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Abstract Let p ∈ [1,∞) and X be a ball Banach function space on Rn with an absolutely
continuous norm for which the Hardy–Littlewood maximal operator is bounded on (X1/p)′,
the associate (dual) space of its 1/p-convexification. The purpose of this work is to establish
the fundamental formula

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p

∥∥∥∥∥∥∥
p

X

=
2π

n−1
2 Γ

(
p+1

2

)
p Γ

(
p+n

2

) ‖ |∇ f | ‖pX

for any f ∈ X, where Γ is the Gamma function. This identity coincides with the celebrated
classical formula of Bourgain, Brezis, and Mironescu [22], [12] when X = Lp(Rn), but it
is new for general X, in particular for X = Lq(Rn) (1 ≤ p < q < ∞). Translation invari-
ance plays a vital role in the proof of this formula in its aforementioned standard proofs
in [22], [12]. But translation invariance may not be valid for ball Banach function spaces, nor
is there an explicit expression for the associated norm. The authors overcome these obstacles
via a key weighted estimate, obtained using fine geometric properties of adjacent systems
of dyadic cubes, and Poincaré’s inequality. This estimate is then combined with harmonic
analysis tools, such as extrapolation and the boundedness of the Hardy–Littlewood maximal
operator, to derive the desired formula. Applications of this limiting identity yield new char-
acterizations of ball Banach Sobolev spaces. Explicit spaces X for which these results apply
are Morrey spaces, mixed-norm (resp., weighted or variable) Lebesgue spaces, Orlicz(-slice)
(or generalized amalgam) spaces, and Lorentz spaces.
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1 Introduction

For a given s ∈ (0, 1) and p ∈ [1,∞), the homogeneous fractional Sobolev space Ẇ s,p(Rn),
introduced by Gagliardo in [44], is defined as the set of all the measurable functions f on Rn for
which the semi-norm

‖ f ‖Ẇ s,p(Rn) :=
[∫
Rn

∫
Rn

| f (x) − f (y)|p

|x − y|n+sp dx dy
] 1

p

(1.1)

is finite. The spaces Ẇ s,p(Rn) measure smoothness in an essential way and play fundamental
roles in harmonic analysis and partial differential equations; for instance we refer to [14, 15, 20]
for recent applications in Gagliardo–Nirenberg inequalities, to [75, 81, 17, 18, 85, 39, 34] for
applications in the theory of Sobolev spaces, to [48, 41] for applications in the theory of Lebesgue
and Besov–Sobolev spaces, and to [74, 24, 25, 77] for applications in partial differential equations.

We denote the gradient (in the sense of distributions) of a weakly differentiable function f on
Rn by ∇ f := (∂1 f , . . . , ∂n f ) and, for any j ∈ {1, . . . , n}, ∂ j f denotes the j-th weak derivative of f ,
namely, for any φ ∈ C∞c (Rn) (the set of all infinitely differentiable functions with compact support),∫

Rn
f (x)∂ jφ(x) dx = −

∫
Rn
∂ j f (x)φ(x) dx.

A well-known deficiency of the Gagliardo semi-norm in (1.1) is that ‖ f ‖Ẇ s,p(Rn) does not converge
to the homogeneous Sobolev semi-norm ‖ f ‖Ẇ1,p(Rn) := ‖ |∇ f | ‖Lp(Rn) when s → 1− (by s → 1−

we mean s ∈ (0, 1) and s → 1). Indeed, if f is a non-constant measurable function on Rn, then
‖ f ‖Ẇ s,p(Rn) → ∞ as s → 1−; see [12, 21, 22]. This ‘defect’ was nicely amended by Bourgain,
Brezis, and Mironescu in their fundamental work [22] on this topic. On general smooth and
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bounded domains Ω, the idea in [22] was to recover ‖ |∇ f | ‖Lp(Ω) as the limit of the expressions
(1 − s)‖ f ‖p

Ẇ s,p(Ω)
as s → 1−. Later, Brezis [12] extended this formula to the entire Rn. Today

the following identity is referred to as the Bourgain–Brezis–Mironescu (BBM) formula on Rn:
precisely, for any p ∈ (1,∞) and any f ∈ Ẇ1,p(Rn) one has

lim
s→1−

(1 − s)
∫
Rn

∫
Rn

| f (x) − f (y)|p

|x − y|n+sp dy dx =
K(p, n)

p
‖ |∇ f | ‖pLp(Rn) , (1.2)

where

K(p, n) :=
∫
Sn−1
|ξ · e|p dσ(ξ) =

2π
n−1

2 Γ
(

p+1
2

)
Γ
(

p+n
2

) (1.3)

with e being some unit vector in Rn and dσ(ξ) the surface Lebesgue measure on the unit sphere
Sn−1 of Rn. The fact that the constant K(p, n) is independent of the choice of e ∈ Sn−1 can be
seen by changing variables via an orthogonal transformation of the sphere. The precise value of
the constant can be derived by the identity in Appendix D3 in [47]. This is done at the end of the
paper.

We refer to [11] for applications of BBM formula on Triebel–Lizorkin spaces, to [23] concern-
ing limiting embeddings of fractional Sobolev spaces, to [49, 72] on metric measure spaces, and
to [35, 100, 76, 86, 82, 70, 40] concerning other applications in the theory of Sobolev spaces.

Next we discuss a few ideas from the proof of (1.2) in [12]. In view of the fact that the set of
twice continuously differentiable functions with compact support, C2

c(Rn), is dense in W1,p(Rn), it
suffices to first prove (1.2) for any f ∈ C2

c(Rn) and then extend it to W1,p(Rn). Here and thereafter,
for any given p ∈ [1,∞), the inhomogeneous Sobolev space W1,p(Rn) is defined to be the set of all
the measurable functions f on Rn for which the following norm is finite

‖ f ‖W1,p(Rn) := ‖ f ‖Lp(Rn) + ‖ |∇ f | ‖Lp(Rn) .

Since the norm of W1,p(Rn) has an explicit expression, Brezis in [12] proved the validity of the
BBM formula for C2

c(Rn) via a change of variables and Fubini’s theorem. Then using a known
classical characterization of W1,p(Rn) (see [13, Proposition 9.3]), whose proof strongly depends
on the translation invariance of the Lebesgue measure, one can extend the BBM formula from
C2

c(Rn) to W1,p(Rn). Thus, both translation invariance and the explicit expression of the Lp(Rn)
norm play a vital role in the proof of the BBM formula (1.2) in [12].

Recently, Brezis, Van Schaftingen, and Yung [19] discovered an alternative way to amend the
aforementioned continuity deficiency of the norm ‖ · ‖Ẇ s,p(Rn) in (1.1) as s→ 1−. They showed that
replacing the Lp(Rn × Rn) norm in (1.1) by Lp,∞(Rn × Rn) (the weak Lp quasi-norm) produces an
expression equivalent to ‖ |∇ f | ‖Lp(Rn) when s = 1. Later, Dai et al. [33] extended the result in [19]
to ball Banach function spaces (Definition 2.1). Given these recent advances, it is quite natural to
ask whether or not the BBM formula holds for general ball Banach function spaces. In this article
we precisely answer this question in a positive way.

Ball (quasi-)Banach function spaces were introduced by Sawano et al. [93] in an attempt to
unify the study of several important function spaces. In particular, ball (quasi-)Banach function
spaces include Morrey spaces, mixed-norm Lebesgue spaces, weighted Lebesgue spaces, vari-
able Lebesgue spaces, Orlicz spaces, Orlicz-slice spaces, and Lorentz spaces (see, respectively,
Subsections 5.1 through 5.7 below for definitions and historical notes). Topics related to ball
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(quasi-)Banach function spaces can be found in [26, 90, 93, 105, 106] (concerning Hardy spaces
associated with them), in [51, 101, 107] (on the boundedness of operators between them), and in
[55, 59, 60, 98, 102] (for further applications).

As a somewhat surprising consequence of our work, the following BBM formula holds: for any
given q ∈ (1,∞) and p ∈ [1, q], and for any f ∈ Ẇ1,q(Rn),

lim
s→1−

(1 − s)


∫
Rn

[∫
Rn

| f (x) − f (y)|p

|x − y|n+sp dy
] q

p

dx


p
q

=
K(p, n)

p
‖ |∇ f | ‖pLq(Rn) (1.4)

with K(p, n) as in (1.3). So the appearance of the mixed norm on the left does not alter the limiting
behavior of the expression as s→ 1−. In the case of q = p, (1.4) just reduces to (1.2).

In this article we establish the following analogue of (1.2) for a given ball Banach function
space X that satisfies some mild additional hypotheses (see Theorems 4.12): given p ∈ [1,∞) and
|∇ f | ∈ X we have

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

=
K(p, n)

p
‖ |∇ f | ‖pX . (1.5)

Formula (1.5) yields asymptotics for the fractional Sobolev-type semi-norm involving differ-
ences of the function f as s → 1−. Finding an appropriate way to study asymptotics and/or
to characterize functions in terms of their finite differences is a notoriously difficult problem in
approximation theory, even for certain simple weighted Lebesgue spaces in one dimension (see
[66, 73] and the references therein). A major difficulty arises from the fact that the difference
operators ∆h f := f (· + h) − f (·) for h ∈ Rn may be unbounded on weighted Lebesgue spaces.

The main contribution of this work in proving (1.5) is to overcome the difficulties caused by
the deficiency of the explicit expression and the translation invariance of the norm of X; both of
these are quite crucial in the proof of the BBM formula on Lp(Rn). We bypass the issue of the
deficiency of the explicit expression of the norm of X by exploiting the local doubling property
of X (Definition 2.10); see Theorem 2.13. Secondly we extend the BBM formula to the entire
ball Banach Sobolev space (Theorem 3.4), via extrapolation [31] and the boundedness of the
Hardy–Littlewood maximal operator. To achieve this goal we establish an extension lemma on
general ball Banach function spaces (Lemma 3.34) by first obtaining a key estimate on weighted
Lebesgue spaces equipped with Muckenhoupt weights (Lemma 3.23). Note that our expression
in (3.12) is no longer the integral

∫
Rn

∫
Rn · · · dx dy, but the integral

∫
Rn

[∫
Rn · · · dy

]
ω(x) dx, which

is not symmetric with respect to x and y. This causes additional technical difficulties in the proof
of this weighted estimate. Indeed, the proof of Lemma 3.23 is fairly nontrivial because the proof
in the unweighted case in [12] heavily depends on the translation invariance of the Lp(Rn) norm,
which seems to be inapplicable in the weighted case here. To overcome this obstacle, we make
full use of fine geometric properties of systems of adjacent dyadic cubes in Rn (see, for instance,
[69, Section 2.2]) and appeal to the Poincaré inequality. The main result of this article is precisely
stated in Theorem 3.36.
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This article is organized as follows: Section 2 is devoted to the proof of Theorem 2.7 which
provides a special case of our main result for C2

c(Rn) functions. This section begins with pre-
liminaries regarding ball Banach function spaces. Then we introduce Sobolev spaces associated
with ball Banach function spaces by defining a new Sobolev-type space W1,X(Rn), called the ball
Banach Sobolev space (see Definition 2.6). In this section, we also introduce the concept of the lo-
cally β-doubling condition (see Definition 2.10) to overcome the difficulty caused by the deficiency
of the explicit expression of the norm of X and show the sufficiency of the locally β-doubling con-
dition, namely, Lemma 2.18. Finally, we obtain the BBM formula on ball Banach function spaces
for C2

c(Rn) functions.
The purpose of Section 3 is to generalize the BBM formula (1.2) to ball Banach function spaces;

this result is contained in Theorem 3.4. To achieve this, we first prove that C∞c (Rn) is dense in
W1,X(Rn) under some mild additional hypotheses on X (see Corollary 3.19). Thus, to prove The-
orem 3.4, it is sufficient to establish the key estimate (3.12) on weighted Lebesgue spaces (see
Lemma 3.23), which characterizes the relation between the Ẇ s,p

ω (Rn) semi-norm and the Ẇ1,p
ω (Rn)

semi-norm, and which plays an essential role in the process of extending (3.2) from C2
c(Rn) func-

tions to W1,X(Rn) functions. Finally, we prove Theorem 3.4 via the approach of the extrapolation
which connects ball Banach function spaces and weighted Lebesgue spaces.

In Section 4, borrowing some ideas from [22], we establish the lower estimate of (1.5) (see
Theorem 4.1). Moreover, the upper estimate of (1.5) comes from the BBM formula in ball Banach
function spaces, namely, Theorem 3.4. Combining these two estimates, we further establish the
characterization of the ball Banach Sobolev space W1,X(Rn) (see Theorem 4.8).

In Section 5, we apply the results obtained in Sections 2, 3, and 4, respectively, to X := Mα
r (Rn)

(the Morrey space), X := Lp(·)(Rn) (the variable Lebesgue space), X := L~p(Rn) (the mixed-norm
Lebesgue space), X := Lp

ω(Rn) (the weighted Lebesgue space), X := LΦ(Rn) (the Orlicz space),
X := (Er

Φ
)t(Rn) (the Orlicz-slice space or the generalized amalgam space), and X := Lq,r(Rn) (the

Lorentz space).
We outline the basics of our notation. We let N := {1, 2, . . .} and Z+ := N ∪ {0}. We denote by

Ck
c(Rn) and C∞c (Rn) the space of all k-order (k ∈ N) continuously differentiable functions on Rn

with compact support, and the space of all infinitely differentiable functions on Rn with compact
support, respectively. The space of continuous functions on Rn with compact support is denoted by
Cc(Rn). We use the symbol M (Rn) for the space of all measurable functions on Rn. In addition, we
denote by L1

loc (0,∞) [resp., L1
loc (Rn)] the set of all locally integrable functions on (0,∞) (resp.,

on Rn). For any function f on Rn, we let supp ( f ) := {x ∈ Rn : f (x) , 0}. The letter C will
represent a positive constant which is independent of the main parameters, but may vary from line
to line. We also use C(α,β,...) to indicate a positive constant depending on the underlying parameters
α, β, . . . . The symbol f . g means that f ≤ Cg. If f . g and g . f , we then write f ∼ g. If f ≤ Cg
and g = h or g ≤ h, we then write f . g ∼ h or f . g . h, rather than f . g = h or f . g ≤ h. We
use 0 to denote the origin of Rn. If E is a subset of Rn, we denote by 1E its characteristic function
and, for any bounded measurable set E ⊂ Rn with |E| , 0, and f ∈ L1

loc (Rn), let

−

∫
E

f (x) dx :=
1
|E|

∫
E

f (x) dx =: fE .

The Lebesgue measure of a measurable set E ⊂ Rn is indicated by |E|. In addition, we denote by σ
the surface Lebesgue measure on the unit sphere Sn−1 of Rn. A cube in this article will always have
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its edges parallel to the coordinate axes, and need not be open or closed. We use `(Q) to denote the
side length of a cube Q of Rn. For any x ∈ Rn and r ∈ (0,∞),we let B(x, r) := {y ∈ Rn : |x−y| < r}
and

B := {B(x, r) : x ∈ Rn and r ∈ (0,∞)}. (1.6)

For any α ∈ (0,∞) and any ball B := B(xB, rB) in Rn, with xB ∈ R
n and rB ∈ (0,∞), let αB :=

B(xB, αrB). Finally, for any q ∈ [1,∞], we denote by q′ its conjugate exponent, which satisfies
1/q + 1/q′ = 1.

2 Asymptotics of C2
c(Rn) functions in terms of ball Banach Sobolev

norms

In this section, we prove identity (1.5) on ball Banach function spaces for functions f ∈ C2
c(Rn).

This space is an important subclass of functions for which Theorem 3.4 is valid.
We review the basics related to ball quasi-Banach function spaces as introduced in [93].

Definition 2.1. A quasi-Banach space X of complex-valued functions defined on Rn, equipped
with a quasi-norm ‖ · ‖X [which is defined on the entire M (Rn)], is called a ball quasi-Banach
function space (in short, BQBF space) if it satisfies

(i) f ∈M (Rn) and ‖ f ‖X = 0 imply that f = 0 almost everywhere;

(ii) f , g ∈M (Rn) and |g| ≤ | f | almost everywhere imply that ‖g‖X ≤ ‖ f ‖X;

(iii) { fm}m∈N ⊂ M (Rn), f ∈ M (Rn), and 0 ≤ fm ↑ f almost everywhere as m → ∞ imply that
‖ fm‖X ↑ ‖ f ‖X as m→ ∞;

(iv) B ∈ B implies that 1B ∈ X, where B is as in (1.6).

Moreover, a ball quasi-Banach function space X is called a ball Banach function space (in short,
BBF space) if the quasi-norm of X satisfies the triangle inequality: for any f , g ∈ X,

‖ f + g‖X ≤ ‖ f ‖X + ‖g‖X ,

and that, for any B ∈ B, there exists a positive constant C(B) so that for any f ∈ X we have∫
B
| f (x)| dx ≤ C(B)‖ f ‖X .

Remark 2.2. (i) Let X be a ball quasi-Banach function space. By [103, Remark 2.6(i)] (see
also [104]), we conclude that, for any f ∈ M (Rn), ‖ f ‖X = 0 if and only if f = 0 almost
everywhere.

(ii) As was mentioned in [103, Remark 2.6(ii)] (see also [104]), we obtain an equivalent for-
mulation of Definition 2.1 via replacing any ball B therein by any bounded measurable set
E.
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(iii) We point out that, in Definition 2.1(iv), if we replace the balls B by arbitrary measurable
sets E with |E| < ∞, we obtain the definition of (quasi-)Banach function spaces which were
originally introduced in [10, Definition 1.1 and 1.3]. Thus, a (quasi-)Banach function space
is also a ball (quasi-)Banach function space.

(iv) By [36, Theorem 2], we conclude that both (ii) and (iii) of Definition 2.1 imply that any ball
quasi-Banach function space is complete.

(v) From both (iv) and (ii) of Definition 2.1, it is easy to deduce that Cc(Rn) ⊂ X.

We now introduce the concept of the approximation of the identity of radial type on Rn. In the
sequel, ε → 0+ means ε ∈ (0,∞) and ε → 0.

Definition 2.3. A family {ρε}ε∈(0,∞) of locally integrable functions on (0,∞) is called an approx-
imation of the identity of radial type on Rn (for short, a radial-ATI) if, for any ε ∈ (0,∞), ρε is
nonnegative, it satisfies ∫ ∞

0
ρε(r)rn−1 dr = 1, (2.1)

and, for any δ ∈ (0,∞),

lim
ε→0+

∫ ∞

δ
ρε(r)rn−1 dr = 0. (2.2)

Moreover, an approximation of the identity of radial type on Rn, {ρε}ε∈(0,∞), is called a decreasing
approximation of the identity of radial type on Rn (for short, a decreasing-radial-ATI) if, for any
given ε ∈ (0,∞), ρε is decreasing on (0,∞).

For the convenience of the reader, we present two decreasing-radial-ATIs here. We refer the
reader to [12, 22] for more examples of (decreasing-)radial-ATIs. These two examples are as
follows, which can be found, for instance, in [47, Example 1.2.17] or [95, p. 111].

Example 2.4. Let φ be a nonnegative bounded decreasing radial integrable function on Rn such
that supp (φ) ⊂ B(0, 1) and

∫
Rn φ(x) dx = 1, and let

ρε(r) :=
1

σ(Sn−1)
ε−nφ(ε−1r)

for any r ∈ (0,∞) and for any given ε ∈ (0,∞). Then {ρε}ε∈(0,∞) is a decreasing-radial-ATI.

Example 2.5. For any given ε ∈ (0,∞) and for any r ∈ (0,∞), let

ρε(r) :=
1

σ(Sn−1)
1

(4πε)n/2 e−r2/4ε .

Then {ρε}ε∈(0,∞) is a decreasing-radial-ATI.

Next, we extend the concept of Sobolev spaces to ball Banach function spaces.

Definition 2.6. Let X be a ball Banach function space. The ball Banach Sobolev space W1,X(Rn)
is defined to be the set of all the measurable functions f on Rn such that

‖ f ‖W1,X(Rn) := ‖ f ‖X + ‖ |∇ f | ‖X < ∞,

where ∇ f := (∂1 f , . . . , ∂n f ) is the distributional gradient of f .
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The main result of this section is the following theorem, which provides a generalization of the
BBM formula in C2

c(Rn); this plays a vital role in the proof of Theorem 3.4 below.

Theorem 2.7. Let X be a ball Banach function space, p ∈ [1,∞), and {ρε}ε∈(0,∞) be a radial-ATI.
Assume that X and {ρε} satisfy that, for any given M ∈ (0,∞), there exists an N ∈ (0,∞) such that

lim
ε→0+

∥∥∥∥∥∥∥
[∫

B(0,M)

ρε(| · −y|)
| · −y|p

dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X

= 0. (2.3)

Then, for any f ∈ C2
c(Rn),

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

= K(p, n) ‖ |∇ f | ‖pX , (2.4)

where K(p, n) is as in (1.3).

Proof. We first focus our attention to proving that

lim sup
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

≤ K(p, n) ‖ |∇ f | ‖pX . (2.5)

Since f ∈ C2
c(Rn), it follows that there exists a ball B(0,M) with M ∈ (0,∞) such that supp ( f ) is

contained in B(0,M). Let N ∈ (2M + 1,∞) and δ ∈ (0, 1). Then

Jε :=

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

≤ J(1)
ε (δ) + J(2)

ε (δ,N) + J(3)
ε (N), (2.6)

where

J(1)
ε (δ) :=

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|<δ}

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

,

J(2)
ε (δ,N) :=

∥∥∥∥∥∥∥
[∫
{y∈Rn: δ≤|·−y|<2N}

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

,

and

J(3)
ε (N) :=

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥2N}

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

.

