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Abstract. A classical theorem of C. Fefferman [3] says that the characteristic function of
the unit disc is not a Fourier multiplier on Lp(R2) unless p = 2. In this article we obtain a
result that brings a contrast with the previous theorem. We show that the characteristic
function of the unit disc in R2 is the Fourier multiplier of a bounded bilinear operator from
Lp1(R) × Lp2(R) into Lp(R), when 2 ≤ p1, p2 < ∞ and 1 < p = p1p2

p1+p2
≤ 2. The proof

of this result is based on a new decomposition of the unit disc and delicate orthogonality
and combinatorial arguments. This result implies norm convergence of bilinear Fourier
series and strengthens the uniform boundedness of the bilinear Hilbert transforms, as it
yields uniform vector-valued bounds for families of bilinear Hilbert transforms.

1. Introduction

The theory of multilinear singular integral operators has lately enjoyed a resurgence
of activity. This activity started with the proof of boundedness of the bilinear Hilbert
transform, obtained by Lacey and Thiele [7], [8]. The bilinear Hilbert transforms are
multiplier operators whose bilinear symbols are the functions (ξ, η)→ −iπ sgn (αξ + βη) in
R2, where α, β are real parameters. The jump discontinuity of these symbols (or multipliers)
along the lines αξ + βη = 0 present significant difficulties that require a careful analysis
based on a sensitive time-frequency decomposition and delicate combinatorial arguments.
More recent work in the area includes, and this list is by no means exhaustive, the uniform
boundedness of the bilinear Hilbert transforms by Thiele [15], Grafakos and Li [5], and Li
[9], and work on singular multiplier operators by Gilbert and Nahmod [4], Muscalu [10],
and Muscalu, Thiele, and Tao [11], [12].

The boundedness of the bilinear Hilbert transform is equivalent to the fact that the
characteristic function of a half-plane is a bilinear Fourier multiplier. It is natural to ask
whether the characteristic function of other geometric shapes are also bounded bilinear
Fourier multipliers on products of Lebesgue spaces. As it is well known, in the linear
case, problems arise when the geometric shape has curvature. Results of this type are
consequences of the (proof of the) classical theorem of C. Fefferman [3] which says that
the disc is not a (linear) multiplier on Lp(R2) unless p = 2. In this article we show that
the bilinear case is quite different than the linear case. Our main result says that the
characteristic function of the unit disc in R2 is a bounded bilinear multiplier on products
Lp1(R) × Lp2(R) for a large range of exponents p1, p2. The unit disc is one of the most
natural geometric objects and it arises in many problems in harmonic analysis. For example
the Lp-norm convergence of two dimensional Fourier series is equivalent to the property
that the characteristic function of the unit disc is an Lp Fourier multiplier on R2. An
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analogous fact is valid in the bilinear case; in fact the boundedness of the disc as a bilinear
multiplier is equivalent to the statement that the bilinear Fourier series

SR(f, g) =
∑

m2
1+m2

2≤R2

f̂(m1)ĝ(m2)e2πi(m1+m2)x

converges to f(x)g(x) in Lp(T) whenever f and g are functions in Lpj (T) for suitable p1, p2.
(T here is the unit circle.) Details of this equivalence require a well-developed theory of
multilinear transference and will appear elsewhere.

The fact that the characteristic function of the unit disc is the symbol of a bounded
pseudodifferential operator has some remarkable consequences. For instance, as in the linear
case, it implies nontrivial vector-valued inequalities for families of multiplier operators.
Analogous inequalities hold for families of bilinear Hilbert transforms as shown below, and
these inequalities are uniform in the parameters involved.

We begin our presentation by recalling that the bilinear Hilbert transform in the direction
(α, β) is given by

Hα,β(f1, f2)(x) = p.v.
∫
R

f1(x− αt)f2(x− βt)
dt

t
, x, α ∈ R.(1.1)

Using the definition f̂(ξ) =
∫
R

f(x)e−2πixξdx for the Fourier transform, the operators in

(1.1) can also be written in multiplier form as

Hα,β(f1, f2)(x) = −iπ

∫
R

∫
R

f̂1(ξ)f̂2(η)e2πi(ξ+η)xsgn (αξ + βη) dξ dη ,

and they are easily related to the operators whose symbol are the characteristic functions
of the half-planes αξ +βη > 0. Let us denote the characteristic function of the set A by 1A.
By replacing the characteristic functions of such half-planes by the characteristic function
of the unit disc D in R2, we introduce the bilinear disc operator

TD(f1, f2)(x) =
∫
R

∫
R

f̂1(ξ)f̂2(η)e2πi(ξ+η)x1ξ2+η2<1 dξ dη , x ∈ R,

defined for Schwartz functions f1, f2 on the line. The study of the operator TD turns out
to be a very delicate issue since it requires sensitive orthogonality considerations combined
with elements from the aforementioned study of uniform bounds for the bilinear Hilbert
transforms. The theorem below is the main result of this article. Throughout, we will
denote by ‖h‖q the Lq norm of a function h over the whole real line.

Theorem 1. Let 2 ≤ p1, p2 < ∞ and 1 < p = p1p2

p1+p2
≤ 2. Then there is a constant

C = C(p1, p2) such that for all f1, f2 Schwartz functions on R we have

‖TD(f1, f2)‖p ≤ C‖f1‖p1‖f2‖p2 .

We would like to note that Theorem 1 above provides a strengthening of the main results
in [5] (and also [12]). These claim that the operators H1,α are bounded from Lp1×Lp2 → Lp

uniformly in α ∈ [−∞, +∞] whenever 2 < p1, p2 < ∞ and 1 < p = p1p2

p1+p2
< 2. To see this

assertion, we use a classical idea due to Y. Meyer. At first we observe that translations
and dilations of bilinear symbols preserve their multiplier norms. Also Fatou’s lemma gives
that a pointwise limit of a sequence of bounded bilinear symbols is bounded. Given any
half-plane one can find a sequence of increasing discs converging pointwise to it. Thus the
norm of the disc as a bilinear multiplier controls that of the indicator function of any such
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half-plane. Clearly this control is uniform in the slope of the half-planes, thus uniform
bounds for the bilinear Hilbert transforms follow.

Carrying the same idea a bit further, we can obtain the following stronger result.

Corollary 1. Let 2 ≤ p1, p2 < ∞ and 1 < p = p1p2

p1+p2
≤ 2. Then there is a constant

C = C(p1, p2) such that for all sequences of Schwartz functions fj , gj on R we have

sup
αj ,βj∈R

∥∥∥( ∑
j

|Hαj ,βj (fj , gj)|2
)1/2∥∥∥

p
≤ C

∥∥∥( ∑
j

|fj |2
)1/2∥∥∥

p1

∥∥∥( ∑
j

|gj |2
)1/2∥∥∥

p2

.

We also have the following.

Corollary 2. Let 2 ≤ p1, p2 < ∞ and 1 < p = p1p2

p1+p2
≤ 2. Then there is a constant

C = C(p1, p2) such that for all sequences of Schwartz functions fj , gk on R we have

sup
α,β∈R

∥∥∥( ∑
j

∑
k

|Hα,β(fj , gk)|2
)1/2∥∥∥

p
≤ C

∥∥∥( ∑
j

|fj |2
)1/2∥∥∥

p1

∥∥∥( ∑
k

|gk|2
)1/2∥∥∥

p2

.

2. Vector-valued inequalities for the bilinear Hilbert transforms

Let us denote by rj(t) the Rademacher functions on the interval [0, 1]. We begin by
recalling Khintchine’s inequality

Ar

( ∑
j

|λj |2
) 1

2 ≤
( ∫ 1

0

∣∣∣ ∑
j

λjrj(t)
∣∣∣r dt

) 1
r

≤ Br

( ∑
j

|λj |2
) 1

2
,

valid for λj ∈ R and 0 < r <∞, and its two-dimensional generalization

A2
r

( ∑
j,k

|λjk|2
) 1

2 ≤
( ∫ 1

0

∫ 1

0

∣∣∣ ∑
j,k

λjkrj(t)rk(s)
∣∣∣r dtds

) 1
r

≤ B2
r

( ∑
j,k

|λjk|2
) 1

2
,(2.1)

where 0 < Ar < Br <∞, 0 < r <∞, and λjk ∈ R. See Stein [14] Appendix D.
Using (2.1) and a simple calculation, one obtains that any bounded bilinear operator

T : Lp1 × Lp2 → Lp with 1/p1 + 1/p2 = 1/p and 0 < p1, p2, p < ∞ admits an l2-valued
extension, i.e. it satisfies the estimate∥∥∥( ∑

j

∑
k

|T (fj , gk)|2
)1/2∥∥∥

p
≤ Bp1Bp2

A2
p

‖T‖
∥∥∥( ∑

j

|fj |2
)1/2∥∥∥

p1

∥∥∥( ∑
k

|gk|2
)1/2∥∥∥

p2

,(2.2)

where ‖T‖ is the norm of T from Lp1 × Lp2 into Lp.
We now turn to Corollary 1. Fix a sequence of real numbers {αj}j∈Z, {βj}j∈Z and define

the half-planes

Pj = {(ξ, η) ∈ R2 : (ξ, η) · (−βj , αj) = −ξβj + ηαj > 0} ,

for all j ∈ Z. For R > 0 we define the disc of radius R

Dj(R) =
{
(ξ, η) ∈ R2 :

∣∣(ξ, η)−R(kj , lj)
∣∣ < R

}
,

where kj = −βj
(α2
j+β2

j )
1/2 , lj = αj

(α2
j+β2

j )
1/2 , and we observe that the characteristic functions of

the discs Dj(R) tend to 1Pj as R → ∞. Let us denote by TDj(R) the bilinear operators
whose symbols are the functions 1Dj(R). A simple calculation gives

TDj(R)(fj , gj)(x) = e2πi(kj+lj)Rx TD(R)(fje
−2πikjR(·), gje

−2πiljR(·))(x) ,(2.3)
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where TD(R) is the bilinear operator whose symbol is the characteristic function of the disc
with radius R centered at the origin. But if TD is Lp1 × Lp2 → Lp bounded, then so is
TD(R) for the same range of p’s and with the same norm. Using Theorem 1 and (2.2) (with
k = j) we obtain∥∥∥( ∑

j

|TD(R)(fj , gj)|2
)1/2∥∥∥

p
≤ C ′(p1, p2)

∥∥∥( ∑
j

|fj |2
)1/2∥∥∥

p1

∥∥∥( ∑
j

|gj |2
)1/2∥∥∥

p2

,(2.4)

where p1, p2, p are as in Theorem 1. Using (2.3) and (2.4), it follows that∥∥∥( ∑
j

|TDj(R)(fj , gj)|2
)1/2∥∥∥

p
≤ C ′(p1, p2)

∥∥∥( ∑
j

|fj |2
)1/2∥∥∥

p1

∥∥∥( ∑
j

|gj |2
)1/2∥∥∥

p2

.

