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Abstract. We study the question whether characteristic functions of strictly convex
compact sets with smooth boundaries in R2n are Lp × Lq → Lr bounded bilinear Fourier
multiplier operators on Rn × Rn. When n ≥ 2 we answer this question in the negative
outside the local L2 case, i.e., when 1/p + 1/q = 1/r and 2 ≤ p, q, r′ <∞ fails. Our proof
is based on a suitable adaptation of the Kakeya type construction employed by Fefferman
in the solution of the multiplier problem for the ball on Lp(R2) for p 6= 2.

1. Introduction

It is well-known that the presence of curvature in the boundary of geometric regions
affects negatively the Lp boundedness of the Fourier multiplier operators associated with
the characteristic functions of these regions. This dramatic fact first made its appearance
in the work of Fefferman [6] who showed that characteristic functions of balls in Rn are
not bounded Fourier multiplier operators on Lp(Rn) when p 6= 2 and n ≥ 2. Fefferman’s
proof was based on a variant of a construction of Besicovitch [1] employed in the solution of
Kakeya’s question concerning the smallest possible area of a set that contains line segments
in all directions. On the latter, one may also consult the article of Cunningham [2].

The bilinear multiplier problem for the ball was studied by Diestel and Grafakos [4]
who obtained that the characteristic function of the four-dimensional ball is not a bounded
bilinear multiplier operator from Lp(R2)×Lq(R2)→ Lr(R2) outside the local L2 case, i.e.,
when 1/p + 1/q = 1/r and 2 ≤ p, q, r′ < ∞ fails. Here r′ = r/(r − 1). This example can
be lifted to higher dimensions, i.e. replace R2 by Rn for n ≥ 2, by a bilinear version of de
Leuuw’s theorem [4]. Conversely, it was shown by Grafakos and Li [8] that the characteristic
function of the unit disc in R2 is a bounded bilinear multiplier on Lp(R)×Lq(R)→ Lr(R)
in the local L2 case. The corresponding problem in R2n for n ≥ 2 remains unresolved. As
of this writing it is also unknown whether the characteristic function of the unit disc in R2

is a bounded bilinear Fourier multiplier outside the local L2 case.
In this article we address similar questions for strictly convex compact sets. This study

is motivated by the following fact. In proving that the ball |ξ|2 + |η|2 ≤ 1 in R4 is not a
bilinear multiplier outside the local-L2 case, one has to show the same result for the two
duals of the ball multiplier, the special ellipsoids |ξ + η|2 + |ξ|2 ≤ 1 and |ξ + η|2 + |η|2 ≤ 1
in R4. These ellipsoids are strictly convex compact sets with smooth boundaries and the
class of such sets is closed under bilinear duality. Therefore, this class provides a more
appropriate general context for the study of this problem and it is quite natural to pursue
the study in this framework.
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Throughout this paper, E denotes a strictly convex compact hypersurface in R2n with
smooth boundary. We have the following theorem concerning E.

Theorem 1. Let 1 ≤ p, q, r′ ≤ ∞ be such that 1/p+ 1/q = 1/r and at least one of them is
strictly less than 2. Then the characteristic function of E is not a bounded bilinear Fourier
multiplier from Lp(Rn)× Lq(Rn)→ Lr(Rn). In other words, the operator

TχE (f, g)(x) =
∫

Rn

∫
Rn

χE(ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η)dξdη

does not map Lp(Rn)× Lq(Rn)→ Lr(Rn) in this case.

In proving Theorem 1 we may assume that n = 2, as the two-dimensional counterexample
can be “lifted” to higher dimensions via the multilinear version of de Leeuw’s theorem
proved in [4]; for the linear case see de Leeuw [3].

2. The Kakeya Construction

We will use a Kakeya type construction to prove that the bilinear operator whose symbol
is the characteristic function of the strictly convex set E is unbounded from Lp(R2)×Lq(R2)
to Lr(R2) when min(p, q, r′) < 2.

For a rectangle R in R2, we define R′ to be the union of the two copies of R adjacent
to R in the direction of its longest side. The proof of this lemma can be found in [7], page
738 and also in [13] page 435.

