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Abstract. In R2, we consider an analytic family of fractional integrals , whose convolution

kernel is obtained by taking some transverse derivatives of arclength measure on the parabola

(t, t2) multiplied by |t|γ , and doing so in a homogeneous way. We determine the exact range

of p, q for which the analytic family maps Lp to Lq . We also resolve a similar issue on the

Heisenberg group.

1. Introduction. In R2, consider the following family of operators:

(1.1) Sγ(f)(x) =
∫ ∞
−∞

f(x1 − t, x2 − t2) |t|γ
dt

t
where 0 ≤ γ ≤ 1 .

where the integral in (1.1) is interpreted in the principal value sense when γ = 0. For γ > 0,
the operators Sγ are called fractional integrals along the parabola (t, t2) and have been
studied by Ricci and Stein [RS] and Christ [C2], who determined the range of (1/p, 1/q, γ)
for which Sγ maps Lp to Lq. By homogeneity such a boundedness result can happen only
when 1/p − 1/q = Reγ/3. In R2, let ∆ be the closed triangle with vertices (0, 0), (1, 1)
and (2/3, 1/3) and let Γ be the part of ∆ that does not contain the diagonal. [RS] proved
Lp → Lq boundedness for Sγ when (1/p, 1/q) lie in Γ minus the piece of the boundary
{(1/p, 1/q) : q = 2p and 2 < p < ∞} union its reflection across the line 1/q = 1 − 1/p.
[C2] proved Lp → Lq boundedness for the remaining boundary points of Γ that do not lie
on the diagonal p = q. (When γ = 0, S0 is the Hilbert transform along the parabola and
it is bounded on the diagonal for 1 < p < ∞. See [SWA] for details.) Furthermore it is
known from [RS], that no positive result for Sγ holds outside Γ when γ > 0.
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We prove a similar result as in [C2] and [RS], for an analytic family of fractional integrals
along the parabola Sγz , in which the operators Sγ can be embedded. The convolution
kernel of Sγz is obtained by taking −z − 1 transverse derivatives of arclength measure on
the parabola, multiplied by |t|γ , and doing so in a homogeneous way. The analytic family
Sγz is defined in such a way as to satisfy Sγ−1 = Sγ .

We now give a precise definition of Sγz . Fix an even nonnegative function ψ ∈ C∞0 (R)
supported in [−1, 1] and equal to 1 on [−1/2, 1/2]. Also fix γ ∈ C with Reγ ≥ 0. For f
smooth with compact support in R2, we define

(Sγz f)(x) =
∫ ∞
−∞

∫
2Γ( z+1

2 )−1|u− 1|zψ(u− 1)f(x1 − t, x2 − ut2) du |t|γ
dt

t
.

where the outer integral is to be interpreted in the principal value sense, when Reγ = 0.
Sγz is initially defined for Rez > −1. By analytic continuation, see [GS], the definition of
Sγz can be extended for all z complex. Because of the Γ function normalization we get that
Sγ−1 = Sγ , for all γ with Reγ ≥ 0. Sγz depends analytically on both γ and z and therefore
is a double analytic family of operators with parameters (z, γ) ∈ C×C+, where by C+ we
denote the set of all complex numbers with nonnegative real part.

Our first result describes the exact range of (1/p, 1/q, z, γ) for which Sγz maps Lp(R2)
to Lq(R2) when γ > 0. Since such a boundedness result can only hold when Reγ/3 =
1/p − 1/q, it is enough to describe the possible range of p, q and z. Our first theorem is
the following:

Theorem 1. For Reγ > 0, the analytic family of fractional integrals Sγz maps Lp to Lq if
and only if (1/p, 1/q,Rez) lies on or vertically above the interiors of the faces BCD and
ABD union the edge BD−{B} of the tetrahedron ABCD with vertices A = (0, 0,−1),
B = (1/2, 1/2,−3/2), C = (1, 1,−1) and D = (1, 0, 0). (See figure 1)

We use Theorem 1 in [C2] to treat the main part of the kernel of Sγz for a certain range
of z’s but we don’t follow the method of Christ’s proof since the positivity of the kernel
of Sγ was essential in the treatment this operator in his work. Throughout this paper
Cz,γ , cz,γ will denote constants that grow at most exponentially as |Imγ|, |Imz| → +∞.
These constants will be called of admissible growth.

