
A WEAK-TYPE ESTIMATE FOR COMMUTATORS

LOUKAS GRAFAKOS AND PETR HONZÍK

Abstract. Let K be a smooth Calderón-Zygmund convolution kernel on R2 and
suppose we are given a function a ∈ L∞. The two-dimensional commutator

Tf(x) =

∫
K(x− y)f(y)

∫
[x,y]

a(z) dz dy

was shown to be bounded on Lp(R2), p > 1 by Christ and Journé [1]. In this
article, we show that this operator is also of weak type (1, 1).

1. Introduction

Suppose that we have a smooth Calderón-Zygmund convolution kernel K on R2

and a function a ∈ L∞. Christ and Journé [1] introduced the two-dimensional com-
mutator operator

(1) Tf(x) = p.v.

∫
K(x− y)f(y)

∫
[x,y]

a(z) dz dy .

Here
∫

[x,y]
a(z) dz =

∫ 1

0
a
(
(1− t)x+ ty

)
dt denotes the average of the function a over

the line segment [x, y] that joins the points x and y in R2, and f is a Schwartz
function on R2. The operator Tf is a singular integral operator with kernel

L(x, y) = K(x− y)

∫
[x,y]

a(z)dz.

The smooth Calderón-Zygmund kernel K on R2 \ {0} is assumed to satisfy the size
condition

(2) |K(x)| ≤ C|x|−2,

the cancelation condition ∫
R<|x|<2R

K(x) dx = 0

for all R > 0, and the smoothness condition

(3) |∇K(x)| ≤ C|x|−3 .
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Obviously L(x, y) inherits the standard size condition (|L(x, y)| ≤ C|x− y|−2) from
property (2) of the kernel K, but it does not inherit any smoothness in the usual
pointwise sense due to the presence of the nonsmooth function (x, y)→

∫
[x,y]

a(z)dz.

The operator T was shown to be bounded on Lp by Christ and Journé [1] for 1 <
p <∞. It is not possible to prove the weak (1, 1) estimate for T by a straightforward
application of the Calderón-Zygmund method, since the kernel L is not a smooth
function in general. Therefore, we adapt the method of Christ [2] (further developed
by Christ and Rubio de Francia [3] and by Hofmann [4]) to the present setting to
obtain the result below. This method was originally used for nonsmooth operators
with homogeneous convolution kernels but seems to be relevant to the operator in
question. The following theorem is our main result:

Theorem 1. The operator T defined in (1) is of the weak type (1, 1), i.e. there is a
constant C > 0 such that

(4)
∣∣{x ∈ R2 : |T (f)(x)| > α

}∣∣ ≤ C ‖a‖∞
‖f‖1

α

for all α > 0.

2. Proof of the Theorem 1

We introduce a smooth function φ on [0,∞) such that 0 ≤ φ ≤ 1, φ(x) = 1 for x ∈
[0, 1] and φ(x) = 0 for x ∈ [2,∞). We decompose the kernel K as K =

∑∞
k=−∞Kk,

where Kk(x) = (φ(2−k+1|x|)−φ(2−k|x|))K(x) and define the corresponding operators
Tk and kernels Lk associated with Kk. Clearly we have T =

∑∞
k=−∞ Tk and L =∑∞

k=−∞ Lk.
It was shown in [1] that the operator T is bounded on L2(R2) with bound at most a

multiple of ‖a‖∞. In order to prove the weak (1, 1) estimate (4), we are going to apply
the Calderón-Zygmund decomposition f = g + b at height α/‖a‖∞. The functions
g, b satisfy: ‖g‖1 ≤ ‖f‖1, ‖g‖∞ ≤ Cα/‖a‖∞ and b =

∑
j bQj

, the bQj
are supported

in dyadic cubes Qj with disjoint interiors,
∫
bQj

(x)dx = 0, ‖bQj
‖1 ≤ Cα|Qj|/‖a‖∞,

and ∑
j

|Qj| ≤ ‖a‖∞
‖f‖1

α
.

