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Abstract. The authors prove that bilinear operators given by finite sums of prod-

ucts of Calderón-Zygmund operators on Rn are bounded from HK̇α1,p1
q1 × HK̇α2,p2

q2

into HK̇α,p
q if and only if they have vanishing moments up to a certain order dic-

tated by the target space. Here HK̇α,p
q are homogeneous Herz-type Hardy spaces

with 1/p = 1/p1 +1/p2, 0 < pi ≤ ∞, 1/q = 1/q1 +1/q2, 1 < q1, q2 <∞, 1 ≤ q <∞,
α = α1 + α2 and −n/qi < αi <∞. As an application of our results we obtain that

the commutator of Calderón-Zygmund operator with a BMO function maps a Herz

space into itself.

1. Introduction and statements of results.

Beurling [2] first introduced some primordial form of Herz spaces to study con-
volution algebras. Later Herz [15] introduced versions of the spaces defined below
in a slightly different setting. Since then, the theory of Herz spaces has been signif-
icantly developed and these spaces have turned out to be quite useful in harmonic
analysis. For instance, they were used by Baernstein and Sawyer [1] to characterize
the multipliers on the standard Hardy spaces.

Let Bk = {x ∈ Rn : |x| ≤ 2k} and Ck = Bk \ Bk−1 for k ∈ Z. Denote χk = χ
Ck

for k ∈ Z, χ̃k = χk if k ∈ N and χ̃0 = χ
B0

, where by χE we denote the characteristic
function of a set E.

Definition 1. Let α ∈ R, 0 < p ≤ ∞ and 0 < q ≤ ∞.
(a) The homogeneous Herz space K̇α,p

q (Rn) is

K̇α,p
q (Rn) = {f ∈ Lqloc(R

n \ {0}) : ‖f‖K̇α,pq (Rn) <∞},

where

‖f‖K̇α,pq (Rn) =
[ ∞∑
k=−∞

‖2kα fχk‖pLq(Rn)

]1/p

<∞;
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(b) The non-homogeneous Herz space Kα,p
q (Rn) is

Kα,p
q (Rn) = {f ∈ Lqloc(R

n) : ‖f‖Kα,pq (Rn) <∞},

where

‖f‖Kα,pq (Rn) =
[ ∞∑
k=0

‖2kα fχ̃k‖pLq(Rn)

]1/p

<∞,

and the usual modifications in the definitions above are made when p =∞.

The spaces K
n(1−1/q),1
q (Rn) ≡ Aq with 1 < q <∞, are called Beurling algebras

and were introduced by Beurling [2] with different, but equivalent norms. The
equivalence of the norms is in Feichtinger [8]. The spaces K̇α,p

q (Rn) and Kα,p
q (Rn)

were introduced by Herz [15] also with different norms. Flett [9] gave a characteri-
zation of these spaces which is easily seen to be equivalent to Definition 1.

The theory of the Hardy spaces in this setting has been developed considerably.
Chen and Lau [3] introduced the Hardy spaces associated with the Beurling algebras
Aq on the real line with 1 < q ≤ 2. Garćıa-Cuerva [10] generalized the theory of
[3] to higher dimensions and to all q with 1 < q < ∞. Lu and Yang [18], [19]
established the theory of the corresponding homogeneous spaces. More recently,
Garćıa-Cuerva and Herrero [11] and Lu and Yang [20∼23] independently developed
the real Hardy space theory for Herz spaces.

Before we introduce these spaces on Rn, we fix some notation. Let φ ∈ C∞0 (Rn)
with supp φ ⊆ B0,

∫
Rn

φ(x) dx 
= 0 and φt(x) = 1
tnφ(xt ) for any t > 0. S ′(Rn)

denotes the class of tempered distributions on Rn. Let

(1.1) Mφ(f)(x) = sup
t>0
|f ∗ φt(x)|.

Definition 2. Let 0 < p ≤ ∞, 0 < q <∞, α ∈ R and φ be as above.
(a) The homogeneous Herz-type Hardy space HK̇α,p

q (Rn) associated with
K̇α,p
q (Rn) is

HK̇α,p
q (Rn) = {f ∈ S ′(Rn) : Mφ(f) ∈ K̇α,p

q (Rn)}.

Moreover, we set ‖f‖HK̇α,pq (Rn) = ‖Mφ(f)‖K̇α,pq (Rn).

(b) The non-homogeneous Herz-type Hardy space HKα,p
q (Rn) associated with

Kα,p
q (Rn) is

HKα,p
q (Rn) = {f ∈ S ′(Rn) : Mφ(f) ∈ Kα,p

q (Rn)}.

Moreover, we set ‖f‖HKα,pq (Rn) = ‖Mφ(f)‖Kα,pq (Rn).

Remark 1. By the real-variable theory established in [14] (see also [23] and [11]),
it follows that the norms above do not depend on the choice of φ.
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Remark 2. When 1 < q < ∞, −n/q < α < n(1 − 1/q) and 0 < p ≤ ∞, we
have HK̇α,p

q (Rn) = K̇α,p
q (Rn) and HKα,p

q (Rn) = Kα,p
q (Rn). See [16], also [14] and

[21]. These identities fail when α is not in the above range. It is also easy to see
that for 0 < p <∞, HK̇0,p

p (Rn) = HK0,p
p (Rn) are the usual Hardy spaces Hp(Rn)

discussed in [7]. (We have Hp(Rn) = Lp(Rn) when p > 1).
Herz type Hardy spaces are good substitutes of the usual Hardy spaces when

studying boundedness of non-translation invariant operators (see Lu and Yang [20]
and [24] for examples).

The purpose of this paper is to extend the known theory of certain bilinear
operators on Hardy spaces to Herz-type Hardy spaces. The “spirit” of our results
is as follows:

A bilinear operator B(f, g) maps a product of Herz-type Hardy spaces to a
another Herz-type Hardy space if and only if it has moments vanishing up to a
certain order dictated by the target space. More precisely, let

(1.2) B(f, g)(x) =
N∑
γ=1

(T 1
γ f)(x) (T 2

γ g)(x), x ∈ Rn,

where T 1
γ and T 2

γ are Calderón-Zygmund operators. Assuming the required vanish-
ing moments condition, Coifman and Grafakos [4] and Grafakos [12] proved that B
maps Hp × Hq → Hr for a certain range of p’s and q’s when 1/p + 1/q = 1/r.
Recently, Grafakos and Li [13] found another proof of the theorem in [4] and
they also showed boundedness for the missing pairs of indices p, q, thus estab-
lishing Hp(Rn) × Hq(Rn) → Hr(Rn) boundedness for B, on the entire range of
0 < p, q, r < ∞ when 1/r = 1/p + 1/q. The method developed in [13] avoids the
use of the Fourier transform and it can be adapted in this setting.

We now state our main results. We postpone the definition of an (α, q) atom
until the end of this section. We break up our results in three parts and we state
each part as a separate theorem. Our proofs are inspired by [13], but no prior
knowledge of that paper is required for understanding this paper.

Theorem 1. Let 0 < p1, p2 ≤ ∞, 1/p = 1/p1 + 1/p2, 1 < q1, q2 < ∞, q ≥ 1,
1/q = 1/q1 + 1/q2, −n/qi < αi < n(1 − 1/qi), i = 1, 2 and α = α1 + α2. Let
s ≥ [α + n(1/q − 1)] be a non-negative integer such that

(1.3)
∫
Rn

xβB(f, g)(x) dx = 0,

for all multi-indices β with |β| ≤ s, and all f, g ∈ L2(Rn) with compact support.
Then B(f, g) can be extended to a bounded operator from K̇α1,p1

q1 (Rn)× K̇α2,p2
q2 (Rn)

into HK̇α,p
q (Rn).
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Theorem 2. Let 0 < p1, p2 ≤ ∞, 1/p = 1/p1 + 1/p2, 1 < q1, q2 < ∞, q ≥ 1,
1/q = 1/q1 + 1/q2, α1 ≥ n(1− 1/q1), −n/q2 < α2 < n(1− 1/q2) and α = α1 + α2.
Let s ≥ [α + n(1/q − 1)] be a non-negative integer such that

(1.4)
∫
Rn

xβB(a, g)(x) dx = 0,

for all multi-indices β with |β| ≤ s, for all (α1, q1)−atoms a, and all g ∈ L2(Rn)
with compact support. Then B(f, g) can be extended to a bounded operator from
HK̇α1,p1

q1 (Rn)× K̇α2,p2
q2 (Rn) into HK̇α,p

q (Rn).