We first consider J(3)
ε (N). Observe that, for any x, y ∈ [B(0,M)]{, | f (x)− f (y)| = 0. Moreover, for

any x ∈ Rn satisfying |x| ∈ [M,N), we have B(0,M) ∩ {y ∈ Rn : |x − y| ≥ 2N} = ∅. From these
facts and (2.1), we deduce that, for any given N ∈ (2M + 1,∞) and for any ε ∈ (0,∞) we have

J(3)
ε (N)
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≤

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥2N}

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
X

+

∥∥∥∥∥∥∥
[∫

B(0,M)∩{y∈Rn: |·−y|≥2N}

| f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p

1B(0,N)\B(0,M)

∥∥∥∥∥∥∥
X

+

∥∥∥∥∥∥∥
[∫

B(0,M)

| f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X

. N−1‖ f ‖L∞(Rn)‖1B(0,M)‖X

+ ‖ f ‖L∞(Rn)

∥∥∥∥∥∥∥
[∫

B(0,M)

ρε(| · −y|)
| · −y|p

dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X

∼ N−1 +

∥∥∥∥∥∥∥
[∫

B(0,M)

ρε(| · −y|)
| · −y|p

dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X

.

By this and (2.3), we conclude that, for any given sufficiently large N ∈ (2M + 1,∞),

lim sup
ε→0+

J(3)
ε (N) . N−1.

This further implies that, for any given ζ ∈ (0,∞), there exists an N ∈ (2M + 1,∞) such that

lim sup
ε→0+

J(3)
ε (N) < ζ. (2.7)

Then we fix an N ∈ (2M + 1,∞) such that (2.7) holds and we estimate J(2)
ε (δ,N). Observe that,

for any x ∈ [B(0, 2N + M)]{ and y ∈ Rn satisfying |x − y| ∈ [δ, 2N), f (x) = f (y) = 0 from
the support condition of f . Moreover, since f ∈ C2

c(Rn), from the mean value theorem and the
Cauchy–Schwarz inequality, it follows that, for any x, y ∈ Rn,

| f (x) − f (y)| ≤ ‖ |∇ f | ‖L∞(Rn) |x − y|.

Using these and (2.2), we conclude that, for any δ ∈ (0, 1),

J(2)
ε (δ,N)

=

∥∥∥∥∥∥∥
[∫
{y∈Rn: δ≤|·−y|<2N}

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p

1B(0,2N+M)

∥∥∥∥∥∥∥
X

≤ ‖ |∇ f | ‖L∞(Rn)

∥∥∥∥∥∥∥
[∫
{y∈Rn: δ≤|·−y|<2N}

ρε(| · −y|) dy
] 1

p

1B(0,2N+M)

∥∥∥∥∥∥∥
X

≤ ‖ |∇ f | ‖L∞(Rn) ‖1B(0,2N+M)‖X

[
σ(Sn−1)

∫ ∞

δ
ρε(r)rn−1 dr

] 1
p

→ 0

as ε → 0+, which implies that
lim sup
ε→0+

J(2)
ε (δ,N) = 0. (2.8)
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Finally, we deal with term J(1)
ε (δ). Notice that, for any x, y ∈ Rn, if | f (x)− f (y)| , 0 and |x−y| < δ,

then x ∈ B(0,M + 1). By this, together with Minkowski’s inequality and the assumption that X is
a BBF space, we obtain, for any δ ∈ (0, 1) and ε ∈ (0,∞),

J(1)
ε (δ) =

∥∥∥∥∥∥∥∥
[∫
Sn−1

∫ δ

0

| f (· + rξ) − f (·)|p

rp ρε(r)rn−1 dr dσ(ξ)
] 1

p

1B(0,M+1)

∥∥∥∥∥∥∥∥
X

≤ J(1,1)
ε (δ) + J(1,2)

ε (δ), (2.9)

where

J(1,1)
ε (δ) :=

∥∥∥∥∥∥∥∥
[∫
Sn−1

∫ δ

0
|ξ · ∇ f (·)|pρε(r)rn−1 dr dσ(ξ)

] 1
p

1B(0,M+1)

∥∥∥∥∥∥∥∥
X

and

J(1,2)
ε (δ) : =

∥∥∥∥∥∥
[∫
Sn−1

∫ δ

0

∣∣∣∣∣ f (· + rξ) − f (·)
r

− ξ · ∇ f (·)
∣∣∣∣∣p

×ρε(r)rn−1 dr dσ(ξ)
] 1

p
1B(0,M+1)

∥∥∥∥∥∥
X
.

Since f ∈ C2
c(Rn), from Taylor’s remainder theorem, it follows that, for any x := (x1, . . . , xn) ∈ Rn,

r ∈ (0, δ], and ξ := (ξ1, . . . , ξn) ∈ Sn−1, there exists a θ ∈ (0, 1) such that

f (x + rξ) = f (x) + rξ · ∇ f (x) + r2
n∑

i, j=1

∂2 f (x + θrξ)
2∂xi∂x j

ξiξ j.

This, combined with the Cauchy–Schwarz inequality, implies that there exists a positive constant
C( f ), depending only on f , such that, for any x ∈ Rn, r ∈ (0, δ], and ξ ∈ Sn−1,∣∣∣∣∣ f (x + rξ) − f (x)

r
− ξ · ∇ f (x)

∣∣∣∣∣ ≤ n2C( f )r ≤ n2C( f )δ.

Using this and (2.1), we conclude that, for any given δ ∈ (0, 1) and for any ε ∈ (0,∞),

J(1,2)
ε (δ) ≤ n2C( f )δ

∥∥∥1B(0,M+1)
∥∥∥

X

[
σ(Sn−1)

∫ δ

0
ρε(r)rn−1 dr

] 1
p

≤ n2C( f )δ
∥∥∥1B(0,M+1)

∥∥∥
X [σ(Sn−1)]1/p,

which further implies that
J(1,2)
ε (δ) ≤ C( f ,n)δ, (2.10)

where C( f ,n) is a positive constant depending only on both f and n. For J(1,1)
ε (δ), by the assumption

that supp ( f ) ⊂ B(0,M) and (2.1), we have, for any ε ∈ (0,∞),

J(1,1)
ε (δ) =

[
K(p, n)

∫ δ

0
ρε(r)rn−1 dr

] 1
p ∥∥∥ |∇ f |1B(0,M+1)

∥∥∥
X
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=

[
K(p, n)

∫ δ

0
ρε(r)rn−1 dr

] 1
p

‖ |∇ f | ‖X

≤ [K(p, n)]1/p ‖ |∇ f | ‖X

with K(p, n) as in (1.3). This, together with (2.6) and (2.9), yields that, for any ε ∈ (0,∞),

Jε ≤ [K(p, n)]1/p ‖ |∇ f | ‖X + J(1,2)
ε (δ) + J(2)

ε (δ,N) + J(3)
ε (N).

Combining this inequality with (2.7), (2.8), and (2.10), it follows that, for any ζ ∈ (0,∞) and
δ ∈ (0, 1) one has

lim sup
ε→0+

Jε ≤ [K(p, n)]1/p ‖ |∇ f | ‖X + C( f ,n)δ + ζ.

By this and the arbitrariness of both δ and ζ, we finally obtain

lim sup
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

≤ K(p, n) ‖ |∇ f | ‖pX ,

which implies the validity of (2.5).
Based on (2.5), to prove (2.4), it suffices to show that

K(p, n) ‖ |∇ f | ‖pX ≤ lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

. (2.11)

Since f ∈ C2
c(Rn), from the Taylor expansion and the mean value theorem, it follows that there

exists a positive constant L such that, for any x, h ∈ Rn,

| f (x + h) − f (x) − h · ∇ f (x)| ≤ L|h|2.

Using this, we find that, for any x, h ∈ Rn,

|h · ∇ f (x)| ≤ | f (x + h) − f (x)| + L|h|2. (2.12)

Recall that, for any θ ∈ (0, 1), there is a positive constant Cθ such that, for any a, b ∈ (0,∞),

(a + b)p ≤ (1 + θ)ap + Cθbp

(see, for instance, [12, p. 699]). By this and (2.12), we conclude that, for any x, h ∈ Rn, and
θ ∈ (0, 1),

|h · ∇ f (x)|p ≤ (1 + θ)| f (x + h) − f (x)|p + CθLp|h|2p,

which further implies that∥∥∥∥∥∥∥
[∫

B(0,1)

|h · ∇ f (·)|p

|h|p
ρε(|h|) dh

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
X

≤ (1 + θ)1/p

∥∥∥∥∥∥∥
[∫

B(0,1)

| f (· + h) − f (·)|p

|h|p
ρε(|h|) dh

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
X
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+ (CθLp)1/p
[∫

B(0,1)
|h|pρε(|h|) dh

] 1
p ∥∥∥1B(0,M)

∥∥∥
X . (2.13)

Observe that, for any x ∈ Rn,∫
B(0,1)

|h · ∇ f (x)|p

|h|p
ρε(|h|) dh = K(p, n)|∇ f (x)|p

∫ 1

0
ρε(r)rn−1dr

and, by (2.1) and (2.2), we conclude that

lim
ε→0+

∫
B(0,1)

|h|pρε(|h|) dh = 0

(see, for instance, [12, p. 700]). Using these, the assumption that supp ( f ) ⊂ B(0,M), (2.1), (2.2),
and (2.13), we conclude that, for any given θ ∈ (0, 1),

K(p, n) ‖ |∇ f | ‖pX

= K(p, n)
∥∥∥ |∇ f |1B(0,M)

∥∥∥p
X lim inf

ε→0+

∫ 1

0
ρε(r)rn−1dr

= lim inf
ε→0+

∥∥∥∥∥∥∥∥
[
K(p, n)|∇ f |

∫ 1

0
ρε(r)rn−1dr

] 1
p

1B(0,M)

∥∥∥∥∥∥∥∥
p

X

= lim inf
ε→0+

∥∥∥∥∥∥∥
[∫

B(0,1)

|h · ∇ f (·)|p

|h|p
ρε(|h|) dh

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
p

X

≤ (1 + θ) lim inf
ε→0+

∥∥∥∥∥∥∥
[∫

B(0,1)

| f (· + h) − f (·)|p

|h|p
ρε(|h|) dh

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
p

X

.

From this, we deduce that

K(p, n) ‖ |∇ f | ‖pX

≤ lim inf
ε→0+

∥∥∥∥∥∥∥
[∫

B(0,1)

| f (· + h) − f (·)|p

|h|p
ρε(|h|) dh

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
p

X

≤ lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≤1}

| f (·) − f (y)|p

| · −y|p
ρε(|h|) dh

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
p

X

≤ lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(|h|) dh

] 1
p

1B(0,M)

∥∥∥∥∥∥∥
p

X

.

This implies that (2.11) holds and then finishes the proof of Theorem 2.7. �

Now, we compare the results of Theorem 2.7 with the classical BBM formula in [12, Theorems
2 and 3].
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Remark 2.8. If X := Lp(Rn) and {ρε}ε∈(0,∞) is a radial-ATI, then (2.4) is valid. Indeed, for any
given M ∈ (0,∞), let N ∈ (2M + 1,∞). By some simple calculations, we obtain

lim
ε→0+

∥∥∥∥∥∥∥
[∫

B(0,M)

ρε(| · −y|)
| · −y|p

dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
p

Lp(Rn)

≤ lim
ε→0+

∫
B(0,M)

∫
Rn

ρε(|h|)
|h|p

1Rn\B(0,N/2)(h) dh dy

. lim
ε→0+

∫ ∞

N/2
ρε(r)rn−1 dr = 0.

In this case, Theorem 2.7 is just [12, Theorems 2 and 3] restricted to f ∈ C2
c(Rn).

Definition 2.9. [93, Definition 2.6] Assume that X is a ball quasi-Banach function space and let
p ∈ (0,∞). The p-convexification of X is defined as the space Xp := { f ∈ M (Rn) : | f |p ∈ X}
equipped with the quasi-norm ‖ f ‖Xp := ‖ | f |p‖1/p

X .

For instance the 1/p-convexification of Lp(Rn) is L1(Rn) and of weak Lp(Rn) is weak L1(Rn).
We now introduce the following locally β-doubling concept of ball quasi-Banach function spaces.

Definition 2.10. Let X be a ball quasi-Banach function space and β ∈ (0,∞). Then X is said to
be locally β-doubling if there exists a positive constant C such that, for any B := B(0, r) ∈ B with
r ∈ (0,∞) and α ∈ [1,∞),

‖1αB‖X ≤ Cαβ ‖1B‖X .

The following proposition is a direct conclusion of both Definitions 2.9 and 2.10.

Proposition 2.11. Let X be a ball quasi-Banach function space, β ∈ (0,∞), and p ∈ (0,∞). Then
X is locally β-doubling if and only if Xp is locally β/p-doubling.

Proof. From the definition of Xp, we deduce that, for any B := B(0, r) ∈ B with r ∈ (0,∞), and
for any α ∈ [1,∞),

‖1αB‖Xp = ‖1αB‖
1/p
X . αβ/p‖1B‖

1/p
X ∼ αβ/p ‖1B‖Xp

if and only if
‖1αB‖X = ‖1αB‖

p
Xp . α

β ‖1B‖
p
Xp ∼ α

β ‖1B‖X .

This finishes the proof of Proposition 2.11. �

The following lemma shows the sufficiency of the condition (2.3) in Theorem 2.7.

Lemma 2.12. Let X be a ball Banach function space, p ∈ [1,∞), and {ρε}ε∈(0,∞) be a decreasing-
radial-ATI. Assume that X is locally β-doubling with β ∈ (0, 1 + n/p). Then given M ∈ (0,∞)
there exists an N ∈ (0,∞) such that (2.3) is valid.

Proof. Given M > 0 we pick N ∈ (2M + 1,∞). Observe that, for any x, y ∈ Rn satisfying
|x| ∈ [N,∞) and |y| ∈ [0,M), we must have |x − y| > |x|/2. Using this fact and the assumption that
ρε is decreasing on (0,∞) for any ε ∈ (0,∞), we conclude that, for any ε ∈ (0,∞),∥∥∥∥∥∥∥

[∫
B(0,M)

1
| · −y|p

ρε(| · −y|) dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X
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.

∥∥∥∥∥∥ [ρε(| · |/2)]1/p

| · |
1Rn\B(0,N)

∥∥∥∥∥∥
X
.

Using this estimate, the assumption that X is locally β-doubling when β ∈ (0, 1 + n/p), that ρε is
decreasing on (0,∞) for any ε ∈ (0,∞), Hölder’s inequality for series, and (2.2), we deduce that∥∥∥∥∥∥∥

[∫
B(0,M)

1
| · −y|p

ρε(| · −y|) dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X

.
∞∑
j=1

∥∥∥∥∥∥ [ρε(| · |/2)]1/p

| · |
1B(0,2 jN)\B(0,2 j−1N)

∥∥∥∥∥∥
X

.
∞∑
j=1

(2 jN)−1[ρε(2 j−2N)]1/p
∥∥∥1B(0,2 jN)

∥∥∥
X

.
∞∑
j=1

(2 jN)β−1[ρε(2 j−2N)]1/p
∥∥∥1B(0,1)

∥∥∥
X

.

 ∞∑
j=1

(2 jN)nρε(2 j−2N)


1
p
 ∞∑

j=1

(2 jN)(β−1−n/p)p′


1
p′

.

 ∞∑
j=1

∫
B(0,2 j−3N)\B(0,2 j−2N)

ρε(|x|) dx


1
p

∼

[∫ ∞

N/4
ρε(r)rn−1 dr

] 1
p

→ 0

as ε → 0+. This finishes the proof of Lemma 2.12. �

As a consequence of both Theorem 2.7 and Lemma 2.12, we derive the following conclusion.

Theorem 2.13. Let X be a ball Banach function space, p ∈ [1,∞), and {ρε}ε∈(0,∞) be a decreasing-
radial-ATI. Assume that X is locally β-doubling with β ∈ (0, 1 + n/p). Then (2.4) holds for any
function f ∈ C2

c(Rn).

Remark 2.14. Let q ∈ [1,∞), X := Lq(Rn), and {ρε}ε∈(0,∞) be a decreasing-radial-ATI. In this
case, X is locally β-doubling with β = n/q. Thus, when p ∈ [1,∞), X is locally β-doubling with
β ∈ (0, 1 + n/p) if and only if n(1/q − 1/p) < 1. From this we deduce that if n(1/q − 1/p) < 1,
then for any f ∈ C2

c(Rn) we have

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

Lq(Rn)

= K(p, n) ‖ |∇ f | ‖pLq(Rn) . (2.14)

As a consequence of Theorem 2.13, we have the following conclusion.
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Theorem 2.15. Let X be a ball Banach function space and p ∈ [1,∞). Assume that X is locally
β-doubling with β ∈ (0, 1 + n/p). Then, for any function f ∈ C2

c(Rn) we have

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

=
K(p, n)

p
‖ |∇ f | ‖pX , (2.15)

with K(p, n) as in (1.3).

Before we prove Theorem 2.15, we provide two observations related to both Theorems 2.13
and 2.15. In what follows, for a given p ∈ (0,∞), we denote by Lp

loc (Rn) the space of all the
measurable functions whose p-th power is integrable over compact subsets of Rn.

Remark 2.16. (i) Let q ∈ [1,∞) and X := Lq(Rn). In this case, X is locally n/q-doubling.
Thus, when p ∈ [1,∞), X is locally n/q-doubling with n/q ∈ (0, 1 + n/p) if and only if
n(1/q − 1/p) < 1. From this and Theorem 2.15 we deduce that, if n(1/q − 1/p) < 1, then
for any function f ∈ C2

c(Rn) we have

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lq(Rn)

=
K(p, n)

p
‖ |∇ f | ‖pLq(Rn) . (2.16)

Thus, Theorem 2.15 with X = Lq(Rn) and p = q is exactly the classical BBM formula (1.2)
for C2

c(Rn) functions, while the case p , q is new.

(ii) Let p, q ∈ [1,∞) satisfy n max{0, 1/q − 1/p} < s < 1. By [54, Theorem 1.3], we conclude
that, if f ∈ Lmin{q,p}

loc (Rn), then f ∈ F s
q,p(Rn) if and only if

I := ‖ f ‖Lq(Rn) +

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

Lq(Rn)

< ∞

and, moreover, in this case,

I ∼ ‖ f ‖F s
q,p(Rn) (2.17)

with the positive equivalence constants independent of f , where F s
q,p(Rn) denotes the clas-

sical Triebel–Lizorkin spaces (see [99, Section 2.3] for the precise definition). Using (2.17)
we have that, for any given p ∈ [1,∞) and s ∈ (0, 1), F s

p,p(Rn) = W s,p(Rn) with equiva-
lent norms. Also, from [54, Theorem 1.5], we deduce that, under the assumptions that p,
q ∈ [1,∞), then (2.17) is valid only if n max{0, 1/q − 1/p} ≤ s < 1. Moreover, using both
(i) and (ii) of [33, Theorem 3.2] we conclude that, when s = 1, then∥∥∥∥∥∥∥

[∫
Rn

| f (·) − f (y)|p

| · −y|n+p dy
] 1

p
∥∥∥∥∥∥∥

Lq(Rn)

= ∞

unless f is a constant. Thus, the Gagliardo semi-norm in (2.17) does not recover the Triebel–
Lizorkin semi-norm ‖ · ‖F1

q,p(Rn) as s → 1−. (Recall the well-known identity F1
q,2(Rn) =
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W1,q(Rn) with equivalent norms; see [99]). In this sense, the assumption n(1/q − 1/p) < 1
in (i) is optimal. This indicates that the requirement β ∈ (0, 1 + n/p) in both Theorems 2.13
and 2.15 is also optimal.

The next lemma provides an essential tool that plays a vital role in the proof of Theorem 2.15.

Lemma 2.17. Let X be a ball Banach function space and p ∈ [1,∞). Assume that X is locally
β-doubling with β ∈ (0, 1 + n/p). Then, for any f ∈ X ∩ Lp

loc (Rn) with compact support,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

= 0. (2.18)

Proof. Let f ∈ X ∩ Lp
loc (Rn) have compact support. Then there is a ball B(0,M) with M ∈ (0,∞)

such that supp ( f ) ⊂ B(0,M). Let N ∈ (2M + 1,∞). Observe that, for any y ∈ [B(0,N)]{ and
x ∈ [B(0,M)]{, f (y) = f (x) = 0. From this and the Minkowski inequality, we deduce that, for any
s ∈ (0, 1),

(1 − s)1/p

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

X

≤ (1 − s)1/p

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p

1B(0,N)

∥∥∥∥∥∥∥
X

+ (1 − s)1/p

∥∥∥∥∥∥∥
[∫

B(0,M)

| f (y)|p

| · −y|n+sp dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X

≤ (1 − s)1/p

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·)|p

| · −y|n+sp dy
] 1

p

1B(0,N)

∥∥∥∥∥∥∥
X

+ (1 − s)1/p

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (y)|p

| · −y|n+sp dy
] 1

p

1B(0,N)

∥∥∥∥∥∥∥
X

+ (1 − s)1/p

∥∥∥∥∥∥∥
[∫

B(0,M)

| f (y)|p

| · −y|n+sp dy
] 1

p

1Rn\B(0,N)

∥∥∥∥∥∥∥
X

= : I(1)
s (N) + I(2)

s (N) + I(3)
s (N). (2.19)

We first consider I(1)
s (N). Since f ∈ X with supp ( f ) ⊂ B(0,M), the definition of I(1)

s (N) and some
simple calculations yield that

I(1)
s (N) . (1 − s)(2+sp)/(2p)(sp)−1/p

∥∥∥ f 1B(0,N)
∥∥∥

X

∼ (1 − s)(2+sp)/(2p)(sp)−1/p‖ f ‖X → 0 (2.20)

as s → 1−. As for I(2)
s (N), observe that, for any s ∈ (1 − (2N)−2, 1), x ∈ B(0,N), and y ∈ Rn

satisfying |x − y| ≥ (1 − s)−1/2,

|y| ≥ |x − y| − |x| > (1 − s)−1/2 − N > N.
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From this, the assumption that supp ( f ) ⊂ B(0,M), and the definition of I(2)
s (N), it follows that,

for any s ∈ (1 − (2N)−2, 1),
I(2)

s (N) = 0. (2.21)

Finally, we deal with term I(3)
s (N). Observe that, for any x ∈ [B(0,N)]{ and y ∈ B(0,M), |x −

y| > |x|/2. Using this and the assumptions that f ∈ Lp
loc (Rn) and X is locally β-doubling with

β ∈ (0, 1 + n/p), we conclude that, for any s ∈ (0, 1),

I(3)
s (N) . (1 − s)1/p

[∫
B(0,M)

| f (y)|p dy
] 1

p
∥∥∥∥∥∥1Rn\B(0,N)

| · |s+n/p

∥∥∥∥∥∥
X

. (1 − s)1/p
∞∑
j=1

(2 jN)−(s+n/p)
∥∥∥1B(0,2 jN)\B(0,2 j−1N)

∥∥∥
X

. (1 − s)1/p
∞∑
j=1

(2 jN)−(s+n/p)
∥∥∥1B(0,2 jN)

∥∥∥
X

. (1 − s)1/p
∥∥∥1B(0,1)

∥∥∥
X

∞∑
j=1

(2 jN)β−(s+n/p)

∼ (1 − s)1/p
∞∑
j=1

(2 jN)β−(s+n/p),

where the implicit positive constants depend on f . By this and the assumption that β ∈ (0, 1+n/p),
we have

lim
s→1−

I(3)
s (N) = 0.