If 5Qj denotes the cube with five times the side length of Qj and the same center,
obviously, the set E =

⋃
j 5Qj satisfies

(5) |E| ≤ C ‖a‖∞
‖f‖1

α
.

As in [2], we denote by Bk =
∑
bQj

, where the sum is taken over all indices j such

that the sidelength of Qj is 2k. We also set

Qk = {Qj : sidelengthQj is 2k}.

We now state the key lemma:
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Lemma 1. There exists ε > 0 such that for any nonnegative integer s we have

(6)
∥∥∥∑
j∈Z

TjBj−s

∥∥∥2

2
≤ CK2−εsα‖b‖1‖a‖∞,

where CK is a constant dependent on the properties (2) and (3) of K.

Once this lemma is established, the theorem is quickly proved as follows: we write

Tb(x) =
∑
s∈Z

∑
j∈Z

TjBj−s.

Naturally, if x /∈ E and s < 0 we have TjBj−s(x) = 0. Therefore, we have

|{|Tb| > α/2}| ≤ |E|+
∣∣∣∣{∣∣∣∑

s≥0

∑
j∈Z

TjBj−s

∣∣∣ > α/2
}∣∣∣∣ .

From Lemma 1 we obtain∥∥∥∑
s≥0

∑
j∈Z

TjBj−s

∥∥∥2

2
≤ Cα‖b‖1‖a‖∞

and thus, it follows from Chebychev’s inequality that∣∣∣∣{∣∣∣∑
s≥0

∑
j∈Z

TjBj−s

∣∣∣ > α
}∣∣∣∣ ≤ C

‖b‖1

α
‖a‖∞ ≤ C

‖f‖1

α
‖a‖∞.

In view of (5), an analogous estimate holds for the set |E|, while the estimate

|{|Tg| > α/2}| ≤ 4

α2
‖g‖2

2 ‖T‖2 ≤ C ′
α‖f‖1/‖a‖∞

α2
C‖a‖2

∞ = C ′′
‖f‖1

α
‖a‖∞

is a consequence of the L2 boundedness of T with norm ‖T‖ ≤ C‖a‖∞, see [1].

3. Geometric estimates

In this section we focus on the proof of Lemma 1. We write

(7)
∥∥∥∑
j∈Z

TjBj−s

∥∥∥2

2
=
∑
i,j∈Z

< TjBj−s, TiBi−s > =
∑
i,j∈Z

< T̃iTjBj−s, Bi−s > ,

where T̃i is the adjoint operator of Ti. The integral operator T̃iTj has kernel

Ki,j(y, x) =

∫
Ki(z − x)Kj(z − y)

(∫
[x,z]

a(w)dw

)(∫
[y,z]

a(w)dw

)
dz.

We will be interested in Hölder estimates for these kernels. It is an easy observation
(based on a dilation argument) that if we have a Hölder smoothness estimate

|K0,i(y, x)−K0,i(y, x
′)| ≤ CK‖a‖2

∞|x− x′|ε,
where CK depends on the size and smoothness of K, then we also have

|Ki,j+i(y, x)−Ki,j+i(y, x′)| ≤ CK‖a‖2
∞2−2j2−jε|x− x′|ε

for any integer j.
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To handle the diagonal terms of the double sum in (7) we will need the following
lemma.

Lemma 2. There is an ε > 0 such that for any i ∈ Z
| < TiBi−s, TiBi−s > | ≤ CK2−εs‖a‖∞α‖Bi−s‖1.

Proof. We discuss the case i = 0, noting that the other choices of i follow by scaling.
We have

(8) | < T0B−s, T0B−s > | = | < T̃0T0B−s, B−s > | ≤ ‖T̃0T0B−s‖∞‖B−s‖1.

T̃0T0 is an integral operator with kernel K0,0. To study its Hölder smoothness, we
write

K0,0(y, x)−K0,0(y, x′) = I + II,

where

I =

∫ (
K0(z − x)−K0(z − x′)

)
K0(z − y)

(∫
[x,z]

a(w)dw

)(∫
[y,z]

a(w)dw

)
dz

II =

∫
K0(z − x)K0(z − y)

(∫
[x,z]

a(t)dt−
∫

[x′,z]

a(w)dw

)(∫
[y,z]

a(w)dw

)
dz.