Theorem 3. Let 0 < p1, p2 ≤ ∞, 1/p = 1/p1 + 1/p2, 1 < q1, q2 < ∞, q ≥ 1,
1/q = 1/q1+1/q2, αi ≥ n(1−1/qi), i = 1, 2 and α = α1+α2. Let s ≥ [α+n(1/q−1)]
be a non-negative integer such that

(1.5)
∫
Rn

xβB(a, b)(x) dx = 0,

for all multi-indices β with |β| ≤ s and all (α1, q1)−atoms a and (α2, q2)−atoms
b. Then B(f, g) can be extended to a bounded operator from HK̇α1,p1

q1 (Rn) ×
HK̇α2,p2

q2 (Rn) into HK̇α,p
q (Rn).

In the theorems above we have assumed that α ≥ n(1 − 1/q). For, we shall
indicate later that the case α < n(1−1/q) follows trivially from Hölder’s inequality.

We end this section by reviewing some known facts about Herz-type Hardy spaces
that we will use later. We have

Definition 3. Let 1 < q <∞, α ∈ R and s ∈ N ∪ {0}. A function a(x) is said to
be a central (α, q)s−atom, if

(i) supp a ⊆ B(r) ≡ {x ∈ Rn : |x| ≤ r}, r > 0;
(ii) ‖a‖Lq(Rn) ≤ |B(r)|−α/n; and
(iii)

∫
Rn

a(x)xβ dx = 0, |β| ≤ s.

Proposition 1 (Atomic decomposition in Herz-type Hardy spaces). Let
0 < p ≤ ∞, 1 < q <∞ and α ∈ R. For any given s ∈ N∪{0} and f ∈ HK̇α,p

q (Rn),
we have

(1.6) f =
∞∑

k=−∞
λkak,

where the series converges in the sense of distributions, λk ≥ 0, each ak is a central
(α, q)s−atom with supp ak ⊆ Bk, and

(1.7)
∞∑

k=−∞
(λk)p ≤ c‖f‖p

HK̇α,pq (Rn)
.
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Conversely, if α ≥ n(1− 1/q) and s ≥ [α + n(1/q − 1)], and if (1.6) holds, then
f ∈ HK̇α,p

q (Rn), and

‖f‖HK̇α,pq (Rn) ∼ inf
{( ∞∑

k=−∞
(λk)p

)1/p}
,

where the infimum is taken over all the decompositions of f as above. In this case
we call (α, q)s−atoms simply (α, q)−atoms.

Remark 3. It is remarkable that atomic decomposition also holds for K̇α,p
q (Rn)

(including Lq(Rn) as a special case). We shall use this fact in the proof of Theorem
2. The atoms in the decomposition (1.2) can be taken to be supported in dyadic
annuli. See [22] (also [10], [11], and [20]) for details regarding the construction of
such atoms.

Calderón-Zygmund operators and the Hardy-Littlewood maximal operator are
bounded on K̇α,p

q (Rn) for a certain range of α’s and q’s. This is stated in the next
proposition. In this article, by a C −Z operator, we mean an L2 bounded singular
integral operator with kernel K(x), which is C∞ away from the origin, satisfying

(i) |K(x)| ≤ c|x|−n, if x 
= 0;
(ii)

∣∣∣ ∂β∂xβK(x− y)− ∂β

∂xβ
K(x− y′)

∣∣∣ ≤ Cβ
|y−y′|

|x−y|n+|β|+1 , if |x− y| ≥ 2|y − y′|, where
β = (β1, · · · , βn) is any multi-index and |β| = β1 + · · ·βn.

Proposition 2. Caderón-Zygmund operators and the Hardy-Littlewood maximal
operator are bounded on K̇α,p

q (Rn) whenever −n/q < α < n(1 − 1/q), 1 < q < ∞
and 0 < p ≤ ∞.

The proof is given in [16] (see also [21] and [14]).

Next we have the following:

Lemma (Hölder’s inequality in Herz spaces). If 0 < pi, qi ≤ ∞, −∞ < αi <
∞, i = 1, 2, 1/p = 1/p1 + 1/p2, 1/q = 1/q1 + 1/q2 and α = α1 + α2, then

‖fg‖K̇α,pq (Rn) ≤ ‖f‖K̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn)

The proof follows immediately by applying the usual Hölder’s inequality twice.
Combining this lemma with Proposition 2, we have

Corollary. The operator B(f, g) defined in (1.2) is bounded from K̇α1,p1
q1 (Rn) ×

K̇α2,p2
q2 (Rn) into K̇α,p

q (Rn) whenever −n/qi < αi < n(1−1/qi), i = 1, 2, α = α1+α2

and −n/q < α < n(1 − 1/q), where 0 < p1, p2 ≤ ∞, 1/p = 1/p1 + 1/p2, 1 <
q, q1, q2 <∞ and 1/q = 1/q1 + 1/q2.

It follows from the corollary that it remains to show boundedness from
K̇α1,p1
q1 (Rn)× K̇α2,p2

q2 (Rn)→ HK̇α,p
q (Rn) when α ≥ n(1− 1/q).
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We end this section with a few remarks:
Remark 4. It is easy to see that the integrals in (1.3), (1.4) and (1.5) are well-

defined for f and g in the corresponding spaces. Also compactly supported L2

functions are dense in K̇α,p
q (Rn) and (α, q)−atoms are dense in HK̇α,p

q (Rn) (see
[16]). This means that the vanishing moment hypotheses hold on a dense set of
functions.

Remark 5. The order of vanishing moments in the theorems above is assumed to
be at least [α+n(1/q−1)]. This assumption is natural and optimal from Definition
3 and Proposition 1.

Remark 6. It follows from the proofs that our results are still true if we replace
the standard C − Z operators by the central C − Z operators defined in [27]. See
also [20].

Remark 7. Throughout this paper, we only discuss the homogeneous Herz spaces
K̇α,p
q (Rn) and HK̇α,p

q (Rn). Our theorems also hold for the non-homogeneous Herz
spaces Kα,p

q (Rn) and HKα,p
q (Rn). The proofs are similar and are omitted. These

spaces are related by the following identities:

Kα,p
q (Rn) = K̇α,p

q (Rn) ∩ Lq(Rn)

whenever 0 < p ≤ ∞, α > 0, 0 < q ≤ ∞; and

HKα,p
q (Rn) = HK̇α,p

q (Rn) ∩ Lq(Rn)

whenever 0 < p ≤ ∞, α ≥ n(1− 1/q) and 1 < q <∞. See [1], [18] and [21∼22] for
the details.

Remark 8. The discussion on Fourier transforms on Herz or Herz-type Hardy
spaces can also be found in the literature. We refer the readers to [8], [9], [26] and
[28].

Acknowledgements. The second and third authors are grateful to Professor
Guido Weiss for his constant encouragement. The third author is also thankful to
the Department of Mathematics at Washington University for its hospitality.

The authors also like to thank the referee for his valuable suggestions.

2. Proof of Theorem 1.

Our proof of Theorem 1 uses some standard estimates for maximal functions,
the vanishing moment condition (1.3) and the Lemma in Section 1.

Let φ be as in (1.1). Without loss of generality, we may assume φ ≥ 0 (this
assumption will remain valid throughout this paper). For x ∈ Rn, let φt,x(y) =
1
tnφ(x−yt ), y ∈ Rn. We want to show that

(2.1)
∥∥∥ sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(f, g)(y) dy
∣∣∣∥∥∥
K̇α,pq (Rn)

≤ c‖f‖K̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn).
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We choose η ∈ C∞0 (Rn) with η ≡ 1 on {x : |x| < 2} and supp η ⊆ {x : |x| < 4}.
Define η0(y) = η(x−yt ) and η1(y) = 1− η0(y). We split B(f, g) as sum

(2.2) B(f, g) = B(η0f, η0g) + B(f, η1g) + B(η1f, g)−B(η1f, η1g).

Consider B(f, η1g) first. We have

sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(f, η1g)(y) dy
∣∣∣

≤ c
N∑
γ=1

sup
t>0

∫
Rn

φt,x(y)|T 1
γ f(y)||T 2

γ (η1g(y)− T 2
γ (η1g)(x)| dy

+ c

N∑
γ=1

sup
t>0

∫
Rn

φt,x(y)|T 1
γ f(y)||T 2

γ (η1g)(x)| dy

≤ c

N∑
γ=1

M(T 1
γ f)(x)M(η1g)(x) + c

N∑
γ=1

M(T 1
γ f)(x)|T 2

γ (η1g)(x)|,

where M is the Hardy-Littlewood maximal operator. The last inequality follows
easily from standard estimates for C − Z operators (see for instance [4] or [13]).
Now we apply the Lemma and the proposition 2 in section 1 to this expression
and we obtain inequality (2.1) where η1g is replacing g on the left hand side. The
estimates for terms B(η1f, g) and B(η1f, η1g) in (2.2) are similar.

