−2
2 λ

[
t−1|t|−2z−4e−2πi(tλ+ε2t

2)

]N ′
|t|=1

+ cz,4ε−2
2

∫ N ′

|t|=1

e−2πiε2t
2 { d
dt

(
1
t

dAλ
dt

)
} dt .
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It is easy to see that the expression inside the curly brackets in (3.11) decays at least like
|t|−2Rez−5 as |t| → ∞. Since Re z > −2, (3.11) has a limit as N ′ → ∞. We have now
proved that (3.6) has a limit as N ′ →∞ (equivalently N →∞) which is equal to

(3.12)

c′z,1ε
−1
2 e
−2πiλ + c′z,2e

−2πiλ + c′z,3λe
−2πiλ

+ cz,4
∫ ∞
|t|=1

e−2πiε2t
2 { d
dt

(
1
t

dAλ
dt

)
} dt

+
∫ ∞
|t|=1

Rz(t2)e−2πi(ε2t
2+tλ) dt

t
.

Lemma 3.1 is now proved. Notice that Gz(ξ) = (3.8) + (3.12).
Next, we study the functions Gz, Re z > −2. We prove that they are C∞ off the ξ1-

axis and we find their asymptotic behavior as ξ2 approaches zero. Later we prove that
Gz = K̂z, Re z > −2 and therefore Theorem 1 will describe the behavior of the Fourier
transforms of Kz. Until the end of this section, z will denote a complex number with real
part greater than −2.

Theorem 1. Gz(ξ) is a C∞ function except at ξ2 = 0 and behaves asymptotically like

(sgn ξ1) · C0,z + C1,z

∣∣∣∣∣
√
|ξ2|
ξ1

∣∣∣∣∣
2z+3

ei
π
2

ξ21
ξ2

+O




∣∣∣∣∣
√
|ξ2|
ξ1

∣∣∣∣∣
2z+4


 as ξ2 → 0 .

C0,z is a fixed nonzero constant and C1,z = C1,z(sgn ξ2) is a nonzero constant depending
on sgn ξ2.

Proof. We start by proving the smoothness of Gz(ξ) when ξ2 = 0. It suffices to show
that (3.8) and (3.12) are smooth functions of λ = ξ1 /

√
|ξ2|.

Near ξ, when ξ2 = 0, ε2 is a constant. Then differentiation under the integral sign shows
that (3.8) is a C∞ function of λ. We will now prove the same for (3.12). Clearly (3.12)
is a continuous function of λ. To prove that it is C∞ we need to be able to differentiate
under the integral signs. Each time we differentiate with respect to λ we pick up a factor
of t which worsens the convergence of the integrals in (3.12). Suppose we want to show
that (3.12) is Ck. After k − 2 partial integrations we write (3.12) as

(3.13)
k−1∑
j=0

c′z,jλ
je−2πiλ +

k∑
j=0

cz,jλ
j

∫ ∞
|t|=1

e−2πi(ε2t
2+λt)Az,j(t) dt
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where each Az,j(t) decays at least like |t|−2Re z−3−2k+j as |t| → ∞ and the constants c′z,j ,
cz,j depend on ε2. Near ξ, ε2 is a constant and differentiation under the integral sign shows
that (3.13) is Ck for all k. Since k was arbitrary, (3.12)=(3.13) is C∞.

To study the asymptotics of Gz as ξ2 → 0 introduce two even C∞ functions ζ, φ ≥ 0
with compact support on the real line such that

(i) φ is supported in |t| ∈ [ 14 , 1] and is equal to 1 for |t| ∈ [ 38 ,
6
8 ].

(ii) ζ(t) is supported in |t| ≤ 100 and is equal to 1 for |t| ≤ 50.
We may assume that |λ| > 1000. Because of (3.4), Gz(ξ) is equal to

lim
δ′→0
N ′→∞

∫
δ′≤|t|≤N ′

Lz(t2)e−2πi(tλ+ε2t
2) dt

t
= (3.14) + (3.15) + (3.16) + (3.17) ,

where

pv

∫
|t|≤100

Lz(t2)e−2πi(tλ+ε2t
2)ζ(t)

dt

t
(3.14) ∫

50≤|t|≤ 3|λ|
8

Lz(t2)e−2πi(tλ+ε2t
2)(1− ζ(t))

(
1− φ(|λ|−1t)

) dt
t

(3.15)

∫
|λ|
4 ≤|t|≤|λ|

Lz(t2)e−2πi(tλ+ε2t
2)φ(|λ|−1t)

dt

t
(3.16)

lim
N ′→∞

∫
6|λ|
8 ≤|t|≤N ′

Lz(t2)e−2πi(tλ+ε2t
2)

(
1− φ(|λ|−1t)

) dt
t
.(3.17)

Notice that 1− ζ doesn’t appear in (3.16) or (3.17) because ζ(t) = 0 when |t| ≥ 1. To
treat (3.14) we need the following lemma whose proof we postpone until the end of this
section.

Lemma 3.3. Let a(u) be a C∞0 (R) function. Then

pv

∫
eiλua(u)

du

u
= a(0)iπ sgn λ+O(|λ|−M )

for all M > 0 as|λ| → ∞ .

To apply the lemma, set a(t) = Lz(t2)e−2πiε2t
2
ζ(t). A simple change of variables

t→ −2πt shows that (3.14) = −iπLz(0) sgn ξ1 +O(|λ|−M ) for all M as |λ| → ∞.
Using the fact that Lz(0) = 0 and by choosing M > 2 Re z + 4 we conclude that

(3.14) = (sgn ξ1) · C0,z +O(|λ|−2z−4) as |λ| → +∞, C0,z = 0.
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We now turn to (3.15). Change variables t→ |λ|−1t to rewrite (3.15) as

(3.18)
∫

50
λ ≤|t|≤ 3

8

Lz(|λ|2t2)e−2πi|λ|2(ε1t+ε2t2)(1− φ(t))(1− ζ(|λ|t)) dt
t
.

Set φ1 = 1− φ, ζ1 = 1− ζ for simplicity.
By Lemma 3.2, (3.18) is equal to

(3.19) Cz|λ|−2z−2

∫
50
|λ|≤|t|≤ 3

8

|t|−2z−2e−2πi|λ|2(ε1t+ε2t2)φ1(t)ζ1(|λ|t)
dt

t
+R2

z(λ)

where
R2
z(λ) =

∫
50
|λ|≤|t|≤ 3

8

Rz(|λ|2t2)e−2πi|λ|2(ε1t+ε2t2)φ1(t)ζ1(|λ|t)
dt

t
.

We treat the main term in (3.19) by a sequence of partial integrations. The phase
function −2π(ε1t+ ε2t2) has no critical points in {t : |t| ≤ 3

8} and all the boundary terms
vanish. If we set B0(t) = |t|−2z−2t−1φ1(t)ζ1(|λ|t) and for n ≥ 0

Bn+1(t) =
(
Bn(t)

2ε2t+ ε1

)′

we can write the main term in (3.19) as

(3.20) Cz|λ|−2z−2−2M

∫
50
|λ|≤|t|≤ 3

8

e−2πi|λ|2(ε1t+ε2t2)BM (t) dt .

It remains to control BM in terms of λ. An easy inductive argument shows that

|BM (t)| ≤ CM
M∑
k=0

|B(k)
0 (t)| .

An application of Leibniz’s rule gives

|B(k)
0 (t)| ≤ Cz,k

k∑
j=0

(
k
j

)
|(|t|−2z−2t−1φ1(t))(j)ζ1(|λ|t)(k−j)|

≤ Cz,k
k∑

j=0

|t|−2Rez−3−j |λ|k−j
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≤ Cz,k
k∑

j=0

|λ|2Rez+3+j |λ|k−j ≤ Cz,k|λ|Rez+3+k

on the support of φ1(t)ζ1(|λ|t).
It follows that ‖BM‖L∞ ≤ Cz,M |λ|Re z+3+M .
We now have that for all M > 0

|(3.20)| ≤ Cz,M |λ|−2Re z−2−2M |λ|Re z+3+M

(
3
8
− 50
|λ|

)
≤ Cz,M |λ|Re z+1−M .

The same argument, together with the estimates for the derivatives of Rz (Lemma 3.2)
prove that R2

z(λ) is O(|λ|−M ) ∀ M as |λ| → ∞.
By choosing M large enough we get that (3.15) = (3.18) = (3.19) is O(|λ|−2z−4) as

|λ| → ∞.
We now treat (3.16). First change variables t → |λ|−1t and then use Lemma 3.2 to

write (3.16) as

(3.21) Cz|λ|−2z−2

∫
1
4≤|t|≤1

|t|−2z−2e−2πi|λ|2(ε1t+ε2t2)φ(t)
dt

t
+R3

z(λ)

where
R3
z(λ) =

∫
1
4≤|t|≤1

Rz(|λ|2t2)e−2πi|λ|2(ε1t+ε2t2)φ(t)
dt

t
.