Term I above is clearly bounded by C|x−x′|, since K0 is a smooth function with sup-
port in some fixed compact set. To estimate term II, we switch to polar coordinates
z = y + rθ to write

(9)

II =

∫
θ∈S1

[ ∫ 2

1/2

K0(y − x′ + rθ)K0(rθ)

×
(∫

[x,y+rθ]

a(w)dw −
∫

[x′,y+rθ]

a(w)dw

)(∫
[y,y+rθ]

a(w)dw

)
r dr

]
dθ.

To estimate (9), we split the integral over S1 in (9) as a sum of integrals over the arc∣∣∣θ ± x− y
|x− y|

∣∣∣ < t0

and its complement, for some value of t0 to be specified later. The part of the outer
integral in (9) over this arc is then trivially estimated by Ct0‖a‖2

∞. (We will later
pick t0 to be 10|x− x′|1/10, so this term will produce the correct estimate.)

Matters therefore reduce to estimating the part of the outer integral in (9) over
the set ∣∣∣θ ± x− y

|x− y|

∣∣∣ ≥ t0.

We estimate this part by replacing the integral in θ by 2π times the supremum over
θ in this set of the expression inside square brackets in (9). We may therefore fix
θ, x, y. We denote by ψ(r) the function

ψ(r) = K0(y − x′ + rθ)K0(rθ)

(∫
[y,y+rθ]

a(w)dw

)
r

= K0(y − x′ + rθ)K0(rθ)

∫ r

0

a(y + sθ) ds
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and we note that |ψ′(r)| . ‖a‖∞. By a translation and a rotation, without loss of
generality, we assume that θ = (1, 0) and y = 0. We have∫ 2

1/2

K0(y − x′ + rθ)K0(rθ)

(∫
[x,y+rθ]

a(w)dw −
∫

[x′,y+rθ]

a(w)dw

)(∫
[y,y+rθ]

a(w)dw

)
rdr

=

∫ 2

1/2

ψ(r)

∫ 1

0

a
(
x+ s((r, 0)− x)

)
ds dr −

∫ 2

1/2

ψ(r)

∫ 1

0

a
(
x′ + s((r, 0)− x′)

)
ds dr.

The support properties of K0 make the integrals above vanishing, unless both x and
x′ lie in the ball of radius 4, i.e., one has

|x|, |x′| ≤ 4.

We now make a substitution, essentially going back to the original coordinates.
For the first integral above we set

u = (x1 − r)s+ x1 v = x2(1− s)

and for the second integral we set

u′ = (x′1 − r)s+ x′1 v′ = x′2(1− s)

where x = (x1, x2) and x′ = (x′1, x
′
2). We compute r, s and the Jacobian and write

D =

∫ 2

1/2

ψ(r)

∫ 1

0

a
(
x+ s((r, 0)− x)

)
ds dr −

∫ 2

1/2

ψ(r)

∫ 1

0

a
(
x′ + s((r, 0)− x′)

)
ds dr

=

∫
A

ψ

(
x1 − x2

u− x1

x2 − v

)
a(u, v)

dudv

|x2 − v|
−
∫
A′
ψ

(
x′1 − x′2

u′ − x′1
x′2 − v′

)
a(u′, v′)

du′dv′

|x′2 − v′|
,

where A is the triangle with vertices (1/2, 0), (2, 0), x and A′ is the triangle with
vertices (1/2, 0), (2, 0), x′.