Combining this estimate with (2.20), (2.21), and (2.19) yields

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

= 0,

and this completes the proof of Lemma 2.17. �

Proof of Theorem 2.15. For any ε ∈ (0, 1/p), let

ρε(r) :=


1

Cε

ε

rn−εp , r ∈ (0, ε−1/2),

0, r ∈ [ε−1/2,∞),
(2.22)

where

Cε := ε

∫ ε−1/2

0
rεp−1 dr =

1
pεεp/2 .

Observe that limε→0+ Cε = 1
p , {ρε}ε∈(0,∞) ⊂ L1

loc (0,∞) satisfy that, for any given ε ∈ (0, 1/p), ρε is
nonnegative and decreasing, ∫ ∞

0
ρε(r)rn−1 dr = 1,
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and, for any δ ∈ (0, ε−1/2),

lim
ε→0+

∫ ∞

δ
ρε(r)rn−1 dr = lim

ε→0+

ε

Cε

∫ ε−1/2

δ
rεp−1 dr ≤ lim

ε→0+

ε

Cε

δεp−1

ε1/2 = 0.

Thus, {ρε}ε∈(0,∞) is a decreasing-radial-ATI. From this and Theorem 2.13, it follows that

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|<(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

= lim
s→1−

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
1 − s

| · −y|n−(1−s)p 1{y∈Rn: |·−y|<(1−s)−1/2}(y) dy
] 1

p
∥∥∥∥∥∥∥

p

X

= lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ε

| · −y|n−εp 1{y∈Rn: |·−y|<ε−1/2}(y) dy
] 1

p
∥∥∥∥∥∥∥

p

X

= lim
ε→0+

Cε

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

=
K(p, n)

p
‖ |∇ f | ‖pX ,

which, together with the fact that f ∈ C2
c(Rn) and Lemma 2.17, further implies that

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

=
K(p, n)

p
‖ |∇ f | ‖pX .

This finishes the proof of Theorem 2.15. �

Recall that the Hardy–Littlewood maximal operatorM is defined for any f in L1
loc (Rn) by

M( f )(x) := sup
B3x

1
|B|

∫
B
| f (y)| dy, ∀ x ∈ Rn,

where the supremum is taken over all the balls B ⊂ Rn containing x. The following lemma gives
a sufficient condition for the locally β-doubling property of X.

Lemma 2.18. Let X be a ball quasi-Banach function space. Assume that the Hardy–Littlewood
maximal operatorM is weakly bounded on X, namely, there exists a positive constant C such that,
for any f ∈ X,

sup
λ∈(0,∞)

[
λ‖1{x∈Rn: M( f )(x)>λ}‖X

]
≤ C‖ f ‖X . (2.23)

Then X is locally n-doubling.

Proof. Observe that for any B := B(0, r) ∈ B with r ∈ (0,∞), α ∈ [1,∞), and x ∈ αB,

M(1B)(x) ≥ −
∫
αB

1B(y) dy =
|B|
|αB|

=
1
αn .
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From this, the assumption that X is a BQBF space, and (2.23), it follows that, for any B ∈ B and
α ∈ [1,∞),

‖1αB‖X ≤ ‖1{x∈Rn: M(1B)(x)> 1
2αn }
‖X ≤ 2Cαn‖1B‖X .

This implies that X is locally n-doubling, and hence finishes the proof of Lemma 2.18. �

Remark 2.19. Lemma 2.18 yields that the locally β-doubling assumption on X is weaker than the
assumption that the Hardy–Littlewood maximal operatorM is weakly bounded on X.

As a consequence of both Theorem 2.13 and Lemma 2.18, we obtain the following crucial fact.

Theorem 2.20. Let X be a ball Banach function space and let p ∈ [1,∞), q ∈ (0,∞) satisfy
n(1/q − 1/p) < 1. Let {ρε}ε∈(0,∞) be a decreasing-radial-ATI. Assume that the Hardy–Littlewood
maximal operatorM is weakly bounded on X1/q. Then (2.4) is valid for any f ∈ C2

c(Rn).

Proof. By Lemma 2.18 we conclude that X1/q is locally n-doubling. This fact combined with
Proposition 2.11 implies that X is locally β-doubling with β := n/q ∈ (0, 1 + n/p). Thus, all the
assumptions of Theorem 2.13 are satisfied. Using Theorem 2.13, we conclude that (2.4) holds for
any f ∈ C2

c(Rn). This finishes the proof of Theorem 2.20. �

Remark 2.21. Let p ∈ [1,∞), q ∈ (0,∞) satisfy n(1/q − 1/p) < 1, and X := Lq(Rn). In this case,
X1/q = L1(Rn) and the Hardy–Littlewood maximal operatorM is weakly bounded on X1/q. This,
together with Theorem 2.20, implies that, for any f ∈ C2

c(Rn), (2.14) is valid for X = Lq(Rn).

As a consequence of Theorem 2.15, we obtain the following extension of the famous classical
BBM formula (1.2) to ball Banach Sobolev spaces. The proof is similar to that used in the proof
of Theorem 2.20 and we omit the details.

Theorem 2.22. Let X be a ball Banach function space and let p ∈ [1,∞), q ∈ (0,∞) satisfy
n(1/q − 1/p) < 1. Assume that the Hardy–Littlewood maximal operatorM is weakly bounded on
X1/q. Then (2.15) is valid for any f ∈ C2

c(Rn).

Remark 2.23. Let p, q, and X be as in Remark 2.21. Then it follows Theorem 2.22 that (2.16)
holds for any f ∈ C2

c(Rn).

3 Asymptotics of W1,X(Rn) functions in terms of
ball Banach Sobolev norms

In this section, we establish the main result of this work, Theorem 3.36. This is achieved via a
secondary main result, Theorem 3.4. We begin by recalling the definition of ball Banach function
spaces with absolutely continuous norm; see [10, Definition 3.1], [101, Definition 3.2].

Definition 3.1. A ball Banach function space X is said to have an absolutely continuous norm if,
for any f ∈ X and any sequence of measurable sets {E j} j∈N ⊂ R

n satisfying that 1E j → 0 a. e. as
j→ ∞, we have ‖ f 1E j‖X → 0 as j→ ∞.

We also recall the following definition of the associate space of a ball Banach function space,
which can be found, for instance, in [10, Chapter 1, Definitions 2.1 and 2.3].
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Definition 3.2. For any ball Banach function space X, the associate space (also called the Köthe
dual) X′ is defined by

X′ :=

 f ∈M (Rn) : ‖ f ‖X′ := sup
{g∈X: ‖g‖X=1}

‖ f g‖L1(Rn) < ∞

 , (3.1)

where ‖ · ‖X′ is called the associate norm of ‖ · ‖X .

Remark 3.3. By [93, Proposition 2.3] we have that the associate space X′ of a ball Banach func-
tion space X is also a ball Banach function space.

Theorem 3.4. Let X be a ball Banach function space, p ∈ [1,∞), and {ρε}ε∈(0,∞) be a decreasing-
radial-ATI. Assume that X has an absolutely continuous norm, X1/p is a ball Banach function
space, and the Hardy–Littlewood maximal operatorM is bounded on (X1/p)′. Then for any func-
tion f ∈ W1,X(Rn) we have

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

= K(p, n) ‖ |∇ f | ‖pX . (3.2)

Remark 3.5. (i) Let 1 ≤ p ≤ q < ∞, X := Lq(Rn), and {ρε}ε∈(0,∞) be a decreasing-radial-
ATI. In this case for any f ∈ W1,q(Rn) (2.14) holds. Thus, Theorem 3.4 with X = Lq(Rn)
coincides with [12, Theorems 2 and 3] when p = q while the case p < q is new.

(ii) In contrast to Theorems 2.7, 2.13, and 2.22, we need certain minor assumptions on the
underlying space X in Theorem 3.4 in order to extend the identity to W1,X(Rn).

The proof of Theorem 3.4 is given in Subsection 3.3. In Subsection 3.1 we prove that C∞c (Rn) is
dense in W1,X(Rn) under some mild assumptions, while Subsection 3.2 is devoted to establishing
the key estimate (3.12) in weighted Lebesgue spaces.

3.1 Density in W1,X(Rn)

In what follows, we use the symbol W1,X
c (Rn) to denote the set of all the functions in W1,X(Rn)

with compact support. The main objective of this subsection is to exhibit a good dense subspaces
of W1,X(Rn). Our approach consists of two parts: we first prove that W1,X

c (Rn) is dense in W1,X(Rn),
and further show that C∞c (Rn) is dense in W1,X

c (Rn) under a stronger hypothesis (see Propositions
3.6 and 3.8 below). We begin with the following technical proposition.

Proposition 3.6. Let X be a ball Banach function space. Assume that X has an absolutely contin-
uous norm. Then W1,X

c (Rn) is dense in W1,X(Rn).

Proof. Let f ∈ W1,X(Rn) and φ ∈ C∞c (Rn) be such that φ(x) = 1 for any x with |x| ≤ 1, and
φ(x) = 0 for any x with |x| > 2. Moreover, for any l ∈ N, let

fl(·) := f (·)φ
(
·

l

)
. (3.3)
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Then, for any l ∈ N, fl ∈ X with compact support. From (3.3) and [42, p. 216, Theorem 1(iv)], it
follows that, for any j ∈ {1, . . . , n} and l ∈ N,

∂ j( fl)(·) = ∂ j f (·)φ
(
·

l

)
+ f (·)

1
l
∂ jφ

(
·

l

)
and ∂ j( fl) ∈ X with compact support. Then we claim that

lim
l→∞
‖ fl − f ‖W1,X(Rn) = 0. (3.4)

Indeed, for any x ∈ Rn,

| fl(x) − f (x)| ≤
[
‖φ‖L∞(Rn) + 1

]
| f (x)|1Rn\B(0,l)(x).

From this and the assumption that X has an absolutely continuous norm, it follows that

lim sup
l→∞

‖ fl − f ‖X ≤
[
‖φ‖L∞(Rn) + 1

]
lim sup

l→∞

∥∥∥∥ | f |1Rn\B(0,l)

∥∥∥∥
X

= 0. (3.5)

Moreover, observe that, for any j ∈ {1, . . . , n}, l ∈ N, and x ∈ Rn,

∂ j( fl)(x) − ∂ j f (x)

=

[
φ
( x

l

)
− 1

]
∂ j f (x)1Rn\B(0,l)(x) +

1
l
∂ jφ

( x
l

)
f (x).

By this, we have, for any j ∈ {1, . . . , n}, l ∈ N, and x ∈ Rn,

|∂ j( fl)(x) − ∂ j f (x)|

≤
[
‖φ‖L∞(Rn) + 1

]
|∂ j f (x)|1Rn\B(0,l)(x) +

‖∂ jφ‖L∞(Rn)

l
| f (x)|.

Using this and the assumption that X has an absolutely continuous norm, we conclude that, for
any j ∈ {1, . . . , n},

lim sup
l→∞

‖∂ j( fl) − ∂ j f ‖X . lim sup
l→∞

‖ |∂ j f |1Rn\B(0,l)‖X + lim sup
l→∞

1
l
‖ f ‖X = 0.

Thus, from this and (3.5) it follows that

‖ fl − f ‖X + ‖ |∇ fl − ∇ f | ‖X . ‖ fl − f ‖X +

n∑
j=1

‖∂ j( fl) − ∂ j f ‖X → 0

as l→ ∞. This yields the validity of (3.4), hence W1,X
c (Rn) is dense in W1,X(Rn), and this finishes

the proof of Proposition 3.6. �

Now, we introduce the concept of centered ball average operators.

Definition 3.7. Let r ∈ (0,∞). The centered ball average operator Br is defined by setting, for
any f ∈ L1

loc (Rn) and x ∈ Rn,

Br( f )(x) :=
1

|B(x, r)|

∫
B(x,r)

| f (y)| dy.
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Next we address the density of C∞c (Rn) in W1,X
c (Rn) under some assumptions on X.

Proposition 3.8. Let X be a ball Banach function space. Assume that X has an absolutely contin-
uous norm and that the centered ball average operators {Br}r∈(0,∞) are uniformly bounded on X,
namely, there exists a positive constant C such that, for any f ∈ X we have

sup
r∈(0,∞)

‖Br( f )‖X ≤ C‖ f ‖X .

Then C∞c (Rn) is dense in W1,X
c (Rn).

Proof. Let f ∈ W1,X
c (Rn). Then there is a ball B(0,M) with M > 0 such that supp ( f ) ⊂ B(0,M).

Let η ∈ C∞c (Rn) be such that supp (η) ⊂ B(0, 1),
∫
Rn η(x) dx = 1, and ηk(·) := knη(k·) for any k ∈ N.

From this and [42, p. 714, Theorem 7(i)], it follows that f ∗ ηk ∈ C
∞
c (Rn). Then we claim

lim
k→∞
‖ f ∗ ηk − f ‖X = 0. (3.6)

Indeed, since X has an absolutely continuous norm, from [98, Proposition 3.8], it follows that
Cc(Rn) is dense in X. Thus, for any ζ ∈ (0,∞) there is a g ∈ Cc(Rn) such that

‖ f − g‖X < ζ. (3.7)

By this and the assumption that X is a BBF space, we conclude that, for any k ∈ N,

‖ f ∗ ηk − f ‖X ≤ ‖ f ∗ ηk − g ∗ ηk‖X + ‖g ∗ ηk − g‖X + ‖g − f ‖X . (3.8)

From the definition of ηk and the assumption that the centered ball average operators {Br}r∈(0,∞)
are uniformly bounded on X, we deduce that, for any k ∈ N,

‖ f ∗ ηk − g ∗ ηk‖X =

∥∥∥∥∥∫
Rn

( f − g)(y)ηk(· − y) dy
∥∥∥∥∥

X

.

∥∥∥∥∥∥ −
∫

B(·,k−1)
|( f − g)(y)| dy

∥∥∥∥∥∥
X

∼
∥∥∥Bk−1(| f − g|)

∥∥∥
X . ‖ f − g‖X . ζ. (3.9)

Moreover, since g ∈ Cc(Rn), it must be uniformly continuous, thus there is a ball B(0,N) such that
supp (g) ⊂ B(0,N). This fact combined with the definition of ηk implies that

‖g ∗ ηk − g‖X .

∥∥∥∥∥∥ −
∫

B(·,k−1)
|g(y) − g(·)| dy

∥∥∥∥∥∥
X

≤ sup
|x−y|≤k−1

|g(x) − g(y)|
∥∥∥1B(0,N+1)

∥∥∥
X → 0

as k → ∞. By this, (3.7), (3.8), and (3.9), we have, for any ζ ∈ (0,∞),

lim
k→∞
‖ f ∗ ηk − f ‖X . ζ,

which, together with the arbitrariness of ζ, implies that (3.6) is valid. This completes the proof of
the preceding claim.
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Observe that, for any j ∈ {1, . . . , n} and k ∈ N, ∂ j( f ∗ ηk) = (∂ j f ) ∗ ηk (see, for instance, [43,
Proposition 8.10]). Applying this and an argument similar to that used in the proof of (3.6) (with
f replaced by ∂ j f ), we find that, for any j ∈ {1, . . . , n},

lim
k→∞
‖∂ j( f ∗ ηk) − ∂ j f ‖X = 0.

This fact and (3.6) yield that C∞c (Rn) is dense in W1,X
c (Rn). Proposition 3.8 is now proved. �

The following corollary is a consequence of both Propositions 3.6 and 3.8; we omit the details.

Corollary 3.9. Let X be a ball Banach function space. Assume that X has an absolutely continuous
norm and the centered ball average operators {Br}r∈(0,∞) are uniformly bounded on X. Then
C∞c (Rn) is dense in W1,X(Rn).

The proofs of both Propositions 3.6 and 3.8 yield the following; we also omit the details.

Corollary 3.10. Let X be a ball Banach function space. Assume that X has an absolutely contin-
uous norm and the centered ball average operators {Br}r∈(0,∞) are uniformly bounded on X. Then
C∞c (Rn) is dense in X.

The following lemma gives a sufficient condition for the uniform boundedness of centered ball
average operators {Br}r∈(0,∞) on X.

Lemma 3.11. Let X be a ball Banach function space and p ∈ [1,∞). Assume that X1/p is a ball
Banach function space and the Hardy–Littlewood maximal operator M is bounded on (X1/p)′.
Then the centered ball average operators {Br}r∈(0,∞) are uniformly bounded on X; moreover, there
exists a positive constant C(n,p), depending only on both n and p, such that for any r ∈ (0,∞) and
f ∈ X we have

‖Br( f )‖X ≤ C(n,p)‖M‖
2/p
(X1/p)′→(X1/p)′

‖ f ‖X ,

where ‖M‖(X1/p)′→(X1/p)′ denotes the operator norm ofM from (X1/p)′ to (X1/p)′.

To prove Lemma 3.11, we need to borrow some ideas from the proof of the extrapolation
theorem in [31, Theorem 1.4]. To this end, we first recall the definition of Muckenhoupt weights
Ap(Rn) (see, for instance, [47, Definitions 7.1.2 and 7.1.3]).

Definition 3.12. An Ap(Rn)-weight ω, with p ∈ [1,∞), is a nonnegative locally integrable function
on Rn satisfying that, when p ∈ (1,∞),

[ω]Ap(Rn) := sup
Q⊂Rn

[
1
|Q|

∫
Q
ω(x) dx

] {
1
|Q|

∫
Q
ω(x)

1
1−p dx

}p−1

< ∞,

and
[ω]A1(Rn) := sup

Q⊂Rn

1
|Q|

∫
Q
ω(x) dx

[
‖ω−1‖L∞(Q)

]
< ∞,

where the suprema are taken over all cubes Q ⊂ Rn.
Moreover, we set

A∞(Rn) :=
⋃

p∈[1,∞)

Ap(Rn).
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We also recall the definition of weighted Lebesgue spaces.

Definition 3.13. Let p ∈ [0,∞) and ω ∈ A∞(Rn). The weighted Lebesgue space Lp
ω(Rn) is defined

to be the space of all the measurable functions f on Rn with the property

‖ f ‖Lp
ω(Rn) :=

[∫
Rn
| f (x)|pω(x) dx

] 1
p

< ∞.

For any measurable set E ⊂ Rn with |E| < ∞ and f ∈ L1
loc (Rn) it is customary in this area to

use the notation
f (E) :=

∫
E

f (x) dx.

We recall a few facts about Muckenhoupt weights Ap(Rn). The following lemma is a part of [47,
Proposition 7.1.5].

Lemma 3.14. Let p ∈ [1,∞) and ω ∈ Ap(Rn). Then the following statements are valid.

(i)

[ω]Ap(Rn) = sup
Q⊂Rn

sup
f 1Q∈Lp

ω(Rn)∫
Q | f (t)|pω(t) dt∈(0,∞)

[
1
|Q|

∫
Q | f (t)| dt

]p

1
ω(Q)

∫
Q | f (t)|pω(t) dt

,

where the first supremum is taken over all cubes Q ⊂ Rn.

(ii) For any λ ∈ (1,∞) and any cube Q ⊂ Rn, one has ω(λQ) ≤ [ω]Ap(Rn)λ
npω(Q).

(iii) For any q ∈ [p,∞), one has ω ∈ Aq(Rn) and [ω]Aq(Rn) ≤ [ω]Ap(Rn).

The following lemma shows that the centered ball average operators {Br}r∈(0,∞) are uniformly
bounded on weighted Lebesgue spaces.

Lemma 3.15. For any given p ∈ [1,∞) and ω ∈ Ap(Rn), the centered ball average operators
{Br}r∈(0,∞) are uniformly bounded on Lp

ω(Rn); moreover, there exists a positive constant C(n,p),
depending only on both n and p, such that for any r ∈ (0,∞) and f ∈ Lp

ω(Rn) we have

‖Br( f )‖Lp
ω(Rn) ≤ C(n,p)[ω]2/p

Ap(Rn)‖ f ‖Lp
ω(Rn).

Proof. Since ω ∈ Ap(Rn), from Lemma 3.14(i) and Tonelli’s theorem, it follows that for any
r ∈ (0,∞) and f ∈ Lp

ω(Rn) we have∫
Rn
|Br( f )(x)|pω(x) dx

≤

∫
Rn

[
−

∫
B(x,r)

| f (y)| dy
]p

ω(x) dx

≤ [ω]Ap(Rn)

∫
Rn

1
ω(B(x, r))

[∫
B(x,r)

| f (y)|pω(y) dy
]
ω(x) dx

= [ω]Ap(Rn)

∫
Rn

[∫
B(y,r)

ω(x)
ω(B(x, r))

dx
]
| f (y)|pω(y) dy. (3.10)
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Observe that, for any r ∈ (0,∞), y ∈ Rn, and x ∈ B(y, r) we have B(y, r) ⊂ B(x, 2r) which,
combined with Lemma 3.14(ii), gives

ω(B(y, r)) ≤ ω(B(x, 2r)) . [ω]Ap(Rn)ω(B(x, r)).