We now prove (2.1) for B(η0f, η0g). By the vanishing moment condition (1.3),
we can subtract the Taylor polynomial P sy of φt,x(·) at y of degree s and obtain

sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(η0f, η0g)(y) dy
∣∣∣

= sup
t>0

∣∣∣ ∫
Rn

N∑
γ=1

(η0f)(y)
[
(T 1
γ )∗[(φt,x(·)− P sy (· − y))T 2

γ (η0g)(·)](y)
]
dy

∣∣∣,
where (T 1

γ )∗ is the adjoint of T 1
γ . This last expression can be estimated by Hölder’s

inequality and the fractional integral theorem by

cM(|f |�1)1/�1(x)M(|g|�2)1/�2(x),

for all '1, '2 such that 1 < '1 < q1, 1 < '2 < q2 and 1/'1 +1/'2 = (n+s+ε)/n > 1
for some fixed 0 < ε < 1. By our assumptions on α1, α2, and α, we may choose
'1, '2 as above such that

(2.3) −n/q1 < α1 < n(1/'1 − 1/q1), and − n/q2 < α2 < n(1/'2 − 1/q2).
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Hölder’s inequality now gives

∥∥∥ sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(η0f, η0g)(y) dy
∣∣∣∥∥∥
K̇α,pq (Rn)

≤ c
∥∥∥M(|f |�1)1/�1

∥∥∥
K̇
α1,p1
q1 (Rn)

∥∥∥M(|f |�2)1/�2
∥∥∥
K̇
α2,p2
q2 (Rn)

.

The first term above is

∥∥∥M(|f |�1)1/�1
∥∥∥
K̇
α1,p1
q1 (Rn)

=
{ ∞∑
k=−∞

2kα1p1
∥∥∥M(|f |�1)1/�1χk

∥∥∥p1
Lq1 (Rn)

}1/p1

=
{ ∞∑
k=−∞

2k�1α1
p1

1

∥∥∥M(|f |�1)χk
∥∥∥p1/�1
Lq1/
1 (Rn)

}1/p1

≤ c
{ ∞∑
k=−∞

2k�1α1
p1

1

∥∥∥|f |�1χk∥∥∥p1/�1
Lq1/
1 (Rn)

}1/p1

= c‖f‖K̇α1,p1
q1 (Rn),

where we used the boundedness of Hardy-Littlewood maximal function on
K̇
�1α1,p1/�1
q1/�1

(Rn) and Proposition 2. Similarly, we obtain that

∥∥∥M(|g|�2)1/�2
∥∥∥
K̇
α2,p2
q2 (Rn)

≤ c‖g‖K̇α2,p2
q2 (Rn).

We now have estimate (2.1) for term B(η0f, η0g) as well.
This finishes the proof of Theorem 1.

3. Proof of Theorem 2.

The idea of the proof is to break the whole estimate into “dyadic” pieces and
give appropriate pointwise estimates on dyadic annuli of C-Z operators acting on
functions in some dense subspaces. While the maximal function estimates (in Herz
type spaces) are used to treat the “local” parts, the vanishing moment condition
(1.4) and the cancellation property of atoms are carefully used to treat the “non-
local” parts.

We assume 0 < p1, p2 < ∞ and leave the easy cases p1 = ∞ or p2 = ∞ to the
interested reader. We must show that

(3.1)
∥∥∥ sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(f, g)(y) dy
∣∣∣∥∥∥
K̇α,pq (Rn)

≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn),

for all f ∈ HK̇α1,p1
q1 (Rn) and g ∈ K̇α2,p2

q2 (Rn). Without loss of generality, we
may assume that f =

∑
i∈Z λiai and g =

∑
j∈Z µjbj , where λj , µj ≥ 0, aj

′s
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are (α1, q1)−atoms, bj
′s are (α2, q2)N−atoms, N is a sufficiently large positive

integer, and, by remark 3, supp ai ⊆ {x ∈ R
n : 2i−2 < |x| ≤ 2i+2} and

supp bj ⊆ {x ∈ Rn : 2j−2 < |x| ≤ 2j+2}. Using the vanishing moment condi-
tions of atoms, together with the standard estimates of C − Z operators, we have,
for any non-negative integer s1,

(3.2) |T 1
γ ai(x)| ≤ c

2i(n+s1−α1−n/q1)

|x|n+s1
, whenever |x| > 2i+3;

and

(3.2’) |T 1
γ ai(x)| ≤ c2−i(α1+n/q1), whenever |x| < 2i−3.

(3.2) and (3.2’) also hold for bj when replacing T 1
γ , α1, q1 and i by T 2

γ , α2, q2

and j respectively.
Now let

S(ai, bj)(x) = sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(ai, bj)(y) dy
∣∣∣.

Then

sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(f, g)(y) dy
∣∣∣ ≤∑

i,j

λiµjS(ai, bj)(x)

=
∑
i,j

λiµjS(ai, bj)(x)χ{|x|≤2i+4}

+
∑
i,j

λiµjS(ai, bj)(x)χ{|x|>2i+4}

≡ Γ1(x) + Γ2(x).

For Γ1(x), we have

Γ1(x) =
∑
i,j

λiµjS(ai, bj)(x)χ{|x|≤2i+4, |x|≤2j−5}

+
∑
i,j

λiµjS(ai, bj)(x)χ{|x|≤2i+4, 2j−5<|x|≤2j+4}

+
∑
i,j

λiµjS(ai, bj)(x)χ{|x|≤2i+4, |x|>2j+4}

≡ I1(x) + I2(x) + I3(x).

Let us consider I1(x) first. In this case we have

S(ai, bj)(x) ≤
N∑
γ=1

sup
0<t≤ 1

2 |x|

∣∣∣ ∫
Rn

φt,x(y)T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣(3.3)

+
N∑
γ=1

sup
t> 1

2 |x|

∣∣∣ ∫
Rn

φt,x(y)
N∑
γ=1

T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣.
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The first summand in (3.3) is dominated by

N∑
γ=1

sup
0<t≤ 1

2 |x|

∣∣∣ ∫
|y|<2j−4

φt,x(y)T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣,

since |y| ≤ |x|+ |x− y| ≤ 3
2 |x| < 2j−4. By (3.2’) for bj , this is no more than

(3.4) c
N∑
γ=1

M(|T 1
γ ai|)(x)2−j(α2+n/q2).

The second summand in (3.3) is dominated by

N∑
γ=1

sup
t> 1

2 |x|

∣∣∣ ∫
|y|<2j−4

φt,x(y)T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣(3.5)

+
N∑
γ=1

sup
t> 1

2 |x|

∣∣∣ ∫
|y|≥2j−4

φt,x(y)T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣

The first term in (3.5) is estimated as before and it is shown to be bounded by

c

N∑
γ=1

M(|T 1
γ ai|)(x)2−j(α2+n/q2),

i.e., the term in (3.4). By Hölder’s inequality, the second term in (3.5) is dominated
by

N∑
γ=1

sup
t> 1

2 |x|

( ∫
Rn

φt,x(y)|T 1
γ ai(y)|q′2 dy

) 1
q′2

( ∫
|y|≥2j−4

φt,x(y)|T 2
γ bj(y)|q2 dy

) 1
q2

(3.6)

≤ c

N∑
γ=1

M(|T 1
γ ai(y)|q′2)

1
q′2 (x)2−

jn
q2 ‖T 2

γ bj‖Lq2 (Rn)

≤ c
N∑
γ=1

M(|T 1
γ ai(y)|q′2)1/q′2(x)2−j(α2+n/q2),

where we used that |y| ≤ |x|+ |x− y| ≤ 3t to obtain the range of integration in the
second integral above.

Combining (3.4), (3.5) and (3.6), we obtain that

‖I1‖K̇α,pq (Rn) ≤ c
N∑
γ=1

∥∥∥ ∞∑
i=−∞

λiM(|T 1
γ ai|)χ{|x|≤2i+4}

∥∥∥
K̇
α1,p1
q1 (Rn)

(3.7)
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×
∥∥∥ ∞∑
j=−∞

µj2−j(α2+n/q2)χ{|x|≤2j−5}

∥∥∥
K̇
α2,p2
q2 (Rn)

+ c
N∑
γ=1

∥∥∥ ∞∑
i=−∞

λiM(|T 1
γ ai|q

′
2)1/q

′
2χ{|x|≤2i+4}

∥∥∥
K̇
α1,p1
q1 (Rn)

×
∥∥∥ ∞∑
j=−∞

µj2−j(α2+n/q2)χ{|x|≤2j−5}

∥∥∥
K̇
α2,p2
q2 (Rn)

.