Define functions ε1 and ε2 such that −ε1(t) = ε2(t) = 1 when t ≤ 1/2; ε1(t) =
ε2(t) = 1 when 1/2 < t < 2; and ε1(t) = −ε2(t) = −1 when t ≥ 2. We observe that∫

A

dudv

|x2 − v|
=

ε1(x1)

∫ max( 1
2
,x1)

min( 1
2
,x1)

∫ x2
x1−

1
2

(u− 1
2

)

0

dv

x2 − v
du+ ε2(x1)

∫ max(2,x1)

min(2,x1)

∫ x2
x1−2

(u−2)

0

dv

x2 − v
du

ε1(x1)
∣∣∣x1 −

1

2

∣∣∣ ∫ 1

0

log
1

t
dt+ ε2(x1) |x1 − 2|

∫ 1

0

log
1

t
dt =

3

2

∫ 1

0

log
1

t
dt =

3

2
,

where log is the logarithm with base e. This number is certainly independent of the
position of x.

Now, we assume that |x− x′| ≤ 1/1000, |x| ≥ 10 |x− x′|1/10 and we set

t0 = 10 |x− x′|1/10.

Since
∣∣(1, 0)± x

|x|

∣∣ ≥ t0, using similar triangles we see that

(10) |x2| ≥ |x| |x− x′|1/10 ≥ 10 |x− x′|1/5 ;
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also one has

(11) |x′2| ≥ |x′| |x− x′|1/10 ≥ 9 |x− x′|1/5 .
Let B(y, δ) be the ball of radius δ centered at y. An easy calculation yields the
estimate

(12)

∫
A∩B(x,|x−x′|1/4)

dudv

|x2 − v|
≤ |x− x′|1/4Ax ,

where Ax is the angle, measured in radians, formed by the vectors Vx (starting at
x and ending at (1/2, 0)) and Wx (starting at x and ending at (2, 0)). Elementary
geometric considerations yield:

Ax ≤ π sin
(1

2
Ax
)
≤ 3π

4
max

( 1

|Vx|
,

1

|Wx|

)
≤ C

|x2|
,

which combined with (10) and (12) yields the estimate

(13)

∫
A∩B(x,|x−x′|1/4)

dudv

|x2 − v|
≤ C

|x− x′|1/4

|x− x′|1/5
= C |x− x′|1/20 .

By analogy we also have the estimate

(14)

∫
A′∩B(x,|x−x′|1/4)

dudv

|x′2 − v|
≤ C |x− x′|1/20 .

Moreover, denoting by A′∆A = (A \ A′) ∪ (A′ \ A) the symmetric difference of A
and A′, we claim that

(15)

∫
(A∆A′)\B(x,|x−x′|1/4)

dudv

|x′2 − v|
≤ C |x− x′|1/20.

We explain (15). First we note that in (15) the expressions |x2 − v| and |x′2 − v|
are comparable if (u, v) /∈ B(x, |x − x′|1/4). Next, we prove (15) in the case where
x2 = x′2. By similar triangles we obtain that

|(A∆A′) ∩ {(y1, y2) : y2 = v}| ≤ 2 v |x− x′|
x2

We may therefore estimate the integral in (15) by

(16)

∫
(A∆A′)\B(x,|x−x′|1/4)

dudv

|x2 − v|
≤
∫ x2−c |x−x′|1/4

0

1

x2 − v
2 v |x− x′|

x2

dv

where c is the minimum of the slopes of the lines containing the vectors Vx, Wx, Vx′ ,
and Wx′ . In view of (10), we note that these slopes are greater than C |x − x′|1/5.
Therefore, we obtain the estimate

(17)
2 |x− x′|

x2

∫ x2

C |x−x′|9/20

x2 − v
v

dv ≤ C |x− x′|4/5 log
4/C

|x− x′|
≤ C ′ |x− x′|1/20

for the expression in (16).
Next, we have the cases x2 > x′2 > 0 and x′2 > x2 > 0. By symmetry we only

look at the case x2 > x′2 > 0. Here we extend one of the sides of the shorter triangle
A′ to make it have the same height as the taller one. Then we find a point x′′ on
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the extended side such that x′′2 = x2. Simple geometric considerations give that
|x′−x′′| ≤ |x−x′|+ |x−x′|4/5 ≤ 2 |x−x′|4/5. Then we replace the triangle A′ by the
larger triangle A′′ the vertex of which is x′′ and base is the same as A′ and we replace
the symmetric difference A∆A′ by the larger one A∆A′′ and the ball B(x, |x−x′|1/4)
by the smaller ball B(x, (|x− x′′|/2)5/16). Then we have∫