2. The easy estimates. In this section we prove the endpoint estimates corresponding
to the vertices (1/2, 1/2,−3/2) and (1, 0, 0) of the tetrahedron. More precisely we have
the following proposition.

Proposition.
1. Sγz maps L2 → L2, when Rez = −3/2 and Reγ = 0.
2. Sγz maps L1 → L∞ when Rez ≥ 0 and Reγ = 3.
In both cases the bounds are of admissible growth in |Imγ|, |Imz| → +∞.
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proof. We start by proving 2, the easier of the two estimates. Fix γ with Reγ = 3 and
z with Rez = 0. We have

|(Sγz f)(x)| ≤ 2|Γ( z+1
2 )−1|

∫ ∫
|u− 1|Rezψ(u− 1)|f(x1 − t, x2 − ut2)|du |t|Reγ dt

|t|

≤ Cz
∫ ∫

|wt2 − 1|Rezψ
(
w
t2 − 1

)
|f(x1 − t, x2 − w)|dw dt ≤ Cz ‖f‖L1

and this proves 2.
We continue with proof of 1. Fix z = −3/2+ iθ and γ = iρ until the end of this section.

Denote by Dz the distribution:

〈Dz , f〉 =
∫
f(u) 2Γ( z+1

2 )−1|u− 1|zψ(u− 1) du

(Again Dz is originally defined for Rez > −1 and analytically continued for all z complex.)
Let’s call Kγ

z the convolution kernel of Sγz . Direct calculation shows that

K̂γ
z (ξ1, ξ2) = lim

ε→0
N→+∞

∫ N

|t|=ε
D̂z(t2ξ2)e−2πitξ1 |t|iρ dt

t

(The limits are easily shown to exist). We have that

D̂z(v) = 2
(
Γ( z+1

2 )−1|u|zψ(u)
)∧

(v)e−2πiv

= c 2zΓ(− z2 )−1
(
| · |−z−1 ∗ ψ̂

)
(v)e−2πiv , c �= 0 .

where in the last equality we used a formula on page 359 in [GS]. The behavior of Lz(v) =
(| · |−z−1 ∗ ψ̂)(v) at ∞ will be of importance in the study of the Fourier transform of Kγ

z .
It is easy to see that Lz is an even C∞ function on the real line and by Lemma 3.2 in [G1]
we have that

Lz(v) = cz|v|−z−1 +O(|v|−M ) ∀ M > 0 as |v| → ∞ ,

where all the constants above are of admissible growth and cz is nonzero. We will prove that
K̂γ
z (ξ1, ξ2) is bounded. Fix ξ2 �= 0, and let ε′ = ε|ξ2|−1/2, N ′ = N |ξ2|−1/2, λ = ξ1|ξ2|−1/2

and ε2 = sgn ξ2. Also let a = cz,γ be a positive large constant to be chosen later. By the
evenness of Lz we get:

K̂γ
z (ξ1, ξ2) = lim

ε→0
N→∞

∫ N

|t|=ε
CzLz(t2ξ2)e−2πi(tξ1+ξ2t

2)|t|iρ dt
t
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= lim
ε′→0
N ′→∞

∫ N ′

|t|=ε′
Cz|ξ2|−iρ/2Lz(t2)e−2πi(tλ+ε2t

2)|t|iρ dt
t
.