Letting R→∞ above and using Fatou’s lemma, we obtain the vector-valued inequality∥∥∥( ∑
j

|TPj (fj , gj)|2
)1/2∥∥∥

p
≤ C ′(p1, p2)

∥∥∥( ∑
j

|fj |2
)1/2∥∥∥

p1

∥∥∥( ∑
j

|gj |2
)1/2∥∥∥

p2

,(2.5)

where TPj are the bilinear operators whose symbols are the characteristic functions of the
half-planes Pj . A similar estimate holds for the operators T−Pj whose symbols are the
characteristic functions of the half-planes −Pj . These two estimates suffice to give the
same vector-valued inequality for the family of operators Hαj ,βj . This finishes the proof of
Corollary 1. Applying Corollary 1 with αj0 = α, βj0 = β and αj = βj = 0 for j �= j0 and
using (2.2) we obtain Corollary 2.

3. Three useful lemmata

The following lemma will be useful in many occasions throughout this paper. It will
allow us to obtain that the sum of an infinite sequence of bounded bilinear operators is
also bounded (on the same product of Lebesgue spaces), provided certain orthogonality
conditions hold. We state it in slight generality to cover several situations. Let us recall
our inner product notation

〈f, g〉 =
∫
R

f(x)g(x) dx ,

where the bar denotes complex conjugation. We have the following.

Lemma 1. Suppose 2 ≤ p1, p2 < ∞, 1 < p ≤ 2, and 1/p1 + 1/p2 = 1/p. Suppose that
{Lm}m∈Z is a family of uniformly bounded bilinear operators from Lp(R) × Lq(R) into
Lr(R). Furthermore, suppose that for all functions f, g, h on the line we have

〈Lm(f, g), h〉 = 〈Lm(∆1
mf, ∆2

mg), ∆3
mh〉 ,

where[∆1
mf = f̂χAm,[∆2

mg = f̂χBm,[∆3
mf = ĥχCm, and {Am}m, {Bm}m, {Cm}m are sets

of intervals such that the Am’s being pairwise disjoint, the Bm’s being pairwise disjoint,
and the Cm’s being pairwise disjoint. Then there is a constant C = C(p1, p2, p) such that
for all functions f, g we have∥∥∑

m

Lm(f, g)
∥∥
p
≤ C‖f‖p1‖g‖p2 .
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Proof. Denoting p′ = p/(p− 1) we have∣∣〈∑
m

Lm(f, g), h〉
∣∣ =

∣∣ ∑
m

〈Lm(∆1
mf, ∆2

mg), ∆3
mh〉

∣∣
≤

∫
R

( ∑
m

|Lm(∆1
mf, ∆2

mg)|2
)1/2( ∑

m

|∆3
m|2

)1/2
dx

≤
∥∥∥∥( ∑

m

|Lm(∆1
mf, ∆2

mg)|2
)1/2

∥∥∥∥
p

∥∥∥∥( ∑
m

|∆3
mh|2

)1/2
∥∥∥∥
p′

≤
∥∥∥∥( ∑

m

|Lm(∆1
mf, ∆2

mg)|2
)1/2

∥∥∥∥
p

∥∥h
∥∥
p′ ,

where the last inequality follows from Rubio de Francia’s Littlewood-Paley inequality for
arbitrary disjoint intervals (p′ ≥ 2), see [13]. It suffices to estimate the square function
above. We have∥∥∥∥( ∑

m

|Lm(∆1
mf, ∆2

mg)|2
)1/2

∥∥∥∥p

p

≤
∫
R

∑
m

|Lm(∆1
mf, ∆2

mg)|p dx (since p/2 ≤ 1)

=
∑
m

‖Lm(∆1
mf, ∆2

mg)‖pp

≤C
∑
m

‖∆1
mf‖pp1

‖∆2
mg‖pp2

(by unif. boundedness of Lm)

≤C
( ∑

m

‖∆1
mf‖p1

p1

)p/p1
( ∑

m

‖∆2
mg‖p2

p2

)p/p2

(Hölder)

≤C
∥∥∥( ∑

m

|∆1
mf |2

)1/2∥∥∥p

p1

∥∥∥( ∑
m

|∆2
mg|2

)1/2∥∥∥p

p2

(since p1, p2 ≥ 2)

≤C‖f‖pp1
‖g‖pp2

,

where the last inequality also follows from Rubio de Francia’s Littlewood-Paley inequality
for arbitrary disjoint intervals (p1, p2 ≥ 2), see [13].

We observe that Lemma 1 holds even when the intervals Am are not necessarily disjoint,
provided the intervals Am+100, Am+200, Am+300, . . . are disjoint for all m ∈ Z. We are going
to use this lemma under similar conditions on the intervals Am, Bm, and Cm.

We denote by f∨ the inverse Fourier transform of a function f defined by f∨(ξ) = f̂(−ξ).
We will also need the following trivial lemma.

Lemma 2. Suppose T is a bilinear operator with symbol σ(ξ, η), ξ, η ∈ R, i.e.

T (f, g)(x) =
∫
R

∫
R

f̂(ξ)ĝ(η)σ(ξ, η)e2πi(ξ+η)x dξ dη .

Assume that the inverse Fourier transform σ∨ (in R2) satisfies∫
R

∫
R
|σ∨(x, y)| dx dy = C0 <∞ .

Then T maps Lp(R) × Lq(R) → Lr(R) when 1 ≤ p, q, r ≤ ∞ and 1/p + 1/q = 1/r with
constant at most C0.
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The proof of Lemma 2 is omitted since it is an easy consequence of Minkowski’s integral
inequality and Hölder’s inequality.

Finally, we have the following lemma, whose proof is standard and also omitted. We de-
note by ∂radial and ∂angular differentiation in the radial and angular directions respectively.
In other words, ∂radial = ∂

∂r and ∂angular = ∂
∂θ , where (r, θ) are polar coordinates in R2.

Lemma 3. Let k, l be real numbers greater than or equal to 1.
(a) Let φ̂(ξ, η) be a smooth function supported in a rectangle of dimensions 2−k × 2−l with
sides parallel to the axes in R2. Assume that |∂α

ξ φ̂| ≤ Cα2kα and |∂β
η φ̂| ≤ Cβ2lβ for all

α, β ≥ 0. Then we have the estimate

|φ(x, y)| ≤ CN 2−k−l

(1 + (2−k|x|)2 + (2−l|y|)2)N

for all N ≥ 0. Thus φ has L1 norm bounded by some constant independent of k and l.
(b) Let φ̂ be a smooth function on R2 supported inside the intersection of an annulus of width
2−k and a sector of angle 2−l. Suppose that |∂α

radialφ̂| ≤ Cα2kα and |∂β
angularφ̂| ≤ Cβ2lβ for

all α, β ≥ 0. Then we have the estimate

|φ(x, y)| ≤ CN 2−k−l

(1 + (2−k|(x, y) · er|)2 + (2−l|(x, y) · ea|)2)N

for all N ≥ 0, where er is a unit vector in the radial direction of the support of φ̂ and ea

is a unit vector perpendicular to er, while · is the usual inner product in R2. Therefore φ
has L1 norm bounded by some constant independent of k and l.

4. The decomposition of the disc

Fix a nonnegative smooth function ζ on [0, 1] with the following properties
(1) ζ is identically equal to 1 on [0, 1

2 − 1
210 ] ,

(2) ζ is supported in [0, 1
2 + 1

210 ] ,
(3) ζ(t) + ζ(1− t) = 1 for all 0 ≤ t ≤ 1 ,

and define
ζk(t) = ζ(2k−1(1− t))− ζ(2k(1− t))

for k in Z+. Then each function ζk is supported in the interval

1− 2−k(1 + 2−9) ≤ t ≤ 1− 2−(k+1)(1− 2−9)

and we have the identity

ζ(t) +
∞∑

k=1

ζk(t) = 1[0,1](t) .

Let ψ0, ψ1, ψ2, . . . be radial Schwartz functions on R2 whose Fourier transforms are

ψ̂k(ξ, η) = ζk(|(ξ, η)|) .

It follows that for k ≥ 1, each ψ̂k is supported in the annulus

1− 2−k(1+2−9) ≤ |(ξ, η)| ≤ 1− 2−(k+1)(1−2−9)
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and that

1D = ψ̂0 +
∞∑

k=1

ψ̂k,(4.1)

where D = D(0, 1) is the unit disc. This way we have a decomposition of the characteristic
function of the unit disc as an infinite sum of smooth functions supported in annuli whose
width becomes smaller as they get closer to the boundary of the disc.

We now introduce a smooth function χ on the real line supported in [−π
8 − 1

210 , π
8 + 1

210 ]
and equal to 1 on the interval [−π

8 + 1
210 , π

8 − 1
210 ], such that∑

j∈Z
χ(x + π

4 j) = 1(4.2)

for all x ∈ R. For each / ∈ {1, 2, 3, 4, 5, 6, 7, 8} we introduce a function φ on R2 whose
Fourier transform is defined by

φ̂ (ξ, η) = χ
(
Argument

( ξ + iη√
ξ2 + η2

− ei
π
4
( −1)

))
(4.3)

and we also define functions
b̂ k = ψ̂kφ̂ .

Observe that each φ̂ is a homogeneous of degree zero function and that each ψ̂k is a radial
function whose αth derivative (in the radial direction) blows up like Cα2kα. Using (4.3), it
follows that for all α, β ≥ 0 ∣∣∂α

radial∂
β
angular(b̂

 
k)

∣∣ ≤ Cα,β2kα .(4.4)

For all k ≥ 1 and / ∈ {1, 2, 3, 4, 5, 6, 7, 8} we now introduce bilinear operators

TD( )(f, g)(x) =
∞∑

k=1

∫
R

∫
R

f̂(ξ)ĝ(η)e2πi(ξ+η)xb̂ k(ξ, η) dξ dη .

Because of (4.1) and (4.2) we have obtained the following decomposition

TD = T0 +
8∑

 =1

TD( ) ,

where T0 is the bilinear operator whose symbol is ψ̂0. Using Lemma 2, it follows that T0 is
a bounded bilinear operator and we therefore need to concentrate on the TD( )’s.