(A∆A′)\B(x,|x−x′|1/4)

dudv

|x2 − v|
≤
∫

(A∆A′′)\B(x,(|x−x′′|/2)5/16)

dudv

|x2 − v|

and matters reduce to the previous case where x′′ plays the role of x′. One obtains
an estimate similar to (17) in which the power 9/20 = 1/4 + 1/5 is replaced by
41/80 = 5/16 + 1/5. The same conclusion follows.

To estimate the remaining part of the difference D, we use the smoothness of ψ(r).
In particular, for (u, v) ∈ (A ∩ A′) \B(x, |x− x′|1/4) we have∣∣∣∣x1 − x2

u− x1

x2 − v
− x′1 − x′2

u− x′1
x′2 − v

∣∣∣∣ ≤ |x− x′|
|(x2 − v)(x′2 − v)|

.

By a slope argument similar to the above, |x2 − v| ≥ C|x− x′|1/4+1/5, and we obtain
the estimate∣∣∣∣ψ(x1 − x2

u− x1

x2 − v

)
− ψ

(
x′1 − x′2

u− x′1
x′2 − v

)∣∣∣∣ ≤ C‖a‖∞|x− x′|1/20.

Collecting the preceding estimates, we deduce that for

|x− y| ≥ 10|x− x′|1/10 and |x− x′| ≤ 1/1000

we have the Hölder estimate

|K0,0(y, x)−K0,0(y, x′)| ≤ C‖a‖2
∞|x− x′|1/20.

Therefore, for any y we obtain

|T̃0T0B−s(y)| =
∣∣∣∣∫ K0,0(y, x)B−s(x) dx

∣∣∣∣
≤ C 2−s/20‖a‖2

∞

∣∣∣∣ ⋃
Qj∈Q−s:Qj∩B(y,4)6=∅

Qj

∣∣∣∣
≤ C 2−s/20‖a‖∞α ,

since all the cubes Qj that appear in the preceding union are disjoint and are con-
tained in the disc of radius 8 centered at the point y, thus the measure of their union
is at most a constant. This estimate combined with (8) yields the proof of Lemma 2
when i = 0, while the case of a general i follows by a dilation argument. �

The off-diagonal terms of the double sum in (7) are handled by the following result:

Lemma 3. There is an ε > 0 such that for any i ∈ Z and s ∈ N, we have

(18)
∑
j<i−3

| < TjBj−s, TiBi−s > | ≤ CK2−εs‖a‖∞α‖Bi−s‖1.
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Proof. The proof is very similar to that of the previous lemma. We seek to estimate
the smoothness of the kernel Ki,j of T̃iTj, which is given by the formula

Ki,j(y, x) =

∫
Kj(z − x)Ki(z − y)

(∫
[x,z]

a(w) dw

)(∫
[y,z]

a(w) dw

)
dz.

We then proceed as in the previous case, with the following differences: after we
switch to the polar coordinates the analog of (9) is

(19)

∫
θ∈A

∫ 2i+1

2i−1

Kj(y − x′ + rθ)Ki(rθ)

×
(∫

[x,y+rθ]

a(w)dw −
∫

[x′,y+rθ]

a(w)dw

)(∫
[y,y+rθ]

a(w)dw

)
r dr dθ,

where A is an arc in S1. Let us momentarily assume that j = 0; then i > 3 and
A is an arc of length of about 2−i. Indeed, let U be the smallest cone with vertex
at the origin which contains the disc of radius 2 centered at y − x′. Then since
1/2 ≤ |y− x′ + rθ| ≤ 2, it follows that 2i−2 ≤ |y− x′| ≤ 2i+2 and thus the angle of U
is at most a constant multiple of 2−i. Setting