The behavior of Rz at infinity shows that R3
z(λ) is O(|λ|−M ) ∀ M > 0 as |λ| → ∞. The

derivative of the phase function −2π(ε1t + ε2t2) of the main term in (3.21) has only one
zero t0 = −ε1/2ε2 on the support of φ and the second derivative of the phase function
never vanishes. By the method of stationary phase ([HO] Theorem 7.7.5 Vol. I) the main
term in (3.21) behaves asymptotically as |λ| → ∞ like

Cz|λ|−2z−2

[
e
−2πi|λ|2

�
ε2
4 +ε1

−ε1
2ε2

� ( |λ|2(−4πε2)
2πi

)−1/2

+O(|λ|−2)

]
=

C1,z(ε2)|λ|−2z−3ei
π
2 ε2|λ|

2
+O(|λ|−2z−4)(3.22)

for some nonzero constant C1,z depending on ε2. We have now proved that (3.22) describes
the asymptotic behavior of (3.16) as |λ| → ∞. Finally we treat (3.17). Change variables
t→ |λ|−1t and use Lemma 3.2 to write (3.17) as

(3.23) lim
N ′→∞

Cz

∫ N′
|λ|

|t|= 6
8

|λt|−2z−2e−2πi|λ|2(ε1t+ε2t2)φ1(t)
dt

t
+ lim

N ′→∞
R4
z(λ,N

′)
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where

R4
z(λ) =

∫ N′
|λ|

|t|= 6
8

Rz(|λ|2t2)e−2πi|λ|2(ε1t+ε2t2)φ1(t)
dt

t
.

Using that |Rz(v)| ≤ Cz,M |v|−M ∀M > 0 we immediately deduce that limN ′→∞R4
z(λ,N

′)
is O(|λ|−M ) ∀ M > 0 as |λ| → ∞. Since the phase function of the main term in (3.23)
has no critical points on the range of integration, a partial integration gives that the main
term of (3.23) is equal to

(3.24) Cz|λ|−2z−4 lim
N ′→∞

{
A(|λ|−1N ′)−

∫
6
8≤|t|≤N

′
|λ|

A′(t)e−2πi|λ|2(ε1t+ε2t2) dt

}

where

A(t) =
|t|−2z−2φ1(t)

−2πit(ε1 + 2ε2t)
.

A(t) decays like |t|−2z−4 as |t| → ∞ and its derivative decays like |t|−2z−5 as |t| → ∞.

It follows that the integral inside the curly brackets in (3.24) converges absolutely,
uniformly in λ and that the (3.24) is O(|λ|−2z−4) as |λ| → ∞. This estimate concludes
the proof of Theorem 1.

An immediate corollary is the following:

Proposition 1. (i) K̂z = Gz,

(ii) Hz maps L2 boundedly onto itself if and only if Re z ≥ −3/2. If the latter happens
the bound grows at most exponentially in |Im z| as |Im z| → ∞.

Proof. (i) We will first prove an estimate of the form

(3.25) |Gz,δ,N (ξ)| ≤ Czp(ξ)

uniformly in δ ≤ 1 ≤ N , where p(ξ) is a function that is bounded in any compact set and
has at most polynomial growth in |ξ|. Set as before

λ =
ξ1√
|ξ2|
, N ′ =

N√
|ξ2|
, δ′

δ√
|ξ2|
.

Consider first the case when λ is small. It suffices to show that (3.5) and (3.6) satisfy
(3.25). We have (3.5) = (3.7) which is clearly bounded uniformly in δ. Also (3.6) = (3.9) =
(3.10)+R1

z(λ,N
′) = (3.11)+R1

z(λ,N
′) which is clearly bounded by Cz +C ′z|N ′|−2Rez−4 ≤
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Cz + C ′z|ξ2|Re z+2 uniformly in N ≥ 1. Consider now the case when λ is large. Write
Gz,δ,N (ξ) = (3.14)′ + (3.15) + (3.16) + (3.17)′ where

(3.14)′ =
∫
δ′≤|t|≤100

Lz(t2)e−2πi(tλ+ε2t
2)ζ(t)

dt

t

and
(3.17)′ =

∫
6|λ|
8 ≤|t|≤N ′

Lz(t2)e−2πi(tλ+ε2t
2)φ1(|λ|−1t)

dt

t
.

We have

|(3.14)′| ≤
∣∣∣∣∣
∫
δ′≤|t|≤100

(Lz(t2)ζ(t)e2πiε2t
2 − Lz(0))

dt

t

∣∣∣∣∣
+

∣∣∣∣∣Lz(0)
∫
δ′≤|t|≤100

e−2πitλ dt

t

∣∣∣∣∣ ≤ Cz
where we made use of the simple fact that for all 0 < a < b <∞∣∣∣∣∣

∫
a≤|t|≤b

eit

t
dt

∣∣∣∣∣ ≤ 10 .

Also, an easy examination of (3.23) and (3.24) shows that

|(3.17)′| ≤ Cz|λ|−2Re z−4

{∣∣A(|λ|−1N ′)
∣∣ +

∫
6
8≤|t|≤N

′
|λ|

|A′(t)| dt
}

+ Cz
∫

6
8≤|t|≤ N′

|λ|

|Rz(|λ|2t2)|
dt

t

where A(t) is as in (3.24).
Clearly the expression above grows at most polynomially in ξ and (3.25) is now proved.

The value of (3.25) lies in the fact that for any f ∈ S(R2),
∫
|f(ξ)Gz,δ,N (ξ)| dξ ≤ Cz

uniformly in δ, N . We now prove that K̂z = Gz, Re z > −2. K̂z is originally defined as a
tempered distribution acting on functions f ∈ S(R2) as follows:

〈K̂z, f〉 = 〈Kz, f̂〉

= pv
∫ 〈
Dz(u),

∫∫
f(ξ1, ξ2)e−2πi(tξ1+t

2ξ2u) dξ1 dξ2

〉
dt

t
11



= pv
∫∫
h(ξ)

〈
Dz(u), e−2πi(tξ1+ut

2ξ2)
〉
dξ
dt

t

= lim
δ→0
N→∞

∫
δ≤|t|≤N

[∫∫
h(ξ)e−2πitξ1D̂z(tξ2) dξ

]
dt

t

= lim
δ→0
N→∞

∫∫
h(ξ)Gz,δ,N (ξ) dξ

=
∫∫
h(ξ)Gz(ξ) dξ

where we made use of (3.25) when we applied the Lebesgue dominated theorem in the last
equality.

(ii) The smoothness of Gz = K̂z, clearly implies that K̂z(ξ) is always bounded for
|λ| ≤ C. For λ large in view of the asymptotics of Theorem 1, K̂z is bounded if and only
if −2 Re z − 3 ≤ 0.

We end this section by proving Lemmas 3.2 and 3.3 .
Proof of Lemma 3.2. Since ψ was chosen to be equal to 1 in some neighborhood of

the origin, it follows that ψ̂ has integral equal to 1 and vanishing moments of all orders.
Fix v ∈ R so that |v| is large. If |w| ≤ 1

2 |v|, the function w → |v − w|−z−1 is smooth and
has a Taylor expansion about w = 0. Assume first that Re z < 0. Then |v|−z−1 ∈ L1

loc(R)
and the following identity is valid:

(| · |−z−1 ∗ ψ̂)(v) =
∫
|v − w|−z−1ψ̂(w) dw .

The above is equal to

(3.26)

|v|−z−1

∫
|w|≤ 1

2 |v|
ψ̂(w) dw

+
M∑
j=1

Cz,j |v|−z−1−j
∫
|w|≤ 1

2 |v|
wjψ̂(w) dw

+ Cz,M
∫
|w|≤ 1

2 |v|
|v − θw|−(M+1)−z−1wM+1ψ̂(w) dw

+
∫
|w|≥ 1

2 |v|
|v − w|−z−1ψ̂(w) dw

for some θ in (0, 1).
12



Using the properties of ψ̂ we can write (3.26) as

|v|−z−1

−
M∑
j=1

Cz,j |v|−z−i−j
∫
|w|≥ 1

2 |v|
wjψ̂(w) dw

− |v|−z−1

∫
|w|≥ 1

2 |v|
ψ̂(w) dw(3.27)

+ Cz,M
∫
|w|≤ 1

2 |v|
|v − θw|(−M+1)−z−1wM+1ψ̂(w) dw

+
∫
|w|≥ 1

2 |v|
|v − w|−z−1ψ̂(w) dw .

Because of the rapid decay of ψ̂ at infinity, the second and third terms in (3.27) decay
like |v|−M ∀ M > 0 as |v| → ∞. Since Re z < 0, |v|−z−1 is locally integrable and the fifth
term in (3.27) is absolutely bounded by

Cz,M sup
|w|≥ 1

2 |v|
|ψ̂(w)|

∫
|w|≥ 1

2 |v|
|v − w|−Re z−1 dw

≤ Cz,M |v|−M ∀ M > 0 as |v| → ∞ .

Finally, let’s call Rz(v) the fourth term in (3.27). First note that since |w| ≤ 1
2 |v|, |v−θw|

and |v − w| are comparable. We have

|Rz(v)| ≤ Cz,M
∫
|w|≤ 1

2 |v|
|w|M+1|ψ̂(w)| |v − w|−Re z−M−2 dw

≤ Cz,M
∫
|w|≤ 1

2 |v|
|v − w|−Re z−M−2 dw

≤ Cz,M |v|−Re z−M−1 .

one can easily verify that every derivative of Rz(v) is also O(|v|−M ) ∀ M as |v| → ∞.
Since Lz(v) is a nonzero multiple of (3.27), Lemma 3.1 is completely proved at least

when Re z < 0. The remaining z’s can be treated similarly when we write an appropriate
formula for the convolution (| · |−z−1 ∗ ψ̂)(v), but we are not going to do this since we are
only interested in the range Re z < 0.

Proof of Lemma 3.3. Set b(u) = (a(u) − a(0))/u and choose an R0 such that the
support of a is contained in [−R0, R0]. One can easily see that b is a C∞ function. An

13



application of Leibniz’s rule shows that

(3.28) b(j)(u) =
(−1)j+1a(0) j!

uj+1
whenever |u| ≥ R0 .

We may assume λ > 0. The case λ < 0 follows from the case λ < 0 and a change of
variables u→ −u.