Lemma 1. Let δ > 0 be given. Then there exist a measurable subset U of R2 and a finite
collection of rectangles Rj in R2 such that

(1) The Rj are pairwise disjoint.

(2) We have 1/2 ≤ |U | ≤ 3/2.

(3) We have |U | ≤ δ
∑
j

|Rj |.

(4) For all j we have |R′j ∩ U | ≥ 1
12 |Rj |.

We are also going to use the following proposition, whose proof can be found in [4].

Proposition 1. Let R be a rectangle in R2 and let v be a unit vector in R2 parallel to the
longest side of R. Let R′ be as above. Consider the half space Hv of R4 defined by

Hv = {(ξ, η) ∈ R2 × R2 : (ξ + η) · v ≥ 0}

Then for all x ∈ R2 the following estimate is valid:

(2.1)
∣∣∣∣ ∫

R2

∫
R2

χHv(ξ, η)χ̂R(ξ)χ̂R(η)e2πix·(ξ+η)dξdη

∣∣∣∣ ≥ 1
10
χR′(x).

We denote by Mp,q,r(R2) the space of all bounded bilinear Fourier multipliers from
Lp(R2)× Lq(R2)→ Lr(R2).

Consider the bilinear multiplier operator on R2 × R2 whose symbol is the characteristic
function of E, that is the operator

TχE (f, g)(x) =
∫

R2

∫
R2

χE(ξ1, ξ2, ξ3, ξ4)f̂(ξ1, ξ2)ĝ(ξ3, ξ4)e2πix·(ξ1+ξ3,ξ2+ξ4)dξ1dξ2dξ3dξ4 .

The following lemma is the most fundamental ingredient of the proof.
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Lemma 2. Let v1, v2, ..., vj , ... be a sequence of unit vectors in R2. Define the following
sequence of half-spaces Hvj in R4 as in Proposition 1.

Assume that TχE ∈ Mp,q,r(R2) with norm bounded from above by C = C(p, q, r). Then
we have the following vector-valued inequality

(2.2)

∥∥∥∥∥(∑
j

∣∣TχHvj
(fj , gj)

∣∣2)1/2
∥∥∥∥∥
r

≤ C

∥∥∥∥∥(∑
j

∣∣fj∣∣2)1/2
∥∥∥∥∥
p

∥∥∥∥∥(∑
j

∣∣gj∣∣2)1/2
∥∥∥∥∥
q

.

for all functions fj and gj.

Proof. We assume that TχE lies in Mp,q,r(R2) for some p, q, r. Without loss of generality
we may assume that 0 lies in the interior of E.

For each unit vector v ∈ R2 find vector qv in R4 such that qv +E is contained in Hv and
touches Hv exactly at the origin. The strict convexity of E gives that the Gauss map is a
diffeomorphism and thus that there is only one such point of contact. Moreover there is a
closed ball Bv such that

Bv ⊂ qv + E ⊂ Hv

and all these sets intersect exactly at the origin; for a proof of these facts we refer to [12]
and [5].

For R > 0, let RA denote the dilation of any set A about the origin, that is, RA = {Rx :
x ∈ A}. Then the set Rqv+RE is contained in Hv and also touches Hv at the origin. Then
we have

RBv ⊂ Rqv +RE ⊂ Hv

and all these sets intersect exactly at the origin. For every fixed v, as R→∞ we have that
RBv fills up the whole half plane Hv, and thus so does Rqv +RE.

Consider the sequence of unit vectors vk given in the statement of the lemma. We have
constructed dilations and translations Rqv +RE of E such that χRqv+RE → χHv pointwise
as R→∞. Thus

lim
R→∞

TχRqv+RE (f, g)(x) = TχHvk
(f, g)(x)

for all x ∈ R2 and good functions f and g. Consequently, using Fatou’s lemma we can pass
to the limit as R→∞ to obtain

(2.3)

∥∥∥∥∥(∑
k

∣∣TχHvk
(fk, gk)

∣∣2)1/2
∥∥∥∥∥
r

≤ lim inf
R→∞

∥∥∥∥∥(∑
k

∣∣TχRqvk
+RE (fk, gk)

∣∣2)1/2
∥∥∥∥∥
r

for good functions fk, gk. As bilinear multiplier norms are dilation invariant, it follows that
for all R > 0 we have

‖χRE‖Mp,q,r(R2) = ‖χE‖Mp,q,r(R2) = C.