ψ(r) = K0(y − x′ + rθ)Ki(rθ)

(∫
[y,y+rθ]

a(w)dw

)
r ,

we have the estimates ‖ψ‖∞ ≤ C2−i‖a‖∞ and ‖ψ′‖∞ ≤ C2−i‖a‖∞. Next we choose
t0 = 10 · 2−i|x− x′|1/10 to play the same role as in the proof of the previous lemma,
which corresponds to the fact that the kernel K0 is supported in a ball of diameter 2
and either |y − x| or |y − x′| is about 2i or Ki,0(y, x) = 0. Also, we do not need the
restriction |x−y| ≥ 10|x−x′|1/10 anymore. In this case θ lies in an arc of approximate
size 2−i and r lies in the interval [|y − x′| − 2, |y − x′| + 2] which has length 4. An
easy calculation yields the Hölder estimate

(20) |Ki,0(y, x)−Ki,0(y, x′)| ≤ C2−2i‖a‖2
∞|x− x′|1/20

for i > 3. By a scaling argument this means that for j < i− 3 we have

(21) |Ki,j(y, x)−Ki,j(y, x′)| ≤ C‖a‖2
∞2−j/202−2i|x− x′|1/20.

Having established this, we continue the proof of the lemma by writing∑
j<i−3

| < TjBj−s, TiBi−s > | ≤
∑
j<i−3

∥∥T̃iTjBj−s
∥∥
∞‖Bi−s‖1.

Thus estimate (18) reduces to showing that for all i we have

(22)
∑
j<i−3

∥∥T̃iTjBj−s
∥∥
∞ ≤ CK2−εs‖a‖∞α .

We take a cube Qk with side length 2j−s and use the Hölder estimate (21) to obtain∣∣∣∣∫ Ki,j(y, x)bQk
(x)dx

∣∣∣∣ ≤ C2(j−s)/202−j/202−2i‖a‖2
∞‖bQk

‖1 = C2−s/202−2i‖a‖2
∞‖bQk

‖1.
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For a fixed y the function Ki,j(y, ·) is supported in the ball B(y, 4 · 2i) and therefore
we obtain∣∣∣∣∣

∫
Ki,j(y, x)

∑
k

bQk
(x)dx

∣∣∣∣∣ ≤ C‖a‖2
∞2−s/202−2i

∑
Qk∈Qj−s

Qk∩B(y,4·2i)6=∅

∥∥bQk

∥∥
1
.

We now sum over j < i− 3 and we use that the cubes Qk are disjoint to deduce∑
j<i−3

∑
Qk∈Qj−s

Qk∩B(y,4·2i)6=∅

∥∥bQk

∥∥
1
≤ C α

‖a‖∞

∑
j<i−3

∑
Qk∈Qj−s

Qk⊂B(y,5·2i) 6=∅

|Qk| ≤
20Cα

‖a‖∞
22i ,

since all the cubes that appear in preceding double sum are disjoint and contained in
a disc of radius 5 · 2i, hence the sum of their measures is at most 25π 22i. Combining
the previous estimates concludes the proof of Lemma 3. �

To finish the proof of the Lemma 1 we use Lemma 2 to estimate the terms i = j
of the double sum (7), Lemma 2 and the Cauchy-Schwarz inequality to handle the
cases 0 < |i− j| ≤ 3, and Lemma 3 together with symmetry for the remaining cases
|i− j| > 3.

4. Conclusion

In this article we proved a weak-type estimate for the two-dimensional commutator
(1). The obvious question is whether there is an analogous estimate for the higher
dimensional version of the operator in (1). In the case of the singular operators with
rough kernels such a higher-dimensional weak type (1, 1) estimate was proved by
Seeger [5] using a Fourier transform approach and later by Tao [6] via a combinatorial
technique. (The two-dimensional case was previously obtained by Hofmann [4], while
the case of dimensions n ≤ 7 was claimed by Christ and Rubio de Francia.) At
present, it is not clear how to adapt these approaches to the case of the corresponding
commutators in dimensions n ≥ 3.
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