For any R ≥ R0 write

pv

∫
a(u)eiλu

du

u

=
∫ R

−R
b(u)eiλudu+ a(0)pv

∫ R

−R

eiλu

u
du

=
∫ R

−R
b(u)eiλudu+ a(0)pv

∫ R

−R

eiu

u
du+ a(0)

∫
R≤|u|≤Rλ

eiu

u
du

N − 1 partial integrations by parts give:

(3.29)

N−1∑
j=0

(−1)j+1

[
b(j)(u)

eiλu

(iλ)j+1

]R
−R

+ (−1)N
∫ R

−R
b(N)(u)

eiλu

(iλ)N
du

+ a(0)pv
∫ R

−R

eiu

u
du+ a(0)

N−1∑
j=0

(−1)j+1

[
eiu(−1)j j!

(iu)j+1

]Rλ
−Rλ

− a(0)
N−1∑
j=0

(−1)j+1

[
eiu(−1)jj!

(iu)j+1

]R
−R

+ (−1)N
∫
R≤|u|≤Rλ

(−1)NN !eiu

uN+1(iu)N
du .

Because of (3.28) the first and the fifth term in (3.29) cancel out. The fourth term in
(3.29) is O(R−1) as R → +∞. The sixth term in (3.29) is O(R−N ), as R → ∞. Again
because of (3.28) the second term in (3.29) can be written as

(3.30) (iλ−1)N
{∫ R0

−R0

b(N)(u)eiλudu+
∫
R0≤|u|≤R

(−1)N+1a(0)N !eiλuu(N+1) du

}
.

The first integral in (3.30) is independent of R and the second integral converges absolutely.
Clearly limR→∞ (3.30) is O(λ−N ) as λ→∞. Letting R→∞ in (3.29) we get

pv

∫
a(u)eiλu

du

u
= a(0) lim

R→∞
pv

∫ R

−R

eiu

u
du+O(λ−N )
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= a(0)2i
∫ ∞

0

sin u
u
du+O(λ−N ) = πia(0) +O(λ−N ) as λ→ +∞ .

Lemma 3.3 is now proved.
4. Preliminaries for Theorem 2. By a cube we shall mean a closed rectangle Q in

R
2 with sides parallel to the axes, of horizontal sidelength 2t and of vertical sidelength 22t

for some t real. For each cube Q with sidelengths (2σ, 22σ) we write σ(Q) = σ. Q is said
to be dyadic if σ(Q) = σ is an integer and if its lower left-hand vertex is located at a point
of the form (i2σ, j22σ) for some i, j ∈ Z. Any two dyadic cubes that do not contain each
other must have disjoint interiors.

Following [C1], for each σ, τ ∈ Z with τ ≥ σ, let Rσ,τ denote the set of all closed
rectangles with sides parallel to the axes, of horizontal dimension 2σ, of vertical dimension
2σ+τ and with lower left-hand vertex at a point of the form (i2σ, i2σ+τ ) for some i, j ∈ Z.
According to our notation, Rσ,σ denotes the set of all dyadic cubes Q with σ(Q) = σ.
For each q ∈ Rσ,τ let σ(q) = σ and τ(q) = τ . The triple q∗ of q in Rσ,τ is the union of
those nine rectangles in Rσ,τ which meet q. For each q ∈ Rσ,τ we denote by T (q) the set
q∗ + {(t, t2) : 0 ≤ |t| ≤ 2τ(q)+2}. The set T (q) is called the (two-sided) tendril of q. For
q ∈ Rσ,τ , |T (q)| ∼ 2σ+2τ since T (q) is essentially the union of C2τ−σ rectangles in Rσ,τ .
(|B| denotes the Lebesgue measure of the set B.)

An atom is a function a, supported in some cube Q which satisfies |a(x)| ≤ |Q|−1χQ(x)
and

∫
aQ(x) dx = 0. By χA we denote the characteristic function of the set A.

The parabolic real variable Hardy space H1(R2), henceforth H1, is the subspace of
L1(R2) consisting of all f which admit representations of the form

∑
Q λQaQ, where each

Q is a cube, each aQ is an atom supported in Q and {λQ} is a sequence of complex
numbers in 71. ‖f‖H1 is defined to be the infimum of

∑
|λQ| over all representations of f

as
∑
λQaQ. H1

dyadic is the subspace of H1 consisting of all f =
∑
λQaQ in which every

cube Q is dyadic. Our basic result is

Theorem 2. For Re z = −1, Hz maps H1 to L1,∞ with a bound which grows at most
exponentially in |Im z|, as |Im z| → ∞.

We are given an α > 0, an f ∈ H1 and a z ∈ C with Re z = −1. α, f and z will be fixed
until the end of the proof (end of Section 6). We can assume that f is a finite sum

∑
λQaQ

and
∑
|λQ| ≤ 2‖f‖H1 . Once the theorem is proved for such f , the general case will follow

by a limiting argument. We can also assume that each λQ in the representation of f is
positive, since we can always multiply by a scalar of modulus one to achieve this. Finally,
we will assume that f ∈ H1

dyadic. This is because of the following proposition whose proof
we postpone until the end of this section.

Proposition 2. If T is a convolution operator and T maps H1
dyadic to L1,∞ then T

maps H1 to L1,∞.
15



Let F denote the (finite) family of dyadic cubes appearing in the atomic decomposition
of f . We state two lemmas which can be found in [C1].

Lemma 4.1. For any α > 0 and any finite collection F of dyadic cubes Q with asso-
ciated scalars λQ > 0, there exists a collection S of pairwise disjoint cubes such that:

(i)
∑

Q⊂S λQ ≤ 8α|S| for all S ∈ S
(ii)

∑
S∈S |S| ≤ α−1

∑
λQ

(iii) ‖
∑

Q⊂ any S∈S λQ|Q|−1χQ‖L∞ ≤ α.

Let C denote the collection of all Q ∈ F such that Q ⊂ S for some S ∈ S. For each
Q ∈ C we denote by SQ the unique S ∈ S that contains Q.

Lemma 4.2. Let there be given an α > 0, a finite collection of dyadic cubes C and a
collection of pairwise disjoint dyadic cubes S such that each Q ∈ C is contained in some
SQ ∈ S. Let there also be given for each Q ∈ C a positive scalar λQ. Then there exist a
measurable set E ⊂ R2 and a function κ : C → Z such that

(i) |E| ≤ C
(
α−1

∑
Q∈C λQ +

∑
S∈S |S|

)
(ii) For all Q ∈ C and for all j < κ(Q)

Q+ {(t, t2) : 2j−1 ≤ |t| ≤ 2j+1} ⊆ E

(iii) κ(Q) > σ(SQ)
(iv) For any σ, τ ∈ Z, τ ≥ σ and any q ∈ Rσ,τ ,

∑
Q⊂q

κ(Q)≤τ

λQ ≤ 4α2σ+2τ .

C denotes a constant independent of α, S, e, {λQ}.
A combination of conditions (ii) in Lemma 4.1 and (i) in Lemma 4.2 give

(4.1) |E| ≤ Cα−1
∑
Q∈C
λQ ≤ Cα−1 ‖f‖H1 .

The definitions of κ and E will be relevant to us. C is the union of two disjoint classes
C1 and C2. Each Q ∈ C1 is assigned to a unique qQ ∈

⋃
σ

⋃
τ≥σ Rσ,τ with Q ⊂ qQ and κ(Q)

is by definition max(1 + σ(SQ), 1 + τ(qQ)). For Q ∈ C2, κ(Q) is by definition 1 + σ(SQ).
E is the union of T (qQ) over all Q ∈ C1 together with the union of the triples S∗ over

all S ∈ S.
We now decompose the given f ∈ H1 as g + b where

g =
∑

Q∈F−C
λQaQ, b =

∑
Q∈C
λQaQ .
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Then
‖g‖2L2 ≤ ‖g‖L1‖g‖L∞ ≤ α

∑
Q∈F−C

λQ ≤ 2α‖f‖H1 .

We now have ∣∣∣∣
{
x : |(Hzg)(x)| >

α

2

}∣∣∣∣ ≤ 4
α2
‖Hzg‖2L2

≤ Cz
α2
‖g‖2L2 ≤ Cz

α
‖f‖H1 .

Next, we need to prove that

(4.2)
∣∣∣{x : |(Hzb)(x)| >

α

2

}∣∣∣ ≤ Cz
α
‖f‖H1 .

Fix η ∈ C∞0 (R), even, supported in 1
2 ≤ |t| ≤ 2 and such that

∑
j∈Z η(2

−jt) = 1 for all
t = 0. Let φ(t) = η(t)/t. Define distributions µz,j , j ∈ Z acting on test functions h by

〈µz,j , h〉 =
∫
〈Dz(u), h(t, ut2)〉2−jφ(2−jt) dt .

Write b ∗Kz = F0 + F1 + F2 where

F0 =
∑
Q∈C


λQaQ ∗ ∑

j≤σ(Q)

µz,j




F1 =
∑
Q∈C


λQaQ ∗ ∑

σ(Q)<j≤κ(Q)

µz,j




F2 =
∑
Q∈C


λQaQ ∗ ∑

j≥κ(Q)

µz,j


 .

We will show that

F0 is supported in E ,(4.3)

‖F1‖L1(R2\E) ≤ Cz
∑
Q∈C
λQ ,(4.4)

‖F2‖2L2(R2) ≤ Czα
∑
Q∈C
λQ .(4.5)
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A combination of (4.1), (4.3), (4.4) and (4.5) with the aid of Chebychev’s inequality will
establish (4.2).