Using this fact and (3.10) we conclude that for any r ∈ (0,∞) and f ∈ Lp
ω(Rn) we have∫

Rn
|Br( f )(x)|pω(x) dx

. [ω]2
Ap(Rn)

∫
Rn

[∫
B(y,r)

ω(x)
ω(B(y, r))

dx
]
| f (y)|pω(y) dy

∼ [ω]2
Ap(Rn)

∫
Rn
| f (y)|pω(y) dy.

This implies that the centered ball average operators {Br}r∈(0,∞) are uniformly bounded on Lp
ω(Rn).

This completes the proof of Lemma 3.15. �

The next lemma can be found in [33, Lemma 3.6] and its proof is modeled after [31, p. 18].

Lemma 3.16. Let X be a ball Banach function space. Assume that the Hardy–Littlewood maximal
operatorM is bounded from X to itself with norm ‖M‖X→X . For any g ∈ X and x ∈ Rn let

RXg(x) :=
∞∑

k=0

Mk(g)(x)
2k‖M‖kX→X

,

where for any k ∈ N, Mk :=M◦ · · · ◦M is the k-fold iteration of the Hardy–Littlewood maximal
operator andM0(g)(x) := |g(x)|. Then, for any g ∈ X and x ∈ Rn one has

(i) |g(x)| ≤ RXg(x);

(ii) RXg ∈ A1(Rn) and [RXg]A1(Rn) ≤ 2‖M‖X→X;

(iii) ‖RXg‖X ≤ 2‖g‖X .

To prove Lemma 3.11, we also need two key lemmas about ball Banach function spaces,
namely, Lemmas 3.17 and 3.18. The following lemma is just [107, Lemma 2.6].

Lemma 3.17. Let X be a ball Banach function space. Then X coincides with its second associate
space X′′. In other words, f ∈ X if and only if f ∈ X′′ and in that case,

‖ f ‖X = ‖ f ‖X′′ .

The following version of Hölder’s inequality is a direct consequence of both Definition 2.1(i)
and (3.1) (see also [10, Theorem 2.4]).

Lemma 3.18. Let X be a ball Banach function space and X′ its associate space. If f ∈ X and
g ∈ X′, then f g is integrable and ∫

Rn
| f (x)g(x)| dx ≤ ‖ f ‖X‖g‖X′ .
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Proof of Lemma 3.11. Using the definition of X1/p, Lemma 3.17 (with X replaced by X1/p), and
Lemma 3.16(i) [with X replaced by (X1/p)′], it follows that, for any r > 0 and f ∈ X we have

‖Br( f )‖pX =
∥∥∥ |Br( f )|p

∥∥∥
X1/p =

∥∥∥ |Br( f )|p
∥∥∥

(X1/p)′′

= sup
‖g‖(X1/p)′=1

∫
Rn
|Br( f )(x)|pg(x) dx

≤ sup
‖g‖(X1/p)′=1

∫
Rn
|Br( f )(x)|pR(X1/p)′g(x) dx.

By this, both (i) and (iii) of Lemma 3.14 [with ω replaced by R(X1/p)′g(x)], both (ii) and (iii) of
Lemma 3.16 [with X replaced by (X1/p)′], both Lemmas 3.15 and 3.18, and the definition of X1/p,
we obtain

‖Br( f )‖pX . sup
‖g‖(X1/p)′=1

[R(X1/p)′g]2
A1(Rn)

∫
Rn
| f (x)|pR(X1/p)′g(x) dx

. ‖M‖2(X1/p)′→(X1/p)′ sup
‖g‖(X1/p)′=1

∥∥∥ | f |p∥∥∥X1/p ‖R(X1/p)′g‖(X1/p)′

. ‖ f ‖pX

for any r > 0 and f ∈ X. This implies that the centered ball average operators {Br}r∈(0,∞) are
uniformly bounded on X and completes the proof of Lemma 3.11. �

As a consequence of Corollaries 3.9, 3.10 and Lemma 3.11 we obtain the following corollary.

Corollary 3.19. Let X be a ball Banach function space and p ∈ [1,∞). Assume that X has
an absolutely continuous norm, X1/p is a ball Banach function space, and the Hardy–Littlewood
maximal operatorM is bounded on (X1/p)′. Then C∞c (Rn) is dense in both X and W1,X(Rn).

Moreover, at the end of this subsection, we show that C∞c (Rn) is dense in the weighted Sobolev
space W1,p

ω (Rn) (see Corollary 3.21 below); this plays a vital role in the next subsection. The next
definition of the weighted Sobolev space can be found, for instance, in [68, Definition 3.5].

Definition 3.20. Let p ∈ [1,∞) and ω ∈ A∞(Rn). The weighted Sobolev space W1,p
ω (Rn) is

defined as the set of all the measurable functions f on Rn whose distributional gradient ∇ f :=
(∂1 f , . . . , ∂n f ) is an Lp

ω(Rn) function and

‖ f ‖W1,p
ω (Rn) := ‖ f ‖Lp

ω(Rn) + ‖ |∇ f | ‖Lp
ω(Rn) < ∞.

Let ω ∈ A1(Rn). In the sequel we denote by the L∞
ω−1(Rn) the set of all the measurable functions

f on Rn with
‖ f ‖L∞

ω−1 (Rn) :=
∥∥∥ fω−1

∥∥∥
L∞(Rn) < ∞.

As a consequence of Propositions 3.6 and 3.8, we obtain the following corollary.

Corollary 3.21. Let p ∈ [1,∞) and ω ∈ Ap(Rn). Then C∞c (Rn) is dense in W1,p
ω (Rn).
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Proof. The fact that Lp
ω(Rn) is a BBF space is contained in [93, Section 7.1]. In view of this

and Lemma 3.15, we conclude that the centered ball average operators {Br}r∈(0,∞) are uniformly
bounded on Lp

ω(Rn); Moreover, by [89, Theorem 3.14], we find that Lp
ω(Rn) has an absolutely

continuous norm. Thus, all the assumptions of Corollary 3.9 are satisfied and its conclusion is that
C∞c (Rn) is dense in W1,p

ω (Rn). Corollary 3.21 is now proved. �

Remark 3.22. When ω = 1 Corollary 3.21 is contained in [2, Theorem 7.38].

3.2 A key estimate in W1,p
ω (Rn)

The subsequent lemma provides a key estimate in W s,p
ω (Rn).

Lemma 3.23. Let p ∈ [1,∞) and ρ ∈ L1
loc (0,∞) be a nonnegative and decreasing function with∫ ∞

0
ρ(r)rn−1 dr < ∞. (3.11)

Assume that ω ∈ A1(Rn). Then there exists a positive constant C(n,p), depending only on both n
and p, such that for any f ∈ W1,p

ω (Rn) we have∫
Rn

[∫
Rn

| f (x) − f (y)|p

|x − y|p
ρ(|x − y|) dy

]
ω(x) dx

≤ C(n,p)[ω]2
A1(Rn) ‖ |∇ f | ‖p

Lp
ω(Rn)

∫ ∞

0
ρ(r)rn−1 dr. (3.12)

Remark 3.24. For simplicity we only considered A1(Rn)-weights here. However, our proof ac-
tually works for general Ap(Rn)-weights. For instance, a slight modification of the proofs in this
section shows that (3.12) holds for any given ω ∈ Ap(Rn) when p ∈ [1, n/(n − 1)).

We first prove Lemma 3.23 for any f ∈ C1
c(Rn) (Lemma 3.30). To accomplish this we need

two technical results, both Lemmas 3.26 and 3.29, which depend on the following variant of the
Poincaré inequality. In what follows, for any x ∈ Rn and r ∈ (0,∞), the C1(B(x, r)) denotes the set
of all first-order continuously differentiable functions on B(x, r).

Lemma 3.25. ([33, Lemma 2.20]) Let B = B(x, r) ∈ B be a ball with x ∈ Rn and r ∈ (0,∞), and
B1 ∈ B such that x ∈ B1 ⊂ B. Then there exists a positive constant C(n), depending only on n, such
that for any f ∈ C1(B) we have

| f (x) − fB1 | ≤ C(n)r
∞∑
j=0

2− j−

∫
2− jB
|∇ f (z)| dz.

The first technical lemma is as follows.

Lemma 3.26. Let p ∈ [1,∞) and ρ ∈ L1
loc (0,∞) be a nonnegative function satisfying (3.11).

Assume that ω ∈ A1(Rn). Then there exists a positive constant C(n,p), depending only on both n
and p, such that, for any f ∈ C1

c(Rn),∫
Rn

∫
Rn

∣∣∣ f (x) − fB(y,2|x−y|)
∣∣∣p

|x − y|p
ρ(|x − y|) dy

ω(x) dx
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≤ C(n,p)[ω]2
A1(Rn) ‖ |∇ f | ‖p

Lp
ω(Rn)

∫ ∞

0
ρ(r)rn−1 dr.

Proof. By a change of variables we write

I : =

∫
Rn

∫
Rn

∣∣∣ f (x) − fB(y,2|x−y|)
∣∣∣p

|x − y|p
ρ(|x − y|) dy

ω(x) dx

=

∫
Rn

∫
Rn

∣∣∣ f (x) − fB(x+h,2|h|)
∣∣∣p

|h|p
ρ(|h|) dh

ω(x) dx. (3.13)

Observe that, for any x, h ∈ Rn,

B(x + h, 2|h|) ⊂ B(x, 4|h|).

By this, applying Lemma 3.25 [with B(x + h, 2|h|) in place of B and B(x, 4|h|) in place of B1], the
assumption that ω ∈ A1(Rn), and parts (i), (iii) of Lemma 3.14, for any x, h ∈ Rn, we find that∣∣∣ f (x) − fB(x+h,2|h|)

∣∣∣
.
∞∑
j=0

2− j|h|−
∫

B(x,2− j+2 |h|)
|∇ f (z)| dz

.
{
[ω]A1(Rn)

} 1
p

∞∑
j=0

2− j|h|

×

[
1

ω(B(x, 2− j+2|h|))

∫
B(x,2− j+2 |h|)

|∇ f (z)|pω(z) dz
] 1

p

.

From this and Hölder’s inequality for series it follows that∣∣∣ f (x) − fB(x+h,2|h|)
∣∣∣p

. [ω]A1(Rn)

∞∑
j=0

2− j|h|p

ω(B(x, 2− j+2|h|))

∫
B(x,2− j+2 |h|)

|∇ f (z)|pω(z) dz,

which, combined with (3.13), yields that

I . [ω]A1(Rn)

∞∑
j=0

2− j
∫
Rn

∫
Rn

1
ω(B(x, 2− j+2|h|))

×

[∫
B(x,2− j+2 |h|)

|∇ f (z)|pω(z) dz
]
ρ(|h|)ω(x) dx dh

∼ [ω]A1(Rn)

∞∑
j=0

2− j
∫
Rn

∫
Rn

[∫
B(z,2− j+2 |h|)

ω(x)
ω(B(x, 2− j+2|h|))

dx
]

× |∇ f (z)|pω(z)ρ(|h|) dz dh. (3.14)

Observe that for any z, h ∈ Rn, j ∈ Z+, and x ∈ B(z, 2− j+2|h|) we have

B(z, 2− j+2|h|) ⊂ B(x, 2− j+3|h|).
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Using this inclusion, the assumption that ω ∈ A1(Rn), and Lemma 3.14(ii) we conclude that

ω(B(z, 2− j+2|h|)) ≤ ω(B(x, 2− j+3|h|)) . [ω]A1(Rn)ω(B(x, 2− j+2|h|)),

which implies that ∫
B(z,2− j+2 |h|)

ω(x)
ω(B(x, 2− j+2|h|))

dx

. [ω]A1(Rn)

∫
B(z,2− j+2 |h|)

ω(x)
ω(B(z, 2− j+2|h|))

dx ∼ [ω]A1(Rn).

Combining this estimate with (3.14) we finally conclude that

I . [ω]2
A1(Rn)

∫
Rn

[∫
Rn
|∇ f (z)|pω(z) dz

]
ρ(|h|) dh

∼ [ω]2
A1(Rn) ‖ |∇ f | ‖p

Lp
ω(Rn)

∫ ∞

0
ρ(r)rn−1 dr.

This finishes the proof of Lemma 3.26. �

To prove the second technical lemma (Lemma 3.29 below), we make full use of a basic ingre-
dient concerning 3n adjacent systems of dyadic cubes, stated below.

Lemma 3.27. ([69, Section 2.2]) For any α ∈ {0, 1
3 ,

2
3 }

n, let

Dα :=
{
Qα

j,k := 2− j(k + [0, 1)n + (−1) jα) : j ∈ Z, k ∈ Zn
}
.

Then

(i) for any Q, Q′ ∈ Dα with α ∈ {0, 1
3 ,

2
3 }

n, Q
⋂

Q′ ∈ {∅,Q,Q′};

(ii) for any ball B ⊂ Rn, there exists an α ∈ {0, 1
3 ,

2
3 }

n and a Q ∈ Dα such that B ⊂ Q ⊂ c(n)B,
where the positive constant c(n) depends only on n.

Fix an α ∈ {0, 1
3 ,

2
3 }

n. For any j ∈ Z, let Dα
j := {Qα

j,k : k ∈ Zn} and fix a j ∈ Z. For any
Qα

j,k ∈ D
α
j with k ∈ Zn let

N(Qα
j,k) :=

{
Qα

j,k+l ∈ D
α
j : l := (l1, . . . , ln) ∈ Zn, max

i∈{1,...,n}
|li| ≤ 1

}
and

NQα
j,k

:=
⋃

Qα
j,l∈N(Qα

j,k)

Qα
j,l. (3.15)

Then by the definitions of both N(Qα
j,k) and NQα

j,k
, we have

]N(Qα
j,k) ≤ 3n

and
|NQα

j,k
| ∼ |Qα

j,k|.

Here and thereafter, for a finite set E, the symbol ]E denotes its cardinality.
Lemma 3.27 is crucial in the next result which plays a key role in the proof of Lemma 3.29.
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Lemma 3.28. Let p ∈ [1,∞), x, y ∈ Rn with x , y, and for α ∈ {0, 1
3 ,

2
3 }

n let Qx,y ∈ D
α be a

dyadic cube as in Lemma 3.27(ii) with B replaced by B(y, 2|x − y|), namely,

B(y, 2|x − y|) ⊂ Qx,y ⊂ c(n)B(y, 2|x − y|). (3.16)

Then, for any given ε ∈ (0, p), there exists a positive constant C(n,p,ε), depending only on n, p, and
ε, such that for any f ∈ C1

c(Rn) we have∣∣∣ f (y) − fB(y,2|x−y|)
∣∣∣p

|x − y|p
≤ C(n,p,ε)

∑
Q∈Dα

y∈Q⊂Qx,y

[
`(Q)
`(Qx,y)

]p−ε  −∫
NQ

|∇ f (z)| dz
p

.

Proof. Without loss of generality, we may assume that Qx,y ∈ D
α
j0

for some j0 ∈ Z. First by (3.16)
we conclude that

2− j0 . 2|x − y| ≤ 2− j0−1. (3.17)

From this and Lemma 3.25 (with B(y, 2|x − y|) in place of B and B(y, 2− j0−1) in place of B1) we
deduce that ∣∣∣ f (y) − fB(y,2|x−y|)

∣∣∣ . ∞∑
j= j0

2− j−

∫
B(y,2− j−1)

|∇ f (z)| dz.

Let ε ∈ (0, p). Combining this estimate with (3.17) and Hölder’s inequality for series yields∣∣∣ f (y) − fB(y,2|x−y|)
∣∣∣p

|x − y|p
∼
| f (y) − fB(y,2|x−y|)|

p

2− j0 p

∼

 ∞∑
j= j0

2−( j− j0)−

∫
B(y,2− j−1)

|∇ f (z)| dz


p

.
∞∑

j= j0

2−( j− j0)(p−ε)
[
−

∫
B(y,2− j−1)

|∇ f (z)| dz
]p

. (3.18)

By Lemma 3.27(i), for any j ≥ j0, there exists a unique dyadic cube Qα
j (y) in Dα

j containing y.
From this and Lemma 3.27(i), it follows that Qα

j (y) ⊂ Qx,y. Moreover, by the definition of NQα
j (y)

as in (3.15), we conclude that B(y, 2− j−1) ⊂ NQα
j (y). From this and (3.18), we infer∣∣∣ f (y) − fB(y,2|x−y|)

∣∣∣p
|x − y|p

.
∞∑

j= j0

2−( j− j0)(p−ε)

 −∫NQαj (y)

|∇ f (z)| dz


p

∼

∞∑
j= j0

∑
Q∈Dα

j
y∈Q

2−( j− j0)(p−ε)
 −∫

NQ

|∇ f (z)| dz
p

∼
∑

Q∈Dα

y∈Q⊂Qx,y

[
`(Q)
`(Qx,y)

]p−ε  −∫
NQ

|∇ f (z)| dz
p

.

This implies that (3.16) holds and hence finishes the proof of Lemma 3.28. �
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The second technical lemma of this section is as follows:

Lemma 3.29. Let p ∈ [1,∞) and ρ ∈ L1
loc (0,∞) be a nonnegative and decreasing function

satisfying (3.11). Assume that ω ∈ A1(Rn). Then there exists a positive constant C(n,p), depending
only on both n and p, such that for any f ∈ C1

c(Rn) we have∫
Rn

∫
Rn

∣∣∣ f (y) − fB(y,2|x−y|)
∣∣∣p

|x − y|p
ρ(|x − y|) dy

ω(x) dx

≤ C(n,p)[ω]2
A1(Rn) ‖ |∇ f | ‖p

Lp
ω(Rn)

∫ ∞

0
ρ(r)rn−1 dr. (3.19)

Proof. Let c(n) be as in Lemma 3.27. We claim that for any given ε ∈ (0, p) we have

J : =

∫
Rn

∫
Rn

∣∣∣ f (y) − fB(y,2|x−y|)
∣∣∣p

|x − y|p
ρ(|x − y|) dy

ω(x) dx

.
∑

α∈{0, 1
3 ,

2
3 }

n

∑
P∈Dα

∑
Q∈Dα

Q⊂P

[
`(Q)
`(P)

]p−ε  −∫
NQ

|∇ f (z)| dz
p

×

∫
P

∫
Q∩[B(x,C(n)`(P))]{

ρ(|x − y|) dy
ω(x) dx, (3.20)

where
C(n) :=

[
4c(n)

]−1 √n.

Indeed, from Lemma 3.27(ii), it follows that, for any x, y ∈ Rn with x , y, there exists a dyadic
cube Qx,y ∈ D

α with α ∈ {0, 1
3 ,

2
3 }

n such that B(y, 2|x − y|) ⊂ Qx,y ⊂ c(n)B(y, 2|x − y|). Using this,
for any x, y ∈ Rn with x , y, we obtain

C(n)`(Qx,y) =
[
4c(n)

]−1 √n`(Qx,y) ≤ |x − y| ≤ 4−1`(Qx,y). (3.21)

Fixing an ε ∈ (0, p), by Lemmas 3.28 and 3.27(i), and (3.21), we conclude that, for any x, y ∈ Rn

with x , y we have ∣∣∣ f (y) − fB(y,2|x−y|)
∣∣∣p

|x − y|p

.
∑

Q∈Dα

y∈Q⊂Qx,y

[
`(Q)
`(Qx,y)

]p−ε  −∫
NQ

|∇ f (z)| dz
p

∼
∑

Q∈Dα

Q⊂Qx,y

[
`(Q)
`(Qx,y)

]p−ε  −∫
NQ

|∇ f (z)| dz
p

1Q(y)

.
∑

α∈{0, 1
3 ,

2
3 }

n

∑
P∈Dα

∑
Q∈Dα

Q⊂P

1{(x,y)∈P×Q: P⊂B(y,2c(n) |x−y|)}(x, y)
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×

[
`(Q)
`(P)

]p−ε  −∫
NQ

|∇ f (z)| dz
p

∼
∑

α∈{0, 1
3 ,

2
3 }

n

∑
P∈Dα

∑
Q∈Dα

Q⊂P

1P(x)1Q∩[B(x,C(n)`(P))]{(y)

×

[
`(Q)
`(P)

]p−ε  −∫
NQ

|∇ f (z)| dz
p

,

which establishes the validity of (3.20).
Using (3.20) and the assumption that ρ is decreasing on (0,∞) we find that

J .
∑

α∈{0, 1
3 ,

2
3 }

n

∑
P∈Dα

ω(P)ρ(C(n)`(P))

×
∑

Q∈Dα

Q⊂P

[
`(Q)
`(P)

]p−ε

|Q|
 −∫

NQ

|∇ f (z)| dz
p

(3.22)

for any ε ∈ (0, p). Now fix an α ∈ {0, 1
3 ,

2
3 }

n. Since P ∈ Dα, we may assume that P ∈ Dα
j0

for
some j0 ∈ Z. From this, the properties of dyadic cubes, the assumption that ω ∈ A1(Rn), and both
(i) and (iii) of Lemma 3.14, it follows that

∑
Q∈Dα

Q⊂P

[
`(Q)
`(P)

]p−ε

|Q|
 −∫

NQ

|∇ f (z)| dz
p

=

∞∑
j= j0

2−( j− j0)(p−ε)
∑

Q∈Dα
j

Q⊂P

|Q|
 −∫

NQ

|∇ f (z)| dz
p

≤ [ω]A1(Rn)

∞∑
j= j0

2−( j− j0)(p−ε)
∑

Q∈Dα
j

Q⊂P

|Q|
ω(NQ)

∫
Rn

1NQ(z)|∇ f (z)|pω(z) dz

= [ω]A1(Rn)

∫
Rn

∞∑
j= j0

2−( j− j0)(p−ε)

×
∑

Q∈Dα
j

Q⊂P

|Q|
ω(NQ)

1NQ(z)|∇ f (z)|pω(z) dz. (3.23)

Moreover, by Lemma 3.14(ii), we have, for any given P ∈ Dα and for any Q ⊂ P,

|Q|
ω(Q)

≤ [ω]A1(Rn)
|P|
ω(P)

.