Moreover, by the bilinear version of a theorem of Marcinkiewicz and Zygmund ([9], section
9), we have the following inequality for all R > 0 and all functions fk, gk∥∥∥∥∥(∑

k

∣∣TχRE (fk, gk)
∣∣2)1/2

∥∥∥∥∥
r

≤ C

∥∥∥∥∥(∑
k

∣∣fk∣∣2)1/2
∥∥∥∥∥
p

∥∥∥∥∥(∑
k

∣∣gk∣∣2)1/2
∥∥∥∥∥
q

.
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Let qvk
= (q1

vk
, q2
vk

). Putting these observations together we deduce∥∥∥∥∥(∑
k

∣∣TχHk
(fk, gk)

∣∣2)1/2
∥∥∥∥∥
r

≤ lim inf
R→∞

∥∥∥∥∥(∑
k

∣∣TχRqvk
+RE (fk, gk)

∣∣2)1/2
∥∥∥∥∥
r

= lim inf
R→∞

∥∥∥∥∥(∑
k

∣∣e2πiR(q1vk
+q2vk

)·(·)TχRE

(
e−2πiRq1vk

·(·)fk, e
−2πiRq2vk

·(·)gk
)∣∣2)1/2

∥∥∥∥∥
r

≤ lim inf
R→∞

∥∥∥χRE∥∥∥
Mp,q,r

∥∥∥∥∥(∑
k

∣∣e−2πiRq1vk
·(·)fk

∣∣2)1/2
∥∥∥∥∥
p

∥∥∥∥∥(∑
k

∣∣e−2πiRq2vk
·(·)gk

∣∣2)1/2
∥∥∥∥∥
q

= C

∥∥∥∥∥(∑
k

∣∣fk∣∣2)1/2
∥∥∥∥∥
p

∥∥∥∥∥(∑
k

∣∣gk∣∣2)1/2
∥∥∥∥∥
q

,

where the last equality follows from the dilation invariance of bilinear multiplier norms.
�

3. The main argument

We now prove the main result of this article, Theorem 1. We consider four cases.
Case (a): p, q, r > 2.
Reasoning by contradiction, let us suppose that χE is inMp,q,r(R2) with norm C. Suppose
that δ > 0 is given. Let U and Rj be as in Lemma 1. Let vj be the unit vector parallel
to the longest side of Rj .We will estimate

∑
j

∫
U

∣∣THvj
(χRj , χRj )(x)

∣∣2dx from above and
below to obtain the desired contradiction. On one hand we have∑

j

∫
U

∣∣THvj
(χRj , χRj )(x)

∣∣2dx
≤ |U |

r−2
r

∥∥∥∥∥(∑
j

∣∣THvj
(χRj , χRj )|2

)1/2
∥∥∥∥∥

2

r

≤ C |U |
r−2
r

∥∥∥∥∥(∑
j

∣∣χRj

∣∣2)1/2
∥∥∥∥∥

2

p

∥∥∥∥∥(∑
j

∣∣χRj

∣∣2)1/2
∥∥∥∥∥

2

q

= C |U |
r−2
r

(∑
j

|Rj |
)2/r

≤ C δ
r−2
r
∑
j

∣∣Rj∣∣.
On the other hand, we get the following estimate∑

j

∫
U

∣∣THvj
(χRj , χRj )(x)

∣∣2dx ≥
∑
j

∫
U

( 1
10
χR′j (x)

)2
dx

= ( 1
10)2

∑
j

∣∣U ∩R′j∣∣
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≥ 1
1200

∑
j

∣∣Rj∣∣ .
Combining these two estimates, we obtain that

1
1200

∑
j

|Rj | ≤ C δ
r−2
r
∑
j

|Rj |

and therefore
1

1200 ≤ C δ
r−2
r

for any δ > 0. This is a contradiction since r > 2.
There are two more cases left in the Banach triangle 1 < p, q, r <∞.