We now write K̂γ
z (ξ1, ξ2) as the sum of the following two expressions:

lim
ε′→0

∫ a

|t|=ε′
Cz|ξ2|−iρ/2Lz(t2)e−2πi(tλ+ε2t

2)|t|iρ dt
t

(2.1)

lim
N ′→∞

∫ N ′

|t|=a
Cz|ξ2|−iρ/2Lz(t2)e−2πi(tλ+ε2t

2)|t|iρ dt
t
.(2.2)

Because of the smoothness of Lz at 0, (2.1) remains always bounded by a constant of
admissible growth for all λ real. By the asymptotic expansion of Lz at ∞ We have that

(2.2) = lim
N ′→∞

∫ N ′

|t|=a
Cz|ξ2|−iρ/2|t2|−z−1e−2πi(tλ+ε2t

2)|t|iρ dt
t

+ a remainder term which is bounded uniformly in λ.

The main term above is equal to

(2.3) Cz |ξ2|−iρ/2 lim
N ′→∞

∫ N ′

t=a

ti(ρ−2θ)e−2πiε2t
2
(e−2πitλ − e2πitλ) dt .

The phase function φ(t) = −2πiε2(t2 ± tλ) + i(ρ− 2θ)lnt , has second derivative φ′′ which
satisfies |φ′′(t)| ≥ cz,γ if t ≥ a and a is large enough. Van der Corput’s Lemma, ([Z] page
197), now gives that the integral in (2.3) is bounded by a constant uniformly in N ′ and λ.
Therefore K̂γ

z is bounded and our proposition is now proved.

3. The main estimates. So far, we have proved the estimates corresponding to
the vertices (1/2, 1/2,−3/2) and (1, 0, 0) of the the tetrahedron. By interpolation, we get
estimates for the edge in between. No strong type estimates are true for the remaining
vertices, for it is known that S0

−1 = S0 doesn’t map L1 → L1 nor L∞ → L∞. Our next
goal is to fill in the sides. The main result of this section is the following:

Proposition. For Rez = −1 and Reγ = 3
2p , S

γ
z maps Lp to L2p with bounds of admissible

growth, whenever 3/2 ≤ p <∞.

proof. On the real line call hz the distribution hz(u) = 2Γ( z+1
2 )−1|u|zψ(u), originally

defined for Rez > −1 and extended for all z by analytic continuation. Let Hz be the
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distribution on R2 defined by δx1=0hz(x2). By µz,γ we will denote the measure acting on
functions f as follows:

〈µz,γ , f〉 =
∫
|t|≤1

f(t, t2)|t|γ−2z−2 dt

t
.

Fix p, z and γ as in the statement of the theorem. Let q = 2p. The basic property of µz,γ ,
is that it convolves Lp to Lq. This is because of theorem 1 in [C2] that justifes the third
inequality below:

‖µz,γ ∗ f‖Lq ≤ ‖
∫
|t|≤1

|f(x1 − t, x2 − t2)| |t|Reγ−1 dt‖Lq ≤

‖
∫
R

|f(x1 − t, x2 − t2)| |t|Reγ−1 dt‖Lq ≤ Cp,γ‖f‖Lp

We now continue the proof of our theorem. We need to prove that:

‖
∫
〈Dz(u), f(x1 − t, x2 − ut2)〉 |t|γ

dt

t
‖Lq ≤ Cp,z,γ‖f‖Lp . It suffices to prove that

(3.1) ‖
∫
|t|≤M

〈Dz(u), f(x1 − t, x2 − ut2)〉 |t|γ
dt

t
‖Lq ≤ Cp,z,γ‖f‖Lp

is valid for all M > 0 with a bound Cp,z,γ independent of M > 0. To prove (3.1), by
homogeneity we may assume that M = 1. Let Kγ

z,1 be the convolution kernel of the
operator in (3.1) when M = 1.

