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Abstract. Using discrete decomposition techniques, bilinear operators are natu-
rally associated with trilinear tensors. An intrinsic size condition on the entries of
such tensors is introduced and is used to prove boundedness for the corresponding
bilinear operators on several products of function spaces. This condition should be
considered as the direct analogue of an almost diagonal condition for linear oper-
ators of Calderón-Zygmund type. Applications include a reduced T1 theorem for
bilinear pseudodifferential operators and the extension of an Lp multiplier result of
Coifman and Meyer to the full range of Hp spaces. The results of this article rely
on decomposition techniques developed by Frazier and Jawerth and on the vector
valued maximal estimate of Fefferman and Stein.

1. Introduction and statements of main results

Multilinear operators arise naturally within the framework of Calderón-Zygmund
theory. The study of such operators using Littlewood-Paley theory and related de-
composition techniques goes back to the work of Coifman and Meyer [5] and has been
extensively pursued since then with applications to harmonic analysis and partial dif-
ferential equations (for example see [4], [3], [2], [23]). The recent progress in the study
of the bilinear Hilbert transform by Lacey and Thiele [17] has further stimulated the
need for a systematic analysis of bilinear operators. By this we mean operators
T (f, g) which act on two functions f and g and are linear in both arguments.

An abstract version of the Schwartz kernel theorem gives that any continuous
bilinear operator T defined on products of Schwartz functions on Rn and taking
values into tempered distributions, S(Rn)× S(Rn)→ S ′(Rn), must be given in the
form

T (f, g)(x) =

∫
Rn

∫
Rn

K(x, y, z)f(y)g(z) dydz,(1)

where K(x, y, z) is a tempered distribution on Rn×Rn×Rn and the integral in (1)
is interpreted in the sense of distributions. Alternatively, using the Fourier transform

f̂(ξ) =

∫
Rn

f(x)e−ix·ξdx,
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the bilinear operator in (1) can be realized in pseudodifferential form

T (f, g)(x) =
1

(2π)2n

∫
Rn

∫
Rn

σ(x, ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η)dξdη,(2)

where, at least in the distributional sense, the symbol σ(x, ξ, η) and the kernel
K(x, y, z) are related as in

F−1
2n (σ(x, ξ, η))(y, z) = K(x, x− y, x− z).(3)

Here F−1
2n denotes the inverse Fourier transform in both variables (ξ, η) ∈ R2n.

It is very useful to consider both realizations of operators in terms of kernels and
symbols since operators arise in both forms: sometimes they naturally act in the
“time” domain; sometimes they are better understood through their action in the
“frequency” domain. In the linear case the corresponding realizations of operators
have led to a careful study of the conditions on kernels and/or symbols that produce
bounded operators on several function spaces; in particular simultaneous bounded-
ness on all Lp spaces, 1 < p <∞, a typical feature of Calderón-Zygmund theory. To
some extend, the culminating results for operators with singular kernels are the T1
and Tb theorems, [7] and [8], and their numerous generalizations. Results in terms
of the symbols of pseudodifferential operators in the exotic class S0

1,1 have been con-
sidered in [20], [18], [1], [15] and [16], to name a few. In both cases orthogonality
arguments play a crucial role. For example, such orthogonality considerations in the
original proof of the T1 theorem by David and Journé are contained in Cotlar-Stein’s
Lemma. For pseudodifferential operators such orthogonality arguments are subsumed
in Littlewood-Paley and “phase-space” decompositions of symbols.

An alternative approach in studying boundedness properties of operators is to
decompose the functions on which they act, rather than the operators themselves.
This is a recurrent theme in harmonic analysis through the use of atoms, molecules,
wavelets, and tiles. The main goal of this approach is to understand the behavior of
an operator on those basic building blocks. By decomposing the functions on which
an operator acts, one discretizes the operator and studies the corresponding matrix
as in the finite dimensional case. One can then look at simple, easily verifiable con-
ditions on these matrices, that warranty boundedness for the associated operators.
This general approach has been systematically carried out in the work of Meyer [19]
and of Frazier and Jawerth [10]. The authors in [10] have precisely quantified suffi-
cient conditions to imply boundedness for the associated operator on all spaces that
admit Littlewood-Paley decomposition. Such conditions, see (13) below, only depend
on the size of the entries of the matrix associated to an operator, a fact that makes
them easily verifiable in numerous applications. The conditions are referred to as
almost diagonal [10], because the size of the entries of the matrix decay fast as the
parameters that index them get farther apart. Remarkably, these size almost diag-
onal estimates together with the use of smooth molecules suffice to analyze general
Calderón-Zygmund operators, not only on Lp but also on Sobolev and other function
spaces in a unified way (see e.g. [21]). In addition, the almost diagonal estimates
are extremely simple to check for pseudodifferential operators in various classes (see
[13] and the references therein). It is important to point out that, since they are so
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closely tied to Calderón-Zygmund and Littlewood-Paley theory, the almost diagonal
estimates are “p–independent” for 1 < p <∞.