Assertion (4.3) is the easiest to prove. Write F0 as

∑
S∈S


 ∑
Q⊂S

λQaQ ∗
∑

j≤σ(Q)

µz,j


 .

For any fixed S the expression inside the brackets above is supported in

S + [−2σ(S)+1, 2σ(S)+1]× [0, 2σ(S)+1] ⊆ S∗ .

Therefore, F0 is supported in
⋃
S∈S S

∗ ⊆ E.
Estimates (4.4) and (4.5) will be proved in Sections 5 and 6 respectively.
We end this section by proving Proposition 2.
Proof. We assume that for some constant K, ‖Th‖L1,∞ ≤ K‖h‖H1

dyadic
holds for all

h ∈ H1
dyadic. We are given f ∈ H1 given as a finite sum

∑
λQaQ where each λQ > 0 and

where
∑
λQ ≤ 2‖f‖H1 . Let F be the collection of all Q appearing in the decomposition

of f . Choose M integer such that σ(Q) < M for all Q ∈ F . For each j ∈ Z consider
the grids G1

j , G
2
j , G

3
j defined as follows: G1

j consists of all dyadic cubes of dimensions
(2j , 22j), G2

j consists of all elements of G1
j translated by (1

3 2M , 13 22M ) and G3
j consists of

all elements of G1
j translated by (2

3 2M , 2
3 22M ). Given any Q ∈ F we find an mQ integer

such that mQ−1 ≤ σ(Q) < mQ. It is easy to verify that every Q ∈ F is contained in some
Qd where Qd ∈ G1

mQ
∪G2

mQ
∪G3

mQ
. We now split F as a union of three disjoint sets F1,

F2, F3 where Fj ⊆ {Q ∈ F : Qd ∈ GjmQ
}. It is immediate that 1

8 aQ is an atom on Qd .
We set Fj =

∑
Q∈Fj λQ( 1

8 aQ).

Using that T is translation invariant and that it maps H1
dyadic to L1,∞ we get that

‖TFj‖L1,∞ ≤ K
∑
Q∈Fj

λQ j = 1, 2, 3 .

Summing over j we get that ‖ 1
8 Tf‖L1,∞ ≤ K

∑
Q∈F λQ , hence

‖Tf‖L1,∞ ≤ 8K
∑
Q∈F

λQ ≤ 16K‖f‖H1 .

5. An L1 estimate. Until the end of Section 6 all Q considered are in C. In all sums
below this restriction is assumed to hold.
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To prove (4.4) it will suffice to show that for any Q we have

(5.1)

∥∥∥∥∥∥aQ ∗
∑

σ(Q)≤j<κ(Q)

µz,j

∥∥∥∥∥∥
L1(R2\E)

≤ Cz .

Suppose that (5.1) has been proved for all Q with σ(Q) = 0. We describe a rescaling
argument that will yield the general case. Let rj , j ∈ Z be the following family of dilations
of R2: rj(x1, x2) = (2jx1, 22jx2). For any cube Q, let rjQ = {rjx : x ∈ Q}. It follows
from the definition of κ(Q) in [C1] that σ(Q) and κ(Q) scale accordingly, i.e. κ(rjQ) −
κ(Q) = j = σ(rjQ) − σ(Q). A simple change of variables shows that for all j, k ∈ Z,
µz,j ∗ (h ◦ r−k) = (µz,j−k ∗ h) ◦ r−κ where (f ◦ g)(x) = f(g(x)). Assume now that (5.1)
holds for cubes Q with σ(Q) = 0. Fix Q ∈ C and aQ an atom supported in Q. Let
σ(Q) = σ.

Let Q0 = r−σQ and define an atom aQ0 = 23σ(aQ ◦ rσ) supported in Q0 . Since
σ(Q0) = 0, (5.1) holds for Q0. We then have∥∥∥∥∥∥aQ ∗

∑
σ(Q)≤j<κ(Q)

µz,j

∥∥∥∥∥∥
L1(R2\E)

= 23σ

∥∥∥∥∥∥(aQ0 ◦ r−σ) ∗
∑

σ(Q)≤j<κ(Q)

µz,j

∥∥∥∥∥∥
L1(R2\E)

= 2−3σ

∥∥∥∥∥∥

aQ0 ∗

∑
σ≤j<κ(Q0)+σ

µz,j−σ


 ◦ r−σ

∥∥∥∥∥∥
L1(R2\E)

=

∥∥∥∥∥∥aQ0 ∗
∑

0≤j<κ(Q0)

µz,j

∥∥∥∥∥∥
L1(R2\E)

≤ Cz

and hence (5.1) is true for all Q.
We now prove (5.1) for all Q ∈ C with σ(Q) = 0. For such a Q, let SQ be as in Lemma

4.2. If Q ∈ C2 then κ(Q) = 1 + σ(SQ) and aQ ∗
∑

0≤j≤σ(SQ) µz,j is supported in S∗Q ⊆ E.
Therefore only cubes Q ∈ C2 give nonzero left hand side in (5.1). Fix Q ∈ C2 and let
q = qQ be the unique rectangle in Rσ,κ−1 assigned to Q as in Lemma 4.2. Set σ(Q) = σ,
κ(Q) = κ. Let γ(t), t ∈ R be a C∞0 function supported on the set [2−1, 2] such that∑

m∈Z γ(2
−mt) = 1 for all t > 0. Define

γm(x1, x2) = γ(2−m−κ|x2 − x21|), m = 1, 2, 3, . . .
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γ0(x1, x2) =
∑
m≤0

γ(2−m−κ|x2 − x21|) .

Then γ0(
∑

0≤j<κ µz,j) is a distribution supported in the set of all points in R2 of vertical
distance at most 2κ+1 from the piece of the parabola {(t, t2) : 0 ≤ |t| ≤ 2κ+1} and therefore
its convolution with aQ is supported in T (q) ⊆ E.

Note that if m is bigger that 2j−κ+C then γm and µz,j have disjoint supports. These
observations show that (5.1) will follow from

(5.2)
∑

0≤j<κ

2j−κ+C∑
m=1

‖aQ ∗ γmµz,j‖L1 ≤ Cz .

We will need the following lemma whose proof we postpone until the end of this section.

Lemma 5.1. For m = 1, 2, . . . , 2j − κ+ C

‖∇(γmµz,j)‖L∞ ≤ Cz2−2(κ+m) .

Assuming the lemma we prove (5.2). We first compute | sup(γmµz,j ∗aQ)|. The support
of γmµz,j is the set of all points in R2 whose vertical distance from the piece of the parabola
{(t, t2) : |t| ∼ 2j} is about 2κ+m. It follows that | sup(γmµz,j)| ∼ 2κ+m+j . Adding a cube
Q of side lengths (1, 1) doesn’t affect the size of the support of γmµz,j by more than a
constant factor. Therefore

(5.3) |supp(γmµz,j ∗ aQ)| ≤ C2κ+m+j .

Using the fact that aQ has mean value 0, is supported in a cube of sidelength 1 and has
L1 norm ≤ 1, we get that

‖γmµz,j ∗ aQ‖L∞ ≤ C‖∇(γmµz,j)‖L∞ .

Lemma 5.1 gives
‖γmµz,j ∗ aQ‖L∞ ≤ Cz2−2κ−2m .

We use this estimate to prove (5.2). We have:

‖γmµz,j ∗ aQ‖L1 ≤ ‖γmµz,j ∗ aQ‖L∞ |supp(γmµz,j ∗ aQ)|
≤ Cz2−2κ−2m2κ+m+j ≤ Cz2−κ−m+j .

A summation over m (1 ≤ m ≤ 2j − κ + 2) followed by a summation over j (0 ≤ j < κ)
proves (5.2).
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It remains to prove Lemma 5.1.
Proof. For any h ∈ C∞0 (R2) we have

µz,j(h) =
∫
〈Dz(u), h(t, ut2)〉2−jφ(2−jt) dt

=
∫ 〈

1
x21
Dz

(
x2
x21

)
, h(x1, x2)

〉
2−jφ(2−jx1) dx1

which gives that

µz,j(x1, x2) = 2Γ
(
z + 1

2

)−1

x−2
1

∣∣∣∣x2x21 − 1
∣∣∣∣
z

ψ

(
x2
x21
− 1

)
2−jφ(2−jx1) .

Certainly γmµz,j is a C∞0 function. To estimate ∇(γmµz,j) we use Leibniz’s rule. For
α = 1, 2 we have:∥∥∥∥

[
∂

∂xα
(|x2 − x21|z γm(x1,x2))

]
ψ

(
x2
x21
− 1

)
2−jφ(2−jx1)x−2z−2

1

∥∥∥∥
L∞

≤ C22−2κ−2m−(α−1)j ≤ Cz2−2κ−2m∥∥∥∥
[
∂

∂xα

(
ψ

(
x2
x21
− 1

))]
2−jφ(2−jx1)x−2z−2

1 |x2 − x21|zγm(x1, x2)
∥∥∥∥
L∞

≤ Cz2−κ−m−j−αj ≤ Cz2−2κ−2m

where in the last estimate we used the fact that on the support of γmµz,j

x2
x21

=
x2 − x21
x21

+ 1 ≤ C 2m+κ

22j
+ 1 ≤ C

and that m ≤ 2j − κ+ C. Finally∥∥∥∥
[
∂

∂x1
(2−jφ(2−jx1)x−2z−2

1 )
]
ψ

(
x2
x21
− 1

)
|x2 − x21|z γm(x1, x2)

∥∥∥∥
L∞

≤ Cz2−2j−κ−m ≤ Cz2−2κ−2m .