By χA we denote the characteristic function of the set A. We have the following Lemma:

Lemma. Kγ
z,1 = Hz ∗ µz,γ + ζ(x) where ζ(x) satisfies

|ζ(x)| ≤ Cz,γ
∣∣∣x2
x2
1
− 1

∣∣∣−1

χ| x2
x21
−1|≥ 1

2
|x1|Reγ−3 .

proof. Let µ̃z,γ denote the reflection of the measure µz,γ about the origin. For all
Schwartz functions g we have:

〈Hz ∗ µz,γ , g〉 = 〈Hz, µ̃z,γ ∗ g〉 =

〈Hz(x1, x2) ,
∫
|t|≤1

g(x1 + t, x2 + t2) |t|γ−2z−2 dt

t
〉 =∫

|t|≤1

2Γ( z+1
2 )−1|x2|zψ(x2)

∫
g(t, x2 + t2) |t|γ−2z−2 dt

t
dx2 =∫

|x1|≤1

∫
2Γ( z+1

2 )−1|x2 − x2
1|zψ(x2 − x2

1)g(x1, x2) |x1|γ−2z−2x−1
1 dx1 dx2 .
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It follows that 〈Kγ
z −Hz ∗ µz,γ , g〉 =

∫ ∫
ζ(x1, x2)g(x1, x2) dx1 dx2 , where

ζ(x1, x2) = 2Γ( z+1
2 )−1|x2

x2
1
− 1|z|x1|γ−2x−1

1 [ψ(x2
x2
1
− 1)− ψ(x2 − x2

1)]χ|x1|≤1 .

Clearly ζ(x1, x2) satisfies the asserted estimate and this concludes the proof of the Lemma.

Note that Ĥz(ξ1, ξ2) = ĥz(ξ2) = cz(|ξ2|−z−1 ∗ ψ̂(ξ2)). Since Rez = −1, the Hőrmander
multiplier theorem, ([S2] pages 51-52), gives that convolution with hz is a bounded operator
on Lp(R) for 1 < p < ∞ and therefore convolution with Hz is a bounded operator on
Lp(R2) for the same range of p’s. Thus

‖f ∗Hz ∗ µz,γ‖Lq ≤ Cp,z,γ‖f ∗Hz‖Lp ≤ Cp,z,γ‖f‖Lp .

It remains to control ‖f ∗ ζ‖Lq by Cp,γ‖f‖Lp . We prove that ζ ∈ Lr,∞ where r = 3
3−Reγ .

We denote by |A| the Lebesgue measure of the set A. Let α be a positive number and set
β = α−1/(Reγ−3) . Computation gives:

|{x : |ζ(x)| > α}| ≤∣∣∣∣{x : |x2
x2
1
− 1|−1χ| x2

x21
−1|≥ 1

2
|x1|Reγ−3 > α}

∣∣∣∣ =∣∣∣∣{x : | β2x2
(βx1)2

− 1|−1 χ| β2x2
(βx1)2

−1|≥ 1
2
|βx1|Reγ−3 > 1}

∣∣∣∣ =

β−3

∣∣∣∣{(x1, x2) : |x2
x2
1
− 1|−1 χ| x2

x21
−1|≥ 1

2
|x1|Reγ−3 > 1}

∣∣∣∣ = α−rm

where m =
∣∣∣∣{(x1, x2) : |x2

x2
1
− 1|−1 χ|x2

x2
1
−1|≥ 1

2
|x1|Reγ−3 > 1}

∣∣∣∣. We next show that m <∞.

This amounts to showing that the total area bounded by the following equations in R2, is
finite :

3
2
x2

1 ≤ x2 ≤ x2
1 + |x1|Reγ−1

x2
1 − |x1|Reγ−1 ≤ x2 ≤

1
2
x2

1 .