It is easy to see that if σ(ξ, η) is a bounded bilinear symbol, then so is σ(−ξ,−η).
Therefore, it suffices to obtain estimates for the bilinear operators TD(1), TD(2), TD(3), and
TD(4), since these imply the same estimates for TD(5), TD(6), TD(7), and TD(8) respectively.
Moreover, the symbol of TD(3) can be obtained from that of TD(1) by interchanging ξ and η.
Since the set of (p1, p2, p) for which we plan to obtain boundedness for TD(1) from Lp1×Lp2

into Lp is symmetric in p1 and p2, the estimates for TD(3) can be obtained from those for
TD(1) by symmetry. It therefore suffices to obtain estimates for TD(1), TD(2), and TD(4).

We will now describe the decomposition of the operator TD(1) whose symbol is essentially
supported in a tiny neighborhood of the sector D(1).

For −π
7 ≤ a < b ≤ π

7 let us denote by Σ
(
a, b

)
the sector

a ≤ θ ≤ b.
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For every k ≥ 1 and µ ∈ {1, 2, . . . , k + 1}, we introduce functions ρµ
k on R2 such that ρ̂µ

k
are homogeneous of degree zero, smooth (away from the origin), satisfying for all β ≥ 0

|∂β
angularρ̂

µ
k | ≤ Cβ2β µ

2 , 1 ≤ µ ≤ k + 1 ,(4.5)

ρ̂k+1
k + ρ̂k

k + ρ̂k−1
k + · · ·+ ρ̂1

k = 1 on Σ
(
− π

8 (1+2−8), π
8 (1+2−8)

)
,(4.6)

and such that for any 2 ≤ µ ≤ k the functions ρ̂µ
k are supported in

Σ
(
−2−

µ−1
2 π

8 (1+2−9), 2−
µ−1

2 π
8 (1+2−9)

)
\ Σ

(
−2−

µ
2 π

8 (1−2−9), 2−
µ
2 π

8 (1−2−9)
)

and are equal to 1 on

Σ
(
−2−

µ−1
2 π

8 (1−2−9), 2−
µ−1

2 π
8 (1−2−9)

)
\ Σ

(
−2−

µ
2 π

8 (1+2−9), 2−
µ
2 π

8 (1+2−9)
)

,

while for µ = 1 the function ρ̂1
k is supported in

Σ
(
− π

8 (1+2−9), π
8 (1+2−9)

)
\ Σ

(
−2−

1
2 π

8 (1−2−9), 2−
1
2 π

8 (1−2−9)
)

and is equal to 1 on

Σ
(
− π

8 (1+2−8), π
8 (1+2−8)

)
\ Σ

(
−2−

1
2 π

8 (1+2−9), 2−
1
2 π

8 (1+2−9)
)

,

and for µ = k + 1 the function ρ̂k+1
k is supported in

Σ
(
−2−

k
2 π

8 (1+2−9), 2−
k
2 π

8 (1+2−9)
)

and is equal to 1 on
Σ

(
−2−

k
2 π

8 (1−2−9), 2−
k
2 π

8 (1−2−9)
)

.

In view of (4.6) we have the identity

b̂1
k = b̂1

k

(
ρ̂k+1
k + ρ̂k

k + ρ̂k−1
k + · · ·+ ρ̂1

k

)
(4.7)

since the set Σ
(
− π

8 (1+2−8), π
8 (1+2−8)

)
(on which the sum inside the parenthesis in (4.7)

is equal to 1) contains the support of b̂1
k for all k ≥ 1.

It follows from estimates (4.4) (with β = 0) and (4.5) that

|∂α
radial(b̂1

kρ̂µ
k)| ≤Cα2αk

|∂β
angular(b̂

1
kρ̂µ

k)| ≤Cβ2β µ
2

(4.8)

for all 1 ≤ µ ≤ k + 1 and α, β ≥ 0. Moreover the function b̂1
kρ̂µ

k is supported inside an
annulus of width approximately 2−k and inside a sector of “length” approximately 2−

µ
2 .

For each k, µ ≥ 1, we introduce bilinear operators Sk, Tµ as follows

Sk(f, g) =
∫
R

∫
R

f̂(ξ)ĝ(η)b̂1
k(ξ, η)ρ̂k+1

k (ξ, η) e2πi(ξ+η)xdξ dη ,

Tµ(f, g) =
∫
R

∫
R

f̂(ξ)ĝ(η)
∞∑

k=µ

b̂1
k(ξ, η)ρ̂µ

k(ξ, η) e2πi(ξ+η)xdξ dη ,

We have now achieved the following decomposition for TD(1):

TD(1) =
∞∑

k=1

Sk +
∞∑

µ=1

Tµ ,
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S1 S2 S3T0

T1

T1

T2

T2

T0

Figure 1. The decomposition of D(1)

and it will suffice to show that both sums above are bounded on the required product of
Lp spaces. See Figure 1 for a pictorial representation of this decomposition.

5. The boundedness of
∑∞

k=1 Sk

Let us denote the operator
∑∞

k=1 Sk(f1, f2) by S(f1, f2). In this section we will prove
the boundedness of S.

For each k ≥ 1 we pick a Schwartz function Φ1,k on the line whose Fourier transform
Φ̂1,k is supported in the interval [−101

100 ·2−k,− 99
100 ·2−k−1] and satisfies | dαdξα Φ̂1,k(ξ)| ≤ Cα2kα

for all α ≥ 0. Moreover we select these functions so that
∞∑

k=1

Φ̂1,k(ξ) = 1(5.1)

for all − 99
200 < ξ < 0. For each k ≥ 1 we pick another Schwartz function Φ2,k on the line

whose Fourier transform Φ̂2,k is equal to 1 on the interval [−4
5 · 2−

k
2 , 4

5 · 2−
k
2 ], is supported

in the interval [−2−
k
2 , 2−

k
2 ], and satisfies | dαdηα Φ̂2,k(η)| ≤ Cα2

k
2
α for all α ≥ 0. We introduce

a bilinear operator S̃′ by setting

S̃′(f1, f2)(x) =
∞∑

k=1

∫
R

∫
R

f̂1(ξ)f̂2(η)Φ̂1,k(ξ − 1)Φ̂2,k(η)e2πi(ξ+η)xdξdη
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and we prove the following result regarding it.

Lemma 4. For all 2 ≤ p1, p2 <∞ and 1 < p ≤ 2 satisfying 1/p1 +1/p2 = 1/p, there exists
a constant C = C(p1, p2, p) such that

‖S(f1, f2)− S̃′(f1, f2)‖p ≤ C‖f1‖p1‖f2‖p2 .

Proof. Let L = S − S̃′. Using condition (5.1) we obtain that the symbol of the bilinear
operator L consists of a smooth function with compact support plus a sum of smooth
functions σk (k large) each supported in Ak ×Bk union Ak × (−Bk), where

Ak = [1− 5 · 2−k, 1− 1
100 · 2

−k]

Bk = [18 · 2
− k

2 , 2 · 2− k2 ] .

Because of conditions (4.8), the support properties of ρ̂k+1
k , and the properties of Φ1,k and

Φ2,k, Lemma 3 implies that the σk’s have uniformly integrable inverse Fourier transforms.
Lemma 2 implies that the bilinear operators with symbols σk are uniformly bounded from
Lp × Lq → Lr for all 1 < p, q, r < ∞ satisfying 1/p + 1/q = 1/r. Now observe that the
intervals Ak, Ak+10, Ak+20, . . . are pairwise disjoint and the same property holds for the
intervals Bk, Ak + Bk, and Ak − Bk. Using Lemma 1 we obtain that L is bounded from
Lp1 ×Lp2 → Lp where the exponents p1, p2, p are as in the announcement of Lemma 4.

We now turn our attention to the boundedness of S̃′. Observe that

S̃′(f1, f2)(x) = e2πixS̃(f1e
−2πi(·), f2)(x),

where

S̃(f1, f2)(x) =
∞∑

k=1

∫
R

∫
R

f̂1(ξ)f̂2(η)Φ̂1,k(ξ)Φ̂2,k(η)e2πi(ξ+η)xdξdη

=
∞∑

k=1

(f1 ∗ Φ1,k)(x)(f2 ∗ Φ2,k)(x).

Therefore the boundedness of S̃′ is equivalent to that of S̃. We now have the following.

Lemma 5. For each 1 < p, q, r < ∞ satisfying 1/p + 1/q = 1/r, there exists a constant
C = C(p, q, r) such that

‖S̃(f1, f2)‖Lr ≤ C‖f1‖Lp‖f2‖Lq .

Proof. For each k ≥ 2, we pick a third Schwartz function Φ3,k whose Fourier transform is
supported in the interval [−2 · 2− k2 , 2 · 2− k2 ], which is identically equal to 1 on the interval
[−8

5 · 2−
k
2 , 8

5 · 2−
k
2 ], and which satisfies | dαdξα Φ̂3,k(ξ)| ≤ Cα2

k
2
α for all α ≥ 0. For k = 1,

pick Φ3,1 so that its Fourier transform is equal to 1 on the set [−13
10 , 8

5
√

2
] and supported in

[−13
10 − 1

100 , 8
5
√

2
+ 1

100 ]. It is easy to see that for all k ≥ 1, the algebraic sum of the supports

of Φ̂1,k and Φ̂2,k is contained in the interval [−8
5 · 2−

k
2 , 8

5 · 2−
k
2 ] on which Φ̂3,k is equal to

one. It follows that

S̃(f1, f2)(x) =
∞∑

k=1

∫
R

∫
R

f̂1(ξ)f̂2(η)Φ̂1,k(ξ)Φ̂2,k(η)Φ̂3,k(ξ + η)e2πi(ξ+η)xdξdη ,
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and pairing with another function f3 we write the inner product 〈S̃(f1, f2), f3〉 as∫
R

S̃(f1, f2)(x)f3(x) dx =
∞∑

k=1

∫
R

(f1 ∗ Φ1,k)(x)(f2 ∗ Φ2,k)(x)(f3 ∗ Φ3,k)(x) dx .(5.2)

We now use a telescoping argument, inspired by [15], to write∫
R

S̃(f1, f2)(x)f3(x) dx =
∞∑

k=1

∫
R

(f1 ∗ Φ1,k)(x)(f2 ∗ Φ2,k)(x)(f3 ∗ Φ3,k)(x) dx

=
∞∑

k=1

∫
R

(f1 ∗ Φ1,k)(x)
k+5∑
m=0

{
(f2 ∗ Φ2,k+m)(x)(f3 ∗ Φ3,k+m)(x)

− (f2 ∗ Φ2,k+m+1)(x)(f3 ∗ Φ3,k+m+1)(x)
}

dx

+
∞∑

k=1

∫
R

(f1 ∗ Φ1,k)(x)(f2 ∗ Φ2,2k+6)(x)(f3 ∗ Φ3,2k+6)(x) dx .