The first norm in the first summand of (3.7) is equal to

c

N∑
γ=1

{ ∞∑
k=−∞

2kα1p1
∥∥∥ ∞∑
i=−∞

λiM(|T 1
γ ai|)χ{|x|≤2i+4}χk

∥∥∥p1
Lq1 (Rn)

}1/p1

≤ c
N∑
γ=1

{ ∞∑
k=−∞

2kα1p1
( ∞∑
i=k−4

λi‖M(|T 1
γ ai|)‖Lq1 (Rn)

)p1}1/p1

≤ c
{ ∞∑
k=−∞

2kα1p1
( ∞∑
i=k−4

λi‖ai‖Lq1 (Rn)

)p1} 1
p1

,

by H − L maximal Theorem

≤ c
{ ∞∑
k=−∞

( ∞∑
i=k−4

λi2(k−i)α1

)p1}1/p1
.

When p1 ≤ 1, since α1 > 0, this last expression is no more than

c
{ ∞∑
i=−∞

(λi)p1
( i+4∑
k=−∞

2(k−i)α1p1
)}1/p1

≤ c
{ ∞∑
i=−∞

(λi)p1
}1/p1

≤ c‖f‖HK̇α1,p1
q1 (Rn).

When p1 > 1, letting 1/p1 + 1/p′1 = 1, this expression is no more than

c
{ ∞∑
k=−∞

( ∞∑
i=k−4

(λi)p12(k−i)α1p1/2
)( ∞∑

i=k−4

2(k−i)α1p
′
1/2

)p1/p′1}1/p1

≤ c
{ ∞∑
i=−∞

(λi)p1
( i+4∑
k=−∞

2(k−i)α1p1/2
)}1/p1

≤ c
{ ∞∑
i=−∞

(λi)p1
}1/p1

≤ c‖f‖HK̇α1,p1
q1 (Rn).
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The first norm in the second summand of (3.7) can be estimated just as above
since q1 > q′2.

The second norms in both summands of (3.7) are the same and they are equal
to

{ ∞∑
k=−∞

2kα2p2
∥∥∥ ∞∑
j=−∞

µj2−j(α2+n/q2)χ{|x|≤2j−5}χk
∥∥∥p2
Lq2 (Rn)

}1/p2

≤ c
{ ∞∑
k=−∞

2kα2p2
( ∞∑
j=k+4

µj2−j(α2+n/q2)+kn/q2
)p2}1/p2

≤ c
{ ∞∑
k=−∞

( ∞∑
j=k+4

µj2(k−j)(α2+n/q2)
)p2}1/p2

.

Since α2 + n/q2 > 0, this last expression can be estimated as before by

c
{ ∞∑
j=−∞

(µj)p2
}1/p2

≤ c‖g‖K̇α2,p2
q2 (Rn),

for all p2 such that 0 < p2 <∞.
We therefore obtain

(3.8) ‖I1‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn).

The estimation for I2(x) is easy. We choose q0 such that 1 < q0 < q1, 1 < q′0 < q2

and 1/q0 + 1/q′0 = 1 since 1/q1 + 1/q2 = 1/q < 1. We then have

‖I2‖K̇α,pq (Rn) ≤ c
N∑
γ=1

∥∥∥ ∞∑
i=−∞

λiM(|T 1
γ ai|q0)1/q0χ{|x|≤2i+4}

∥∥∥
K̇
α1,p1
q1 (Rn)

×
∥∥∥ ∞∑
j=−∞

µjM(|T 2
γ bj |q

′
0)1/q

′
0χ{2j−5<|x|≤2j+4}

∥∥∥
K̇
α2,p2
q2 (Rn)

.

The first norm above is as in (3.7) and it is bounded by c‖f‖HK̇α1,p1
q1 (Rn).

The second norm is equal to

{ ∞∑
k=−∞

2kα2p2
( k+4∑
j=k−4

µj

∥∥∥M(|T 2
γ bj |q

′
0)1/q

′
0χ{2j−5<|x|≤2j+4}

∥∥∥
Lq2 (Rn)

)p2}1/p2

≤ c
{ ∞∑
j=−∞

(µj)p2
( j+4∑
k=j−4

2kα2p2−jα2p2
)}1/p2

≤ c
{ ∞∑
j=−∞

(µj)p2
}1/p2

≤ c‖g‖K̇α2,p2
q2 (Rn).
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Thus we obtain

(3.9) ‖I2‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn).

We now estimate I3(x). Again, we write S(ai, bj)(x) as in (3.3) and we denote
by I31(x) the part of I3(x) where in the majorization of S(ai, bj)(x) the supremum
is taken over t ≤ 1

2 |x|. In this case, since |y| ≥ |x| − |x− y| ≥ |x|/2 > 2j+3, we can
use (3.2) with s1 = 1 for bj to obtain that each term of the sum is no more than

(3.10) cM(|T 1
γ ai|)(x)

2j(n+1−α2−n/q2)

|x|n+1
.

Therefore

‖I31‖K̇α,pq (Rn) ≤ c
N∑
γ=1

∥∥∥ ∞∑
i=−∞

λiM(|T 1
γ ai|)χ{|x|≤2i+3}

∥∥∥
K̇
α1,p1
q1 (Rn)

×
∥∥∥ ∞∑
j=−∞

µj
2j(n+1−α2−n/q2)

|x|n+1
χ{|x|>2j+4}

∥∥∥
K̇
α2,p2
q2 (Rn)

.

The first norm above appeared in (3.7) and it is bounded by c‖f‖HK̇α1,p1
q1 (Rn). By

a simple calculation, the second norm above is bounded by

c
{ ∞∑
k=−∞

( k−5∑
j=−∞

µj2(j−k)(n+1−α2−n/q2)
)p2}1/p2

which is, for all p2, 0 < p2 <∞, bounded above by

c
{ ∞∑
j=−∞

(µj)p2
}1/p2

≤ c‖g‖K̇α2,p2
q2 (Rn),

since n + 1− α2 − n/q2 > 0.
We now denote by I32 the part of I3(x) where in the majorization of S(ai, bj)(x)

the supremum is taken over t > 1
2 |x|. Let P s0 (y) be the Taylor polynomial of degree

s of φt,x(y) at the origin. By the vanishing moment hypotheses we estimate I32 by

sup
t> 1

2 |x|

∣∣∣ ∫
Rn

(φt,x(y)− P s0 (y) )
N∑
γ=1

T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣

≤ c

N∑
γ=1

sup
t> 1

2 |x|

∫
Rn

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≤ c

N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|>4t

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+ c

N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|≤4t

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≡ A1(x) + B1(x).



14 LOUKAS GRAFAKOS, XINWEI LI, AND DACHUN YANG

If |x− y| > 4t, then |y| ≥ |x− y| − |x| ≥ 2t > |x| > 2j+4. By (3.2) with s1 = s + 2
for bj , we obtain

A1(x) ≤ c sup
t> 1

2 |x|

∫
|x−y|>4t

|y|s+1

tn+s+1
|T 1
γ ai(y)|2

j(n+s+2−α2−n/q2)

|y|n+s+2
dy

(3.11)

≤ c
2j(n+s+2−α2−n/q2)

|x|n+s+2
sup
t> 1

2 |x|
t

∫
|x−y|>4t

|T 1
γ ai(y)|
|y|n+1

dy

≤ c
2j(n−α2−n/q2)

|x|n M(|T 1
γ ai(y)|)(x),

since 2j+4 < |x|. Therefore

‖I1
32‖K̇α,pq (Rn) ≤ c

N∑
γ=1

∥∥∥ ∞∑
i=−∞

λiM(|T 1
γ ai(y)|)χ{|x|≤2i+4}

∥∥∥
K̇
α1,p1
q1 (Rn)

×
∥∥∥ ∞∑
j=−∞

µj
2j(n−α2−n/q2)

|x|n χ{|x|>2j+4}

∥∥∥
K̇
α2,p2
q2 (Rn)

.

The second norm above is no more than

c
{ ∞∑
k=−∞

( k−5∑
j=−∞

µj2(j−k)(n−α2−n/q2)
)p2}1/p2

≤ c
{ ∞∑
j=−∞

(µj)p2
}1/p2

, since n− α2 − n/q2 > 0.

The first norm above is estimated as in (3.7). Thus we have the desired estimate
for I1

32.
For B1(x), we have

B1(x) ≤ c

N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|≤4t

|y|≤2j+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+ c
N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|≤4t

|y|>2j+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy.