Case (b) p > 2, q < 2, r < 2, and
Case (c) p < 2, q > 2, r < 2.
Both of these cases follow by duality and the fact that the dual operators of TχE are also
bilinear multiplier operators whose symbols are characteristic functions of sets with the
same properties. Indeed, the multipliers of the two duals are the characteristic functions of
the sets

{ξ ∈ R4 : A1ξ ∈ E} = A−1
1 [E]

and
{ξ ∈ R4 : A2ξ ∈ E} = A−1

2 [E]
where

A1 =
(
−I −I
O I

)
A2 =

(
I O
−I −I

)
.

Here I is the identity 2× 2 matrix and O the zero 2× 2 matrix. Since the matrices A1 and
A2 are invertible, it follows that the sets A−1

1 [E] and A−1
1 [E] are images of E under linear

transformations and they must also be compact and strictly convex. Thus in case (b) the
pair (q, r) is replaced by (r′, q′) for which the counterexample of case (a) applies. Likewise
in case (c).

We now show unboundedness outside the Banach case. We consider the remaining case.
Case (d): 1 ≤ p, q <∞, 1

2 < r ≤ 1.
Reasoning by contradiction, let us suppose χE ∈ Mp,q,r(R2) for 1

2 < r ≤ 1. As we are
assuming that the set E is strictly convex compact hypersuface with smooth boundary, we
can fill the half-space,

H = {(ξ1, ξ2, ξ3, ξ4) ∈ R4 : ξ2 + ξ4 > 0}

using dilations and translations of E. Thus if χE ∈Mp,q,r, then χH ∈Mp,q,r(R2).
For f, g ∈ S(R2), then we have

TχH(f, g) =
(I + iH(0,1))(fg)

2
,

where H~α denotes the two-dimensional directional Hilbert transform in the direction α ∈ R2

and it is defined as

H~α(f)(x) =
1
π

∫ +∞

−∞
f(x− t~α)

dt

t
.

The Fourier multiplier of the operator TχH is a characteristic function of a certain half-space
passing through the origin in R4. Such operators can be viewed as 2-dimensional versions of
billinear Fourier multipliers given by characteristic functions of half-planes passing through
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the origin in R2. The latter are related to the bilinear Hilbert transform and have been
studied by Lacey and Thiele [10], [11].

It will suffice to show that the bilinear operator (f, g)→ H(0,1)(fg) is not bounded from
Lp(R2)× Lq(R2) to Lr(R2) for r ≤ 1. We choose f(x) = g(x) = χ{x: ||x||≤1}(x) and we set
x = (x1, x2). Then

H(0,1)(fg)(x) = H(0,1)(f)(x) =
∫

R
χ{x: ||x||≤1}(x− (0, 1)t)

dt

t
=
∫ √1−x2

1+x2

−
√

1−x2
1+x2

dt

t

= ln

√
1− x2

1 + x2

x2 −
√

1− x2
1

= ln

(
1 +

2
√

1− x2
1

x2 −
√

1− x2
1

)
,

but for x1 <
1√
2

and x2 large enough, ln
(

1 + 2
√

1−x2
1

x2−
√

1−x2
1

)
behaves as 2

√
1−x2

1

x2−
√

1−x2
1

which is

not in Lr(R2) for r ≤ 1. Hence χH /∈Mp,q,r(R2) and we reach the desired contradiction.
This argument proves that χE is not a bounded bilinear multiplier from Lp(R2)×Lq(R2)

to Lr(R2) for 1/2 < r ≤ 1 whenever 1/p+ 1/q = 1/r. �.

Using a simple variant of the main argument, the main result can be proved for m-linear
multiplier operators, m ∈ {1, 2, 3, . . . }, whose symbols are the characteristic functions of
smooth compact strictly convex subsets of Rmn when n ≥ 2. In doing so, one needs to first
obtain easy extensions of Proposition 1 and Lemma 2 for any m ∈ N.

Particular examples of this theorem appear in the case when E is an ellipsoid in Rmn,
that is, E is the image of the unit ball in Rmn under an invertible transformation.

Finally, we note that it is not necessary to assume that the curvature of the boundary of
the convex set E is nonzero at every point. It suffices to assume that it is nonzero only in
a small neighborhood of the boundary that has normal vectors of a certain form. Then one
can construct a Kakeya set whose directions are contained in the set of normal directions
of this piece of the boundary and the proof can be accomplished in the same way.
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