We begin by claiming that the last sum above is identically equal to zero. Indeed, we have
that the support of Φ̂1,k is contained in [−101

100 · 2−k,− 99
100 · 2−k−1], the support of \Φ2,2k+6 is

contained in [−2−k−3, 2−k−3], while the support of \Φ3,2k+6 is contained in [−2−k−2, 2−k−2].
It follows that (

supp Φ̂1,k + supp \Φ2,2k+6

)
∩ supp \Φ3,2k+6 = ∅ ,

which establishes our claim. It follows that∫
R

S̃(f1, f2)(x)f3(x) dx

=
∞∑

k=1

∫
R

(f1 ∗ Φ1,k)(x)
k+5∑
m=0

{
(f2 ∗ Φ2,k+m)(x)(f3 ∗ Φ3,k+m)(x)

− (f2 ∗ Φ2,k+m+1)(x)(f3 ∗ Φ3,k+m+1)(x)
}

dx ,

which by a change of variables, we write as∫
R

S̃(f1, f2)(x)f3(x) dx

=
∞∑

k=7

∫
R

{ k+5
2∑

m=0

(f1 ∗ Φ1,k−m)(x)
}{

(f2 ∗ Φ2,k)(x)(f3 ∗ Φ3,k)(x)

− (f2 ∗ Φ2,k+1)(x)(f3 ∗ Φ3,k+1)(x)
}

dx

+
6∑

k=1

k−1∑
m=0

∫
R

(f1 ∗ Φ1,k−m)(x)
{

(f2 ∗ Φ2,k)(x)(f3 ∗ Φ3,k)(x)

− (f2 ∗ Φ2,k+1)(x)(f3 ∗ Φ3,k+1)(x)
}

dx .

Now the last double sum above is indeed a finite sum which is easily controlled by a constant
multiple of ‖Mf1‖p‖Mf2‖q‖Mf3‖r′ and the required estimate easily follows for it. (M here
denotes the Hardy-Littlewood maximal operator.) We therefore concentrate our attention
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to the sum over k ≥ 7 above. We set

I =
∞∑

k=7

∫
R

{ k+5
2∑

m=0

(f1 ∗ Φ1,k−m)(x)
}{

(f2 ∗ Φ2,k)(x)(f3 ∗ Φ3,k)(x)

− (f2 ∗ Φ2,k+1)(x)(f3 ∗ Φ3,k+1)(x)
}

dx ,

and we write I = I1 + I2 + I3 , where

I1 =
∞∑

k=7

∫
R

{ k+5
2∑

m=0

(f1 ∗ Φ1,k−m)(x)
}

(f2 ∗ Φ2,k)(x) (f3 ∗ (Φ3,k − Φ3,k+1)(x) dx ,

I2 =
∞∑

k=7

∫
R

{ k+5
2∑

m=0

(f1 ∗ Φ1,k−m)(x)
}

(f2 ∗ (Φ2,k − Φ2,k+1))(x) (f3 ∗ (Φ3,k+1 − Φ3,k+6))(x) dx ,

I3 =
∞∑

k=7

∫
R

{ k+5
2∑

m=0

(f1 ∗ Φ1,k−m)(x)
}

(f2 ∗ (Φ2,k − Φ2,k+1))(x) (f3 ∗ Φ3,k+6)(x) dx .

We write I1 as I11 + I12 , where

I11 =
∞∑

k=7

∫
R

{ k−4
2∑

m=0

(f1 ∗ Φ1,k−m)(x)
}

(f2 ∗ Φ2,k)(x) (f3 ∗ (Φ3,k − Φ3,k+1)(x) dx ,

I12 =
∞∑

k=7

∫
R

{ ∑
k−4
2

<m≤ k+5
2

(f1 ∗ Φ1,k−m)(x)
}

(f2 ∗ Φ2,k)(x) (f3 ∗ (Φ3,k − Φ3,k+1)(x) dx .

We begin by observing that I11 is identically equal to zero. Indeed, let us calculate the
supports of the functions the appear in I11. We have

supp
( k−4

2∑
m=0

\Φ1,k−m

)
⊂

k−4
2⋃

m=0

[−101
100 · 2

−k+m,− 99
100 · 2

−k+m−1] ⊂ [−101
400 · 2

− k
2 ,− 99

200 · 2
−k]

supp Φ̂2,k ⊂ [−2−
k
2 , 2−

k
2 ]

supp
(
Φ̂3,k −\Φ3,k+1

)
⊂ [−2 · 2− k2 ,− 9

5
√

2
· 2− k2 ]

⋃
[ 9
5
√

2
· 2− k2 , 2 · 2− k2 ],

where in the last inclusion we used the fact that Φ̂3,k is equal to one on a substantially
large subset of its support. It is easy to see that

supp
( k−4

2∑
m=0

\Φ1,k−m

)
+ supp Φ̂2,k ⊂ [−501

400 · 2
− k

2 , 2−
k
2 ],

from which it follows that(
supp

( k−4
2∑

m=0

\Φ1,k−m

)
+ supp Φ̂2,k

) ⋂
supp

(
Φ̂3,k −\Φ3,k+1

)
= ∅,
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since Φ̂3,k−\Φ3,k+1 is supported in [−2 · 2− k2 ,− 8
5
√

2
· 2− k2 ]

⋃
[ 8
5
√

2
· 2− k2 , 2 · 2− k2 ]. We conclude

that I11 = 0 and we don’t need to worry about this term. We proceed with term I12 which
is equal to a finite sum of expressions of the form

∞∑
k=7

∫
R

(f1 ∗ Φ1,k−m(k))(x) (f2 ∗ Φ2,k)(x) (f3 ∗ (Φ3,k − Φ3,k+1)(x) dx ,(5.3)

where m(k) is an integer in the interval (k−4
2 , k+5

2 ]. We can now control I12 by∫
R

( ∞∑
k=7

|f1 ∗ Φ1,k−m(k)|2
) 1

2 sup
k
|f2 ∗ Φ2,k|

( ∞∑
k=7

|f3 ∗ (Φ3,k−Φ3,k+1)|2
) 1

2 dx

and this is easily seen to be bounded by a constant multiple of

‖f1‖p‖f2‖q‖f3‖r′
in view of the Littlewood-Paley theorem and the fact that supk |f2 ∗ Φ2,k| is bounded by
the Hardy-Littlewood maximal function of f2.

We continue with term I2. We first claim that the estimate below is valid:∥∥∥∥ sup
k

∣∣ k+5
2∑

m=0

f1 ∗ Φ1,k−m

∣∣∥∥∥∥
p

≤ Cp‖f1‖p .(5.4)

To see this we bound the left side of (5.4) by∥∥∥∥ sup
k

∣∣ k∑
m= k−5

2

f1 ∗ Φ1,m

∣∣∥∥∥∥
p

≤
∥∥∥∥ sup

k

∣∣ k∑
m= k−5

2
m odd

f1 ∗ Φ1,m

∣∣∥∥∥∥
p

+
∥∥∥∥ sup

k

∣∣ k∑
m= k−5

2
m even

f1 ∗ Φ1,m

∣∣∥∥∥∥
p

.(5.5)

We let ak (resp. ck) be the infimum of the left points of the supports of the functions[Φ1,m

with m odd (resp. even) in [k−5
2 , k] and bk (resp. dk) is the supremum of the right points

of the supports of the functions[Φ1,m with m odd (resp. even) in [k−5
2 , k]. Then the right

hand side of (5.5) is equal to∥∥∥∥ sup
k

∣∣∣(( ∑
m odd

f1 ∗ Φ1,m

)̂
1[ak,bk]

)
∨
∣∣∣∥∥∥∥

p

+
∥∥∥∥ sup

k

∣∣∣(( ∑
m even

f1 ∗ Φ1,m

)̂
1[ck,dk]

)
∨
∣∣∣∥∥∥∥

p

and this is bounded by

Cp

(∥∥ ∑
k odd

f1 ∗ Φ1,k

∥∥
p
+

∥∥ ∑
k even

f1 ∗ Φ1,k

∥∥
p

)
(5.6)

in view of the Carleson-Hunt theorem [1], [6]. The expression in (5.6) is easily controlled
by C ′p‖f1‖p via a simple orthogonality argument, and the proof of our claim in (5.4) is
complete. It follows that I2 is controlled by∫

R
sup
k

∣∣ k+5
2∑

m=0

f1 ∗ Φ1,k−m

∣∣( ∞∑
k=7

|f2 ∗ (Φ2,k−Φ2,k+1)|2
) 1

2
( ∞∑

k=7

|f3 ∗ (Φ3,k−Φ3,k+6)|2
) 1

2 dx

and this is in turn bounded by a constant multiple of

‖f1‖p‖f2‖q‖f3‖r′
in view of the Littlewood-Paley theorem and the discussion above.
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Before we turn our attention to I3, we make a couple of observations regarding the
supports of the Fourier transforms of the functions Φ1,k, Φ2,k, and Φ3,k. First we observe
that

supp
( k−4

2∑
m=0

\Φ1,k−m

)
⊂

k−4
2⋃

m=0

[−101
100 · 2

−k+m,− 99
100 · 2

−k+m−1] ⊂ [−101
400 · 2

− k
2 ,− 99

200 · 2
−k] ,

supp
(
Φ̂2,k −\Φ2,k+1

)
⊂ [−2−

k
2 ,− 4

5
√

2
· 2− k2 ] ∪ [ 4

5
√

2
· 2− k2 , 2−

k
2 ] ,

supp \Φ3,k+6 ⊂ [−1
4 · 2

− k
2 , 1

4 · 2
− k

2 ] .

Therefore, the algebraic sum

supp
( k−4

2∑
m=0

\Φ1,k−m

)
+ supp

(
Φ̂2,k −\Φ2,k+1

)
is contained in the union of the intervals

[−501
400 · 2

− k
2 ,− 4

5
√

2
· 2− k2 − 99

200 · 2
−k] ∪ [( 4

5
√

2
− 101

400) · 2− k2 , 101
200 · 2

− k
2 ]

from which it easily follows that(
supp

( k−4
2∑

m=0

\Φ1,k−m

)
+ supp

(
Φ̂2,k −\Φ2,k+1

))
∩ supp \Φ3,k+6 = ∅ .