The first supremum above is

c
2j(s+1)

|x|n/q2+s+1
sup
t> 1

2 |x|

( 1
tn

∫
|x−y|≤4t

|T 1
γ ai(y)|q′2 dy

)1/q′2‖T 2
γ bj‖Lq2 (Rn)

(3.12)

≤ c
2j(s+1−α2)

|x|n/q2+s+1
M(|T 1

γ ai|q
′
2)1/q

′
2(x).
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If we can show that

(3.13)
∥∥∥ ∞∑
j=−∞

µj
2j(s+1−α2)

|x|n/q2+s+1
χ{|x|>2j+4}

∥∥∥
K̇
α2,p2
q2 (Rn)

≤ c
{ ∞∑
j=−∞

(µj)p2
}1/p2

,

then, by (3.7), we have the desired estimate for (3.12). The left hand side of (3.13)
is bounded by

c
{ ∞∑
k=−∞

( k−5∑
j=−∞

µj2(j−k)(s+1−α2)
)p2}1/p2

which is dominated by the right hand side of (3.13) if s + 1 > α2. This is all right
since s ≥ [α + n(1/q − 1)]. Using (3.2) with s1 = s + 1 for bj , we obtain that the
second supremum in B1(x) is dominated by

c sup
t> 1

2 |x|

∫
|x−y|≤4t

|y|>2j+3

|y|s+1

tn+s+1
|T 1
γ ai(y)|2

j(n+s+1−α2−n/q2)

|y|n+s+1
dy

≤ c
2j(n+s+1−α2−n/q2)

|x|n/q2+s+1
sup
t>0

( 1
tn

∫
|x−y|≤4t

|T 1
γ ai(y)|q′2 dy

)1/q′2

×
( ∫
|y|>2j+3

1
|y|nq2 dy

)1/q2

≤ cM(|T 1
γ ai|q

′
2)1/q

′
2

2j(s+1−α2)

|x|n/q2+s+1
,

which is the same as (3.12). From the estimates of B1(x), we obtain that the
contribution of B1 in I3, denoted by I2

32, also satisfies

‖I2
32‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1

q1 (Rn)‖g‖K̇α2,p2
q2 (Rn).

Since I3(x) ≤ I31(x) + I1
32(x) + I2

32(x), we have

(3.14) ‖I3‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn).

Combining (3.8), (3.9) and (3.14), we obtain the estimate (3.1) for Γ1(x).

Next, we consider Γ2(x). We split this termsimilarly. We have

Γ2(x) ≤
∑
i,j

λiµjS(ai, bj)(x)χ{2i+4<|x|, |x|≤2j−5}

+
∑
i,j

λiµjS(ai, bj)(x)χ{2i+4<|x|, 2j−5<|x|≤2j+4}

+
∑
i,j

λiµjS(ai, bj)(x)χ{2i+4<|x|, |x|>2j+4}

≡J1(x) + J2(x) + J3(x).



16 LOUKAS GRAFAKOS, XINWEI LI, AND DACHUN YANG

Consider J1(x) first. By (3.3) and the vanishing moment condition (1.4), we have

S(ai, bj)(x) ≤
N∑
γ=1

sup
0<t≤ 1

2 |x|

∣∣∣ ∫
Rn

φt,x(y)T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣

(3.15)

+
N∑
γ=1

sup
t> 1

2 |x|

∫
Rn

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≡ A2(x) + B2(x).

For A2(x), we have

A2(x) ≤
N∑
γ=1

sup
0<t≤ 1

2 |x|

∣∣∣ ∫
|y|<2j−4

φt,x(y)T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣

+
N∑
γ=1

sup
0<t≤ 1

2 |x|

∣∣∣ ∫
|y|≥2j−4

φt,x(y)T 1
γ ai(y)T 2

γ bj(y) dy
∣∣∣.

Notice that in this case |y| ≥ |x| − |x − y| ≥ |x|
2 > 2i+3. Using (3.2) and (3.2’)

respectively, the first term in A2(x) is bounded by

c
N∑
γ=1

sup
0<t≤ 1

2 |x|

∫
|y|<2j−4

φt,x(y)
2i(n+s1−α1−n/q1)

|y|n+s1
2−j(α2+n/q2) dy

(3.16)

≤ c
2i(n+s1−α1−n/q1)

|x|n+s1
2−j(α2+n/q2),

for some non-negative integer s1 to be determined later. Since

∥∥∥ ∞∑
i=−∞

λi
2i(n+s1−α1−n/q1)

|x|n+s1
χ{|x|>2i+4}

∥∥∥
K̇
α1,p1
q1 (Rn)

=
{ ∞∑
k=−∞

2kα1p1
( k−4∑
i=−∞

λi2i(n+s1−α1−n/q1)
∥∥∥ 1
|x|n+s1

χk

∥∥∥
Lq1 (Rn)

)p1}1/p1

≤ c
{ ∞∑
k=−∞

( k−4∑
i=−∞

λi2(i−k)(n+s1−α1−n/q1)
)p1}1/p1

≤ c
{ ∞∑
i=−∞

(λi)p1
}1/p1

, if s1 > α1 − n(1− 1/q1),

by (3.4), the first term in A2(x) satisfies the desired estimate.



BILINEAR OPERATORS ON HERZ-TYPE HARDY SPACES 17

Using (3.2) for ai, we obtain that the second term in A2(x) is dominated by

N∑
γ=1

sup
0<t≤ 1

2 |x|

∫
|y|≥2j−4

φt,x(y)
2i(n+s1−α1−n/q1)

|y|n+s1
|T 2
γ bj(y)| dy

≤ c

N∑
γ=1

2i(n+s1−α1−n/q1)

|x|n+s1
sup

0<t≤ 1
2 |x|

( ∫
Rn

φt,x(y) dy
)1/q′2

×
( ∫
|y|≥2j−4

φt,x(y)|T 2
γ bj(y)|q2 dy

)1/q2

≤ c
2i(n+s1−α1−n/q1)

|x|n+s1
2−j(α2+n/q2),

since φt,x(y) ≤ ct−n and 2j−4 ≤ |y| ≤ 2|x − y| ≤ 2t; the latter is due to the facts
that |y| ≥ 2j−4 and |x| ≤ 2j−5. We then obtain the same estimate for the second
term in A2(x) as that for (3.16).

Now we turn our attention to B2(x). First we have

B2(x) ≤
N∑
γ=1

sup
t> 1

2 |x|

∫
|y|>2i+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+
N∑
γ=1

sup
t> 1

2 |x|

∫
|y|≤2i+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

= B21(x) + B22(x).

Now,

B21(x) ≤
N∑
γ=1

sup
t> 1

2 |x|

∫
|y|>2i+3

|y|≤2j−4

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+
N∑
γ=1

sup
t> 1

2 |x|

∫
|y|>2i+3

|y|>2j−4

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy.

Using (3.2) and (3.2’) for ai and bj respectively, we get the first term in B21(x) is
dominated by

c sup
t> 1

2 |x|

∫
|y|>2i+3

|y|≤2j−4

|y|s+1

tn+s+1

2i(n+s+2−α1−n/q1)

|y|n+s+2
2−j(α2+n/q2) dy

≤ c
2i(n+s+2−α1−n/q1)

|x|n+s+1
2−j(α2+n/q2)

∫
|y|>2i+3

1
|y|n+1

dy

≤ c
2i(n+s+1−α1−n/q1)

|x|n+s+1
2−j(α2+n/q2).
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This is the desired estimate from (3.16) when s+ 1 > α1 +n(1/q1− 1). Using (3.2)
for ai, the second term in B21(x) is dominated by

c

N∑
γ=1

sup
t> 1

2 |x|

∫
|y|>2i+3

|y|>2j−4

|y|s+1

tn+s+1

2i(n+s+2−α1−n/q1)

|y|n+s+2
|T 2
γ bj(y)| dy

≤ c
N∑
γ=1

2i(n+s+2−α1−n/q1)

|x|n+s+1

( ∫
|y|>2i+3

1
|y|(n/q′2+1)q′2

dy
)1/q′2

×
( ∫
|y|>2j−4

|T 2
γ bj(y)|q2
|y|n dy

)1/q2

≤ c
2i(n+s+1−α1−n/q1)

|x|n+s+1
2−j(α2+n/q2).

This is desired estimate. For B22(x), we have

B22(x) ≤
N∑
γ=1

sup
t> 1

2 |x|

∫
|y|≤2i+3

|y|≤2j−4

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+
N∑
γ=1

sup
t> 1

2 |x|

∫
|y|≤2i+3

|y|≤2j−4

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy.

Using (3.2’) for bj , we have that the first term in B22(x) is dominated by

c

N∑
γ=1

sup
t> 1

2 |x|

∫
|y|≤2i+3

|y|s+1

tn+s+1
|T 1
γ ai(y)|2−j(α2+n/q2) dy

≤ c
2−j(α2+n/q2)

|x|n+s+1

N∑
γ=1

( ∫
|y|≤2i+3

|y|(s+1)q′1 dx
)1/q′1‖T 1

γ ai‖Lq1 (Rn)

≤ c
2i(n+s+1−α1−n/q1)

|x|n+s+1
2−j(α2+n/q2).