The last estimate follows by our assumption on m. Our lemma is now proved.
6. An L2 estimate. We remind the reader that all Q considered in this section are in

C and that z is fixed with Re z = −1 . We begin by writing F2 as

(6.1)
∑
s≥0

∑
j∈Z
Bj−s ∗ µz,j
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where
Bk =

∑
κ(Q)=k

λQaQ, k ∈ Z .

If we have that

(6.2) for s = 0, 1, . . .

∥∥∥∥∥∥
∑
j∈Z
Bj−s ∗ µz,j

∥∥∥∥∥∥
2

L2

≤ Czα2−s
∑
λQ

(4.5) will be a consequence of (6.1) and (6.2). Expanding the square out we find that the
left hand side of (6.2) is equal to

(6.3)

∑
j∈Z

[
‖Bj−s ∗ µz,j‖2L2 + 2 Re

∑
j−3<i<j

∫
(Bj−s ∗ µz,j) (Bi−s ∗ µz,i) dx

+ 2 Re
∑
i≤j−3

∫
(Bj−s ∗ µz,j) (Bi−s ∗ µz,i ) dx

]
.

If we can show that the expression inside the brackets in (6.3) at most

(6.4) Czα2−s


 0∑
i=−2

∑
κ(Q)=i+j−s

λQ




then the conclusion will follow by simple summation on j. To prove this it suffices to show
that the expression inside the brackets in (6.3) for j = 0 is less than (6.4) for j = 0. The
general case will follow by a rescaling argument similar to the one in Section 5.

Define a singular measure νz,0 supported on the parabola (t, t2) as follows:

vz,0(h) =
∫
h(t, t2)φ(t)t−2z−2 dt, h ∈ C∞0 .

For any function h, let h̃(x) denote the function h̃(x) = h(−x). For any distribution D,
let D̃ denote the distribution 〈D̃, h〉 = 〈D, h̃〉. The complex conjugate D̄ of a distribution
D is defined by 〈D̄, h〉 = 〈D, h̄ 〉.

Let hz be the distribution

2Γ
(
z+1
2

)−1 |x2|zψ(x2)δx1=0 .

Note that hz is even, i.e. h̃z = hz.
We will need the following lemma:
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Lemma 6.1. There exists a C∞0 (R2) function ζ0 supported in |x| < 20 such that µz,0 =
νz,0∗hz+ζ0. Moreover the function ζ0 and its Ck norms are all bounded above by constants
which grow at most exponentially in |Im z| as |Im z| → ∞.

Proof. Let g ∈ S(R2). We compute 〈µz,0, g〉 − 〈νz,0 ∗ hz, g〉. We have

〈µz,0, g〉 =
∫
〈Dz(u), g(t, ut2)〉φ(t) dt

=
∫ ∫

2Γ
(
z+1
2

)−1 1
x21

∣∣∣∣x2x21 − 1
∣∣∣∣
z

ψ

(
x2
x21
− 1

)
g(x1, x2) dx2φ(x1) dx1 .

Also

〈νz,0 ∗ hz, g〉 = 〈hz, ν̃z,0 ∗ g〉

= 〈hz(x1, x2),
∫
g(x1 + t, x2 + t2)φ(t)t−2z−2 dt 〉

=
∫

2Γ
(
z+1
2

)−1 |x2|zψ(x2)
∫
g(t, x2 + t2)φ(t)t−2z−2 dt dx2

=
∫ ∫

2Γ
(
z+1
2

)−1 |x2 − x21|zψ(x2 − x21)g(x1, x2) dx2φ(x1)x−2z−2
1 dx1 .

By taking the difference we get

〈µz,0 − νz,0 ∗ hz, g〉 =
∫∫
ζ0(x1, x2)g(x1, x2) dx1 dx2

where

(6.5) ζ0(x1, x2) = 2Γ
(
z+1
2

)−1
x−2z−2

1 |x2 − x21|zφ(x1){ψ
(
x2
x21
− 1

)
− ψ(x2 − x21)} .

The singularity of |x2 − x21|z at x2 = x21 is cut away by the expression inside the curly
brackets in (6.5) which vanishes when |x2−x21| ≤ 1/10. Therefore ζ0(x1, x2) is in C∞0 (R2)
and is clearly supported in some fixed compact set. The lemma is now proved.

As we remarked before our proof will be complete if we show the following:

(6.6)

‖B−s ∗ µz,0‖2L2 + 2 Re
∑
−3<i<0

∫
(B−s ∗ µz,0)(Bi−s ∗ µz,i ) dx

+ 2 Re
∑
i≤−3

∫
(B−s ∗ µz,0) (Bi−s ∗ µz,i ) dx

≤ Czα2−s

 0∑
i=−2

∑
κ(Q)=i−s

λQ


 .

23



We first show

(6.7) ‖B−s ∗ µz,0‖2L2 ≤ Czα2−s
∑

κ(Q)=−s
λQ .

We use Lemma 6.1 to write µz,0 = νz,0 ∗ hz + ζ0. By a formula in [GS] page 359, we get
that

ĥz(ξ1, ξ2) = δ̂x1=0(Dz(x2 + 1))∧ = C
2z|ξ2|−z−1

Γ
(
− z

2

) ∗ ψ̂(ξ2) .

Clearly ‖ĥz‖L∞ ≤ Cz and thus convolution with hz gives a bounded operator on L2(R2)
with a bound Cz that grows at most exponentially in |Im z|. Now we get

(6.8) ‖B−s ∗ νz,0 ∗ hz‖2L2 ≤ Cz‖B−s ∗ νz,0‖2L2 .

In [C1] Theorem 3, it has been shown that

(6.9) ‖B−s ∗ µ0‖2L2 ≤ Cα
∑

κ(Q)=−s
λQ

where µ0 is the measure: µ0(h) =
∫
h(t, t2)φ0(t) dt and φ0 is a fixed C∞0 function. A

careful examination of the argument given there shows that the constant C in (6.9) comes
from Lemmas 6.2 and 6.3 in [C1] and grows at most polynomially in ‖φ0‖L∞ , ‖φ′0‖L∞ .
Setting φ0(t) = φ(t)t−2z−2 we get that

(6.10) ‖B−s ∗ νz,0‖2L2 ≤ Czα
∑

κ(Q)=−s
λQ

with a constant Cz which grows at most polynomially in |Im z|.
(6.8) and (6.10) give

(6.11) ‖B−s ∗ νz,0 ∗ hz‖2L2 ≤ Czα
∑

κ(Q)=−s
λQ .

(6.7) will be proved if we also show

(6.12) ‖B−s ∗ ζ0‖2L2 ≤ Czα
∑

κ(Q)=−s
λQ .

In the sequel we will use the following simple lemma whose proof we omit.
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Lemma 6.2. For every h ∈ C1(R2) and every Q we have

‖aQ ∗ h‖L∞ ≤ 2max(σ(Q),2σ(Q))‖∇h‖L∞ .

To prove (6.12) we argue as follows:

(6.13)
‖B−s ∗ ζ0‖2L2 =

∫
(B−s ∗ ζ0) (B−s ∗ ζ0 ) =

∫
B̄−s(B−s ∗ ζ0 ∗ ¯̃

ζ0) dx

= ‖B−s‖L1‖B̄−s ∗ ζ0 ∗ ¯̃
ζ0‖L∞ ≤ ‖B−s‖L1 sup

x

∑
x

λQ|(aQ ∗ ζ0 ∗ ¯̃
ζ0)(x)|

where the sum
∑

x in (6.13) is taken over all Q ∈ C with κ(Q) = −s that satisfy
Q ∩ (−x+ support(ζ0 ∗ ¯̃

ζ0)) = ∅.
A combination of Lemmas 6.1 and 6.2 gives that the last term in (6.13) is bounded

above by

(6.14) Cz‖B−s‖L1 sup
x

∑
x

λQ2σ(Q) .

The sum
∑

x in (6.14) is taken over the same Q’s as in (6.13). These Q’s are contained
in the union of a finite number of fixed cubes q of sidelengths C translated by the amount
−x. By Lemma 5.2 (iv),

∑
x λQ ≤ Cα independently of x. We use σ(Q) ≤ κ(Q) < −s to

get
(6.14) ≤ Cz‖B−s‖L12−s sup

x

∑
x

λQ ≤ Czα2−s
∑

κ(Q)=−s
λQ .

(6.12) is now proved and so is (6.7).

We now continue proving (6.6). Next we need to show that

(6.15) Re
∑
−3<i<0

∫
(B−s ∗ µz,0) (Bi−s ∗ µz,i ) dx ≤ Czα2−s

0∑
i=−2

∑
κ(Q)=i−s

λQ .

Apply the Cauchy-Schwartz inequality to bound the ith term in the left hand side of (6.15)
by

‖B−s ∗ µz,0‖L2‖Bi−s ∗ µz,i‖L2 ≤
1
2

[‖B−s ∗ µz,0‖2L2 + ‖Bi−s ∗ µz,i‖2L2 ] for i = −1,−2 .
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We have shown that the first term above is bounded by Czα2−s
∑

κ(Q)=−s λQ. Rescaling
shows that the second term above is bounded by Czα2−s

∑
κ(Q)=i−s λQ . (6.15) now

follows by summing the results for i = −1 and i = −2.
The proof of (6.6) will be complete if we can establish

(6.16) Re
∑
i≤−3

∫
(B−s ∗ µz,0)(Bi−s ∗ µz,i ) ≤ Czα2−s

∑
κ(Q)=−s

λQ .

The case i ≤ −3 is different from the case −3 < i ≤ 0, because when i ≤ −3 the
distributions µz,i and µz,0 have disjoint supports. It will turn out that in this case, the
smoothness of µz,i ∗ ¯̃µz,0 as well as the smoothness of µz,i away from the parabola will be
crucial in the proof of (6.16).