This last assertion is obvious and is due to the fact that 0 <Reγ ≤ 1. We have now proved
that ζ ∈ Lr,∞ where r = 3

3−Reγ . It follows from Young’s inequality, that convolution with
ζ maps Lp to Lq, where p, q and r are related as in

1
r

+
1
p

= 1 +
1
q

which is equivalent to
3− Reγ

3
+

1
p

= 1 +
1
q

or Reγ =
3
2p
.
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This concludes the proof of the main result of this section.
4. Conclusion of the proof of theorem 1. We use the estimates of the previous

sections and analytic interpolation to prove theorem 1. We also show that this theorem
describes the exact range of p, q, z and γ such that Sγz maps Lp to Lq, when γ > 0.
Recall that A =(0,0,-1), B=(1/2,1/2,-3/2), C=(1,1,-1) and D=(1,0,0) are the vertices of
the tetrahedron and let E be the point (2/3, 1/3,−1). (See figure 1 at the end.) As we
mentioned before, interpolation between the points B and D gives that on the edge BD
our analytic family maps Lp to Lp

′
. (See proposition in section 2.) By the proposition in

section 3, we have strong type bounds on the closed segment EC minus the point C. We
now interpolate between the edges BD and BE−{C} to get strong type bounds on the
interior of the face BCD. By duality we also fill in the interior of the face ABD. When
γ > 0, we have now proved strong type bounds on the interior of the bottom faces of the
critical tetrahedron ABCD union the point D. Finally by interpolation we get strong type
bounds for every point that lies vertically above.

The best result known on the line segment BC is that S0
z maps Lp to Lp,p

′
, see [G1].

By duality we get that on the line segment AC, S0
z maps Lp

′,p to Lp
′
. It is easy to check

that no strong type bounds hold on the open segments CD and AD. However, using the
fact that the analytic family Sγz maps the space parabolic H1 to weak L1 when Reγ = 0
and Rez = −1 (theorem 2 in [G1]), interpolation gives that on the open line segment CD,
Sγz maps H1 to weak Lp. Finally by duality we get that on the open line segment AD Sγz
maps Lp

′,1 to parabolic BMO.
We now indicate why no boundedness results hold below the faces BCD and ABD of

our tetrahedron. Let δ > 0 be small and let fδ be the characteristic function of the square
of sidelength δ centered at the origin. Since away from the parabola the kernel Kγ

z looks
like,

Kγ
z (x) = cz |x1|−2−2z+γ x−1

1 |x2 − x2
1|z ψ

(
x2

x2
1

− 1
)

it follows that on the set Aδ = {x : x1 ∼ 1 and |x2 − x2
1| ≥ 10δ }, |(Sγz fδ)| looks like

|(Sγz fδ)(x)| ∼ |x2 − x2
1|z δ2 .

Therefore (∫
Aδ

|(Sγz fδ)(x)|q dx
)1/q

∼ δ2δRez+1/q

and since ‖fδ‖Lp = δ2/p, letting δ → 0 and comparing exponenents, we see that no
inequality of the form ‖Sγz f‖Lq ≤ C‖f‖Lp is possible when 1/q < 2/p − 2 − Re z. Note
that for a fixed z, 1/q = 2/p − 2 − Rez is the equation of the line that intersects the
segments BD and CD and is parallel to the line CE at height (0,0,Rez). By duality
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we get that boundedness cannot hold when 2/q < 1/p − 1 − Rez. Again for a fixed z,
2/q = 1/p− 1− Rez is the equation of the line that intersects the segments BD and AD
and is parallel to the line AE at height (0,0,Rez). We have now proved that for a fixed z,
Lp → Lq boundedness cannot hold when the point (1/p, 1/q,Rez) lies outside the triangle
with vertices A′E′C′ where A′, E′ and C′ are the intersections of the lines BA, BE
and BC with the horizontal plane through (0, 0,Rez). This intersection is interesting to
us only when −3/2 ≤ Rez ≤ −1. The same argument applies to the degenerate case when
the triangle A′E′C′ becomes the point B.