Using this and the definition of NQ as in (3.15), for any given ε ∈ (0, p), any α ∈ {0, 1
3 ,

2
3 }

n, P ∈ Dα,
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and z ∈ Rn we conclude that
∞∑

j= j0

2−( j− j0)(p−ε)
∑

Q∈Dα
j

Q⊂P

|Q|
ω(Q)

1NQ(z)

≤ [ω]A1(Rn)
|P|
ω(P)

∞∑
j= j0

2−( j− j0)(p−ε)
∑

Q∈Dα
j

Q⊂P

1NQ(z)

. [ω]A1(Rn)
|P|
ω(P)

1NQ(z).

Combining this estimate with (3.23), implies that∑
Q∈Dα

Q⊂P

[
`(Q)
`(P)

]p−ε

|Q|
 −∫

NQ

|∇ f (z)| dz
p

. [ω]2
A1(Rn)

|P|
ω(P)

∫
Rn

1NP(z)|∇ f (z)|pω(z) dz.

By this, (3.22), and the definition of NQ as in (3.15), we obtain

J . [ω]2
A1(Rn)

∑
α∈{0, 1

3 ,
2
3 }

n

∑
P∈Dα

ρ(C(n)`(P))|P|
∫
Rn

1NP(z)|∇ f (z)|pω(z) dz

∼ [ω]2
A1(Rn)

∑
α∈{0, 1

3 ,
2
3 }

n

∫
Rn

∑
P∈Dα

ρ(C(n)`(P))|P|1NP(z)|∇ f (z)|pω(z) dz

∼ [ω]2
A1(Rn)

∑
α∈{0, 1

3 ,
2
3 }

n

∫
Rn

∑
P∈Dα

ρ(C(n)`(P))|P|1Q(z)|∇ f (z)|pω(z) dz. (3.24)

Moreover, using Lemma 3.27(i) and the assumption that ρ is decreasing on (0,∞), for any z ∈ Rn,

we conclude that ∑
Q∈Dα

ρ(C(n)`(Q))|Q|1Q(z) =
∑
j∈Z

ρ(C(n)2− j)2− jn

.
∑
j∈Z

∫
B(0,C(n)2− j+1)\B(0,C(n)2− j)

ρ(|y|) dy

∼

∫ ∞

0
ρ(r)rn−1 dr.

From this and (3.24) we finally deduce (3.19) and conclude the proof of Lemma 3.29. �

Combining Lemmas 3.26 and 3.29, we now derive the following conclusion.

Lemma 3.30. Let p ∈ [1,∞) and ρ ∈ L1
loc (0,∞) be a nonnegative and decreasing function

satisfying (3.11). Assume that ω ∈ A1(Rn). Then there exists a positive constant C(n,p), depending
only on both n and p, such that (3.12) is valid for any f ∈ C1

c(Rn).
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Proof. Let f , ω, and ρ be as stated. Observe that∫
Rn

∫
Rn

| f (x) − f (y)|p

|x − y|p
ρ(|x − y|)ω(x) dx dy ≤ 2p(I + J) ∼ I + J,

where I and J are as in (3.13) and (3.20), respectively. This estimate combined with Lemmas 3.26
and 3.29 implies that (3.12) holds for any f ∈ C1

c(Rn), and finishes the proof of Lemma 3.30. �

Now, we are in a position to prove Lemma 3.23.

Proof of Lemma 3.23. Following the notation in the statement we set C(ρ) :=
∫ ∞

0 ρ(r)rn−1 dr.
It follows from Corollary 3.21 that for any f ∈ W1,p

ω (Rn) there exists a sequence of functions
{ fk}k∈N ⊂ C1

c(Rn) such that

lim sup
k→∞

‖ f − fk‖Lp
ω(Rn) = 0 = lim sup

k→∞
‖ |∇ f − ∇ fk| ‖Lp

ω(Rn) . (3.25)

Since { fk}k∈N ⊂ C1
c(Rn), from Lemma 3.30 (with f replaced by fk), we deduce that, for any k ∈ N,"

Rn×Rn

| fk(x) − fk(y)|p

|x − y|p
ρ(|x − y|)ω(x) dy dx

. C(ρ)[ω]2
A1(Rn) ‖ |∇ fk| ‖

p
Lp
ω(Rn)

. (3.26)

For any N ∈ N, let

EN : =
{
(x, y) ∈ Rn × Rn : |x − y| ∈ (N−1,∞),

ω(x) ∈ (N−1,N), ω(y) ∈ (N−1,N)
}
.

By this, Tonelli’s theorem, and (3.26) we obtain, for any fixed N ∈ N and for any k ∈ N, that"
EN

| f (x) − f (y)|p

|x − y|p
ρ(|x − y|)ω(x) dy dx

.

"
EN

| f (x) − fk(x)|p

|x − y|p
ρ(|x − y|)ω(x) dy dx

+

"
EN

| fk(x) − fk(y)|p

|x − y|p
ρ(|x − y|)ω(x) dy dx

+

"
EN

| fk(y) − f (y)|p

|x − y|p
ρ(|x − y|)

ω(x)
ω(y)

ω(y) dx dy

. C(ρ)N p
∫
Rn
| f (x) − fk(x)|pω(x) dx + C(ρ)[ω]2

A1(Rn) ‖ |∇ fk| ‖
p
Lp
ω(Rn)

+ C(ρ)N p+2
∫
Rn
| f (y) − fk(y)|pω(y) dy

. C(ρ)

[
N p+2 ‖ f − fk‖

p
Lp
ω(Rn)

+ [ω]2
A1(Rn) ‖ |∇ fk| ‖

p
Lp
ω(Rn)

]
.

Using this and (3.25), we conclude that, for any fixed N ∈ N and for any k ∈ N,"
EN

| f (x) − f (y)|p

|x − y|p
ρ(|x − y|)ω(x) dy dx
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. lim sup
k→∞

C(ρ)

[
N p+2 ‖ f − fk‖

p
Lp
ω(Rn)

+ [ω]2
A1(Rn) ‖ |∇ fk| ‖

p
Lp
ω(Rn)

]
∼ C(ρ)[ω]2

A1(Rn) ‖ |∇ f | ‖p
Lp
ω(Rn)

.

Combining the preceding estimate with Levi’s lemma implies∫
Rn

[∫
Rn

| f (x) − f (y)|p

|x − y|p
ρ(|x − y|) dy

]
ω(x) dx

= lim
N→∞

"
EN

| f (x) − f (y)|p

|x − y|p
ρ(|x − y|)ω(x) dy dx

. C(ρ)[ω]2
A1(Rn) ‖ |∇ f | ‖p

Lp
ω(Rn)

and hence finishes the proof of Lemma 3.23. �

3.3 Proof of Theorem 3.36. The main result.

In this subsection we prove the main result of this article, Theorem 3.36. This is derived from
Theorem 3.4 whose proof is based on three lemmas. We begin with the following lemma which
gives another sufficient condition for the locally β-doubling property of X.

Lemma 3.31. Let X be a ball Banach function space. Assume that the Hardy–Littlewood maximal
operatorM is bounded on X′. Then X is locally n-doubling.

Proof. By Lemma 3.17 and the definition of X′′, for any B ∈ B and α ∈ [1,∞), we have

‖1αB‖X = ‖1αB‖X′′ = sup
‖g‖X′=1

∫
Rn

1αB(x)|g(x)| dx.

From this, Lemma 3.16 (with X replaced by X′), Lemma 3.14(ii) (with ω replaced by RX′g), and
Lemma 3.18, we deduce that

‖1αB‖X ≤ sup
‖g‖X′=1

∫
Rn

1αB(x)RX′g(x) dx

≤ αn sup
‖g‖X′=1

[RX′g]A1(Rn)

∫
Rn

1B(x)RX′g(x) dx

. αn‖M‖X′→X′‖1B‖X sup
‖g‖X′=1

‖RX′g‖X′ ∼ αn‖1B‖X ,

which implies that X is locally n-doubling. This completes the proof of Lemma 3.31. �

Remark 3.32. By Lemma 3.31, we conclude that the assumption that X is locally β-doubling is
weaker than the assumption that the Hardy–Littlewood maximal operatorM is bounded on X′.

As a consequence of Theorem 2.13 and Lemma 3.31, we have the following conclusion.

Lemma 3.33. Let X be a ball Banach function space, p ∈ [1,∞), and {ρε}ε∈(0,∞) be a decreasing-
radial-ATI. Assume that X1/p is a ball Banach function space with the property that the Hardy–
Littlewood maximal operatorM is bounded on (X1/p)′. Then (3.2) is valid for any f ∈ C2

c(Rn).
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Proof. By Lemma 3.31 we conclude that X1/p is locally n-doubling. This, together with Propo-
sition 2.11, implies that X is locally β-doubling with β := n/p ∈ (0, 1 + n/p). Thus, all the
assumptions of Theorem 2.13 are satisfied. Applying this theorem we deduce the validity of (3.2)
for any f ∈ C2

c(Rn). This finishes the proof of Lemma 3.33. �

Based on Lemma 3.33, in order to prove Theorem 3.4, it is sufficient to show the following

Lemma 3.34. Let X be a ball Banach function space satisfying the same assumptions as in Lemma
3.33, p ∈ [1,∞), and ρ ∈ L1

loc (0,∞) be a nonnegative and decreasing function satisfying (3.11).
Then there exists a positive constant C(n,p), depending only on both n and p, such that for any
f ∈ W1,X(Rn) we have∥∥∥∥∥∥∥

[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρ(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

≤ C(n,p)‖M‖
2
(X1/p)′→(X1/p)′ ‖ |∇ f | ‖pX

∫ ∞

0
ρ(r)rn−1 dr.

Proof. Let C(ρ) :=
∫ ∞

0 ρ(r)rn−1 dr. By the definition of X1/p, Lemma 3.17 (with X replaced by
X1/p), and the definition of (X1/p)′′, for any f ∈ W1,X(Rn), we have∥∥∥∥∥∥∥

[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

=

∥∥∥∥∥∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

∥∥∥∥∥
X1/p

=

∥∥∥∥∥∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

∥∥∥∥∥
(X1/p)′′

= sup
‖g‖(X1/p)′=1

∫
Rn

[∫
Rn

| f (x) − f (y)|p

|x − y|p
ρε(|x − y|) dy

]
|g(x)| dx.

From this, Lemma 3.16 [with X replaced by (X1/p)′], Lemma 3.23 [with ω replaced by R(X1/p)′g],
and Lemma 3.18 (with X replaced by X1/p), we deduce that, for any f ∈ W1,X(Rn),∥∥∥∥∥∥∥

[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρ(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

≤ sup
‖g‖(X1/p)′=1

∫
Rn

[∫
Rn

| f (x) − f (y)|p

|x − y|p
ρ(|x − y|) dy

]
R(X1/p)′g(x) dx

. C(ρ) sup
‖g‖(X1/p)′=1

[R(X1/p)′g]2
A1(Rn)

∫
Rn
|∇ f (x)|pR(X1/p)′g(x) dx

. C(ρ)‖M‖
2
(X1/p)′→(X1/p)′ sup

‖g‖(X1/p)′=1

∥∥∥ |∇ f |p
∥∥∥

X1/p ‖R(X1/p)′g‖(X1/p)′

. C(ρ)‖M‖
2
(X1/p)′→(X1/p)′ ‖ |∇ f | ‖pX .

This finishes the proof of Lemma 3.34. �
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Remark 3.35. In the case where X = Lp(Rn), the translation invariance of the Lebesgue measure
and the explicit expression of the norm ‖ · ‖Lp(Rn) provide straightforward proofs of Lemma 3.34;
see, for instance, [13, Proposition 9.3]. Our proof does not rely on these properties.

Proof of Theorem 3.4. In view of Corollary 3.19, C∞c (Rn) is dense in W1,X(Rn). This implies that,
for any ζ ∈ (0,∞), there exists a g ∈ C∞c (Rn) such that

‖ |∇g − ∇ f | ‖X < ζ.

Using this and Lemma 3.34 (with f and ρ replaced, respectively, by f − g and ρε), we conclude
that, for any given ζ ∈ (0,∞) and for any ε ∈ (0,∞),∥∥∥∥∥∥∥

[∫
Rn

|( f − g)(·) − ( f − g)(y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

. ‖ |∇g − ∇ f | ‖X . ζ,

which, combined with the Minkowski inequality, further implies that∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

− [K(p, n)]1/p ‖ |∇ f | ‖X

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

−

∥∥∥∥∥∥∥
[∫
Rn

|g(·) − g(y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
[∫
Rn

|g(·) − g(y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

− [K(p, n)]1/p ‖ |∇g| ‖X

∣∣∣∣∣∣∣
+

∣∣∣[K(p, n)]1/p‖ |∇g| ‖X − [K(p, n)]1/p ‖ |∇ f | ‖X
∣∣∣

≤

∥∥∥∥∥∥∥
[∫
Rn

|( f − g)(·) − ( f − g)(y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

+

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
[∫
Rn

|g(·) − g(y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

− [K(p, n)]1/p ‖ |∇g| ‖X

∣∣∣∣∣∣∣
+ [K(p, n)]1/p ‖ |∇g − ∇ f | ‖X

. ζ +

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
[∫
Rn

|g(·) − g(y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

− [K(p, n)]1/p ‖ |∇g| ‖X

∣∣∣∣∣∣∣ . (3.27)

As g ∈ C∞c (Rn), Lemma 3.33 (with f replaced by g) implies that

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

|g(·) − g(y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

= K(p, n) ‖ |∇g| ‖pX .

By this and (3.27), for any given ζ ∈ (0,∞), we conclude that

lim sup
ε→0+

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

− K(p, n) ‖ |∇ f | ‖pX

∣∣∣∣∣∣∣ . ζ.
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As ζ > 0 is arbitrary, we obtain the validity of (3.2) and then complete the proof of Theorem
3.4. �

As an application of Theorem 3.4, we now prove the main result of this article (Theorem 3.36),
namely, the generalization of the classical BBM formula (1.2) for ball Banach Sobolev spaces.

Theorem 3.36. Let X be a ball Banach function space and p ∈ [1,∞). Assume that X has an
absolutely continuous norm, X1/p is a ball Banach function space, and the Hardy–Littlewood
maximal operatorM is bounded on (X1/p)′. Then (2.15) is valid for any f ∈ W1,X(Rn).

Before proving Theorem 3.36, we show the following key lemma.

Lemma 3.37. Let X be a ball Banach function space and p ∈ [1,∞). Assume that X1/p is a ball
Banach function space and the centered ball average operators {Br}r∈(0,∞) are uniformly bounded
on X1/p. Then (2.18) is valid for any f ∈ X.

Proof. From both the definition of X1/p and the assumption that X1/p is a BBF space, for any
s ∈ (0, 1), it follows that

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

= (1 − s)

∥∥∥∥∥∥
∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy

∥∥∥∥∥∥
X1/p

≤ (1 − s)

∥∥∥∥∥∥
∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·)|p

| · −y|n+sp dy

∥∥∥∥∥∥
X1/p

+ (1 − s)

∥∥∥∥∥∥
∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (y)|p

| · −y|n+sp dy

∥∥∥∥∥∥
X1/p

= : I(1)
s + I(2)

s . (3.28)

We first consider I(1)
s . Using the definition of X1/p we write

I(1)
s . (1 − s)

3+sp
2

∥∥∥ | f |p ∥∥∥
X1/p = (1 − s)

3+sp
2 ‖ f ‖pX → 0 (3.29)

as s→ 1−. As for I(2)
s , from the assumptions that X1/p is a BBF space and the centered ball average

operators {Br}r∈(0,∞) are uniformly bounded on X1/p, and the definition of X1/p, it follows that

I(2)
s . (1 − s)

∞∑
j=1

[
2− j(1 − s)1/2

]n+sp

×

∥∥∥∥∥∥
∫
{y∈Rn: 2 j−1(1−s)−1/2≤|·−y|<2 j(1−s)−1/2}

| f (y)|p dy

∥∥∥∥∥∥
X1/p

. (1 − s)
∞∑
j=1

[
2− j(1 − s)1/2

]n+sp
∥∥∥∥∥∥
∫

B(·,2 j(1−s)−1/2)
| f (y)|p dy

∥∥∥∥∥∥
X1/p
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∼ (1 − s)
∞∑
j=1

[
2− j(1 − s)1/2

]sp ∥∥∥B2 j(1−s)−1/2(| f |p)
∥∥∥

X1/p

. (1 − s)
2+sp

2

∞∑
j=1

2− jsp
∥∥∥ | f |p ∥∥∥

X1/p

∼ (1 − s)
2+sp

2 ‖ f ‖pX

∞∑
j=1

2− jsp → 0

as s→ 1−. Combining this fact with (3.28) and (3.29) implies that (2.18) holds for any f ∈ X, and
this finishes the proof of Lemma 3.37. �

Proof of Theorem 3.36. Let ρε be as in (2.22) for any ε ∈ (0, 1/p). By the proof of Theorem 2.15
and the assumptions of the present theorem, we conclude that all the assumptions of Theorem 3.4
are satisfied. Using this and Theorem 3.4, for any f ∈ W1,X(Rn), we obtain

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|<(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

=
K(p, n)

p
‖ |∇ f | ‖pX . (3.30)

Moreover, from Lemma 3.11 with the assumption thatM is bounded on (X1/p)′, it follows that the
centered ball average operators {Br}r∈(0,∞) are uniformly bounded on X1/p. This fact and Lemma
3.37 imply that

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

= 0.

By this and (3.30) we obtain the validity of (2.15) for any f ∈ W1,X(Rn) and hence complete the
proof of Theorem 3.36. �

4 New characterizations of ball Banach Sobolev spaces

In this section we apply the BBM formula for ball Banach Sobolev spaces (Theorems 3.4
and 3.36) to obtain new characterizations of W1,X(Rn). The main such characterizations are the
contents of Theorems 4.8 and 4.12 below.

Theorem 4.1. Let X be a ball Banach function space, p ∈ [1,∞), and {ρε}ε∈(0,∞) be a decreasing-
radial-ATI. Assume that C∞c (Rn) is dense in X′, and X′ has an absolutely continuous norm and is
locally β-doubling with β ∈ (0, n + 1). If f ∈ X satisfies

lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

< ∞, (4.1)
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then f ∈ W1,X(Rn) and

‖ |∇ f | ‖X . lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

with the implicit positive constant independent of f .

Remark 4.2. When X = Lp(Rn), this result can be found in [12, Theorem 2]; the proof there
strongly depends on the translation invariance of the Lp(Rn) norm. But ball Banach function
spaces may not be translation invariant, for instance this is the case for weighted Lebesgue spaces
and variable Lebesgue spaces (Subsections 5.3 and 5.4, respectively). We overcome this essential
obstacle via an elegant use of the Funk–Hecke formula for spherical harmonics (Lemmas 4.3–4.7).

The proof of Theorem 4.1 relies on the five lemmas below.

Lemma 4.3. Let X be a ball Banach function space. Assume that X has an absolutely continuous
norm. Then, for any bounded linear functional L on X, there exists a unique g ∈ X′ such that
‖L‖X∗ = ‖g‖X′ and, for any f ∈ X,

L( f ) =

∫
Rn

f (x)g(x) dx,

where ‖L‖X∗ := sup{|L( f )| : f ∈ X, ‖ f ‖X ≤ 1}.

The proof of this lemma can be obtained by a repetition of an argument similar to that used in
the proof of [10, Corollary 4.3] and is omitted.

The next tool establishes an equivalent characterization of W1,X(Rn) under certain assumptions.

Lemma 4.4. Let X be a ball Banach function space and f ∈ X. Assume that C∞c (Rn) is dense in X′,
and that X′ has an absolutely continuous norm. Then |∇ f | ∈ X if and only if for any j ∈ {1, . . . , n}
we have

B j( f ) := sup
{∣∣∣∣∣∫
Rn

f (x)∂ jφ(x) dx
∣∣∣∣∣ : φ ∈ C∞c (Rn), ‖φ‖X′ ≤ 1

}
< ∞; (4.2)

moreover,

‖ |∇ f | ‖X ∼
n∑

j=1

B j( f ) (4.3)

with the positive equivalence constants independent of f .

Proof. We first prove the necessity. Let f ∈ W1,X(Rn). For any j ∈ {1, . . . , n}, by the definition of
∂ j f and Lemma 3.18, we have, for any φ ∈ C∞c (Rn) satisfying ‖φ‖X′ ≤ 1,∣∣∣∣∣∫

Rn
f (x)∂ jφ(x) dx

∣∣∣∣∣ =

∣∣∣∣∣∫
Rn
∂ j f (x)φ(x) dx

∣∣∣∣∣
≤ ‖∂ j f ‖X‖φ‖X′ ≤ ‖ f ‖W1,X(Rn) < ∞,

which, combined with the definition of B j( f ), implies that (4.2) holds and

n∑
j=1

B j( f ) ≤ n ‖ |∇ f | ‖X .
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This finishes the proof of the necessity.
It remains to show the sufficiency. To achieve this, assume that B j( f ) < ∞ for any j ∈ {1, . . . , n}.

For any j ∈ {1, . . . , n} let

L j(φ) :=
∫
Rn

f (x)∂ jφ(x) dx, ∀ φ ∈ C∞c (Rn). (4.4)

By the definition of B j( f ), for any φ ∈ C∞c (Rn) satisfying ‖φ‖X′ ≤ 1, we obtain

|L j(φ)| =
∣∣∣∣∣∫
Rn

f (x)∂ jφ(x) dx
∣∣∣∣∣ ≤ B j( f ) < ∞, (4.5)

which implies that L j is a bounded linear functional on (C∞c (Rn), ‖ · ‖X′). From this, the assumption
that C∞c (Rn) is dense in X′, [13, Theorem 1.1], and (4.5), we deduce that L j can be extended to a
unique bounded linear operator on (X′, ‖ · ‖X′), which is still denoted by L j and which satisfies

‖L j‖(X′)∗ ≤ B j( f ). (4.6)

By Lemma 4.3 (with X replaced by X′), using the assumption that X′ has an absolutely continuous
norm, we conclude that, for any j ∈ {1, . . . , n}, there exists a unique g j ∈ X′′ such that

‖g j‖X′′ = ‖L j‖(X′)∗ (4.7)

and, for any φ ∈ C∞c (Rn),

L j(φ) =

∫
Rn

g j(x)φ(x) dx;

this fact combined with (4.4) implies that ∂ j f = −g j. Moreover, from this and the assumption
that g j ∈ X′′, it follows that ∂ j f ∈ L1

loc (Rn). Using this, Lemma 3.18, (4.7), and (4.6), for any
j ∈ {1, . . . , n}, we obtain

‖∂ j f ‖X = ‖g j‖X = ‖g j‖X′′ = ‖L j‖(X′)∗ ≤ B j( f ) < ∞,

which, together with the assumption that f ∈ X, implies that f ∈ W1,X(Rn) and

‖ |∇ f | ‖X ≤
n∑

j=1

B j( f ).