The second term in B22(x) is bounded above by

c
N∑
γ=1

sup
t> 1

2 |x|

∫
2j−4<|y|≤2i+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≤ c
1

|x|n+s+1

N∑
γ=1

[ ∫
|y|≤2i+3

(|y|s+1+n/q2 |T 1
γ ai(y)|)q′2 dy

]1/q′2

×
( ∫

2j−4<|y|

|T 2
γ bj(y)|q2
|y|n dy

)1/q2
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≤ c
2i(n+s+1−α1−n/q1)

|x|n+s+1
2−j(α2+n/q2).

Thus both terms in B22(x) satisfy the desired estimate. Notice that the above
estimates are valid when s + 1 > α1 + n(1/q1 − 1). The minimun value of such s is
[α + n(1/q − 1)]. Combining the estimates for A2 and B2, we obtain

(3.17) ‖J1‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn).

Next we consider J2(x). We again have (3.15). The estimation of B2(x) is the
same as before since we never use the assumption |x| < 2j−5 in that case (the
assumption that |x| ≤ 2j+4 suffices for the estimate of B2(x) in that case.) For the
term A2(x) is the current case, we still have |y| ≥ |x|/2 > 2i+3, and moreover, we
have

A2(x) ≤ c
N∑
γ=1

sup
0<t≤ 1

2 |x|

∫
Rn

φt,x(y)
2i(n+s1−α1−n/q1)

|y|n+s1
|T 2
γ bj(y)| dy

≤ c
2i(n+s1−α1−n/q1)

|x|n+s1

N∑
γ=1

sup
t>0

( ∫
Rn

φt,x(y) dy
)1/q0

M(|T 2
γ bj |q

′
0)1/q

′
0(x),

where q0 is chosen as in the estimation for I2. Thus A2(x) can be estimated as in
(3.16) for i and as in I2 for j. Therefore,

(3.18) ‖J2‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn).

Finally, we consider J3(x). We still use (3.15), that is S(ai, bj)(x) ≤ A2(x) +
B2(x). For A2(x), |y| ≥ |x| − |x− y| ≥ |x|2 ≥ max(2i+3, 2j+3), thus,

A2(x) ≤ c
N∑
γ=1

sup
0<t≤ 1

2 |x|

∫
Rn

φt,x(y)
2i(n+�+1−α1−n/q1)

|y|n+�+1

2j(n−α2−n/q2)

|y|n dy

(3.19)

≤ c
2i(n+�+1−α1−n/q1)

|x|n+�+1

2j(n−α2−n/q2)

|x|n .

It follows from (3.11) and (3.16) that A2(x) satisfies the required estimate. Now
we write

B2(x) ≤ c
N∑
γ=1

sup
t> 1

2 |x|

∫
|y|≥max(2i+4, 2j+4)

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+ c

N∑
γ=1

sup
t> 1

2 |x|

∫
|y|≤min(2i+4, 2j+4)

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy
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+ c
N∑
γ=1

sup
t> 1

2 |x|

∫
2j+4<|y|≤2i+4

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+ c

N∑
γ=1

sup
t> 1

2 |x|

∫
2i+4<|y|≤2j+4

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≡ D1(x) + D2(x) + D3(x) + D4(x).

Let m, ' be non-negative integers to be determined later and s = m + '.
Using (3.2) for ai and bj respectively, we have

D1(x) ≤ c

N∑
γ=1

sup
t> 1

2 |x|

∫
|y|≥max(2i+4, 2j+4)

|y|s+1

tn+s+1

2i(n+m+1−α1− n
q1

)

|y|n+m+1

× 2j(n+s+1−α2− n
q2

)

|y|n+s+1
dy

≤ c
2i(n+m+1−α1− n

q1
)2j(n+s+1−α2− n

q2
)

|x|n+s+1

∫
|y|≥max(2i+4, 2j+4)

1
|y|n+m+1

1
|y|n dy.

If i ≥ j, the integral above is dominated by( ∫
|y|≥2i+4

1
|y|(n+m+1)q′2

dy
)1/q′2

(
∫
|y|≥2j+4

1
|y|nq2 dy

)1/q2

≤ c2i(−n/q2−m−1)2j(n/q2−n) ≤ c2−j(n+m+1)2−in/q22jn/q2 .

If i < j, the integral above is dominated by( ∫
|y|≥2j+4

1
|y|(n+m+1)q2

dy
)1/q2

(
∫
|y|≥2i+4

1
|y|nq′2 dy

)1/q′2

≤ c2j(n/q2−n−m−1)2−in/q2 .

In either case, we obtain

(3.20) D1(x) ≤ c
2i(n+m+1−α1−n/q)

|x|n/q′2+m+1

2j(�−α2)

|x|n/q2+� .

In view of (3.12), the second term, when ' > α2, satisfies the desired estimate.
Since ∥∥∥ ∞∑

i=−∞
λi

2i(n+m+1−α1−n/q)

|x|n/q′2+m+1
χ{|x|>2i+4}

∥∥∥
K̇
α1,p1
q1 (Rn)

≤ c
{ ∞∑
k=−∞

( k−4∑
i=−∞

λi2(i−k)(n+m+1−α1−n/q)
)p1}1/p1

≤ c
{ ∞∑
i=−∞

(λi)p1
}1/p1

,
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whenever m+1 > α1 +n(1/q−1), we obtain the desired estimate for the first term
in (3.20) also. Notice that we require s + 1 = m + 1 + ' > α + n(1/q − 1).

The estimation for the term D2(x) is easy. We have

D2(x) ≤ c
2i(m+1)2j�

|x|n+s+1

N∑
γ=1

‖T 1
γ ai‖Lq′2 (Rn)

‖T 2
γ bj‖Lq2 (Rn)

≤ c
2i(m+n+1−α1−n/q)

|x|n/q′2+m+1

2j(�−α2)

|x|n/q2+� .

Both the terms above appeared in (3.20).
Next, we consider D3(x). By (3.2) for bj , and that we have i > j in this case,

we get

D3(x) ≤ c
N∑
γ=1

sup
t> 1

2 |x|

∫
2j+4<|y|≤2i+4

|y|s+1

tn+s+1
|T 1
γ ai(y)|2

j(�+m+2+n−α2−n/q2)

|y|�+m+2+n
dy

≤ c

N∑
γ=1

2i(m+1)

|x|n/q′2+m+1

2j(�+1+n−α2−n/q2)

|x|�+n/q2 ‖T 1
γ ai‖Lq′2 (Rn)

×
( ∫
|y|>2j+4

1
|y|(n+1)q2

dy
)1/q2

≤ c
2i(m+n+1−α1−n/q)

|x|n/q′2+m+1

2j(�−α2)

|x|n/q2+� ,

which is desired.
Finally, by (3.2) for ai, and that i < j in case D4(x), we get

D4(x) ≤ c
N∑
γ=1

sup
t> 1

2 |x|

∫
2i+4<|y|≤2j+4

|y|s+1

tn+s+1

2i(n+�+m+2−α1−n/q1)

|y|n+�+m+2
|T 2
γ bj(y)| dy

≤ c
2i(n+m+2−α1− n

q1
)

|x|
n
q′2

+m+1

2j�

|x|
n
q2

+�

N∑
γ=1

‖T 2
γ bj‖Lq2 (Rn)

( ∫
|y|>2i+4

1
|y|(n+1)q′2

dy
) 1
q′2

≤ c
2i(n+m+1−α1−n/q)

|x|n/q′2+m+1

2j(�−α2)

|x|n/q2+� ,

which is desired.
Combining (3.19) and the estimates for D1(x), D2(x), D3(x) and D4(x), we

obtain

(3.21) ‖J3‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖K̇α2,p2

q2 (Rn).

Notice that, from the estimation above, the minimum value of s in (1.4) can be
taken as [α + n(1/q − 1)].
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A combination of (3.8), (3.9), (3.14), (3.17), (3.18) and (3.21) finish the proof ot
Theorem 2.

4. Proof of Theorem 3.

Our proof of this theorem is also a little technical. The spirit is similar to that
of Theorem 2.