We will use again Lemma 6.1. We have

µz,0 = νz,0 ∗ hz + ζ0 .

For simplicity call ζ = ¯̃
ζ0, νz = ¯̃νz,0. Then

¯̃µz,0 = ¯̃νz,0 ∗ ¯̃
hz + ¯̃

ζ0 = νz ∗ h̄z + ζ .

The identity ∫
A(B ∗ C ) dx =

∫
(A ∗ ¯̃B)C̄ dx

shows that (6.16) will follow from

∑
i≤−3

∣∣∣∣
∫

(Bi−s ∗ µz,i ∗ ¯̃µz,0)B̄−s dx
∣∣∣∣ ≤ Czα2−s ∑

κ(Q)=−s
λQ

which will be a consequence of (6.17) and (6.18).

(6.17)
∑
i≤−3

∣∣∣∣
∫

(Bi−s ∗ νz ∗ h̄z ∗ µz,i)B̄−s dx
∣∣∣∣ ≤ Czα2−s ∑

κ(Q)=−s
λQ

(6.18)
∑
i≤−3

∣∣∣∣
∫

(Bi−s ∗ ζ ∗ µz,i)B̄−s dx
∣∣∣∣ ≤ Czα2−s ∑

κ(Q)=−s
λQ .

The proof of (6.18) is based on the following lemma:
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Lemma 6.3. (i) ζ ∗ µz,i is a C∞0 function supported in {x : |x| < 20},
(ii) ‖ζ ∗ µz,i‖L∞ ≤ Cz,
(iii) ‖∇(ζ ∗ µz,i)‖L∞ ≤ Cz.

Proof. By the definition of µz,i it follows that

(6.19) (ζ ∗ µz,i) (x1, x2) =
∫
〈Dz(u), ζ(x1 − t, x2 − ut2)〉2−iφ(2−it) dt .

Assertion (i) of the lemma can be easily checked. Differentiation of (6.19) gives

(6.20) ∇(ζ ∗ µz,i) (x1, x2) =
∫
〈Dz(u), (∇ζ)(x1 − t, x2 − ut2)〉2−iφ(2−it) dt .

Assertions (ii) and (iii) will be an immediate consequence of (6.19), (6.20) and of

(6.21)




sup
t∼2i

‖〈Dz(u), ζ(x1 − t, x2 − ut2)〉‖L∞ ≤ Cz

sup
t∼2i

‖〈Dz(u), (∇ζ)(x1 − t, x2 − ut2)〉‖L∞ ≤ Cz .

To prove (6.21) we simply use that ζ ∈ C∞0 and that for every h ∈ S(R)

|〈Dz, h〉| ≤ Cz(‖h‖L∞ + ‖h′‖L∞) .

The proof of the lemma is now complete.
We now prove (6.18). The left hand side of (6.18) is hounded above by

‖B̄−s‖L1

∑
i≤−3

‖Bi−s ∗ ζ ∗ µz,i‖L∞(6.22)

≤ ‖B−s‖L1

∑
i≤−3

∑
κ(Q′)=i−s

λQ′‖aQ′ ∗ ζ ∗ µz,i‖L∞ .

By Lemmas 6.1 and 6.2, (6.22) is bounded above by

(6.23) Cz‖B−s‖L1

∑
i≤−3

sup
x

∑
x

λQ′2σ(Q′)‖aQ′‖L1

where the sum
∑

x is (6.23) is taken over all Q′ ∈ C such that κ(Q′) = i − s and
Q′ ∩ (−x+ supp(ζ ∗ µz,i)) = φ.
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To estimate (6.23) we first use that 2σ(Q′) ≤ 2κ(Q′) = 2i−s and that ‖aQ′‖L1 ≤ 1. Then
the same reasoning as in the proof of (6.14) shows that

∑
x λQ′ ≤ Cα uniformly in x. It

follows that

(6.23) ≤ Cz‖B−s‖L1

∑
i≤−3

2i−s sup
x

∑
x

λQ′ ≤ Czα2−s
∑

κ(Q)=−s
λQ .

This finishes the proof of (6.18).
We now turn to the proof of (6.17).
Let β(t) ≥ 0 be a fixed C∞0 (R) even function supported in 2−1 ≤ |t| ≤ 2 and satisfying∑
m∈Z β(2

−mt) = 1 for t = 0.
Fix i ≤ −3 and let

βm(t) = β(2−i−mt) for m = 1, 2, 3, . . . and

β0(t) =
∑
m≤0

β(2−i−mt) .

We decompose the distribution hz as
−i+2∑
m=0

βm(x2)hz .

For simplicity call gi,m = νz ∗βmh̄z ∗µz,i and Si,m = support(gi,m), m = 0, 1, 2, . . . ,−i+2.
Recall that ν = ¯̃ν0 and ν0 is supported in {(x1, x2) : x2 = x21, |x1| ∼ 1}. Thus ν is supported
in J = {(x1, x2) : x2 = −x21, |x1| ∼ 1}. It follows that the support of ν∗βmh̄z is the set of all
points whose vertical distance from J is about 2i+m. Also, the support of µz,i is the set of
points whose vertical distance from the piece of the parabola {(x1, x2) : x2 = x21, |x1| ∼ 2i}
is less than C22i. It follows that Si,m is the union of four “curved rectangles” of constant
length and width at most C2i+m.

The following two lemmas give us the size estimates for the derivatives of gi,m.

Lemma 6.4. For r = 0, 1, 2, . . . ‖∇rgi,0‖L∞ ≤ Cz2−(r+1)i.

Lemma 6.5. For r = 0, 1, 2, . . . ‖∇rgi,m‖L∞ ≤ Cz2−(r+1)(i+m), m = 1, 2, · · · − i+ 2.

The case m = 0 is studied separately because of the singularity of β0h̄z at x2 = x21.
Proof of Lemma 6.4. For r = 0, 1, 2, . . . we have that

(6.24)

‖∇rgi,0‖L∞ = ‖∇r(β0h̄z ∗ νz ∗ µz,i)‖L∞ =

‖β0h̄z ∗ ∇r(νz ∗ µz,i)‖L∞ ≤
‖∇r(νz ∗ µz,i)‖L∞ + |supp(β0h̄z)| ‖∇r+1(νz ∗ µz,i)‖L∞ ≤
‖∇r(νz ∗ µz,i)‖L∞ + 2i‖∇r+1(νz ∗ µz,i)‖L∞
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Because of (6.24) the lemma will be proved if we can show that

‖∇r(νz ∗ µz,i)‖L∞ ≤ C2−(r+1)i, r ≥ 0 .

We first find a formula for νz ∗ µz,i. For h ∈ S(R2)

〈νz ∗ µz,i, h〉 = 〈µz,i, ν̃z ∗ h〉 = 〈µz,i, ν̄z,0 ∗ h〉 =∫∫
〈Dz(u),

∫
h(t− s, ut2 − s2)φ(s)s−sz̄−2 ds〉2−iφ(2−it) dt .(6.25)

By changing variables
x1 = t− s, x2 = ut2 − s2

we get that

(6.25) =
∫∫ 〈

Dz(u), 2−iφ(2−it)φ(s)
s−sz̄−2

s− ut

〉
h(x1, x2) dx1dx2 .

In this lemma t, s are C∞ functions of x1, x2 given implicitly by formulas x1 = t − s,
x2 = ut2 − s2.

Let’s call φz(s) = φ(s)s−2z̄−2. Then φz is a C∞0 function and ‖φ(r)
z ‖L∞ ≤ Cz,r for any

r ≥ 0.
We set G(x1, x2, u) = 2−iφ(2−it)φ2(s)(s− ut)−1 and we then have (νz ∗ µz,i)(x1, x2) =

〈Dz(u), G(x1, x2, u)〉. We bound

‖∇r(νz ∗ µz,i)‖L∞
by

(6.26) sup
u∼1

[
‖∇r

xG(x, u)‖L∞ +
∥∥∥∥ ∂∂u∇r

xG(x, u)
∥∥∥∥
L∞

]
.

Computation gives

∂t

∂u
=
∂s

∂u
=

t2

2(s− ut) ,
∂

∂u
(s− ut)−1 =

t

(s− ut)2 .

We must show that (6.26) ≤ Cz2−(r+1)i , r = 0, 1, 2, 3, . . . . This will follow from the
following estimates:

(6.27)




sup
u∼1

‖∇r
x(2
−iφ(2−it)φz(s)(s− ut)−1)‖L∞ ≤ Cz2−(r+1)i

sup
u∼1

‖∇r
x(2
−2iφ′(2−it)t2φz(s)(s− ut)−2)‖L∞ ≤ Cz2−(r+1)i

sup
u∼1

‖∇r
x(2
−it)φ(2−it)φ′z(s)t

2(s− ut)−2)‖L∞ ≤ Cz2−(r+1)i

sup
u∼1

‖∇r
x(2
−iφ(2−it)φz(s)t(s− ut)−2)‖L∞ ≤ Cz2−(r+1)i .
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Observe that t ∼ 2i, s ∼ 1, s− uv ∼ 1.
This observation proves (6.27) when r = 0.
For r ≥ 1 we must differentiate with respect to x1, x2 and make use of the identities

in (6.28) which follow from the change of variables formulas x1 = t− s and x2 = ut2 − s2
after implicit differentiation.

(6.28)



∂s

∂x1
=

ut

s− ut
∂s

∂x2
=

−1
s− ut

∂t

∂x1
=

s

s− ut
∂t

∂x2
=

−1
s− ut .