This finishes the proof of the sufficiency, and hence of Lemma 4.4. �

The following Funk–Hecke formula for spherical harmonics is a part of [6, Theorem 2.22].

Lemma 4.5. Let e, η ∈ Sn−1 with n ≥ 2, and f be a measurable functions on (−1, 1) satisfying
that ∫ 1

−1
| f (t)|(1 − t2)(n−3)/2dt < ∞.

Then ∫
Sn−1

[ξ · η] f (ξ · e) dσ(ξ) = λ( f )[e · η],

where

λ( f ) := σ(Sn−2)
∫ 1

−1
t f (t)(1 − t2)(n−3)/2 dt.
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Borrowing a few ideas from [22, (9)], we prove the following technical lemma.

Lemma 4.6. Let {ρε}ε∈(0,∞) be a radial-ATI. Then, for any φ ∈ C2
c(Rn), x ∈ Rn, and e ∈ Sn−1 we

have
lim
ε→0+

∫
{h∈Rn: h·e≥0}

φ(x + h) − φ(x)
|h|

ρε(|h|) dh =
K(1, n)

2
[e · ∇φ(x)], (4.8)

where the convergence is uniform in x ∈ Rn; here K(1, n) as in (1.3) with p = 1.

Proof. Let δ ∈ (0, 1). Then for any given ε > 0 write

Kε :=
∫
{h∈Rn: h·e≥0}

φ(x + h) − φ(x)
|h|

ρε(|h|) dh = K(1)
ε (δ) + K(2)

ε (δ), (4.9)

where
K(1)
ε (δ) :=

∫
{h∈Rn: h·e≥0, |h|≥δ}

φ(x + h) − φ(x)
|h|

ρε(|h|) dh

and
K(2)
ε (δ) :=

∫
{h∈Rn: h·e≥0, |h|<δ}

φ(x + h) − φ(x)
|h|

ρε(|h|) dh.

We first consider K(1)
ε (δ). Since φ ∈ C2

c(Rn), applying the mean value theorem and the Cauchy–
Schwarz inequality for any x, h ∈ Rn, we obtain

|φ(x + h) − φ(x)| ≤ ‖ |∇φ| ‖L∞(Rn) |h|.

Combining this estimate with (2.2), for any given δ ∈ (0, 1), implies that

|K(1)
ε (δ)| ≤

∫
{h∈Rn: h·e≥0, |h|≥δ}

|φ(x + h) − φ(x)|
|h|

ρε(|h|) dh

≤ ‖ |∇φ| ‖L∞(Rn)

∫
{h∈Rn: h·e≥0, |h|≥δ}

ρε(|h|) dh

.

∫ ∞

δ
ρε(r)rn−1 dr → 0 (4.10)

as ε → 0+.
Next, we examine K(2)

ε (δ). Consider first the case n = 1 in which we may take e = 1. Observe
that K(1, 1) = 2. From this and (2.1), for any δ ∈ (0, 1) and ε > 0, it follows that

K(2)
ε (δ) =

∫ δ

0

φ(x + r) − φ(x)
r

ρε(r) dr

=

∫ δ

0

[
φ(x + r) − φ(x)

r
− φ′(x)

]
ρε(r) dr + φ′(x)

∫ δ

0
ρε(r) dr

=

∫ δ

0

[
φ(x + r) − φ(x)

r
− φ′(x)

]
ρε(r) dr

+ φ′(x)
[
1 −

∫ ∞

δ
ρε(r) dr

]
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=

∫ δ

0

[
φ(x + r) − φ(x)

r
− φ′(x)

]
ρε(r) dr

+ φ′(x)
[
K(1, 1)

2
−

∫ ∞

δ
ρε(r) dr

]
. (4.11)

Since φ ∈ C2
c (R), applying Taylor’s remainder theorem and the Cauchy–Schwarz inequality, we

deduce that there exists a positive constant C(φ) such that for any x ∈ R and r ∈ (0, δ],∣∣∣∣∣φ(x + r) − φ(x)
r

− φ′(x)
∣∣∣∣∣ ≤ C(φ)r ≤ C(φ)δ.

By this, (4.11), (2.1), and (2.2), for any given δ ∈ (0, 1), we conclude that

lim sup
ε→0+

∣∣∣∣∣K(2)
ε (δ) −

K(1, 1)
2

φ′(x)
∣∣∣∣∣

≤ lim sup
ε→0+

∫ δ

0

∣∣∣∣∣φ(x + r) − φ(x)
r

− φ′(x)
∣∣∣∣∣ ρε(r) dr

+ |φ′(x)| lim sup
ε→0+

∫ ∞

δ
ρε(r) dr

. δ lim sup
ε→0+

∫ δ

0
ρε(r) dr + ‖φ′‖L∞(R) lim sup

ε→0+

∫ ∞

δ
ρε(r) dr

. δ. (4.12)

Now consider the case n ≥ 2. Observe that, for any δ ∈ (0, 1) and ε > 0, one has

K(2)
ε (δ) =

∫ δ

0

[∫
{ξ∈Sn−1: ξ·e≥0}

φ(x + rξ) − φ(x)
r

dσ(ξ)
]
ρε(r)rn−1 dr

=

∫ δ

0

{∫
{ξ∈Sn−1: ξ·e≥0}

[
φ(x + rξ) − φ(x)

r
− ξ · ∇φ(x)

]
dσ(ξ)

}
× ρε(r)rn−1 dr

+

∫
{ξ∈Sn−1: ξ·e≥0}

ξ · ∇φ(x) dσ(ξ)
∫ δ

0
ρε(r)rn−1 dr

=

∫ δ

0

{∫
{ξ∈Sn−1: ξ·e≥0}

[
φ(x + rξ) − φ(x)

r
− ξ · ∇φ(x)

]
dσ(ξ)

}
× ρε(r)rn−1 dr

+

∫
{ξ∈Sn−1: ξ·e≥0}

ξ · ∇φ(x) dσ(ξ)
[
1 −

∫ ∞

δ
ρε(r)rn−1 dr

]
,

which implies that∣∣∣∣∣∣K(2)
ε (δ) −

∫
{ξ∈Sn−1: ξ·e≥0}

ξ · ∇φ(x) dσ(ξ)

∣∣∣∣∣∣
≤

∫ δ

0

[∫
{ξ∈Sn−1: ξ·e≥0}

∣∣∣∣∣φ(x + rξ) − φ(x)
r

− ξ · ∇φ(x)
∣∣∣∣∣ dσ(ξ)

]



44 Feng Dai, Loukas Grafakos, Zhulei Pan, Dachun Yang, Wen Yuan and Yangyang Zhang

× ρε(r)rn−1 dr

+

∣∣∣∣∣∣
∫
{ξ∈Sn−1: ξ·e≥0}

ξ · ∇φ(x) dσ(ξ)

∣∣∣∣∣∣
∫ ∞

δ
ρε(r)rn−1 dr. (4.13)

Since φ ∈ C2
c(Rn), applying Taylor’s remainder theorem and the Cauchy–Schwarz inequality, it

follows that there exists a positive constant C(φ,n) such that, for any x ∈ Rn, r ∈ (0, δ], and ξ ∈ Sn−1,∣∣∣∣∣φ(x + rξ) − φ(x)
r

− ξ · ∇φ(x)
∣∣∣∣∣ ≤ C(φ,n)r ≤ C(φ,n)δ. (4.14)

Moreover, using the Funk–Hecke formula for spherical harmonics [with f and η in Lemma 4.5
replaced, respectively, by 1[0,1] and ∇φ(x)/|∇φ(x)|], and [16, (1.6)], we obtain∫

{ξ∈Sn−1: ξ·e≥0}
ξ · ∇φ(x) dσ(ξ) =

∫
Sn−1

ξ · ∇φ(x)1[0,1](ξ · e) dσ(ξ)

=
σ(Sn−2)

n − 1
[e · ∇φ(x)]

=
K(1, n)

2
[e · ∇φ(x)].

From this, (4.13), (4.14), (2.1), and (2.2), for any given n ≥ 2 and δ ∈ (0, 1), it follows that

lim sup
ε→0+

∣∣∣∣∣K(2)
ε (δ) −

K(1, n)
2

[e · ∇φ(x)]
∣∣∣∣∣

. δ lim sup
ε→0+

∫ δ

0
ρε(r)rn−1 dr

+
K(1, n)

2
|e · ∇φ(x)| lim sup

ε→0+

∫ ∞

δ
ρε(r)rn−1 dr

. δ +
K(1, n)

2
‖ |∇φ| ‖L∞(Rn) lim sup

ε→0+

∫ ∞

δ
ρε(r)rn−1 dr ∼ δ.

This estimate together with (4.12) implies that for any given n ∈ N and for any δ ∈ (0, 1), we have

lim sup
ε→0+

∣∣∣∣∣K(2)
ε (δ) −

K(1, n)
2

[e · ∇φ(x)]
∣∣∣∣∣ . δ.

By this, (4.9), and (4.10), for any given δ ∈ (0, 1), we finally conclude that

lim sup
ε→0+

∣∣∣∣∣∣
∫
{h∈Rn: h·e≥0}

φ(x + h) − φ(x)
|h|

ρε(|h|) dh −
K(1, n)

2
[e · ∇φ(x)]

∣∣∣∣∣∣
≤ lim sup

ε→0+

|K(1)
ε (δ)| + lim sup

ε→0+

∣∣∣∣∣K(2)
ε (δ) −

K(1, n)
2

[e · ∇φ(x)]
∣∣∣∣∣

= lim sup
ε→0+

∣∣∣∣∣K(2)
ε (δ) −

K(1, n)
2

[e · ∇φ(x)]
∣∣∣∣∣ . δ.

Let δ→ 0+. Then we conclude that (4.8) holds, and this finishes the proof of Lemma 4.6. �
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Next we provide a modification of [22, Lemma 1].

Lemma 4.7. Let ρ ∈ L1
loc (0,∞) be a nonnegative function satisfying (3.11). Let f ∈ L1

loc (Rn) and
φ ∈ Cc(Rn) be such that ∫

Rn

[∫
Rn

|φ(y) − φ(x)|
|y − x|

ρ(|y − x|) dy
]
| f (x)| dx < ∞. (4.15)

Then, for any e ∈ Sn−1 we have∣∣∣∣∣∣
∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(y) − φ(x)
|y − x|

ρ(|y − x|) dy
]

f (x) dx

∣∣∣∣∣∣
≤

∫
Rn

[∫
Rn

| f (x) − f (y)|
|x − y|

ρ(|y − x|) dy
]
|φ(x)| dx.

Proof. For any given δ ∈ (0,∞) define

ρδ(r) :=

0, r ∈ (0, δ),
ρ(r), r ∈ [δ,∞).

Then for any x, y ∈ Rn we certainly have

|φ(y) − φ(x)|
|y − x|

ρδ(|y − x|)1{(x,y)∈Rn×Rn: (y−x)·e≥0}(x, y)| f (x)|

≤
|φ(y) − φ(x)|
|y − x|

ρ(|y − x|)| f (x)|. (4.16)

In view of (4.15) this implies that∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

|φ(y) − φ(x)|
|y − x|

ρδ(|y − x|) dy
]
| f (x)| dx

≤

∫
Rn

[∫
Rn

|φ(y) − φ(x)|
|y − x|

ρ(|y − x|) dy
]
| f (x)| dx < ∞. (4.17)

As φ ∈ Cc(Rn), there exists a ball B(0,M) with M ∈ (0,∞) such that supp (φ) ⊂ B(0,M). Using
this, the assumption that f ∈ L1

loc (Rn), and (3.11), we obtain, for any δ ∈ (0,∞),∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

|φ(x)|
|y − x|

ρδ(|y − x|) dy
]
| f (x)| dx

≤

∫
Rn

[∫
Rn

ρδ(|h|)
|h|

dh
]
|φ(x)|| f (x)| dx

.
‖φ‖L∞(Rn)

δ

∫
B(0,M)

| f (x)| dx
∫ ∞

δ
ρ(r)rn−1 dr < ∞. (4.18)

This, combined with (4.17), further implies that, for any δ ∈ (0,∞),∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

|φ(y)|
|y − x|

ρδ(|y − x|) dy
]
| f (x)| dx
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≤

∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

|φ(y) − φ(x)|
|y − x|

ρδ(|y − x|) dy
]
| f (x)| dx

+

∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

|φ(x)|
|y − x|

ρδ(|y − x|) dy
]
| f (x)| dx < ∞. (4.19)

Let δ > 0. We claim that∣∣∣∣∣∣
∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(y) − φ(x)
|y − x|

ρδ(|y − x|) dy
]

f (x) dx

∣∣∣∣∣∣
≤

∫
Rn

[∫
Rn

| f (x) − f (y)|
|x − y|

ρ(|y − x|) dy
]
|φ(x)| dx. (4.20)

Indeed, by (4.17), (4.18), (4.19), and Fubini’s theorem, we conclude that∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(y) − φ(x)
|y − x|

ρδ(|y − x|) dy
]

f (x) dx

=

∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(y)
|y − x|

ρδ(|y − x|) dy
]

f (x) dx

−

∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(x)
|y − x|

ρδ(|y − x|) dy
]

f (x) dx

=

∫
Rn

[∫
{x∈Rn: (y−x)·e≥0}

f (x)
|y − x|

ρδ(|y − x|) dx
]
φ(y) dy

−

∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

f (x)
|y − x|

ρδ(|y − x|) dy
]
φ(x) dx

=

∫
Rn

[∫
{h∈Rn: h·e≥0}

f (y − h)
|h|

ρδ(|h|) dh
]
φ(y) dy

−

∫
Rn

[∫
{h∈Rn: h·e≥0}

f (x)
|h|

ρδ(|h|) dh
]
φ(x) dx

=

∫
Rn

[∫
{h∈Rn: h·e≥0}

f (x − h) − f (x)
|h|

ρδ(|h|) dh
]
φ(x) dx,

which implies that ∣∣∣∣∣∣
∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(y) − φ(x)
|y − x|

ρδ(|y − x|) dy
]

f (x) dx

∣∣∣∣∣∣
≤

∫
Rn

[∫
{h∈Rn: h·e≥0}

| f (x − h) − f (x)|
|h|

ρδ(|h|) dh
]
|φ(x)| dx

≤

∫
Rn

[∫
Rn

| f (x) − f (y)|
|x − y|

ρ(|y − x|) dy
]
|φ(x)| dx.

Thus, the claim (4.20) is valid. From this, (4.15), (4.16), and the Lebesgue dominated convergence
theorem, it follows that∣∣∣∣∣∣

∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(y) − φ(x)
|y − x|

ρ(|y − x|) dy
]

f (x) dx

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∫
Rn

[
lim
δ→0

∫
{y∈Rn: (y−x)·e≥0}

φ(y) − φ(x)
|y − x|

ρδ(|y − x|) dy
]

f (x) dx

∣∣∣∣∣∣
= lim

δ→0

∣∣∣∣∣∣
∫
Rn

[∫
{y∈Rn: (y−x)·e≥0}

φ(y) − φ(x)
|y − x|

ρδ(|y − x|) dy
]

f (x) dx

∣∣∣∣∣∣
≤

∫
Rn

[∫
Rn

| f (x) − f (y)|
|x − y|

ρ(|y − x|) dy
]
|φ(x)| dx.

This finishes the proof of Lemma 4.7. �

Proof of Theorem 4.1. By Lemma 4.4, it suffices to show that

B j( f ) < ∞, (4.21)

for any j ∈ {1, . . . , n}, where B j( f ) is as in (4.2). So let φ ∈ C∞c (Rn) satisfy ‖φ‖X′ ≤ 1. Using
this and Lemma 4.6 [with e replaced by e j (the j-th unit vector in Rn)], we find that, for any
j ∈ {1, . . . , n} and x ∈ Rn,

∂ jφ(x) = e j · ∇φ(x)

=
2

K(1, n)
lim
ε→0+

∫
{y∈Rn: (y−x)·e j≥0}

φ(y) − φ(x)
|y − x|

ρε(|y − x|) dy, (4.22)

where the convergence is uniform in x on Rn, and K(1, n) as in (1.3) with p = 1. Since φ ∈ C∞c (Rn),
it follows that there is a ball B(0,M) with M > 0 such that supp (φ) ⊂ B(0,M). By this, f ∈ X
[which implies that f ∈ L1

loc (Rn)], and (4.22), we conclude that, for any j ∈ {1, . . . , n},

K(1, n)
2

∣∣∣∣∣∫
Rn

f (x)∂ jφ(x) dx
∣∣∣∣∣

=
K(1, n)

2

∣∣∣∣∣∣
∫

B(0,M)
f (x)∂ jφ(x) dx

∣∣∣∣∣∣
= lim

ε→0+

∣∣∣∣∣∣
∫

B(0,M)

∫
{y∈Rn: (y−x)·e j≥0}

φ(y) − φ(x)
|y − x|

ρε(|y − x|) dy
 f (x) dx

∣∣∣∣∣∣
= lim

ε→0+

∣∣∣∣∣∣
∫
Rn

∫
{y∈Rn: (y−x)·e j≥0}

φ(y) − φ(x)
|y − x|

ρε(|y − x|) dy
 f (x) dx

∣∣∣∣∣∣ . (4.23)

Then we claim that, for any ε ∈ (0,∞),∫
Rn

[∫
Rn

|φ(y) − φ(x)|
|y − x|

ρε(|y − x|) dy
]
| f (x)| dx . ‖ f ‖X < ∞. (4.24)

Indeed, since φ ∈ C∞c (Rn), from the mean value theorem and the Cauchy–Schwarz inequality, it
follows that, for any x, y ∈ Rn we have

|φ(x) − φ(y)| ≤ ‖ |∇φ| ‖L∞(Rn) |x − y|. (4.25)

Observe that when x ∈ Rn satisfies |x| ≥ 2M, and y ∈ B(0,M), then we must have |y − x| ≥ 2−1|x|.
Using this, (4.25), and Lemma 3.18, we conclude that∫

Rn

[∫
Rn

|φ(y) − φ(x)|
|y − x|

ρε(|y − x|) dy
]
| f (x)| dx
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=

∫
B(0,2M)

[∫
Rn

|φ(y) − φ(x)|
|y − x|

ρε(|y − x|) dy
]
| f (x)| dx

+

∫
Rn\B(0,2M)

∫
B(0,M)

· · · +

∫
Rn\B(0,2M)

∫
Rn\B(0,M)

· · ·

. ‖ |∇φ| ‖L∞(Rn)

∫
B(0,2M)

[∫
Rn
ρε(|y − x|) dy

]
| f (x)| dx

+ ‖φ‖L∞(Rn)|B(0,M)|
∫
Rn\B(0,2M)

| f (x)|
|x|

ρε(2−1|x|) dx

∼

∫
B(0,2M)

| f (x)| dx +

∫
Rn\B(0,2M)

| f (x)|
|x|

ρε(2−1|x|) dx

. ‖ f ‖X‖1B(0,2M)‖X′ +

∫
Rn\B(0,2M)

| f (x)|
|x|

ρε(2−1|x|) dx

. ‖ f ‖X +

∫
Rn\B(0,2M)

| f (x)|
|x|

ρε(2−1|x|) dx. (4.26)

Moreover, from the assumption that ρε is decreasing for any ε ∈ (0,∞), the assumption that X′ is
locally β-doubling with β ∈ (0, n + 1), and (2.1), it follows that∫

Rn\B(0,2M)

| f (x)|
|x|

ρε(2−1|x|) dx

=

∞∑
j=1

∫
B(0,2 j+1 M)\B(0,2 j M)

| f (x)|
|x|

ρε(2−1|x|) dx

.
∞∑
j=1

ρε(2 j−1M)
2 jM

∫
B(0,2 j+1 M)

| f (x)| dx

. ‖ f ‖X
∞∑
j=1

ρε(2 j−1M)
2 jM

‖1B(0,2 j+1 M)‖X′

. ‖ f ‖X‖1B(0,1)‖X′

∞∑
j=1

ρε(2 j−1M)(2 jM)β−1

. ‖ f ‖X
∞∑
j=1

ρε(2 j−1M)(2 jM)n

. ‖ f ‖X
∞∑
j=1

∫
B(0,2 j+1 M)\B(0,2 j M)

ρε(2 j−1|x|) dx

. ‖ f ‖X

∫ ∞

M
ρε(r)rn−1 dr . ‖ f ‖X < ∞,

which, combined with (4.26), implies that the claim (4.24) holds. By (4.23), (4.24), and Lemma
4.7 (with ρ replaced by ρε), for any j ∈ {1, . . . , n}, we find that∣∣∣∣∣∫

Rn
f (x)∂ jφ(x) dx

∣∣∣∣∣
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. lim inf
ε→0+

∫
Rn

[∫
Rn

| f (x) − f (y)|
|x − y|

ρε(|x − y|) dy
]
|φ(x)| dx.

From this, Lemma 3.18, Hölder’s inequality, (2.1), and (4.1), for any φ ∈ C∞c (Rn) with ‖φ‖X′ ≤ 1
we deduce that∣∣∣∣∣∫

Rn
f (x)∂ jφ(x) dx

∣∣∣∣∣
. lim inf

ε→0+

∥∥∥∥∥∫
Rn

| f (·) − f (y)|
| · −y|

ρε(| · −y|) dy
∥∥∥∥∥

X
‖φ‖X′

. lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
[∫
Rn
ρε(| · −y|) dy

]1/p′
∥∥∥∥∥∥∥

X

. lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

< ∞.