5. The Heisenberg group problem. In this section we discuss a similar issue on
the Heisenberg group Hn . Hn is the Lie group with underlying manifold Cn×R and with
multiplication law (z, t)(z′, t′) = (z + z′, t+ t′ + 2 Imz · z̄′) where z · z̄′ =

∑n
j=1 zj z̄

′
j . The

norm of an element u = (z, t) ∈ Hn is defined by |u| = (|z|4+|t|2)1/4 and is homogeneous of
degree 1 under the one-parameter group of dilations r(z, t)→ (rz, r2t). Let δ be the Dirac
distribution in the t variable. Ricci and Stein, [RS], considered the family of operators

Sγf = f ∗ [Γ(γ+1
2 )−1|z|γ−2nδt=0]

for 0 < γ ≤ 2n, where ∗ is the Heisenberg group convolution. Define Γ to be the closed
triangle in R2 with vertices (0, 0), (1, 1) and (1/p0, 1/q0) minus the diagonal {(p, q) : 1/p =
1/q}, where

p0 = 1 + (2n+ 1)−1

q0 = 2n+ 2.

When n = 1, Ricci and Stein obtained Lp → Lq boundedness of Sγ for (1/p, 1/q) in the
interior of Γ and on a portion of its boundary, namely when 6/5 ≤ p ≤ 2. Christ, [C2],
proved Lp → Lq boundedness for all boundary points of Γ that do not lie on the diagonal
for all n ≥ 1. Furthermore, an example is given in [C2] shows that no boundedness result
can hold outside the closure of Γ. (The singular integral case γ = 0 has been treated by
Geller and Stein, [GSt].)

In this section we prove a similar result as in [C2], for an analytic family of fractional
integrals Sγw, in which the operators Sγ can be embedded. The kernels of Sγw are obtained
by taking −w − 1 derivatives transverse to Cn, and doing so in a dilation invariant way.
Again the analytic family is defined in such a way as to satisfy Sγ−1 = Sγ . Fix a real smooth
even nonnegative compactly supported bump function ψ equal to 1 in a neighborhood of
0. Our analytic family Sγw is given by convolution with the distribution

Kγ
w(z, t) = |z|γ−2n−2w−2Γ(w+1

2 )−1|t|wψ(t/|z|2)
For Rew > −1, one can define Sγw as follows:∫ ∫

f(z − z′, t− u|z′|2 − 2 Imz · z′)|u|wψ(u) du|z′|γ−2ndz′.
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By analytic continuation, Sγw can be defined to be a distribution-valued entire function of w
with the property Sγ−1 = Sγ . Our second result describes the exact range of (1/p, 1/q, z, γ)
for which Sγz maps Lp(Hn) to Lq(Hn) when Reγ > 0. Since by homogeneity considerations,
such a boundedness result can only hold when 1/p − 1/q = Reγ/2(n + 1), it is enough
to describe the possible range of p, q and w for which Sγw maps Lp to Lq. The precise
statement of the theorem is the following:

Theorem 2. For Reγ > 0, the analytic family of fractional integrals Sγw maps Lp to
Lq if and only if (1/p, 1/q,Rew) lies on or vertically above the interiors of the faces
BCD and ABD union the segment BD−{B} of the tetrahedron ABCD with vertices A
= (0, 0,−1), B = (1/2, 1/2,−n− 1), C = (1, 1,−1) and D = (1, 0, 0). (See figure 2)

proof. Again, we will use theorem 2 in [C2] to treat part of the kernel of Sγw. The proof
of this theorem is similar to the proof of theorem 1. The L2 boundedness follows from the
work of Geller and Stein [GSt]. They prove that if Φ(z, t) ∈ C∞(Hn−{0}), homogeneous of
degree 0, 0 ≤ Φ ≤ 1 and such that for some C0 > 0 Φ(z, t) = 1 if |t| ≤ C0|z|2, Φ(z, t) = 0 if
|t| ≥ C0|z|2, then Hn-convolution with the distribution Γ(γ′/2)−1Φ(z, t)|z|−2(n+γ′)|t|−1+γ′

maps L2 to L2 with bounds of admissible growth if and only if Reγ′ ≥ −n. (In their paper
γ′ is denoted by γ. ) Seting γ′ = w+1 and Φ(z, t) = ψ(t/|z|2), we get that when Reγ = 0,
Sγw maps L2 to L2 if and only if Rew ≥ −(n + 1). Also, one can easily see that when
Reγ = 2(n + 1), Sγw maps L1 to L∞ if and only if Rew ≥ 0. Analytic interpolation gives
that for (1/p, 1/q,Rew) ∈ BD, Sγw maps Lp to Lq. (Here q = p′.)