Therefore I3 reduces to the sum
∞∑

k=7

∫
R

{ ∑
k−4
2

<m≤ k+5
2

(f1 ∗ Φ1,k−m)(x)
}

(f2 ∗ (Φ2,k − Φ2,k+1))(x) (f3 ∗ Φ3,k+6)(x) dx ,

in which m ranges only through a finite set (depending on k). For every such m = m(k),
we can estimate I3 by∫

R

( ∞∑
k=7

|f1 ∗ Φ1,k−m(k)|2
) 1

2
( ∞∑

k=7

|f2 ∗ (Φ2,k−Φ2,k+1)|2
) 1

2 sup
k

∣∣f3 ∗ Φ1,k+6

∣∣ dx

and this is clearly bounded by a constant multiple of ‖f1‖p‖f2‖q‖f3‖r′ via the Littlewood-
Paley theorem and the Lr′ boundedness of the Hardy-Littlewood maximal operator.

This estimate completes the proof of the boundedness of S̃ and thus of Lemma 5.

The proof of the boundedness of S =
∑∞

k=1 Sk is now complete.

6. The boundedness of
∑∞

µ=1 Tµ

Throughout this section we will fix 2 ≤ p1, p2 < ∞, 1 < p ≤ 2 with 1/p1 + 1/p2 =
1/p. The main difficulty is to show that the operators Tµ are uniformly bounded from
Lp1×Lp2 → Lp. Once this is established we can use Lemma 1 to control the sum

∑∞
µ=1 Tµ.

To do so, it will suffice to check that the hypotheses of Lemma 1 apply for the operators
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Tµ. Indeed, one can easily see that the support of the symbol of Tµ is contained in the set
Aµ ×Bµ union the set Aµ × (−Bµ), where

Aµ =
[(

1− (1+2−9)2−µ
)
cos

(
π
8 (1+2−9)2

1
2
−µ

2
)
, cos

(
π
8 (1−2−9)2−

µ
2
)]

Bµ =
[(

1− (1+2−9)2−µ
)
sin

(
π
8 (1−2−9)2−

µ
2
)
, sin

(
π
8 (1+2−9)2

1
2
−µ

2
)]

.
(6.1)

It is now elementary to check that the sets Aµ, Aµ+10, Aµ+20, . . . are disjoint, and similarly
for the sets Bµ, Aµ + Bµ, and Aµ−Bµ. (To apply Lemma 1 one may consider the “upper”
and the “lower” part of Tµ separately.)

We now turn our attention to the crucial issue of the uniform boundedness of the Tµ’s.
We fix a large µ and we break up the support of Tµ as the disjoint union of the “curved
rectangles” Dµ,k for k ≥ µ, defined as follows

Dµ,µ =
{
(ξ, η) : 1− 2−µ(1+2−9) ≤ |(ξ, η)| < 1− 2−(µ+1)

}⋂ {
(ξ, η) : π

8 2−
µ
2 (1−2−9) ≤ |Argument(ξ, η)| < π

8 2−
µ−1

2 (1+2−9)
}

,

while for k ≥ µ + 1

Dµ,k =
{
(ξ, η) : 1− 2−k ≤ |(ξ, η)| < 1− 2−(k+1)

}⋂ {
(ξ, η) : π

8 2−
µ
2 (1−2−9) ≤ |Argument(ξ, η)| < π

8 2−
µ−1

2 (1+2−9)
}

.

In the sequel, rectangles will be products of intervals of the form [a, b)× [c, d). The quantity
(b − a) × (d − c) will be referred to as the size of a rectangle. We tile up the plane as the
union of rectangles of size 2−µ−5 × 2−

µ
2
−5 and we let Eµ be the set of all such rectangles.

Let Eselectµ be the subset of Eµ consisting of all rectangles that intersect Dµ,µ. We denote
by Eµ+1 the set of all rectangles obtained by subdividing each rectangle in Eµ \ Eselectµ into
four rectangles, each of size 2−µ−6×2−

µ
2
−6, by halving its sides. Let Eselectµ+1 be the subset of

Eµ+1 consisting of all rectangles that intersect Dµ,µ+1. Next, we denote by Eµ+2 the set of
all rectangles obtained by subdividing each rectangle in Eµ+1 \ Eselectµ+1 into four rectangles,
each of size 2−µ−7× 2−

µ
2
−7, by halving its sides. Continue this way by induction. Then we

have “essentially covered” each Dµ,k by disjoint rectangles of size 2−k−5 × 2
µ
2
−k−5 and the

set of all such rectangles is denoted by Eselectµ+k . Since each Dµ,k has area about 2−
µ
2
−k, we

have used approximately 2k−µ rectangles of size 2−k−5 × 2
µ
2
−k−5 to “cover” Dµ,k. In other

words, the cardinality of each set Eselectµ+k is of the order of 2k−µ.
Elements of Eselectµ+k will be denoted by Rk,l,m; explicitly

Rk,l,m = [ 1
322−kl, 1

322−k(l + 1)]× [ 1
322−k+µ

2 m, 1
322−k+µ

2 (m + 1)] .

So the first index k indicates that the rectangle Rk,l,m has size 2−k−5 × 2
µ
2
−k−5. The

second index l indicates the horizontal location of the rectangle Rk,l,m, while the third
index m indicates its vertical location. Furthermore, if Rk,l,m is selected, then for any
integer k ≥ µ + 1, l ranges in the interval

32 · (2k − 1) cos
(
π
8 (1+2−9)2−

µ
2
+ 1

2
)
− 1 ≤ l ≤ 32 · (2k − 1

2) cos
(
π
8 (1−2−9)2−

µ
2
)

,(6.2)

with the left inequality above only slightly changed to

32 · (2k − (1 + 2−9)) cos
(
π
8 (1+2−9)2−

µ
2
+ 1

2
)
− 1 ≤ l
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when k = µ. Moreover, for fixed k and l, the range of m is specified by the inequalities

25+k−µ
2

√
(1−2−k+1)2−(2−k(l+1)

32 )2 − 1 < |m| < 25+k−µ
2

√
(1−2−k−1)2−(2−kl

32 )2 .(6.3)

Figure 2. The intersection of Dµ,k with the smallest vertical strip that
contains a fixed rectangle Rk,l,m in Eselectµ+k has vertical length at most a
multiple of 2−k+µ

2 .

It is a very important geometric fact that given a fixed k and l, there exist at most 64
integers m such that the rectangles Rk,l,m in Eselectµ+k intersect Dµ,k. The verification of this
fact is a simple geometric exercise shown in Figure 2 and is left to the reader. Therefore in
the sequel, we will think of m = m(k, l, µ) as a function of k, l, and µ whose range is a set
of integers with at most 64 elements.

Let ε > 0 be a very small number. Pick a smooth function Ψk,l,m(ξ, η) supported in a
small neighborhood of Rk,l,m such that

|Dβ
ξ Ψk,l,m| ≤ C2βk |Dβ

ηΨk,l,m| ≤ C2β(k−µ
2
) .

and such that the function
∞∑

k=µ

∑
l,m such that
Rk,l,m∈Eselectµ+k

Ψk,l,m(ξ, η)

is equal to 1 on the union of all Rk,l,m in Eselectµ+k that do not intersect the boundary of the
support of Tµ. Using the Fourier series bilinear symbol expansion method of Coifman and



THE DISC AS A BILINEAR MULTIPLIER 17

Meyer [2] (see also [5]), we write Ψk,l,m(ξ, η) as

Ψk,l,m(ξ, η) =
∑
n1∈Z

∑
n2∈Z

Cn1,n2
\Φ1,k,l,n1,n2(ξ) \Φ2,k,m,n1,n2(η) ,

where |Cn1,n2 | ≤ CM (1+n2
1+n2

2)
−M for all M > 0, Φ1,k,l,n1,n2 and Φ2,k,m,n1,n2 are Schwartz

functions which satisfy

supp \Φ1,k,l,n1,n2 ⊂ (1 + ε)[ 1
322−kl, 1

322−k(l + 1)] ,

supp \Φ2,k,m,n1,n2 ⊂ (1 + ε)[ 1
322−k+µ

2 m, 1
322−k+µ

2 (m + 1)] ,

\Φ1,k,l,0,0 = 1 on (1− ε)[ 1
322−kl, 1

322−k(l + 1)] ,

\Φ2,k,m,0,0 = 1 on (1− ε)[ 1
322−k+µ

2 m, 1
322−k+µ

2 (m + 1)] ,

and for all β ≥ 0 there exist Cβ,n1,n2 bounded by Cβ(1 + |n1|+ |n2|)β so that∣∣∣ dβ

dξβ
\Φ1,k,l,n1,n2(ξ)

∣∣∣ ≤ Cβ,n1,n22
kβ ,

∣∣∣ dβ

dηβ
\Φ2,k,m,n1,n2(η)

∣∣∣ ≤ Cβ,n1,n22
(k−µ

2
)β .(6.4)

Recall that the symbol of the bilinear operator Tµ is

σµ(ξ, η) =
∞∑

k=µ

b̂1
k(ξ, η)ρ̂µ

k(ξ, η) .

We now write σµ as

σµ(ξ, η) =
∑

n1,n2∈Z
Cn1,n2

∞∑
k=µ

∑
l,m such that
Rk,l,m∈Eselectµ+k

\Φ1,k,l,n1,n2(ξ) \Φ2,k,m,n1,n2(η) + E(1)
µ (ξ, η) ,(6.5)

where E
(1)
µ is an error.

We start by studying the error E
(1)
µ . Let (r, θ) denote polar coordinates in the (ξ, η)

plane. The function E
(1)
µ consists of six pieces: The piece E

(1)
µ,1 supported near the line

θ = π
8 2−

µ
2 , the piece E

(1)
µ,2 supported near the line θ = π

8 2−
µ−1

2 , the piece E
(1)
µ,3 supported

near the circle r = 1 − 2−µ between these two lines, the piece E
(1)
µ,4 supported near the

line θ = −π
8 2−

µ
2 , the piece E

(1)
µ,5 supported near the line θ = −π

8 2−
µ−1

2 , and the piece E
(1)
µ,6

supported near the circle r = 1− 2−µ between these last two lines. The error E
(1)
µ,3 + E

(1)
µ,6 is

the easiest to control. Since Eselectµ consists only of finitely many rectangles (independent

of µ), E
(1)
µ,3 + E

(1)
µ,6 is equal to a finite sum of smooth functions φµ which are supported in a

small dilate of Dµ,µ and which satisfy the estimates∣∣∣ dβ

dξβ
φµ

∣∣∣ ≤ Cβ2µβ ,
∣∣∣ dβ

dηβ
φµ

∣∣∣ ≤ Cβ2
µ
2
β ,

because of (4.8) and (6.4). It follows from Lemma 3 that the inverse Fourier transforms of
the φµ’s are in L1 uniformly in µ. Using Lemma 2 we obtain the uniform (in µ) boundedness
of the operators whose symbols are E

(1)
µ,3 + E

(1)
µ,6.