This fact, together with (4.3), yields the validity of (4.21) and

‖ |∇ f | ‖X .
n∑

j=1

B j( f ) . lim inf
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

.

This finishes the proof of Theorem 4.1. �

As a direct consequence of Theorems 3.4 and 4.1, Corollary 3.19, and Lemma 3.31, we obtain
the following new characterization of W1,X(Rn). Indeed, both Corollary 3.19 and Lemma 3.31
are used to show that the BBF space X under consideration satisfies all the hypotheses of both
Theorems 3.4 and 4.1.

Theorem 4.8. Let X be a ball Banach function space, p ∈ [1,∞), and {ρε}ε∈(0,∞) be a decreasing-
radial-ATI. Assume that both X and X′ have absolutely continuous norms, X1/p is a ball Banach
function space, and the Hardy–Littlewood maximal operator M is bounded on (X1/p)′. Then
f ∈ W1,X(Rn) if and only if f ∈ X and

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

X

< ∞; (4.27)

moreover,

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

= K(p, n) ‖ |∇ f | ‖pX .

To show Theorem 4.8, we first establish the following two lemmas.

Lemma 4.9. Let X be a ball Banach function space. Assume that the centered ball average
operators {Br}r∈(0,∞) are uniformly bounded on X. Then {Br}r∈(0,∞) are uniformly bounded on X′.
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Proof. Let r > 0 and f ∈ X. By Definition 3.2 and Fubini’s theorem, we find that

‖Br( f )‖X′ = sup
‖g‖X=1

∫
Rn

Br( f )(x)g(x) dx

≤ sup
‖g‖X=1

∫
Rn

1
|B(x, r)|

[∫
B(x,r)

| f (y)| dy
]
|g(x)| dx

= sup
‖g‖X=1

∫
Rn

1
|B(y, r)|

[∫
B(y,r)

|g(x)| dx
]
| f (y)| dy

= sup
‖g‖X=1

∫
Rn
| f (y)|Br(g)(y) dy.

From this, Lemma 3.18, and the assumption that the centered ball average operators {Br}r∈(0,∞) are
uniformly bounded on X, it follows that

‖Br( f )‖X′ ≤ sup
‖g‖X=1

‖Br(g)‖X‖ f ‖X′ . sup
‖g‖X=1

‖g‖X‖ f ‖X′ ∼ ‖ f ‖X′ .

This finishes the proof of Lemma 4.9. �

The following provides the third sufficient condition for the locally β-doubling property of X.

Lemma 4.10. Let X be a ball quasi-Banach function space. Assume that the centered ball average
operators {Br}r∈(0,∞) are uniformly bounded on X. Then X is locally n-doubling.

Proof. Observe that for any B := B(0, r) ∈ B with r ∈ (0,∞), and for any α ∈ [1,∞) and x ∈ αB
we have

B2αr(1B)(x) = −

∫
B(x,2αr)

1B(y) dy =
|B ∩ B(x, 2αr)|
|B(x, 2αr)|

=
1

(2α)n .

From this and the assumptions that X is a BQBF space and that {Br}r∈(0,∞) are uniformly bounded
on X, it follows that, for any B ∈ B and α ∈ [1,∞),

‖1αB‖X ≤ 2nαn‖B2αr(1B)‖X . αn‖1B‖X .

This implies that X is locally n-doubling, and hence finishes the proof of Lemma 4.10. �

Proof of Theorem 4.8. Let f ∈ W1,X(Rn). By Theorem 3.4, we obtain

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

X

= K(p, n) ‖ |∇ f | ‖pX < ∞,

which completes the proof of the necessity.
Next, we show the sufficiency. To this end, assume that (4.27) holds. Using Corollary 3.19,

Lemma 3.11, and the assumptions that X1/p is a ball Banach function space and that the Hardy–
Littlewood maximal operator M is bounded on (X1/p)′, we find that C∞c (Rn) is dense in X′ and
the centered ball average operators {Br}r∈(0,∞) are uniformly bounded on X. This, combined with
Lemmas 4.9 and 4.10, implies that X′ is locally β-doubling with β = n ∈ (0, n + 1). Thus, all the
assumptions of Theorem 4.1 are satisfied. Using Theorem 4.1, we conclude that f ∈ W1,X(Rn).
This finishes the proof of the sufficiency, and hence of Theorem 4.8. �



Bourgain–Brezis–Mironescu Formulae via Ball Banach Function Spaces 51

Remark 4.11. Let q ∈ (1,∞), p ∈ [1, q], X := Lq(Rn), and {ρε}ε∈(0,∞) be a decreasing-radial-ATI.
Then, by Theorem 4.8, we find that f ∈ W1,q(Rn) if and only if f ∈ Lq(Rn) and (4.1) holds with
X = Lq(Rn); moreover, if (4.1) holds for some f ∈ Lq(Rn), then we have

lim
ε→0+

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

Lq(Rn)

= K(p, n) ‖ |∇ f | ‖pLq(Rn) .

If X := Lq(Rn), Theorem 4.8 is just [12, Theorem 2] when p = q but is new when p < q.

Theorems 3.36 and 4.1 yield the following conclusion in a way similar to Theorem 4.8.

Theorem 4.12. Let X be a ball Banach function space, and p ∈ [1,∞). Assume that both X
and X′ have absolutely continuous norms, X1/p is a ball Banach function space, and the Hardy–
Littlewood maximal operatorM is bounded on (X1/p)′. Then f ∈ W1,X(Rn) if and only if f ∈ X
and

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

X

< ∞;

moreover, if this holds for a function f ∈ X, then we have

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

X

=
K(p, n)

p
‖ |∇ f | ‖pX .

Remark 4.13. Let q ∈ (1,∞), p ∈ [1, q], and X := Lq(Rn). Then, by Theorem 4.12, we conclude
that f ∈ W1,q(Rn) if and only if f ∈ Lq(Rn) and

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

Lq(Rn)

< ∞;

moreover,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lq(Rn)

=
K(p, n)

p
‖ |∇ f | ‖pLq(Rn) .

If X := Lq(Rn), Theorem 4.12 is just [12, (44)] when p = q but is new when p < q.

5 Applications to specific spaces

In this section, we apply Theorems 2.13, 2.15, 2.20, 2.22, 3.4, 3.36, 4.8, and 4.12 to seven con-
crete examples of ball Banach function spaces, namely, Morrey spaces (Subsection 5.1), mixed-
norm Lebesgue spaces (Subsection 5.2), weighted Lebesgue spaces (Subsection 5.3), variable
Lebesgue spaces (Subsection 5.4), Orlicz spaces (Subsection 5.5), Orlicz-slice spaces (Subsection
5.6), and Lorentz spaces (Subsection 5.7).



52 Feng Dai, Loukas Grafakos, Zhulei Pan, Dachun Yang, Wen Yuan and Yangyang Zhang

5.1 Morrey spaces

For any given 0 < r ≤ α < ∞, the Morrey space Mα
r (Rn) is defined as the set of all the

measurable functions f on Rn for which the quasi-norm

‖ f ‖Mα
r (Rn) := sup

B∈B
|B|1/α−1/r‖ f ‖Lr(B)

is finite. These spaces were introduced in 1938 by Morrey [78] in order to study the regularity
of solutions to certain equations. They find important applications in the theory of elliptic partial
differential equations, potential theory, and harmonic analysis (see, for instance, [3, 27, 61, 91, 92,
97]). As indicated in [93, p. 87], the Morrey space Mα

r (Rn) for any given r ∈ [1,∞) is a ball Banach
function space, but not a Banach function space in the terminology of Bennett and Sharpley [10].

The following theorem is a corollary of Theorem 2.15.

Theorem 5.1. Let 1 ≤ r ≤ α < ∞ and p ∈ [1,∞) satisfy n(1/α − 1/p) < 1. Let K(p, n) be as in
(1.3). Then, for any f ∈ C2

c(Rn),

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

=
K(p, n)

p
‖ |∇ f | ‖pMα

r (Rn) . (5.1)

Proof. From the conclusion in [93, p. 87], it follows that the Morrey space Mα
r (Rn) is a BBF space.

Using this fact and Theorem 2.15, we find that in order to prove the required conclusion, it would
suffice to show that Mα

r (Rn) is locally n/α-doubling with n/α ∈ (0, 1 + n/p). Indeed, from the
definition of Mα

r (Rn), for any B0 := B(0,R) ∈ B, we deduce that

‖1B0‖Mα
r (Rn) = max

sup
B∈B
rB≤R

|B|
1
α−

1
r ‖1B0‖Lr(B), sup

B∈B
rB>R

|B|
1
α−

1
r ‖1B0‖Lr(B)


= max

sup
B∈B
rB≤R

|B|
1
α−

1
r |B0 ∩ B|

1
r , sup

B∈B
rB>R

|B|
1
α−

1
r |B0 ∩ B|

1
r


= |B0|

1/α.

This implies that, for any λ ∈ [1,∞),

‖1λB0‖Mα
r (Rn) = |λB0|

1/α = λn/α|B0|
1/α = λn/α‖1B0‖Mα

r (Rn).

Thus, Mα
r (Rn) is locally n/α-doubling. Observe that the assumption that n(1/α − 1/p) < 1 gives

n/α ∈ (0, 1 + n/p) and this completes the proof of Theorem 5.1. �

By the proof of Theorem 5.1, we conclude that the assumptions of Theorem 2.13 are satisfied
for Mα

r (Rn). Using Theorem 2.13, we obtain the following corollary; we omit the details here.

Corollary 5.2. Let 1 ≤ r ≤ α < ∞ and p ∈ [1,∞) satisfy n(1/α − 1/p) < 1. Then Theorem 2.13
remains valid when X = Mα

r (Rn).
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Proposition 5.3. Let 1 < r < α < ∞ and p ∈ [1, r). Then f ∈ W1,Mα
r (Rn)(Rn) if and only if

f ∈ Mα
r (Rn) and

lim inf
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

< ∞; (5.2)

moreover, there exists positive constants C1 and C2 such that

C1 ‖ |∇ f | ‖pMα
r (Rn) ≤ lim inf

s→1−
(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

≤ lim sup
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

≤ C2 ‖ |∇ f | ‖pMα
r (Rn) .

Proof. We first prove that ∇ f exists and

‖ |∇ f | ‖pMα
r (Rn) . lim inf

s→1−
(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

. (5.3)

Indeed, when 1 < r < α < ∞ and θ ∈ (0, r/α), according to [91, Proposition 285], we have the
following norm equivalence: for any measurable function f on Rn,

‖ f ‖Mα
r (Rn) ∼ sup

Q⊂Rn
|Q|1/α−1/r‖ f ‖Lr

[M(1Q)]1/(1−θ)
(Rn), (5.4)

whereM denotes the Hardy–Littlewood maximal operator, the supremum is taken over all cubes
Q ⊂ Rn,

‖ f ‖Lr
[M(1Q)]1/(1−θ)

(Rn) :=
{∫
Rn
| f (x)|r

[
M(1Q)(x)

] 1
1−θ dx

} 1
r

,

and the positive equivalence constants are independent of f . From (5.4) and (5.2), it follows that

lim
s→1−

(1 − s)|Q|p/α−p/r

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr
[M(1Q)]1/(1−θ)

(Rn)

. lim inf
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

< ∞. (5.5)

On the other hand, by [91, Theorem 281], we know that [M(1Q)]
1

1−θ ∈ A1(Rn) for any cube
Q ⊂ Rn. From this, (5.5), and Theorem 4.12 with X := Lr

[M(1Q)]1/(1−θ)(Rn) (see also Theorem 5.10

below with ω := [M(1Q)]
1

1−θ ), we infer that ∇ f exists and, for any cube Q ⊂ Rn,

K(p, n)
p
|Q|p/α−p/r ‖ |∇ f | ‖pLr

[M(1Q)]1/(1−θ)
(Rn)
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= lim
s→1−

(1 − s)|Q|p/α−p/r

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr
[M(1Q)]1/(1−θ)

(Rn)

. lim inf
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

,

which, combined with (5.4) again, further implies that (5.3) holds true.
On the other hand, by the conclusion in [93, p. 87], we find that the Morrey space Mα

r (Rn) is a
BBF space. From [94, Theorem 4.1], it follows that the Hardy–Littlewood maximal functionM
is bounded on {[Mα

r (Rn)]1/p}′. By this, we conclude that all the assumptions of Lemma 3.34 are
satisfied for X := Mα

r (Rn) [with ρ in Lemma 3.34 replaced by ρε in (2.22) for any ε ∈ (0, 1/p)],
which implies that

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|<(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

=

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|p
ρε(| · −y|) dy

] 1
p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

. ‖ |∇ f | ‖pMα
r (Rn) . (5.6)

Moreover, using Lemma 3.37 and the fact the Hardy–Littlewood maximal functionM is bounded
on {[Mα

r (Rn)]1/p}′ (see, for instance, [94, Theorem 4.1]), we find that

lim sup
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

= 0.

This, together with (5.6), further implies that

lim sup
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

≤ lim sup
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|<(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

+ lim sup
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
{y∈Rn: |·−y|≥(1−s)−1/2}

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Mα
r (Rn)

. ‖ |∇ f | ‖pMα
r (Rn) .

This finishes the proof of Proposition 5.3. �

Remark 5.4. (i) By [94, Example 5.1], we conclude that the Morrey space Mα
r (Rn) has no

absolutely continuous norm if 1 < r < α < ∞. Thus, it is still unknown whether or not (5.1)
is valid for any f ∈ W1,Mα

r (Rn)(Rn).

(ii) We point out that the upper estimate (5.3) of Proposition 5.3 is attributed to the referee.
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5.2 Mixed-norm Lebesgue spaces

For a given vector ~r := (r1, . . . , rn) ∈ (0,∞]n, the mixed-norm Lebesgue space L~r(Rn) is defined
to be the set of all the measurable functions f on Rn for which the quasi-norm

‖ f ‖L~r(Rn) :=


∫
R
· · ·

[∫
R
| f (x1, . . . , xn)|r1 dx1

] r2
r1
· · · dxn


1
rn

,

is finite; the usual modifications are made when ri = ∞ for some i ∈ {1, . . . , n}. In the sequel let

r− := min{r1, . . . , rn}. (5.7)

The study of mixed-norm Lebesgue spaces can be traced back to Hörmander [53] and Benedek
and Panzone [9]. Important developments of mixed-norm function spaces can be found in [28, 46,
56, 57, 58, 71, 83, 84]. When ~r ∈ (0,∞)n the set L~r(Rn) is a ball quasi-Banach function space, but
it may not be a quasi-Banach function space (see, for instance, [107, Remark 7.20]).

The following theorem is a corollary of Theorem 2.15.

Theorem 5.5. Let ~r := (r1, . . . , rn) ∈ [1,∞)n and p ∈ [1,∞) satisfy 1/r1 + · · · + 1/rn < 1 + n/p.
Let K(p, n) be as in (1.3). Then, for any f ∈ C2

c(Rn),

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

L~r(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p

L~r(Rn)
.

Proof. From [56, Remark 2.8(iii)], it follows that the mixed-norm Lebesgue space L~r(Rn) is a BBF
space. Using this and Theorem 2.15 we conclude that in order to prove the required conclusion
it suffices to show that L~r(Rn) is locally β-doubling with some β ∈ (0, 1 + n/p). Indeed, by [83,
Proposition 2.1], we conclude that, for any B := B(0, r) ∈ B with r ∈ (0,∞), and any α ∈ [1,∞)
we have

‖1αB‖L~r(Rn) = α
1
r1

+···+ 1
rn ‖1B‖L~r(Rn).

Combining this estimate with the assumption that 1/r1 + · · · + 1/rn < 1 + n/p, implies that L~r(Rn)
is locally β-doubling with β = 1/r1 + · · · + 1/rn ∈ (0, 1 + n/p). Theorem 5.5 is now proved. �

The following result is a consequence of Theorem 4.12.

Theorem 5.6. Let ~r := (r1, . . . , rn) ∈ (1,∞)n and let p ∈ [1, r−) with r− defined in (5.7). Then
f ∈ W1,L~r(Rn)(Rn) if and only if f ∈ L~r(Rn) and in this case we have

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

L~r(Rn)

< ∞;

moreover,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

L~r(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p

L~r(Rn)

with K(p, n) as in (1.3).
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Proof. By the definition of L~r(Rn) we obtain that

[L~r(Rn)]1/p = L~r/p(Rn)

and thus [L~r(Rn)]1/p is a BBF space (see, for instance, [56, Remark 2.8(iii)]). Then, from this and
[9, Theorems 1 and 2], it follows that[

L~r(Rn)
]′

= L~r
′

(Rn) and
([

L~r(Rn)
]1/p

)′
= L(~r/p)′(Rn),

where ~r ′ := (r′1, . . . , r
′
n) with 1/ri + /r′i = 1, and (~r/p)′ := (r∗1, . . . , r

∗
n) with p/ri + 1/r∗i = 1

for any i ∈ {1, · · · , n}. Moreover, in view of [45, Lemma 4.1] and the assumption that ~r :=
(r1, . . . , rn) ∈ (1,∞)n, we conclude that L~r(Rn) and [L~r(Rn)]′ both have absolutely continuous
norms. Furthermore, by [56, Lemma 3.5] and the assumptions that ~r = (r1, . . . , rn) ∈ (1,∞)n and
p ∈ [1, r−), we find that the Hardy–Littlewood maximal operatorM is bounded on ([L~r(Rn)]1/p)′.
Thus, all the assumptions of Theorem 4.12 are satisfied for X := L~r(Rn) with ~r = (r1, . . . , rn) ∈
(1,∞)n and p ∈ [1, r−). From this and Theorem 4.12 with X := L~r(Rn), we deduce the claimed
conclusions. This finishes the proof of Theorem 5.6. �

From the proof of Theorem 5.6, we deduce that all the assumptions of Theorems 2.13, 3.4,
3.36, and 4.8 with X := L~r(Rn) are satisfied. Thus we obtain the following results and we omit the
details.

Corollary 5.7. Let ~r := (r1, . . . , rn) ∈ (1,∞)n, and p ∈ [1, r−). Then Theorems 2.13, 3.4, 3.36, and
4.8 are valid for X = L~r(Rn).

Remark 5.8. We point out that the Sobolev-type space W1,L~r(Rn)(Rn) associated with mixed-norm
Lebesgue space has been previously studied in [62, 63].

5.3 Weighted Lebesgue spaces

In this section, we apply Theorems 2.20, 2.22, 3.4, 3.36, 4.8, and 4.12 to weighted Lebesgue
spaces (see Definition 3.13). It is worth pointing out that a weighted Lebesgue space with an
A∞(Rn)-weight may not be a Banach function space; see [93, Section 7.1].

The following theorem is a consequence of Theorem 2.22.

Theorem 5.9. Let r, p ∈ [1,∞) satisfy that n(1/r − 1/p) < 1, and ω ∈
⋃

q∈[1,r(1/n+1/p)) Aq(Rn). Let
K(p, n) be as in (1.3). Then, for any f ∈ C2

c(Rn),

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr
ω(Rn)

=
K(p, n)

p
‖ |∇ f | ‖pLr

ω(Rn) .

Proof. It is known that Lr
ω(Rn) is a BBF space (see, e.g., [93, p. 86]). Since q ∈ (pn/(p + n), r], it

follows that n(1/q − 1/p) < 1 and q ≤ r. Moreover, by the definition of Lr
ω(Rn), we have

[Lr
ω(Rn)]1/q = Lr/q

ω (Rn).

Using this, the assumption that ω ∈ Ar/q(Rn), and [47, Theorem 7.1.9 (a)] we conclude that the
Hardy–Littlewood maximal operatorM is weakly bounded on [Lr

ω(Rn)]1/q. Thus all the assump-
tions of Theorem 2.22 with X := Lr

ω(Rn) are satisfied. The conclusion of Theorem 2.22 yields the
claimed assertion and then completes the proof of Theorem 5.9. �
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The following result is a corollary of Theorem 4.12.

Theorem 5.10. Let r ∈ (1,∞), p ∈ [1, r], and ω ∈ Ar/p(Rn). Then f ∈ W1,Lr
ω(Rn)(Rn) if and only if

f ∈ Lr
ω(Rn) and

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr
ω(Rn)

< ∞;

moreover,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr
ω(Rn)

=
K(p, n)

p
‖ |∇ f | ‖pLr

ω(Rn)

with K(p, n) as in (1.3).

Proof. By [96, Lemma 4.2] and [89, Theorem 1.34], we conclude that Lr
ω(Rn) and [Lr

ω(Rn)]′ =

Lr′

ω1−r′ (R
n) both have absolutely continuous norms. From the definition of Lr

ω(Rn), it follows that

[Lr
ω(Rn)]1/p = Lr/p

ω (Rn)

and [Lr
ω(Rn)]1/p is a BBF space.

Then we consider two cases based on the size of p. If p ∈ [1, r), from the assumption that
ω ∈ Ar/p(Rn) and [47, Proposition 7.1.5(4)], it follows that

ω1−(r/p)′ ∈ A(r/p)′(Rn). (5.8)

Moreover, using [96, Lemma 4.2], we conclude that([
Lr
ω(Rn)

]1/p
)′

= L(r/p)′

ω1−(r/p)′ (R
n).

By this, (5.8), and [5, Theorem 3.1(b)], we find that the Hardy–Littlewood maximal operator
M is bounded on ([Lr

ω(Rn)]1/p)′. Thus, all the assumptions of Theorem 4.12 are satisfied for
X := Lr

ω(Rn) with p ∈ [1, r) and ω ∈ Ar/p(Rn).
If p = r we apply the conclusion in [59, p. 9] and the assumption that ω ∈ Ar/p(Rn) to obtain([

Lr
ω(Rn)

]1/p
)′

= L∞
ω−1(Rn).

This combined with [5, Theorem 3.1(b)] and [59, p. 9] yields thatM is bounded on ([Lr
ω(Rn)]1/p)′.