We still assume that 0 < p1, p2 <∞ and leave the cases p1 =∞ or p2 =∞ to
the reader. We have to show that

(4.1)
∥∥∥ sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(f, g)(y) dy
∣∣∣∥∥∥
K̇α,pq (Rn)

≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖HK̇α2,p2

q2 (Rn),

for all f ∈ HK̇α1,p1
q1 (Rn) and g ∈ HK̇α2,p2

q2 (Rn). Without loss of generality, we
may assume that f =

∑
i∈Z λiai and g =

∑
j∈Z µjbj , where λj , µj ≥ 0, aj

′s are
(α1, q1)−atoms, bj ′s are (α2, q2)−atoms with supp ai ⊆ Bi and supp bj ⊆ Bj .

Now let S(ai, bj)(x) be as in the proof of Theorem 2; that is,

S(ai, bj)(x) = sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(ai, bj)(y) dy
∣∣∣.

Then

sup
t>0

∣∣∣ ∫
Rn

φt,x(y)B(f, g)(y) dy
∣∣∣ ≤∑

i,j

λiµjS(ai, bj)(x)

=
∑
i≥j

λiµjS(ai, bj)(x) +
∑
i<j

λiµjS(ai, bj)(x).

We only need to show (4.1) for the part
∑
i≥j since the other one can be estimated

in the same way. In fact, the roles of i and j are symmetric. For each x, we have∑
i≥j

λiµjS(ai, bj)(x) =
∑
i≥j

λiµjS(ai, bj)(x)χ{|x|≤2j+5}(4.2)

+
∑
i≥j

λiµjS(ai, bj)(x)χ{2j+5<|x|≤2i+5}

+
∑
i≥j

λiµjS(ai, bj)(x)χ{|x|>2i+5}

≡ Ω1(x) + Ω2(x) + Ω3(x).

Consider Ω1 first. We can choose q0 as in the proof of Theorem 2 such that
1 < q0 < q1 and 1 < q′0 < q2 with 1/q0 + 1/q′0 = 1. We obtain

S(ai, bj)(x) ≤ c
N∑
γ=1

M(|T 1
γ ai|q0)1/q0(x)M(|T 2

γ bj |q
′
0)1/q

′
0(x).
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Thus byHölder’s inequality

‖Ω1‖K̇α,pq (Rn) ≤ c
N∑
γ=1

∥∥∥ ∞∑
i=−∞

λiM(|T 1
γ ai|q0)1/q0(x)χ{|x|≤2i+5}

∥∥∥
K̇
α1,p1
q1 (Rn)

(4.3)

×
∥∥∥ ∞∑
j=−∞

µjM(|T 2
γ bj |q

′
0)1/q

′
0(x)χ{|x|≤2j+5}

∥∥∥
K̇
α2,p2
q2 (Rn)

Both norms above can be estimated as in (3.7). Therefore, we have

‖Ω1‖K̇α,pq (Rn) ≤ c
{ ∞∑
i=−∞

(λi)p1
}1/p1{ ∞∑

j=−∞
(µj)p2

}1/p2
(4.4)

≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖HK̇α2,p2

q2 (Rn).

Next, we consider Ω2. First we split

S(ai, bj)(x) ≤ sup
0<t≤ 1

2 |x|

∣∣∣ ∫
Rn

φt,x(y)B(ai, bj)(y) dy
∣∣∣(4.5)

+ sup
t> 1

2 |x|

∣∣∣ ∫
Rn

φt,x(y)B(ai, bj)(y) dy
∣∣∣

≡ S1(ai, bj)(x) + S2(ai, bj)(x).

For the first term above, since |y| ≥ |x| − |x− y| ≥ |x|/2 ≥ 2j+4, we have

S1(ai, bj)(x) ≤ sup
0<t≤ 1

2 |x|

∣∣∣ ∫
|y|>2j+3

φt,x(y)B(ai, bj)(y) dy
∣∣∣

(4.6)

≤ c
N∑
γ=1

sup
0<t≤ 1

2 |x|

( ∫
|y|>2j+3

φt,x(y)|T 1
γ ai(y)|q′2 dy

)1/q′2

× sup
0<t≤ 1

2 |x|

[ ∫
|y|>2j+3

φt,x(y)
(2j(n+1+�−α2−n/q2)

|y|n+1+�

)q2
dy

]1/q2

≤ c
N∑
γ=1

M(|T 1
γ ai(y)|q′2)1/q′2(x)

2j(n+1+�−α2−n/q2)

|x|n+1+�
,

where we used (3.2) for bj to obtain the second inequality above. The first term
in this last expression appeared in (3.7) and the second term appeared similarly in
(3.10). Since q1 > q′2, and since we can choose ' large enough such that ' + 1 >
α2 + n(1/q2 − 1), we know that S1(ai, bj) satisfies the required estimate.
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Now using the vanishing moment condition (1.5) and Taylor’s theorem we obtain

S2(ai, bj)(x) ≤ c
N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|>4t

|y|�+1

tn+�+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+ c

N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|≤4t

|y|�+1

tn+�+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≡ S21(x) + S22(x),

for some non-negative integer ' to be determined later. In term S21(x) note that
since |y| ≥ |x − y| − |x| ≥ 2t > |x|, we have |y| > 2j+5 and |x − y| ≤ 2|y|. Using
(3.2) with s1 = ' + 3 for bj , we estimate S21(x) as we did A1(x) in section 3. We
obtain

S21(x) ≤ c
N∑
γ=1

1
|x|n+�+2

sup
t> 1

2 |x|

∫
|x−y|>4t

|y|>2j+5

t|T 1
γ ai(y)|2

j(�+3+n−α2−n/q2)

|y|n+2
dy

(4.7)

≤ c
2j(�+3+n−α2−n/q2)

|x|n+�+2

N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|>4t

|y|>2j+5

t1/q
′
2 |T 1

γ ai(y)|
|x− y|(n+1)/q′2

× 1
|y|n/q2+1

dy, since 2t ≤ |y|

≤ c
2j(�+3+n−α2−n/q2)

|x|n+�+2

N∑
γ=1

sup
t>0

( ∫
|x−y|>4t

t|T 1
γ ai(y)|q′2

|x− y|(n+1)
dy

)1/q′2

×
( ∫
|y|>2j+5

1
|y|n+q2

dy
)1/q2

≤ c
N∑
γ=1

M(|T 1
γ ai(y)|q′2)1/q′2(x)

2j(�+2+n−α2−n/q2)

|x|n+�+2
.

This is similar to (4.6). For S22(x), we proceed likewise. S22(x) is dominated by
S221(x) + S222(x), where

S221(x) = c

N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|≤4t

|y|≤2j+3

|y|�+1

tn+�+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy,

and

S222(x) = c
N∑
γ=1

sup
t> 1

2 |x|

∫
|x−y|≤4t

|y|>2j+3

|y|�+1

tn+�+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy.
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By Hölder’s inequality and the fact that 1
t ≤ 4

|x−y| ≤ c
|x| since |x| > 2j+5 and

|y| ≤ 2j+3 in S221(x), we have

S221(x) ≤ c
1

|x|n/q2+�+1

N∑
γ=1

sup
t>0

( 1
tn

∫
|x−y|≤4t

|T 1
γ ai(y)|q′2 dy

)1/q′2

(4.8)

×
( ∫
|y|≤2j+3

|y|(�+1)q2 |T 2
γ bj(y)|q2 dy

)1/q2

≤ c
N∑
γ=1

M(|T 1
γ ai(y)|q′2)1/q′2(x)

2j(�+1−α2)

|x|n/q2+�+1
.

This last expression appeared in (3.12).
For S222(x), we use (3.2) for bj and obtain

S222(x) ≤ c
2j(�+2+n−α2−n/q2)

|x|n/q2+�+1

N∑
γ=1

sup
t>0

( 1
tn

∫
|x−y|≤4t

|T 1
γ ai(y)|q′2 dy

)1/q′2

(4.9)

×
( ∫
|y|>2j+3

1
|y|(n+1)q2

dy
)1/q2

≤ c
N∑
γ=1

M(|T 1
γ ai(y)|q′2)1/q′2(x)

2j(�+1−α2)

|x|n/q2+�+1
.

This again appeared in (3.12).
Combining (4.6), (4.7), (4.8) and (4.9), we obtain that

(4.10) ‖Ω2‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖HK̇α2,p2

q2 (Rn).

Finally, we consider Ω3. As before, we have

S(ai, bj)(x) ≤ S1(ai, bj)(x) + S2(ai, bj)(x),

where S1(ai, bj)(x) and S1(ai, bj)(x) are defined in (4.5). For S1(ai, bj)(x), we use
(3.2) for ai and bj respectively and obtain

S1(ai, bj)(x) ≤ sup
0<t≤ |x|2

∣∣∣ ∫
|y|>2i+3

φt,x(y)B(ai, bj)(y) dy
∣∣∣

(4.11)

≤ c
N∑
γ=1

sup
0<t≤ |x|2

∫
|y|>2i+3

φt,x(y)
2i(m+1+n−α1−n/q1)

|y|n+m+1

× 2j(�+1+n−α2−n/q2)

|y|n+�+1
dy

≤ 2i(m+1+n−α1−n/q1)

|x|n+m+1

2j(�+1+n−α2−n/q2)

|x|n+�+1
, since |y| ≥ |x|

2
.
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As long as m + 1 > α1 + n/q2 − n and ' + 1 > α2 + n/q2 − n, we know from (4.6)
that the above estimates are the required.