We write E
(1)
µ,1+E

(1)
µ,2+E

(1)
µ,4+E

(1)
µ,5 =

∑∞
k=µ Eµ,k, where each Eµ,k consists of the (smooth)

piece of this function inside the annulus 1 − 2−k ≤ r ≤ 1 − 2−k−1. An easy calculation
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shows that the support of Eµ,k is contained in the union of the sets Aµ,k×Bµ,k, A′µ,k×B′µ,k,
Aµ,k × (−Bµ,k), and A′µ,k × (−B′µ,k), where

Aµ,k =
[
(1−2−k+1) cos

(
π
8 (1 + 2−9)2−

µ
2
)
, (1−2−k−2) cos

(
π
8 (1− 2−9)2−

µ
2
)]

Bµ,k =
[
(1−2−k+1) sin

(
π
8 (1− 2−9)2−

µ
2
)
, (1−2−k−2) sin

(
π
8 (1 + 2−9)2−

µ
2
)]

A′µ,k =
[
(1−2−k+1) cos

(
π
8 (1 + 2−9)2

1
2
−µ

2 ), (1−2−k−2) cos
(
π
8 (1− 2−9)2

1
2
−µ

2
)]

B′µ,k =
[
(1−2−k+1) sin

(
π
8 (1− 2−9)2

1
2
−µ

2
)
, (1−2−k−2) sin

(
π
8 (1 + 2−9)2

1
2
−µ

2
)]

.

We now observe that the sets Aµ,k, Aµ,k+10, Aµ,k+20, . . . are pairwise disjoint, and the same
disjointness property also holds for the families {Bµ,k}k, {Aµ,k + Bµ,k}k, {Aµ,k − Bµ,k}k,
{A′µ,k}k, {B′µ,k}k, {A′µ,k + B′µ,k}k, and {A′µ,k − B′µ,k}k. Using (4.8) and (6.4) we obtain
that the inverse Fourier transforms of the functions Eµ,k are uniformly integrable in µ and
k. Then Lemmata 1 and 2 imply that the operators with symbols E

(1)
µ are bounded from

Lp × Lq into Lr uniformly in µ. (We apply Lemma 1 for each of the four pieces above
separately.)

We now turn to the boundedness of the operator whose symbol is σµ − E
(1)
µ . In view

of the controlled growth of the constant Cβ,n1,n2 in (6.4) and of the rapid decay of the
constant Cn1,n2 when |n1|+ |n2| is large, we may only consider the case n1 = n2 = 0; in the
remaining cases an extra decaying factor of |n1|+ |n2| is produced which allows us to sum
the series in n1, n2. When n1 = n2 = 0 we set Φ1,k,l,0,0 = Φ1,k,l and Φ2,k,m,0,0 = Φ2,k,m. Let
us consider the operator T̃µ defined by

T̃µ(f, g)(x) =
∞∑

k=µ

∑
l,m such that
Rk,l,m∈Eselectµ+k

∫
R

∫
R

f̂(ξ)ĝ(η)[Φ1,k,l(ξ)\Φ2,k,m(η)e2πi(ξ+η)xdξdη .

For every selected rectangle Rk,l,m we now choose a third Schwartz function Φ3,k,l,m such
that ∣∣∣ dβ

dξβ
\Φ3,k,l,m(ξ)

∣∣∣ ≤ Cα2(k−µ
2
)β

for all β ≥ 0, \Φ3,k,l,m is equal to 1 on the interval

[ 1
322−kl + 2−k+µ

2 m, 1
322−k(l + 1) + 2−k+µ

2 (m + 1)]

and also on the interval

[ 1
322−kl − 2−k+µ

2 m, 1
322−k(l + 1)− 2−k+µ

2 (m + 1)]

and is supported in an (1+ε)-neighborhood of the union of the two intervals above. Because
of the properties of the function Φ3,k,l,m, T̃µ(f, g)(x) is also equal to

∞∑
k=µ

∑
l,m such that
Rk,l,m∈Eselectµ+k

∫
R

∫
R

f̂(ξ)ĝ(η)[Φ1,k,l(ξ)\Φ2,k,m(η)\Φ3,k,l,m(ξ + η)e2πi(ξ+η)xdξdη .(6.6)

We now let Jk,µ be the set of all integers l satisfying (6.2) and for each k, l, µ we set

λ = λ(k, l, µ) =
[
32 · 2k−µ

2

√
(1−2−k−1)2−(2−kl

32 )2
]

+ 1 ,
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where the square brackets above denote the integer part. We can therefore write T̃µ(f, g)(x)
as a finite sum (over 1 ≤ s ≤ 64) of operators of the form

Iµ(f, g)(x) =
∞∑

k=µ

∑
l∈Jk,µ

∫
R

∫
R

f̂(ξ)ĝ(η)[Φ1,k,l(ξ)\Φ2,k,λ−s(η) \Φ3,k,l,λ−s(ξ+η)e2πi(ξ+η)xdξ dη .

The uniform boundedness of the Iµ’s for the claimed range of exponents will be a conse-
quence of the results in [5] and [9] once we have established Lemma 6 stated below. Then
we can refer to Lemma 4 in [5] and Lemma 3 in [9] to obtain uniform boundedness for each
Iµ from Lp1 × Lp2 → Lp, where p1, p2, p are as in Theorem 1. The results in [9] are only
needed to cover the endpoint cases in which p1 = 2, p2 = 2, or p = 2.

For uniformity we replaced Φ2,k,λ(k,l,µ)−s by Φ2,k,l,λ(k,l,µ)−s in the Lemma below.

Lemma 6. Let be Φ1,k,l, Φ2,k,l,λ−s, and Φ3,k,l,λ−s be as above and let |k − k′| ≥ 100.
(1) If supp[Φ1,k,l $ supp \Φ1,k′,l′, then for j ∈ {2, 3} we have

supremum
(
supp \Φj,k,l,λ−s

)
< infimum

(
supp \Φj,k′,l′,λ−s′

)
and

1
16
· 2−k′+µ

2 < dist
(
supp \Φj,k,l,λ−s, supp \Φj,k′,l′,λ−s′

)
< 5 · 2−k′+µ

2 .(6.7)

(2) If supp \Φj,k,l,λ−s $ supp \Φj,k′,l′,λ−s′ for j ∈ {2, 3}, then

supremum
(
supp \Φ1,k′,l′

)
< infimum

(
supp[Φ1,k,l

)
and

5
64
· 2−k′ < dist

(
supp[Φ1,k,l, supp \Φ1,k′,l′

)
< 4 · 2−k′ .(6.8)

Proof. We first prove the assertion in part (1). The assumption supp[Φ1,k,l $ supp\Φ1,k′,l′

implies that
2−k′ l′ < 2−kl < 2−k(l + 1) < 2−k′(l′ + 1)

which gives 0 < 2−kl−2−k′ l′ < 2−k′−2−k. Let m = 32 ·2k−µ
2

√
(1− 2−k−1)2 − (2−kl

32 )2−C,
where C is a real number between 0 and 64. Then

2−k+µ
2 m− 2−k+µ

2 m′

= 32
√

(1− 2−k−1)2 − (2−kl
32 )2 − 32

√
(1− 2−k′−1)2 − (2−k

′
l′

32 )2

+ C(2−k′+µ
2 − 2−k+µ

2 )− 2−k′+µ
2

=
16(2−k′ − 2−k)(2− 1

22−k − 1
22−k′) + 1

32(2−k′ l′ − 2−kl)(2−k′ l′ + 2−kl)√
(1− 2−k−1)2 − (2−kl

32 )2 +
√

(1− 2−k′−1)2 − (2−k
′
l′

32 )2

+ C(2−k′+µ
2 − 2−k+µ

2 )− 2−k′+µ
2 .

But observe that both radicals in the denominator above are between 2−
µ
2 and 21−µ

2 . Since
0 < 2−k′ l′+2−kl < 2, the last expression above can be estimated above and below in terms
of 2−k′+µ

2 . Carrying out the algebra we find that

80 · 2−k′+µ
2 > 2−k+µ

2 m− 2−k+µ
2 m′ > 2 · 2−k′+µ

2 .
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This proves (6.7). We now turn our attention to part (2).
We only prove (6.8) for j = 2 since the proof for j = 3 is similar. Since the support of
\Φ2,k,l,λ−s is properly contained in the support of \Φ2,k′,l′,λ−s′ , it follows that the number√

(1− 2−k′−1)2 − (2−kl′
32 )2 −

√
(1− 2−k−1)2 − (2−kl

32 )2

=
(2−2−k′−1−2−k−1)(2−k−1−2−k′−1) + 1

32(2−kl−2−k′ l′)(2−kl+2−k′ l′)√
(1− 2−k′−1)2 − (2−kl′

32 )2 +
√

(1− 2−k−1)2 − (2−kl
32 )2

lies between the numbers C−1
32 (2−k′+µ

2 −2−k+µ
2 ) and C

32(2−k′+µ
2 −2−k+µ

2 ) for some 0 ≤ C ≤
64. But notice that the denominator of the fraction above is always between 2−

µ
2
−4 and

2−
µ
2
+1. This implies that the number

(2−2−k′−1−2−k−1)(2−k−1−2−k′−1) + 1
32(2−kl−2−k′ l′)(2−kl+2−k′ l′)

lies between − 1
16(2−k′ − 2−k) and 4(2−k′ − 2−k), since 0 ≤ C ≤ 64. It follows that

(1
2 − 1

16)(2−k′ − 2−k) ≤ 1
32(2−kl − 2−k′ l′)(2−kl + 2−k′ l′) ≤ 4(2−k′ − 2−k) .

But since 1 < 2−kl + 2−k′ l′ < 2, we obtain that
7
642−k′ ≤ 7

32(2−k′ − 2−k) ≤ 1
32(2−kl − 2−k′ l′) ≤ 4(2−k′ − 2−k) ≤ 4 · 2−k′

from which it follows that
5
642−k′ ≤ 1

32
2−kl − 1

32
2−k′(l′ + 1) ≤ 4 · 2−k′ .

This proves (6.8) for j = 2. As observed earlier the proof for j = 3 is similar.