Let’s prove for example the first of the four estimates in (6.27).
Differentiations of (6.28) and the observations t ≤ 1, s ∼ 1, s− ut ∼ 1 show that

(6.29) sup
u∼1

|∇r
xt|+ |∇r

xs| ≤ Cr , r ≥ 1 .

Since ∇r
xφz is sum of products of derivatives of φz, t and s it follows that

sup
u∼1

|∇r
xφz| ≤ cz,r , r ≥ 1 .

Similar argument shows that supu∼1 |∇r
x(s− ut)−1| ≤ Cr.

An application of Leibniz’s formula gives

(6.30) sup
n∼1

|∇r
x (φz(u)(s− ut)−1)| ≤ Cz,r, r ≥ 1 .

It suffices to show that

(6.31) sup
u∼1

|∇r
x(2
−iφ(2−it))| ≤ C2−(r+1)i .

We have

|∇r
x(2
−iφ(2−it))| ≤ Cr

r∑
k=0

2−i(k+1)|φ(k)(2−it)| |Ak(x)|

where the Ak(x) are products of derivatives of t and s. By (6.29), |Ak| ≤ Ck,r therefore

|∇r
x(2
−iφ(2−it))| ≤ Cr

r∑
k=0

2−i(k+1) ≤ Cr2−i(r+1) .
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(6.30), (6.31) and Leibniz’s formula prove the first of the four estimates in (6.27). Sim-
ilarly we argue for the remaining three.

Proof of Lemma 6.5. We first compute νz ∗ βmh̄z. Recall that νz = ¯̃νz,0 and
φz(x1) = φ(x1)x−2z̄−2

1 . Let g ∈ S(R2).

〈νz ∗ βmh̄z, g〉 = 〈˜̄νz,0 ∗ βmh̄z, g〉 = 〈βmh̄z, ν̄z,0 ∗ g〉

= 〈βmh̄z,
∫
g(x1 − t, x2 − t2)φz(t) dt〉

=
∫
βm(x2)

(
2|x2|z

Γ
(
z+1
2

)
) ∫

g(−t, x2 − t2)φz(t) dt dx2

=
∫
βm(x2)

(
2|x2|z

Γ
(
z+1
2

)
) ∫

g(x1, x2 − x21)φz(−x1) dx1 dx2

=
∫∫
βm(x2 + x21)

(
2|x2 + x21|z

Γ
(
z+1
2

)
)
φz(−x1)g(x1, x2) dx1 dx2 .

Thus

(νz ∗ βmh̄z)(x) = 2Γ( z̄+1
2 )−1β(2−i−m|x2 + x21|) |x2 + x21|z̄φz(−x1) .

It follows easily that
‖νz ∗ βmh̄z‖L∞ ≤ Cz2−i−m

and by Leibniz’s rule

‖∇r(νz ∗ βmh̄z)‖L∞ ≤ Cz,r2−(r+1)(i+m), r ≥ 1 .

We bound

‖∇r(µz,i ∗ νz ∗βmh̄z)‖L∞ =
∥∥∥∥
∫
〈Dz(u),∇r(νz ∗ βmh̄z)(x1 − t, x2 − ut2)〉2−iφ(2−it) dt

∥∥∥∥
L∞

by

(6.32) Cz

[
‖∇r(νz ∗ βmh̄z‖L∞ + sup

u∼1
sup
t∼2i

∥∥∥∥ ∂∂u ∇r(νz ∗ βmh̄z)(x1 − t, x2 − ut2)
∥∥∥∥
L∞

]
.

The second term in (6.32) is bounded above by

Cz sup
t∼2i

‖t2∇r+1(νz ∗ βmh̄z)(x1 − t, x2 − ut2)‖L∞

≤ Cz,r22i−(r+2)(i+m) ≤ Cz,r2−(r+1)(i+m) .
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It follows that (6.32) is at most Cz,r2−(r+1)(i+m).

Our lemmas are now proved.

We now introduce some notation. Recall that Si,m is the support of gi,m . For any
x ∈ R2 let Si,m(x) = −x+ Si,m. Let S∗i,m(x) be the triple of Si,m(x). For Q ∈ Rσ,σ with
σ > i+m set S(Q) = ∪x∈QS∗i,m(x). We will need the following two lemmas:

Lemma 6.6. Let Q ∈ C satisfy i+m ≤ σ(Q) = σ < 0. Then

(i) ∀ y ∈ R2
∫
Q
χS∗i,m(x)(y) dx ≤ C2i+m+2σ .

(ii)
∑

Q′⊆S(Q)
κ(Q′)≤σ

λQ′ ≤ Cα2σ .

Lemma 6.7. For any x ∈ R2
∑

Q′⊆S∗i,m(x)

κ(Q′)≤i+m

λQ′ ≤ Cα2i+m .

Proof. Recall that Si,m is the union of 4 ”curved” rectangles of constant length and
width at most C2i+m. The same is true for S∗i,m(x) . To prove Lemma 6.7, cover S∗i,m(x)
by C2−2(i+m) rectangles q in Ri+m,i+m and for each q apply Lemma 5.2 (iv).

We now prove Lemma 6.6.

(i) Fix any y ∈ R
2 and consider all x for which y ∈ Si,m(x). The union of all such

Si,m(x) is contained in S∗i,m(x0) where x0 is some point in R
2 such that y ∈ Si,m(x0).

Then ∫
Q

χS∗i,m(x)(y) dx ≤ |Q ∩ S∗i,m(x0)| .

S∗i,m(x0) is a union of four “curved rectangles” of horizontal dimension ∼ 2i+m and
vertical dimension ∼ C. Since σ ≥ i+m it is clear that |Q ∩ S∗i,m(x0)| ≤ C2i+m+2σ.

(ii) Since σ ≥ i+m,S(Q) is the union of four “curved rectangles” of horizontal dimension
∼ 2σ and vertical dimension ∼ C. S(Q) can be covered by C2−2σ rectangles in Rσ,σ and
for each one of them apply Lemma 5.2 (iv).

We are now ready to prove (6.17).

Decompose the left hand side of (6.17) as I+ II + III where

I =
∑

σ<−s

∑
κ(Q)=−s
σ(Q)=σ

λQ
∑
i≤σ

∑
m<σ−i

|
∫

(Bi−s ∗ gi,m)B̄s dx|

II =
∑

σ<−s

∑
κ(Q)=−s
σ(Q)=σ

λQ
∑
i≤σ

∑
m≥σ−i

|
∫

(Bi−s ∗ gi,m)B̄−s dx|
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III =
∑

σ<−s

∑
κ(Q)=−s
σ(Q)=σ

λQ
∑
i>σ

∑
m≥0

|
∫

(Bi−s ∗ gi,m)B̄−s dx|.

The first sum is on σ, the second on Q, the third on i and the fourth on m. From our
construction m depends on i and therefore we cannot change the order or summation.

We start by proving that
I ≤ Czα2−s

∑
κ(Q)=−s

λQ .

Fix σ < −s, Q with σ(Q) = σ and κ(Q) = −s and also fix i and m.∣∣∣∣
∫

(Bi−s ∗ gi,m)āQ dy
∣∣∣∣ ≤ |Q|−1

∫
Q

|(Bi−s ∗ gi,m)(x)| dx

≤ 2−3σ

∫
Q

∑
κ(Q′)=i−s

λQ′ |αQ′ ∗ gi,m| dx .

By Lemmas 6.2 and 6.4 or 6.5 the above is majorized by

(6.33) Cz2−3σ

∫
Q

∑
x

′λQ′2σ(Q′)2−2i−2m dx

where the sum
∑′

x in (6.33) is taken over all Q′ with κ(Q′) = i− s that intersect Si,m(x)
(hence contained in S∗i,m(x)). Since σ(Q′) < κ(Q′) = i− s, (6.33) is majorized by

Cz2−s2−3σ−i−2m

∫
Q

∑
x

′λQ′ dx ≤

Cz2−s2−3σ−i−2m

∫
Q

∫
S(Q)

(∑
x

′λQ′ |Q′|−1χQ′(y)

)
χS∗i,m(x)(y) dy dx =

Cz2−s2−3σ−i−2m

∫
S(Q)

∫
Q

(∑
x

′λQ′ |Q′|−1χQ′(y)

)
χS∗i,m(x)(y) dx dy ≤

Cz2−s2−3σ−i−2m

∫
S(Q)

∑
′λQ′ |Q′|−1χQ′(y)

[∫
χS∗i,m(x)(y) dx

]
dy

(6.34)

where the sum
∑′ in (6.34) is taken over all Q′ with κ(Q′) = i − s which are contained

in S(Q). By Lemma 6.6 (i) the expression inside the brackets in (6.34) is dominated by
C2i+m+2σ. Thus (6.34) is dominated by

≤ Cz2−s2−σ2−m
∫
S(Q)

∑
′λQ′ |Q′|−1χQ′(y) dy
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≤ Cz2−s2−σ−m
∑

Q′⊆S(Q)
κ(Q′)=i−s

λQ′ .

Now we sum the expressions above on m < σ − i to get

Cz2−s2−σ
∑

κ(Q′)=i−s
Q′⊆S(Q)

λQ′ .

Next, a summation on i ≤ σ gives

Cz2−s2−σ
∑

κ(Q′)≤σ
Q′⊆S(Q)

λQ′ .

Finally, we apply Lemma 6.6 (ii) to bound this expression by Czα2−s . Summing over all
Q ∈ C with σ(Q) = σ and κ(Q) = −s and over all σ < −s we get the desired conclusion
for term I:

I ≤ Czα2−s
∑

κ(Q)=−s
λQ .