For S2(ai, bj)(x), using cancellation property (1.5), we can obtain as before that

S2(ai, bj)(x) ≤
N∑
γ=1

sup
t>
|x|
2

∫
Rn

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≤ c
N∑
γ=1

sup
t>
|x|
2

∫
|y|≤2j+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+ c
N∑
γ=1

sup
t>
|x|
2

∫
2j+3<|y|≤2i+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

+ c

N∑
γ=1

sup
t>
|x|
2

∫
|y|>2i+3

|y|s+1

tn+s+1
|T 1
γ ai(y)||T 2

γ bj(y)| dy

≡ L1(x) + L2(x) + L3(x).

Let s = m + ' + 1, where m, ' are non-negative integers to be determined later.
L1(x) is similar to D2(x) in §3. Since q1 > q′2, we obtain

L1(x) ≤ c
N∑
γ=1

2i(m+1)

|x|n/q′2+m+1

2j(�+1)

|x|n/q2+�+1
‖T 1
γ ai‖Lq′2 (Rn)

‖T 2
γ bj‖Lq2 (Rn)

(4.12)

≤ c
2i(m+n+1−α1−n/q)

|x|n/q′2+m+1

2j(�+1−α2)

|x|n/q2+�+1
.

This is similar to (3.20). Whenever m + 1 > α1 + n(1/q − 1) and ' + 1 > α2 (thus
s + 1 > α + n(1/q − 1)), this is the desired estimate.

For L2(x), we use (3.2) for bj and obtain

L2(x) ≤ c

N∑
γ=1

sup
t>
|x|
2

∫
2j+3<|y|≤2i+3

|y|s+1

tn+s+1
|T 1
γ ai(y)|2

j(�+m+3+n−α2−n/q2)

|y|n+�+m+3
dy

(4.13)

≤ c

N∑
γ=1

2i(m+1)

|x|n/q1+m+1

( ∫
Rn

|T 1
γ ai(y)|q1 dy

)1/q1

× 2j(�+2+n−α2−n/q2)

|x|n/q′1+�+1

( ∫
2j+3<|y|

1
|y|(n+1)q′1

dy
)1/q′1

≤ c
2i(m+1−α1)

|x|n/q1+m+1

2j(�+1+n−α2−n/q)

|x|n/q′1+�+1
.
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This is symmetric to (4.12). As long as m + 1 > α1 and ' + 1 > α2 + n(1/q − 1)
(thus s + 1 > α + n(1/q − 1)), this is the desired estimate.

Finally, we consider L3(x). By using (3.2) for ai and bj respectively, we get that

L3(x) ≤ c sup
t>
|x|
2

∫
|y|>2i+3

1
tn/2+m+1

2i(n+m+1−α1−n/q1)

|y|n+m+1

(4.14)

× 1
tn/2+�+1

2j(n+s+1−α2−n/q2)

|y|n+s+1
|y|s+1 dy

≤ c
2i(n+m+1−α1−n/q1)

|x|n/2+m+1
2i(m+1)

( ∫
|y|>2i+3

1
|y|2(n+m+1)

dy
)1/2

× 2j(n+�+1−α2−n/q2)

|x|n/2+�+1

( ∫
|y|>2j+3

1
|y|2n dy

)1/2

≤ c
2i(n/2+m+1−α1−n/q1)

|x|n/2+m+1

2j(n/2+�+1−α2−n/q2)

|x|n/2+�+1
.

For the first term above, we have

∥∥∥ ∞∑
i=−∞

λi
2i(n/2+m+1−α1−n/q1)

|x|n/2+m+1
χ{|x|>2i+5}

∥∥∥
K̇
α1,p1
q1 (Rn)

≤ c
{ ∞∑
k=−∞

( k−6∑
i=−∞

λi2(i−k)(n/2+m+1−α1−n/q1)
)p1}1/p1

≤ c
{ ∞∑
i=−∞

(λi)p1
}1/p1

, 0 < p1 <∞,

whenever m + 1 > α1 + n/q1 − n/2. Similar estimates hold for the second term in
(4.14) whenever ' + 1 > α2 + n/q2 − n/2. Therefore L3(x) also satisfies the desired
estimate whenever we have s + 1 > α + n(1/q − 1).

Combining (4.11), (4.12), (4.13) and (4.14), we obtain

(4.15) ‖Ω3‖K̇α,pq (Rn) ≤ c‖f‖HK̇α1,p1
q1 (Rn)‖g‖HK̇α2,p2

q2 (Rn).

Therefore, (4.1) follows from (4.4), (4.10) and (4.15). Notice that the minimum
value of s can be taken to be [α + n(1/q − 1)].

Theorem 3 is now proved.

5. Applications.

The following two corollaries extend the theorem of Coifman Rochberg and Weiss
[6] on the Lp boundedness of the commutator by a C − Z operator and a BMO

function to Herz spaces. Note that HK̇0,1
1 (Rn) = H1(Rn).
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Corollary 1. Let b be in BMO(Rn) and T be a Calderón-Zygmund operator. Then
the commutator

(5.1) [b, T ](f) = bT (f)− T (bf)

maps K̇α,p
q (Rn) into itself when 1 < p, q <∞ and −n/q < α < n(1− 1/q).

Consider the bilinear operator

B(f, g) = (Tf) g − f (T ∗g),

where T ∗ is the adjoint operator of T . One can easily check that B(f, g) has integral
zero for all f , g square integrable and compactly supported functions. By Theorem
1, we obtain that

‖B(f, g)‖H1 ≤ C‖f‖K̇α,pq
‖g‖

K̇−α,p
′

q′
.

Using the duality between H1 and BMO, we obtain∣∣∣∣
∫
Rn

[b, T ](f)(x)g(x) dx
∣∣∣∣ =

∣∣∣∣
∫
Rn

b(x)
(
g(x)(Tf)(x)− f(x)(T ∗g)(x)

)
dx

∣∣∣∣
≤ ‖b‖BMO‖g(Tf)− f(T ∗g)‖H1

≤ C‖b‖BMO‖f‖K̇α,pq
‖g‖

K̇−α,p
′

q′
.

Now the duality between K̇α,p
q and K̇−α,p

′

q′ gives the required conclusion.
To state the next corollary, we recall the definition of the spaces CṀOq(Rn).

For 1 < q <∞, CṀOq(Rn) is the set of all measurable functions on Rn whose qth

power is locally integrable and which satisfy

(5.2) sup
r>0

(
1

|B(0, r)|

∫
B(0,r)

∣∣f(x)− 1
|B(0, r)|

∫
B(0,r)

f(y)dy
∣∣qdx) 1

q

<∞.

The CṀOq norm of f is defined to be the expression in (5.2). It can be shown that
CṀOq(Rn) is a Banach space and also that it is the dual of HK̇

n(1−1/q),1
q′ . This

duality is the homogeneous version of an extension of the duality between H1 and
BMO. See [11] and [19] for details. We now have the following:

Corollary 2. Let b be in CṀOq′(Rn) for some 1 < q < ∞ and let T be a
Calderón-Zygmund operator. Then the commutator [b, T ](f) = bT (f)−T (bf) maps
K̇α1,p
q1 (Rn) into K̇−α2,p

q′2
(Rn) when 1 < p < ∞, 1/q1 + 1/q2 = 1/q, −n/qi < αi <

n(1− 1/qi), i = 1, 2 and α1 + α2 = n(1− 1/q).

For the proof we use Theorem 1. As before∣∣∣∣
∫
Rn

[b, T ](f)(x)g(x) dx
∣∣∣∣ ≤ ‖b‖CṀOq′ ‖g(Tf)− f(T ∗g)‖

HK̇
n(1−1/q),1
q

≤ C‖b‖CṀOq′ ‖f‖K̇α1,p
q1
‖g‖

K̇
α2,p′
q2

,
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for all g in K̇α2,p
′

q2 . This implies that ‖[b, T ](f)‖
K̇
−α2,p
q′2

≤ C‖b‖CṀOq′‖f‖K̇α1,p
q1

and

Corollary 2 is proved.

By the way, it is still an interesting open problem if the converses of Corollaries
1 and 2 are true. It seems that we do need some different technique from [6] to deal
with this, since the Herz spaces are not translation invariant.
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