7. The boundedness of TD(2)

We decompose the annular sector D(2) in a way analogous to that we decomposed D(1).
We recall the functions ρµ

k introduced in section 4. We introduce functions γµ
k by rotating

the functions ρµ
k by an angle π/4 as follows:

γµ
k = ρµ

k ◦R,

where R is the rotation

R(ξ, η) = (
√

2
2 ξ +

√
2

2 η,−
√

2
2 ξ +

√
2

2 η) .(7.1)

For each k, µ ≥ 1, we introduce bilinear operators Uk, Vµ as follows

Uk(f, g) =
∫
R

∫
R

f̂(ξ)ĝ(η)b̂2
k(ξ, η)[γk+1

k (ξ, η) e2πi(ξ+η)xdξ dη ,

Vµ(f, g) =
∫
R

∫
R

f̂(ξ)ĝ(η)
∞∑

k=µ

b̂2
k(ξ, η)γ̂µ

k (ξ, η) e2πi(ξ+η)xdξ dη .

We have now decomposed TD(2) as

TD(2) =
∞∑

k=1

Uk +
∞∑

µ=1

Vµ .

Observe that the Uk’s are analogous to the Sk’s and the Vµ’s are analogous to Tµ’s. Precisely,
the supports of Uk and Vµ are the images of the supports of Sk and Tµ under the rotation
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R defined in (7.1). We will try to obtain estimates for Uk and Vµ by using the estimates
we obtained for Sk and Tµ in the previous sections.

We will first obtain the boundedness of U =
∑∞

k=1 Uk. For each k ≥ 1, we fix a Schwartz
function Ψ1,k whose Fourier transform is supported in the interval

Ik
1 = [

√
2 · (1− 101

100 · 2
−k),
√

2 · (1− 99
100 · 2

−k−1)]

and which satisfies ∞∑
k=1

Ψ̂1,k(t) = 1

for all
√

2
2 ≤ t <

√
2. We also fix a Schwartz function Ψ3,k whose Fourier transform is equal

to 1 on the set

Ik
3 = [

√
2

2 · (1− 2−k − π
8 (1 + 2−9)2−

k
2 ),
√

2
2 · (1− 2−k + π

8 (1 + 2−9)2−
k
2 )] .

and is supported on (1 + ε)Ik
3 for some very small ε > 0. Moreover, we choose these

functions so that ∣∣∣ dα

dζα
Ψ̂1,k(ζ)

∣∣∣ ≤ Cα2kα
∣∣∣ dβ

dξβ
Ψ̂3,k(ξ)

∣∣∣ ≤ Cβ2
k
2
β

for all α, β ≥ 0. Pick another Schwartz function Ψ2,k whose Fourier transform is equal to
1 on the set Ik

2 = Ik
1 + (−(1 + ε)Ik

3 ) and supported in (1 + ε)Ik
2 , where for an interval [a, b]

we set −[a, b] = [−b,−a]. Moreover, we select Ψ2,k so that it satisfies∣∣∣ dβ

dηβ
Ψ̂2,k(η)

∣∣∣ ≤ Cβ2
k
2
β

for all β ≥ 0.
We now write U =

∑∞
k=1 Uk = Ũ + (U − Ũ), where U − Ũ is an error term which can be

treated as in Lemma 4 and

Ũ(f, g)(x) =
∫
R

∫
R

f̂(ξ)ĝ(η)e2πi(ξ+η)x
∞∑

k=1

Ψ̂1,k(ξ + η)Ψ̂3,k(ξ) dξdη .

Because of the support properties of Ψ2,k, we may write

Ũ(f, g)(x) =
∫
R

∫
R

f̂(ξ)ĝ(η)e2πi(ξ+η)x
∞∑

k=1

Ψ̂1,k(ξ + η)Ψ̂2,k(η)Ψ̂3,k(ξ) dξdη.

Pairing with a function h we get

〈Ũ(f, g), h〉 =
∫
R

∫
R

∞∑
k=1

\Ψ1,k∗h(ξ + η)\Ψ2,k∗g(ξ)\Ψ3,k∗f(η) dξdη ,

But the above is equal to
∞∑

k=1

∫
R

(h∗Ψ1,k)(x) (g∗Ψ2,k)(x) (f ∗Ψ3,k)(x) dx ,

and this formula is entirely analogous to (5.2) except for the harmless complex bar. More-
over, the properties of the Ψj,k’s are similar to those of the Φj,k’s in section 5. Using the
same technique as in the proof of Lemma 5 we obtain the norm estimate

‖Ũ(f, g)‖r ≤ C‖f‖p‖g‖q
for all 1 < p, q, r <∞ with 1/p + 1/q = 1/r.



22 LOUKAS GRAFAKOS AND XIAOCHUN LI

It remains to prove the boundedness of
∑∞

µ=1 Vµ. To achieve this we use similar tech-
niques to those in section 6. For each k ≥ µ we let Gµ,k be the image of Dµ,k (of section 6)
under the rotation R. We tile up the plane into slanted rectangles of the form{

(ξ, η) :
√

2
32 2−µl ≤ ξ + η <

√
2

32 2−µ(l + 1),
√

2
32 2−µ+µ

2 m ≤ ξ <
√

2
32 2−µ+µ

2 (m + 1)
}

and among these we select the ones that intersect Gµ,µ. We call the set of these selected
slanted rectangles Fselect

µ . We subdivide the nonselected slanted rectangles into four slanted
rectangles of one-quarter of their area by halving both sides. Among these we select those
that intersect Gµ,µ+1 and we call this set of selected slanted rectangles Fselect

µ+1 . We similarly
subdivide the nonselected slanted rectangles and among them we select those that intersect
Gµ,µ+2. We call the set of these selected slanted rectangles Fselect

µ+1 . Continue this way by
induction. We now have a family of selected slanted rectangles

Qk,l,m =
{
(ξ, η) :

√
2

32 2−kl ≤ ξ + η <
√

2
32 2−k(l + 1),

√
2

32 2−k+µ
2 m ≤ ξ <

√
2

32 2−k+µ
2 (m + 1)

}
of dimensions 2−k−5+ 1

2 × 2−k−5+ 1
2
+µ

2 . Given such a Qk,l,m we set

Q′k,l,m = [
√

2
32 2−kl,

√
2

32 2−k(l + 1)]× [
√

2
32 2−k+µ

2 m,
√

2
32 2−k+µ

2 (m + 1)] .

As we did in the previous section, we find a smooth partition of unity adapted to these
Q′k,l,m and then we use the Fourier series method of Coifman and Meyer to write the
partition as a double sum of products of functions of the variables ξ + η and ξ. In view of
the fast decay of the coefficients of the sum at infinity, we only need to consider the (0, 0)
term of the expansion. This is the bilinear operator V ′µ defined by

∞∑
k=µ

∑
l,m such that
Qk,l,m∈Fselectk+µ

∫
R

∫
R

f̂(ξ)ĝ(η)e2πi(ξ+η)x[Ψ1,k,l(ξ + η)\Ψ3,k,m(ξ)dξ dη + Error ,(7.2)

where Ψ1,k,l and Ψ3,k,m are Schwartz functions (unrelated to Ψ1,k and Ψ3,k used earlier in
this section) which satisfy

supp[Ψ1,k,l ⊂ (1 + ε)[
√

2
32 2−kl,

√
2

32 2−k(l + 1)] ,

supp \Ψ3,k,l,m ⊂ (1 + ε)[
√

2
32 2−k+µ

2 m,
√

2
32 2−k+µ

2 (m + 1)] ,

and ∣∣∣ dβ

dζβ
[Ψ1,k,l(ζ)

∣∣∣ ≤ Cβ2kβ ,
∣∣∣ dβ

dξβ
\Ψ3,k,m(ξ)

∣∣∣ ≤ Cβ2(k−µ
2
)β ,(7.3)

for all β ≥ 0, and the function
∞∑

k=µ

∑
l,m

[Ψ1,k,l(ζ)\Ψ3,k,m(ξ)

is equal to 1 on the union of all the rectangles Q′k,l,m that do not lie near the boundary of
this union.

Let E
(2)
µ be the symbol of the error that appears in (7.2). The uniform boundedness (in

µ) of the operators with symbols E
(2)
µ is obtained in a way similar for those with symbols
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E
(1)
µ . One can easily see that the projections of the supports of E

(2)
µ on the ξ axis, η axis,

and the line ξ = η are contained in the sets Aµ, Bµ, and Cµ respectively, where

Aµ =[(1− (1 + 2−9)2−µ) cos(π
4 − π

8 (1− 2−9)2−
µ
2 ), cos(π

4 − π
8 (1 + 2−9)2

1
2
−µ

2 )]

Bµ =[(1− (1 + 2−9)2−µ) sin(π
4 − π

8 (1 + 2−9)2
1
2
−µ

2 ), sin(π
4 − π

8 (1− 2−9)2−
µ
2 )]

Cµ =[(1− (1 + 2−9)2−µ) cos(π
8 (1 + 2−9)2

1
2
−µ

2 ), cos(π
8 (1− 2−9)2−

µ
2 )] .

For µ large enough, the sets above are contained in the following sets respectively

[
√

2
2 (1 + 2−

µ
2
−10),

√
2

2 (1 + 2−
µ
2
+10)]

[
√

2
2 (1− 2−

µ
2
+10),

√
2

2 (1− 2−
µ
2
−10)]

[1− 2−µ+10, 1− 2−µ−10]

and these sets satisfy the hypotheses of Lemma 1 if taken modulo 100. The boundedness
of the operator with symbol

∑
µ E

(2)
µ is therefore a consequence of Lemma 1.

Geometric considerations give that if Qk,l,m intersects Gµ,k, then l must satisfy (6.2) and
m must lie between the number

2−
µ
2 l − 16√

2
2−

µ
2

√
2(2k − 1

2)2 − (
√

2
32 l)2(7.4)

and the number

2−
µ
2 (l + 1)− 16√

2
2−

µ
2

√
2(2k − 1)2 − (

√
2

32 (l + 1))2 − 1(7.5)

or between the numbers

2−
µ
2 (l + 1) + 16√

2
2−

µ
2

√
2(2k − 1)2 − (

√
2

32 (l + 1))2(7.6)

and the number

2−
µ
2 l + 16√

2
2−

µ
2

√
2(2k − 1

2)2 − (
√

2
32 l)2 − 1 .(7.7)

Observe that for a fixed k and l, the number of integers m that lie between (7.4) and (7.5)
or between (7.6) and (7.7) is at most 64. This means that once k and l are fixed, there are
only finitely many m’s such that Qk,l,m was selected.