We prove similar estimates for II and III. Fix Q, i and m as before. Set σ = σ(Q). Two
applications of Lemma 6.2 give:∣∣∣∣

∫
(Bi−s ∗ gi,m)āQ dx

∣∣∣∣ ≤ 2σ‖∇(Bi−s ∗ gi,m)‖L∞

≤ C2σ‖∇2gi,m‖L∞ sup
x

∑
x

λQ′2σ(Q′)(6.35)

where the sum
∑

x is taken over all Q′ with κ(Q′) = i − s that intersect Si,m(x). Since
i − s < i +m, those Q′ are contained in S∗i,m(x). First majorize σ(Q′) by κ(Q′) = i − s.
By Lemma 6.7,

∑
x λQ′ ≤ Cα2i+m uniformly in x. Thus (6.35) is dominated by

Cα2σ+i+m+i−s‖∇2gi,m‖L∞ .

Use Lemmas 6.4 and 6.5 to bound the above by

(6.36) Czα 2−s2m+σ+2i2−3m−3i = Czα2−s2−2m2σ−i .

To treat III, just sum (6.36) over m and then over i. Use σ < i to get

III ≤ Czα2−s
∑

κ(Q)=−s
λQ .
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To treat II, rewrite (6.36) as Czα2−s2i−σ2−2(m−σ+i) .
First sum over m (use m− σ + i > 0) and then over i (use i− σ < 0) to get

II ≤ Czα2−s
∑

κ(Q)=−s
λQ .

This concludes the proof of (6.17) and hence of (6.6). Our theorem is now proved.

7. An interpolation theorem and an application. Let H1 be the parabolic
Hardy space of Calderón and Torchinsky ([CT1]) as defined in Section 4 and let Lp,q be
the usual Lorentz spaces as defined in [SWE]. Also let S = {z : 0 < Re z < 1} and
S̄ = {z : 0 ≤ Re z ≤ 1}. Fix a pair of Banach spaces X0, X1 continuously embedded in
some Banach space V such that X0 ∩ X1 contains a dense subspace D of both X0, X1

under the corresponding norms.

Following Calderón [CA], for the fixed pair X0, X1 we define F(X0, X1) to be the set of
all functions F on S̄ with values in X0 +X1, continuous and bounded in S̄ with respect to
the norm X0 +X1, analytic in S and such that F (it) ∈ X0 is X0-continuous and tends to
0 as |t| → ∞ and F (1 + it) ∈ X1 is X1-continuous and tends to 0 as |t| → ∞. F(X0, X1)
becomes a Banach space under the norm

‖F‖F = sup
t∈R

max(‖F (it)‖X0 , ‖F (1 + it)‖X1) .

Given a real number θ, 0 < θ < 1, Calderón constructed a subspace [X0, X1]θ of X0 +X1

as follows:
[X0, X1]θ = {F (θ) : F ∈ F(X0, X1)} .

By introducing the norm ‖F‖[X0,X1]θ = inf{‖F‖F : F ∈ F(X0, X1), F (θ) = f} , [X0, X1]θ
becomes a Banach space continuously embedded in X0 +X1.

We next define analytic families of operators. FixX0, X1 and D as before. Let {Tz} be a
family of linear operators indexed by z ∈ S̄ so that for each z, Tz is a mapping of functions
in D to measurable functions on Rn. Following [SA], {Tz} is called an analytic family if
for any g ∈ D and for almost all y ∈ Rn, (Tz(g))(y) is analytic in S and continuous on S̄.
The analytic family {Tz} is of admissible growth if for all y ∈ D there exists a constant Cg
and a constant a < π such that

sup
z∈S̄

log |(Tzg)(y)| ≤ Cgea|Im z|

for almost all y ∈ Rn. The main result of this section is the following:
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Theorem 3. Let X0, X1, D as before, 0 < p0, q0, p1, q1 ≤ ∞, and let {Tz} be
an analytic family of linear operators which is of admissible growth. If for all f ∈ D
‖Tzf‖Lpj,qj ≤ cj(z)‖f‖Xj when Re z = j, j = 0, 1 for some constants cj(z) that satisfy
log cj(z) ≤ Aea|Im z|, A > 0, 0 ≤ a < π, then for all z ∈ S there exists Az > 0 such that
for f ∈ D

(7.1) ‖Tzf‖Lp,q ≤ Az‖f‖[X0,X1]θ when Re z = θ

it where
1
p

=
1− θ
p0

+
θ

p1
,

1
q

=
1− θ
q0

+
θ

q1
.

Theorem 3 is a result of Y. Sagher [SA] whenX0 = Lp̄0,q̄0 , X1 = Lp̄1,q̄1 , [X0, X1]θ = Lp̄,q̄

and
1
p̄

=
1− θ
p̄0

+
θ

p̄1
,

1
q̄

=
1− θ
q̄0

+
θ

q̄1
.

Our only contribution is the remark that the proof given in [SA] applies to our abstract
setting. For, let f ∈ [X0, X1]θ, ‖f‖[X0,X1]θ = 1. We can find F (x, z) ∈ F(X0, X1) such
that f(x) = F (x, θ). Then F (· , it) ∈ X0, F (· , 1 + it) ∈ X1 and for almost every y ∈ Rn,
(T2F (· , z))(y) is an analytic function of z ∈ S, continuous on S̄ and of admissible growth.
In [SA] the function F was constructed explicitly (following [HU]). In our case the function
F is given from the definition of the intermediate space. Sagher’s proof goes through
without using the domain spaces Lp̄0,q̄0 , Lp̄1,q̄1 . (Note that our pair (p, q) corresponds to
the pair (p̄, q̄) in [SA] and vice-versa.) It follows from [SA] that

‖TθF (· , θ)‖Lp,q ≤ Aθ .

Because of the identity TθF (·, θ) = f(θ) , (7.1) is now proved for z = θ. To extend (7.1)
for any z with Re z = θ, fix t and apply the theorem to the analytic family {Tz+it}.

We now turn to an application. Let Rn = R
2, Lp0,q0 = L1,∞, Lp1,q1 = L2, X0 = H1,

X1 = L2 and let D be the set of all smooth functions with compact support and integral
zero. D is known to be dense in both H1 and L2. Let Tz = Hz defined in Section 3. {Hz}
is an analytic family of admissible growth. Proposition 1, Theorem 2 and an application
of Theorem 3 give that

Hz : [H1, L2]θ → Lp,p
′

when Re z = −θ
2
− 1,

1
p

= 1− θ
2
.

Finally, because of (7.2) which can be found in [CT2]

(7.2) [H1, L2]θ = Lp,
1
p

= 1− θ
2
.
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the proof of theorem 4 is now complete.

8. Final remarks 1. It is not true that H−1 maps H1 to L1. The following coun-
terexample is in [C1]. Consider the unit cube Q with lower left hand vertex the origin and
define a(x) = 1 for x ∈ Q, x1 > 1/2 and a(x) = −1 for x ∈ Q, x1 < 1/2. A calculation
shows that |{x : |H−1a(x)| > α}| = Cα−1 as α→ 0 and thus H−1 cannot be in L1.

2. It is easy to prove that for Re z < |1/p − 1/2| − 3/2, Hz doesn’t map Lp → Lp for
1 < p < ∞. To see this, call fδ the characteristic function of the square with left hand
vertex the origin and sidelength δ. Let

Aδ =
{
x ∈ R2 :

1
2
≤ x1 ≤ 2, 0 ≤ x2 ≤ 2 and |x2 − x21| ≥ 2δ

}
.

Since

Kz(x) = Czx−3−2z
1 |x2 − x21|zψ

(
x2
x21
− 1

)

away from the parabola, it follows that

|(Hzfδ)(x)| ∼ |x2 − x21|Re zδ2 for x ∈ Aδ .

Therefore (∫
Aδ

|(Hzfδ)(x)|p dx
)1/p

≈ δ2δRe z+1/p

and since ‖fδ‖Lp = δ2/p, as δ → 0, no inequality of the form ‖Hzf‖Lp ≤ C‖f‖Lp is possible
when 2 + Re z + 1/p < 2/p.

3. We do not know whether on the critical line Re z = |1/p − 1/2| − 3/2, 1 < p < ∞,
Hz maps Lp to Lp. This problem is related to finding an H1 such that for Re z = −1, Hz

maps H1 to L1. This is not known even for z = −1.

4. We point out that our result is sharp in the sense that for Re z < 1/p− 2, 1 < p < 2,
Hz doesn’t map Lp to Lp,∞. For, if this were true for some pair (p−1

0 , z0) below the critical
line, interpolation with endpoints (p−1

0 ,Re z0), (2−1,Re z0) would give that Hz0 maps Lp1

to Lp1 for some p1 ∈ (p, 2) with (p−1
1 ,Re z0) below the critical line contradicting 2.

5. It remains an open problem whether the Hilbert transform along the parabola is
weak type (1, 1). However we can show that the associated operators Hz are not of weak
type (1, 1) when z = −1 + iθ and θ = 0 . To prove this, fix such a z and let f be the
characteristic function of the unit square. Then for x away from the parabola

|(f ∗Kz)(x)| ∼ |Kz(x)| ∼ |x1|−3−2Re z|x2 − x21|Re z

37



Since Re z = −1 , it suffices to prove that the measure of the set

{x : |x2 − x21| ≥ 10 & |x1|−1|x2 − x1|−1 > α}

cannot be bounded by Cα−1 . An easy examination of this set gives that it has infinite
measure for every α > 0 .

I would like to thank my advisor, Mike Christ, who gave me guidance, encouragement
and inspiring suggestions during our stay at MSRI, where this work was completed.
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