Let E= (1/p0, 1/q0,−1). Our proof will be complete by interpolation, if we can show
that for (1/p, 1/q,−1) in the segment AE-{ A} and Rew = −1, Sγw maps Lp to Lq with
bounds of admissible growth. To prove this, let’s fix p, q, γ and w with Rew = −1, set
Kγ
w,1 = Kγ

w χ|z|≤1 and define a distribution Hw = Γ(w+1
2 )−1|t|wψ(t) δz=0. By kw,γ we will

denote the kernel δt=0|z|γ−2n−2w−2χ|z|≤1. The basic property of kw,γ is that it convolves
Lp to Lq. This because of the following inequalities:

‖f ∗ kw,γ‖Lq = ‖
∫
|z′|≤1

|f(z − z′, t− 2Imz · z̄′)||z′|γ−2n−2w−2 dz′‖Lq

‖
∫
Cn

|f(z − z′, t− 2Imz · z̄′)||z′|γ−2n dz′‖Lq ≤ Cp,γ‖f‖Lp

The last inequality follows from theorem 2 in [C2]. We need the following lemma:

Lemma. Kγ
w,1 = kw,γ ∗Hw + ζ(z, t) where ζ(z, t) satisfies

|ζ(z, t)| ≤ Cw χ|t|≥|z|2 |z|Reγ−2n−2( |t||z|2 )−1.

proof. The proof of the lemma follows from an easy calculation. We have that

(f ∗kw,γ ∗Hw)(z, t) =
∫
|z′|≤1

∫
f(z−z′, t− t′−2Imz · z̄′)|z′|γ−2n−2w−2 |t′|w

Γ(w+1
2 )

ψ(t′) dt′ dz′.
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It follows that the difference f ∗Kγ
w,1 − f ∗ kw,γ ∗Hw is equal to f ∗ ζ, where

ζ(z, t) = Γ(w+1
2 )−1|z|γ−2n−2w−2|t|w[ψ(t/|z|2)− ψ(t)]χ|z|≤1.

Since ψ vanishes near 1, the function ζ above is supported in |t| ≥ |z|2 and the required
estimate for ζ follows.

To prove the theorem, it is enough to consider Kγ
w,M = Kγ

w χ|z|≤M for all M > 0 and
prove that they convolve Lp to Lq with bounds uniform in M . By homogeneity, it suffices
to prove that Kγ

w,1 convolves Lp to Lq. This will be a consequence of the lemma. First
note that for all 1 < q <∞, ‖f ∗Hw‖Lq ≤ Cw,q‖f‖Lq is a consequence of the Hőrmander
multiplier theorem. It then follows that

‖(f ∗ kw,γ) ∗Hw‖Lq ≤ Cq,w‖f ∗ kw,γ‖Lq ≤ Cp,w,γ‖f‖Lp

It remains to control ‖f ∗ ζ‖ by Cp,w,γ‖f‖Lp . Similar argument as in section 3, gives that
ζ ∈ Lr,∞ where r = (2n + 2)/(2n + 2 − Reγ). Young’s inequality gives that convolution
with ζ maps Lp to Lq, where p, q and r are related as in

1
r

+
1
p

= 1 +
1
q

which is equivalent to
1
p
− 1
q

=
Reγ

2(n+ 1)
.

This concludes the proof of our claim. The proof of theorem 2 follows from interpolation.
The fact that theorem 2 describes the exact range of p, q, w and γ for which Sγw maps Lp

to Lq when γ > 0, follows from an argument similar to the one given in section 4. We
omit the details.

This paper is a natural continuation of the work I did in my thesis and I would like to
thank my advisor, Mike Christ, once again.
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