We now let Ψ2,k,l,m be a Schwartz function whose Fourier transform is real-valued, is
equal to 1 on supp ([Ψ1,k,l)+(−supp (\Ψ3,k,m)), is supported in a small neighborhood of this
set, and satisfies the derivative estimate∣∣∣ dβ

dηβ
\Ψ2,k,l,m(η)

∣∣∣ ≤ Cβ2(k−µ
2
)β(7.8)

for all β ≥ 0. Because of the choice of this function we have that (7.2) is equal to
∞∑

k=µ

∑
l,m such that
Qk,l,m∈Fselectk+µ

∫
R

∫
R

f̂(ξ)ĝ(η)e2πi(ξ+η)x[Ψ1,k,l(ξ + η)\Ψ2,k,l,m(η)\Ψ3,k,m(ξ)dξ dη .(7.9)

Denote the bilinear operator in (7.9) by Ṽµ. Let (Ṽµ)∗1(h, g) be the bilinear operator defined
via the identity

〈Ṽµ(f, g), h〉 = 〈f, (Ṽµ)∗1(h, g)〉 , for all f, g, h.(7.10)
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It is easy to check that (Ṽµ)∗1(h, g)(x) is equal to
∞∑

k=µ

∑
l,m such that
Qk,l,m∈Fselectk+µ

∫
R

∫
R

ĥ(ξ)ĝ(η)[Ψ1,k,l(ξ) \̂Ψ2,k,l,m(η)\Ψ3,k,m(ξ + η)e2πi(ξ+η)xdξdη(7.11)

where F̃ (x) = F (−x) in the above identity and the bar denotes complex conjugation as
usually. We now observe that (Ṽµ)∗1(h, g) given in (7.11) is the same as T̃µ(h, g ), where T̃µ

is as in (6.6) when [Ψ1,k,l is replaced by [Φ1,k,l, \̂Ψ2,k,l,m is replaced by \Φ2,k,m, and \Ψ3,k,l,m

is replaced by \Φ3,k,l,m. The procedure used in section 6 to give uniform bounds for the
operators T̃µ can be also applied to give uniform bounds for the operators (Ṽµ)∗1. To
achieve this we need a slight variation of Lemma 6 in which the Φ’s are replaced by Ψ’s.
This can be easily obtained since the geometry of the selected cubes in this section for the
Vµ’s is essentially the same as the geometry of the selected cubes in section 6 for Tµ’s. The
details are left to the reader.

Using duality and identity (7.10) we can now obtain the uniform boundedness of the
Ṽµ’s in the specified range of exponents. Finally we have that the operators Vµ satisfy the
hypotheses of Lemma 1 which we use to obtain the boundedness of the sum

∑∞
µ=1 Vµ. This

concludes the boundedness of TD(2).

8. The boundedness of TD(4)

Recall that the symbol of the operator TD(4) is the function
∑

k≥1 b̂4
k which is supported

in the intersection of the sector 5π
8 (1−2−10) ≤ θ ≤ (1+2−10)7π

8 with the outside of the disc
of radius 1

2(1 + 2−9) centered at the origin. We decompose this set as a disjoint union of
annuli Hk for k ≥ 1, defined as follows

H1 =
{
(ξ, η) : 1− 1

2(1+2−9) ≤ |(ξ, η)| < 1− 2−2
}⋂ {

(ξ, η) : 5π
8 (1−2−10) ≤ |Argument(ξ, η)| < 7π

8 (1+2−10)
}

,

while for k ≥ 2

Hk =
{
(ξ, η) : 1− 2−k ≤ |(ξ, η)| < 1− 2−(k+1)

}⋂ {
(ξ, η) : 5π

8 (1−2−10) ≤ |Argument(ξ, η)| < 7π
8 (1+2−10)

}
.

We tile up the plane as the union of squares of size 2−6×2−6 and we let P1 be the set of all
such squares. Let Pselect

1 be the subset of P1 consisting of all squares that intersect H1. We
denote by P2 the set of all squares obtained by subdividing each rectangle in P1 \ Pselect

1

into four squares, each of size 2−7 × 2−7, by halving its sides. Let Pselect
2 be the subset of

P2 consisting of all squares that intersect H2. Next, we denote by P3 the set of all squares
obtained by subdividing each square in P2 \Pselect

2 into four squares, each of size 2−8×2−8,
by halving its sides. Continue this way by induction. Then we have “essentially covered”
each Hk by disjoint squares of size 2−k−5× 2−k−5 and the set of all such squares is denoted
by Pselect

k . Elements of Pselect
k will be denoted by Sk,l,m and they have the form

Sk,l,m = [2−k−5l, 2−k−5(l + 1)]× [2−k−5m, 2−k−5(m + 1)] .

Observe that we have used approximately 2k squares to cover Hk.
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We now make a few observations about the range of l and m among the selected squares
Sk,l,m. Geometric considerations give that for a fixed k ≥ 1, the index l has range

−1− 32 · (2k − 1
2) cos(π

8 ) ≤ l ≤ −32 · (2k − 1) cos(3π
8 )

while the index m has range

32 · 2k
√

(1− 2−k)2 − (2−kl
32 )2 − 1 ≤ m ≤ 32 · 2k

√
(1− 2−k−1)2 − (2−k(l+1)

32 )2 .

It follows that given k and l, there exist at most finitely many indices m (which depend on
k and l) such that Sk,l,m was selected.

As we did in section 6, we fix a smooth partition of unity adapted to the squares Sk,l,m.
Then we use the Fourier series method used earlier to transform this partition into a double
sum of products of functions in each variable ξ, η. The (0, 0) term of this series is the bilinear
operator V

(4)
µ whose symbol b̂4

k is
∞∑

k=1

∑
l,m such that
Sk,l,m∈Pselectk

[Θ1,k,l(ξ)\Θ2,k,m(η) +
∞∑

k=1

E
(4)
k (ξ, η) ,

where E
(4)
k (ξ, η) is the error of this approximation near the intersection of the lines θ = 5π

8

and θ = 7π
8 with the annulus 1 − 2−k ≤ |(ξ, η)| ≤ 1 − 2−k−1, and the Fourier trans-

forms of Schwartz functions Θ1,k,l, Θ2,k,m are supported in small neighborhoods of the
sets [2−k−5l, 2−k−5(l + 1)], [2−k−5m, 2−k−5(m + 1)] respectively, whose derivatives blow up
inverse proportionally to the length of their supports, such that the function

∞∑
k=1

∑
l,m such that
Sk,l,m∈Pselectk

[Θ1,k,l(ξ)\Θ2,k,m(η)

is equal to 1 on the union of all the selected squares Sk,l,m that do not meet the boundary
of the support of the function

∑
k≥1 b̂4

k.

Each E
(4)
k consists of a finite sum of smooth functions satisfying the hypotheses of Lemma

3. It follows that each E
(4)
k is the symbol of a bounded bilinear operator from Lp×Lq → Lr

for all 1 < p, q, r <∞ with 1/p+1/q = 1/r. Since the supports of E
(4)
k satisfy the hypotheses

of Lemma 1, it follows that the sum
∑∞

k=1 E
(4)
k is also the symbol of a bounded bilinear

operator from Lp1 × Lp2 → Lp, where p1, p2, p are as in Theorem 1.
We now introduce a third Schwartz function Θ3,k,l,m whose Fourier transform is equal to

1 on the set
[2−k−5l, 2−k−5(l+1)] + [2−k−5m, 2−k−5(m+1)]

and supported in a small neighborhood of this set, and whose derivatives satisfy the correct
size estimates.

The main term of the operator TD(4) is then a finite (in m) sum of terms of the form
∞∑

k=1

∑
l,m such that
Sk,l,m∈Pselectk

∫
R

∫
R

f̂(ξ)ĝ(η)e2πi(ξ+η)x[Θ1,k,l(ξ)\Θ2,k,m(η)\Θ3,k,l,m(ξ + η)dξ dη .

Boundedness for the sum above is a consequence of the work in [5], [9], provided Lemma
7 below is proved. See also [7] in which a similar model is treated. For simplicity in its
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statement, for every k and l we fix an m = m(k, l) (so that Sk,l,m was selected) and we
write Θ′1,k,l = Θ1,k,l, Θ′2,k,l = Θ2,k,m(k,l), and Θ′3,k,l = Θ3,k,l,m(k,l) in the lemma below.

Lemma 7. Let be Θ′1,k,l, Θ′2,k,l, and Θ′3,k,l be as above and let |k − k′| ≥ 100.

If supp[Θ′i,k,l $ supp\Θ′i,k′,l′ for some i ∈ {1, 2, 3}, then we have

dist
(
supp[Θ′j,k,l, supp \Θ

′
j,k′,l′

)
≈ |supp\Θ′i,k′,l′ |(8.1)

for all j ∈ {1, 2, 3} \ {i}.
The proof of this lemma is similar to that of Lemma 6 and is omitted. This model is

simpler than those discussed in the previous sections since this part of the disc implies
bounds for the bilinear Hilbert transforms along directions that stay away from the three
degenerate cases.

9. Final Remarks

A careful examination gives that the boundedness of the characteristic function of the
sector D(1) implies uniform bounds for the bilinear Hilbert transforms H1,α as α → 0.
Similarly the boundedness of the characteristic function of the sector D(3) implies implies
uniform bounds for the bilinear Hilbert transforms H1,α as α→∞. Also the boundedness
of the characteristic function of the sector D(2) implies implies uniform bounds for the
bilinear Hilbert transforms H1,α as α→ 1. These are the three degenerate directions that
appear in the study of the bilinear Hilbert transform. The boundedness of the characteristic
function of the sector D(4) implies bounds for the bilinear Hilbert transforms H1,α as α→ 1
which is not a degenerate direction. This explains why the model case studied in section 8
is much simpler than those in the previous sections. Also Lemma 7 is simpler than Lemma
6. The crucial and beautiful feature of the disc multiplier is that it captures all possible
directions that appear in the study of the bilinear Hilbert transforms uniformly.

We note that duality considerations imply that the characteristic functions of the ellipses

(ξ + η)2 + η2 < 1

ξ2 + (ξ + η)2 < 1

are also bounded multipliers for the range of exponents claimed in Theorem 1. The authors
know how to adapt the proof of Theorem 1 to replace the disc by the characteristic function
of any of the following ellipses

ξ2

a2
+

η2

b2
< 1 , a, b > 0 .

To avoid unnecessary complications in the presentation, only the case a = b = 1 was treated
in the article. The characteristic functions of certain other geometric figures have also been
studied by C. Muscalu [10]. It is an interesting open problem to find a general description of
geometric figures with smooth boundary in R2 whose characteristic functions are bounded
bilinear multipliers.
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