Thus, all the assumptions of Theorem 4.12 are also satisfied for X := Lr
ω(Rn) when p = r and

ω ∈ Ar/p(Rn). The conclusion of this theorem yields the claimed assertion and then finishes the
proof of Theorem 5.10. �

From the proof of Theorem 5.10, it follows that all the assumptions of Theorems 2.20, 3.4, 3.36,
and 4.8 with X := Lr

ω(Rn) are satisfied. As a consequence of these theorems with X := Lr
ω(Rn), we

obtain the following results; we omit the details here.

Corollary 5.11. Let r ∈ (1,∞), p ∈ [1, r], and ω ∈ Ar/p(Rn). Then Theorems 2.20, 3.4, 3.36, and
4.8 are valid for X = Lr

ω(Rn).
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5.4 Variable Lebesgue spaces

Let r : Rn → (0,∞) be a nonnegative measurable function. Let

r̃− := ess inf
x∈Rn

r(x) and r̃+ := ess sup
x∈Rn

r(x).

A function r : Rn → (0,∞) is said to be globally log-Hölder continuous if there exist an r∞ ∈ R
and a positive constant C such that for any x, y ∈ Rn we have

|r(x) − r(y)| ≤
C

log(e + 1/|x − y|)
and |r(x) − r∞| ≤

C
log(e + |x|)

.

The variable Lebesgue space Lr(·)(Rn) associated with the function r : Rn → (0,∞) is defined to
be the set of all the measurable functions f on Rn with finite quasi-norm

‖ f ‖Lr(·)(Rn) := inf

λ ∈ (0,∞) :
∫
Rn

[
| f (x)|
λ

]r(x)

dx ≤ 1

 .
By the definition of Lr(·)(Rn), whenever r : Rn → (0,∞), it is easy to show that Lr(·)(Rn) is a ball
quasi-Banach function space. If 1 ≤ r̃− ≤ r̃+ < ∞, then (Lr(·)(Rn), ‖ · ‖Lr(·)(Rn)) is a Banach function
space and hence also a ball Banach function space (see, for instance, [93, p. 94]). For more results
on variable Lebesgue spaces, we refer the reader to [30, 32, 38, 67, 79, 80].

We begin with the following consequence of Theorem 2.22.

Theorem 5.12. Let r : Rn → (0,∞) be globally log-Hölder continuous. Assume that both
1 ≤ r̃− ≤ r̃+ < ∞ and p ∈ [1,∞) satisfy n(1/̃r− − 1/p) < 1. Let K(p, n) be as in (1.3). Then, for
any f ∈ C2

c(Rn),

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr(·)(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p

Lr(·)(Rn)
.

Proof. It follows from [93, p. 94] that the variable Lebesgue space Lr(·)(Rn) is a BBF space. More-
over, by the definition of Lr(·)(Rn), we have[

Lr(·)(Rn)
]1/̃r−

= Lr(·)/̃r−(Rn).

Using this and [37, Corollary 4.4.12], together with the assumption that r is globally log-Hölder
continuous, we obtain that the Hardy–Littlewood maximal operator M is weakly bounded on
[Lr(·)(Rn)]1/̃r− . Thus, the assumptions of Theorem 2.22 are satisfied for X := Lr(·)(Rn) with 1 ≤
r̃− ≤ r̃+ < ∞ and p ∈ [1,∞) satisfying n(1/̃r− − 1/p) < 1. The conclusion of this theorem then
completes the proof of Theorem 5.12. �

The following theorem is a corollary of Theorem 4.12.

Theorem 5.13. Let r : Rn → (0,∞) be globally log-Hölder continuous. Assume that 1 < r̃− ≤
r̃+ < ∞ and p ∈ [1, r̃−). Then f ∈ W1,Lr(·)(Rn)(Rn) if and only if f ∈ Lr(·)(Rn) and

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr(·)(Rn)

< ∞;
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moreover,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lr(·)(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p

Lr(·)(Rn)

with K(p, n) as in (1.3).

Proof. By the proof of Theorem 5.12, we obtain that[
Lr(·)(Rn)

]1/p
= Lr(·)/p(Rn)

and [Lr(·)(Rn)]1/p is a BBF space (see, for instance, [93, p. 94]). Then, from [30, Theorem 2.80],
we deduce that [

Lr(·)(Rn)
]′

= Lr(·)′(Rn) and
([

Lr(·)(Rn)
]1/p

)′
= L(r(·)/p)′(Rn),

where r(·)′ := [r(·) − 1]/r(·) and (r(·)/p)′ := [r(·) − p]/r(·). Moreover, by [30, p. 73] and the
assumption that 1 < r̃− ≤ r̃+ < ∞, we conclude that Lr(·)(Rn) and [Lr(·)(Rn)]′ both have absolutely
continuous norms. Furthermore, from [1, Theorem 1.7], it follows that the Hardy–Littlewood
maximal operatorM is bounded on ([Lr(·)(Rn)]1/p)′ with 1 < r̃− ≤ r̃+ < ∞ and p ∈ [1, r̃−). Thus,
all the assumptions of Theorem 4.12 are satisfied for X := Lr(·)(Rn) with 1 < r̃− ≤ r̃+ < ∞ and
p ∈ [1, r̃−). From this and Theorem 4.12 with X := Lr(·)(Rn), we deduce the desired conclusions
of the present theorem. This finishes the proof of Theorem 5.13. �

From the proof of Theorem 5.13, we deduce that all the assumptions of Theorems 2.20, 3.4,
3.36, and 4.8 with X := Lr(·)(Rn) are satisfied. Using this, we obtain the following corollary.

Corollary 5.14. Let r : Rn → (0,∞) be globally log-Hölder continuous. Assume that 1 < r̃− ≤
r̃+ < ∞ and p ∈ [1, r̃−). Then Theorems 2.20, 3.4, 3.36, and 4.8 hold for X = Lr(·)(Rn).

Remark 5.15. Sobolev-type spaces W1,Lr(·)(Rn)(Rn) associated with variable Lebesgue space were
introduced in [38].

5.5 Orlicz spaces

We discuss a few basics on Orlicz spaces. A non-decreasing function Φ : [0,∞) → [0,∞) is
called an Orlicz function if Φ(0) = 0, Φ(t) > 0 for any t ∈ (0,∞), and limt→∞Φ(t) = ∞. An Orlicz
function Φ is said to be of lower (resp., upper) type r for some r ∈ R if there exists a positive
constant C(r) such that, for any t ∈ [0,∞) and s ∈ (0, 1) [resp., s ∈ [1,∞)],

Φ(st) ≤ C(r)srΦ(t).

In the remainder of this subsection, we always assume that Φ : [0,∞) → [0,∞) is an Orlicz
function with positive lower type r−

Φ
and positive upper type r+

Φ
. The Orlicz norm ‖ f ‖LΦ(Rn) of a

measurable function f on Rn is then defined by setting

‖ f ‖LΦ(Rn) := inf
{
λ ∈ (0,∞) :

∫
Rn

Φ

(
| f (x)|
λ

)
dx ≤ 1

}
.
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Accordingly, the Orlicz space LΦ(Rn) is defined to be the set of all the measurable functions
f on Rn with finite norm ‖ f ‖LΦ(Rn). It is known that LΦ(Rn) is a Banach function space when
1 ≤ r−

Φ
≤ r+

Φ
< ∞ (see [87, p. 67, Theorem 10]).

The following theorem is a corollary of Theorem 2.22.

Theorem 5.16. Let Φ be an Orlicz function with positive lower type r−
Φ

and positive upper type
r+
Φ

. Assume that both 1 ≤ r−
Φ
≤ r+

Φ
< ∞ and p ∈ [1,∞) satisfy n(1/r−

Φ
− 1/p) < 1. Let K(p, n) be

as in (1.3). Then, for any f ∈ C2
c(Rn),

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

LΦ(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p

LΦ(Rn)
.

Proof. For t ∈ [0,∞) define
Φr−

Φ
(t) := Φ(t1/r−

Φ). (5.9)

First, from [93, p. 94], it follows that the Orlicz space LΦ(Rn) is a BBF space. By the proof of
[108, Lemma 2.31], we conclude that Φr−

Φ
is of lower type 1 and of upper type r+

Φ
/r−

Φ
, and[

LΦ(Rn)
]1/r−

Φ = L
Φr−

Φ (Rn).

From this and [65, Lemma 1.2.4], it follows that M is weakly bounded on [LΦ(Rn)]1/r−
Φ . Thus,

all the assumptions of Theorem 2.22 are satisfied for X := LΦ(Rn) with 1 ≤ r−
Φ
≤ r+

Φ
< ∞ and

p ∈ [1,∞) satisfying n(1/r−
Φ
− 1/p) < 1. Then, from this and Theorem 2.22 with X := LΦ(Rn), we

deduce the desired conclusion, completing the proof of Theorem 5.16. �

The following theorem is a corollary of Theorem 4.12.

Theorem 5.17. Let Φ be an Orlicz function with positive lower type r−
Φ

and positive upper type r+
Φ

.
Assume that 1 < r−

Φ
≤ r+

Φ
< ∞ and p ∈ [1, r−

Φ
). Then f ∈ W1,LΦ(Rn)(Rn) if and only if f ∈ LΦ(Rn)

and

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

LΦ(Rn)

< ∞;

moreover,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

LΦ(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p

LΦ(Rn)

with K(p, n) as in (1.3).

Proof. By the proof of Theorem 5.16 we conclude that[
LΦ(Rn)

]1/p
= LΦp(Rn),

and [LΦ(Rn)]1/p is a BBF space, where Φp is as in (5.9) with r−
Φ

replaced by p. Moreover, by the
proof of [108, Lemma 4.5], [65, Theorem 1.2.1], and dual theorem of LΦ(Rn) (see, for instance,
[88, Theorem 13]), we further conclude that, if 1 < r−

Φ
≤ r+

Φ
< ∞ and p ∈ [1, r−

Φ
), then LΦ(Rn)

and [LΦ(Rn)]′ have absolutely continuous norms, andM is bounded on ([LΦ(Rn)]1/p)′. Thus, the
assumptions of Theorem 4.12 are satisfied for X := LΦ(Rn) with 1 < r−

Φ
≤ r+

Φ
< ∞ and p ∈ [1, r−

Φ
).

The conclusion of Theorem 4.12 yields the claim of Theorem 5.17. �
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From the proof of Theorem 5.17, we deduce that all the assumptions of Theorems 2.20, 3.4,
and 4.8 with X := LΦ(Rn) are satisfied. Using this, we obtain the following corollary.

Corollary 5.18. Let Φ be an Orlicz function with positive lower type r−
Φ

and positive upper type
r+
Φ

. Assume that 1 < r−
Φ
≤ r+

Φ
< ∞ and p ∈ [1, r−

Φ
). Then Theorems 2.20, 3.4, and 4.8 hold with X

replaced by LΦ(Rn).

Remark 5.19. We point out that, when LΦ(Rn) := Lp(Rn) with p ∈ (1,∞), Theorem 5.17 reduces
to [4, Theorem 1.3] with A(t) = tp for any t ∈ [0,∞).

5.6 Orlicz-slice spaces

We recall the definition of Orlicz-slice spaces and briefly describe some related facts. Through-
out this subsection, we assume that Φ : [0,∞) → [0,∞) is an Orlicz function with positive lower
type r−

Φ
and positive upper type r+

Φ
. For any given t, r ∈ (0,∞), the Orlicz-slice space (Er

Φ
)t(Rn) is

defined to be the set of all the measurable functions f on Rn with the finite quasi-norm

‖ f ‖(Er
Φ

)t(Rn) :=
{∫
Rn

[
‖ f 1B(x,t)‖LΦ(Rn)

‖1B(x,t)‖LΦ(Rn)

]r

dx
} 1

r

.

The Orlicz-slice spaces were introduced in [108] as a generalization of both the slice spaces of
Auscher and Mourgoglou [7, 8] and the Wiener amalgam spaces in [50, 52, 64]. According to
[108, Lemma 2.28] and [107, Remark 7.41(i)], the Orlicz-slice space (Er

Φ
)t(Rn) is a ball Banach

function space, but in general is not a Banach function space.
The following result is a corollary of Theorem 2.22.

Theorem 5.20. Let t ∈ (0,∞), r ∈ [1,∞), and Φ be an Orlicz function with positive lower type
r−
Φ

and positive upper type r+
Φ

. Assume that both 1 ≤ r−
Φ
≤ r+

Φ
< ∞ and p ∈ [1,∞) satisfy

n(1/min{r−
Φ
, r} − 1/p) < 1. Let K(p, n) be as in (1.3). Then, for any f ∈ C2

c(Rn),

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

(Er
Φ

)t(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p(Er

Φ
)t(Rn) .

Proof. First, from [108, Lemma 2.28] and [107, Remark 7.41(i)], it follows that the Orlicz-slice
space (Er

Φ
)t(Rn) is a BBF space. Then, by [108, Lemma 2.31], we conclude that

[
(Er

Φ)t(Rn)
]1/min{r−

Φ
,r}

=

(
E

r/min{r−
Φ
,r}

Φmin{r−
Φ
,r}

)
t
(Rn),

where Φmin{r−
Φ
,r} is as in (5.9) with r−

Φ
replaced by min{r−

Φ
, r}, which is of lower type r−

Φ
/min{r−

Φ
, r}

and of upper type r+
Φ
/min{r−

Φ
, r}. From this and [107, Proposition 7.57], we deduce that M is

weakly bounded on [(Er
Φ

)t(Rn)]1/min{r−
Φ
,r}. Thus the assumptions of Theorem 2.22 are satisfied for

X := (Er
Φ

)t(Rn) with 1 ≤ r−
Φ
≤ r+

Φ
< ∞ and p ∈ [1,∞) satisfying n(1/min{r−

Φ
, r} − 1/p) < 1. The

conclusion of Theorem 2.22 yields the claimed assertion of Theorem 5.20. �

The following theorem is a corollary of Theorem 4.12.
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Theorem 5.21. Let t ∈ (0,∞), r ∈ [1,∞), and Φ be an Orlicz function with positive lower type
r−
Φ

and positive upper type r+
Φ

. Assume 1 < r−
Φ
≤ r+

Φ
< ∞ and p ∈ [1,min{r−

Φ
, r}). Then f lies in

W1,(Er
Φ

)t(Rn)(Rn) if and only if f ∈ (Er
Φ

)t(Rn) and

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

(Er
Φ

)t(Rn)

< ∞;

moreover,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

(Er
Φ

)t(Rn)

=
K(p, n)

p
‖ |∇ f | ‖p(Er

Φ
)t(Rn)

with K(p, n) as in (1.3).

Proof. In view of the proof of Theorem 5.16 we have that[
(Er

Φ)t(Rn)
]1/p

= (Er/p
Φp

)t(Rn),

and [(Er
Φ

)t(Rn)]1/p is a BBF space, where Φp is as in (5.9) with r−
Φ

replaced by p. Furthermore,
using [108, Theorem 2.26 and Lemmas 4.4 and 4.5] and the assumptions that 1 < r−

Φ
≤ r+

Φ
< ∞

and p ∈ [1,min{r−
Φ
, r}), we conclude that (Er

Φ
)t(Rn) and [(Er

Φ
)t(Rn)]′ have absolutely continuous

norms and that the Hardy–Littlewood maximal operatorM is bounded on ([(Er
Φ

)t(Rn)]1/p)′. Thus
the assumptions of Theorem 4.12 are satisfied for X := (Er

Φ
)t(Rn) with 1 < r−

Φ
≤ r+

Φ
< ∞ and

p ∈ [1,min{r−
Φ
, r}). The conclusion of this theorem completes the proof of Theorem 5.21. �

From the proof of Theorem 5.21, we deduce that the assumptions of Theorems 2.20, 3.36, 3.4,
and 4.8 with X := (Er

Φ
)t(Rn) are satisfied. Summarizing, we have the following result.

Corollary 5.22. Let t ∈ (0,∞), r ∈ [1,∞), and Φ be an Orlicz function with positive lower type
r−
Φ

and positive upper type r+
Φ

. Assume 1 < r−
Φ
≤ r+

Φ
< ∞ and p ∈ [1,min{r−

Φ
, r}). Then Theorems

2.20, 3.4, and 4.8 are valid for X = (Er
Φ

)t(Rn).

5.7 Lorentz spaces

The Lorentz space Lq,r(Rn) is defined to be the set of all the measurable functions f on Rn such
that, when q, r ∈ (0,∞),

‖ f ‖Lq,r(Rn) :=
{∫ ∞

0

[
t

1
q f ∗(t)

]r dt
t

} 1
r

< ∞,

where f ∗ denotes the decreasing rearrangement of f , defined by setting, for any t ∈ [0,∞),

f ∗(t) := inf{s ∈ (0,∞) : |{x ∈ Rn : | f (x)| > s}| ≤ t}.

We adopt the convention inf ∅ = ∞, thus having f ∗(t) = ∞ whenever d f (s) > t for all s ≥ 0.
Obviously, when q, r ∈ (1,∞), the Lorentz space Lq,r(Rn) is a Banach function space and hence

a ball Banach function space; when q, r ∈ (0,∞), Lq,r(Rn) is a quasi-Banach function space and
hence a ball quasi-Banach function space (see, for instance, [47, Theorem 1.4.11]).

The following result is a corollary of Theorem 2.15.
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Theorem 5.23. Let q, r ∈ (1,∞) and p ∈ [1,∞) satisfy n(1/q − 1/p) < 1. Let K(p, n) be as in
(1.3). Then, for any f ∈ C2

c(Rn),

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lq,r(Rn)

=
K(p, n)

p
‖ |∇ f | ‖pLq,r(Rn) .

Proof. From the conclusion in [93, p. 87], it follows that the Lorentz space Lq,r(Rn) is a BBF
space. Using this fact and Theorem 2.15, it follows that in order to prove the required conclusion,
it would suffice to show that Lq,r(Rn) is locally n/α-doubling with n/α ∈ (0, 1 + n/p). Indeed, by
the definition of Lq,r(Rn), for any B0 := B(0, r) ∈ B, we find that

‖1B0‖Lq,r(Rn) =

{∫ |B(0,r)|

0
t

r
q−1 dt

} 1
r

=

(
r
q

)r

|B0|
1/q.

This implies that, for any λ ∈ [1,∞),

‖1λB0‖Lq,r(Rn) =

(
r
q

)r

|λB0|
1/q = λn/q

(
r
q

)r

|B0|
1/q = λn/q‖1B0‖Lq,r(Rn).

Thus, Lq,r(Rn) is locally n/q-doubling. Observe that the assumption that n(1/q − 1/p) < 1 gives
n/q ∈ (0, 1 + n/p) and this completes the proof of Theorem 5.23. �

The following result is a consequence of Theorem 4.12.

Theorem 5.24. Let q, r ∈ (1,∞) and p ∈ [1,min{q, r}). Then f ∈ W1,Lq,r(Rn)(Rn) if and only if
f ∈ Lq,r(Rn) and in this case we have

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lq,r(Rn)

< ∞;

moreover,

lim
s→1−

(1 − s)

∥∥∥∥∥∥∥
[∫
Rn

| f (·) − f (y)|p

| · −y|n+sp dy
] 1

p
∥∥∥∥∥∥∥

p

Lq,r(Rn)

=
K(p, n)

p
‖ |∇ f | ‖pLq,r(Rn)

with K(p, n) as in (1.3).

Proof. In view of the identity in [47, Remark 1.4.7],[
Lq,r(Rn)

]1/p
= Lq/p,r/p(Rn)

and thus [Lq,r(Rn)]1/p is a BBF space (see, for instance, [93, p. 87]). Then, from this and [47,
Theorem 1.4.16 (vi)], it follows that[

Lq,r(Rn)
]′

= Lq′,r′(Rn) and
([

Lq,r(Rn)
]1/p

)′
= L(q/p)′,(r/p)′(Rn). (5.10)

Moreover, by [101, Remark 3.4(iii)], we conclude that Lq,r(Rn) and [Lq,r(Rn)]′ both have abso-
lutely continuous norms. Furthermore, the Hardy–Littlewood maximal operator M is bounded



64 Feng Dai, Loukas Grafakos, Zhulei Pan, Dachun Yang, Wen Yuan and Yangyang Zhang

from Lt,s(Rn) to itself when 1 < t, s < ∞; this can be obtained by interpolation from the endpoint
cases where (t, s) = (t, 1) and (t, s) = (t,∞), which can be found, for instance in [29]. This, com-
bined with (5.10), further implies thatM is bounded on ([Lq,r(Rn)]1/p)′. Thus, all the assumptions
of Theorem 4.12 are satisfied for X := Lq,r(Rn) with q, r ∈ (1,∞) and p ∈ [1,min{q, r}). From this
and Theorem 4.12 with X := Lq,r(Rn), we deduce the claimed conclusions. This finishes the proof
of Theorem 5.24. �

From the proof of Theorem 5.24, we deduce that the assumptions of Theorems 2.13, 3.4, 3.36,
and 4.8 with X := Lq,r(Rn) are satisfied. Thus we obtain the following results.

Corollary 5.25. Let q, r ∈ (1,∞) and p ∈ [1,min{q, r}). Then Theorems 2.13, 3.4, 3.36, and 4.8
are valid for X = Lq,r(Rn).

6 Final remarks

We prove the identity concerning the value of the constant in (1.3). Applying an orthogonal
transformation we may assume that e is the unit vector e1 = (1, 0, . . . , 0) in Sn−1. Using the identity
in [47, Appendix D3] we write∫

Sn−1
|ξ · e1|

p dσ(ξ) =
2π

n−1
2

Γ( n−1
2 )

∫ 1

−1
|s|p(1 − s2)

n−3
2 ds

=
2π

n−1
2

Γ( n−1
2 )

∫ 1

0
(s2)

p−1
2 (1 − s2)

n−3
2 2s ds

=
2π

n−1
2

Γ( n−1
2 )

∫ 1

0
u

p−1
2 (1 − u)

n−3
2 du

=
2π

n−1
2 Γ

(
p+1

2

)
Γ
(

p+n
2

) ,

in view of the Beta function identity∫ 1

0
ua−1(1 − u)b−1du = B(a, b) = Γ(a)Γ(b)/Γ(a + b), ∀ a, b > 0.
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