In this work, we carry out the approach above in the bilinear setting. We seek a
way to discretize bilinear operators and find sufficient conditions on the associated
trilinear discrete tensors that imply continuity. We find a bilinear almost diagonal
estimate which is general enough to cover the type of multilinear operators studied
in [5] and [6], as well as some new examples. The almost diagonal condition we
introduce is intrinsically bilinear in the sense that it does not require reducing the
operators to linear ones by freezing one function.

We will be working below in n-dimensional Euclidean space. Given a bilinear
operators T (f, g) one defines an infinite array of scalars, which we will call a tensor,
A = {a(λm, νk, µl)} by setting

a(λm, νk, µl) = 〈T (φνk, φµl), φλm〉,
where {φνk} is a family of wavelets, ν, µ, λ range over Z, and k, l, m over Zn.
Conversely, any tensor A as above gives rise to a bilinear operator T defined by

T (f, g) =
∑
µ,l

∑
ν,k

∑
λ,m

a(λm, νk, µl)〈f, φνk〉〈g, φµl〉φλm.

For three real numbers, a, b, c, such that a ≤ b ≤ c, we denote by med(a, b, c) the
“medium” number b. The following theorem gives a sufficient condition for a bilinear
operator T to be bounded on products of Lp spaces.

Theorem 1. Suppose that the tensor {a(λm, νk, µl)} associated to the bilinear op-
erator T satisfies the almost diagonal estimate

|a(λm, νk, µl)| ≤
C 2−(max(µ,ν,λ)−min(µ,ν,λ))ε 2−max(µ,ν,λ)n/2 2med(µ,ν,λ)n/2 2min(µ,ν,λ)n/2

((1+2min(ν,µ)|2−νk−2−µl|)(1+2min(µ,λ)|2−µl−2−λm|)(1+2min(λ,ν)|2−λm−2−νk|))N
for some C > 0, N > n, and ε > 0. Then the corresponding operator T can be
extended to be a bounded operator from Lp(Rn) × Lq(Rn) into Lr(Rn) when 1/p +
1/q = 1/r and 1 < p, q, r <∞.

In Section 6, we also obtain versions of Theorem 1 for Hardy spaces, Sobolev
spaces, and other Triebel-Lizorkin spaces. Our methods are in the spirit of the
program developed in [10] but some new ideas are employed.

The almost diagonal condition has some symmetries which can be translated into
properties of the transposes of T . Any bilinear operator has two transposes naturally
associated with it. The first transpose T ∗1 of T is the transpose of the linear operator
f → T (f, g). T ∗1 is a bilinear operator with kernel K∗1(x, y, z) = K(y, x, z). The
second transpose T ∗2 of T is the transpose of the linear operator g → T (f, g); this is
a bilinear operator with kernel K∗2(x, y, z) = K(z, y, x). In other words, for all f , g,
and h in S(Rn) we have∫

Rn

T (f, g)h dx =

∫
Rn

T ∗1(h, g)f dx =

∫
Rn

T ∗2(f, h)g dx.(4)
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One can easily check that if a bilinear operator T has symbol σ(ξ, η) (indepen-
dent of x), then the first transpose T ∗1 of T is the bilinear operator with symbol
σ∗1(ξ, η) = σ(−(ξ + η), η) while the second transpose T ∗2 of T is the bilinear oper-
ator with symbol σ∗2(ξ, η) = σ(ξ,−(ξ + η)). At the discrete level, the transposes of
the tensor A = {a(λm, νk, µl)} are A∗1 = {a∗1(λm, νk, µl)} = {a(νk, λm, µl)} and
A∗2 = {a∗2(λm, νk, µl)} = {a(µl, νk, λm)}. Note that if T is bounded on the full
range of 1 < p, q, r <∞ with 1/p+1/q = 1/r, then, by duality, so are its transposes.
This is in accordance with the fact that the estimates in Theorem 1 are symmetric
under a permutation of variables.

As explained before, it is useful to have a simple way to check the almost diago-
nal conditions. We do this by introducing the notion of bilinear smooth molecules.
These are functions associated to pairs of dyadic cubes and have certain localization
properties at two different scales. Bilinear operators that map pairs of basic building
blocks into bilinear smooth molecules, satisfy the bilinear almost diagonal estimates
and, hence, they are bounded. We have:

Theorem 2. Let T be a bilinear operator so that for a wavelet family {φµl}, the
three families {ψµl,λm} = {T (φµl, φλm)}, {ψ∗1µl,λm} = {T ∗1(φµl, φλm)}, and {ψ∗2µl,λm} =

{T ∗2(φµl, φλm)} are families of bilinear smooth molecules. Then T can be extended
to be a bounded operator from Lp(Rn)× Lq(Rn) into Lr(Rn) when 1/p + 1/q = 1/r
and 1 < p, q, r <∞.

This article is organized as follows. We use the notation in [10], [11], and related
papers. Most of it is recalled in Section 2 which also contains some other background
material. The reader familiar with the subject can move directly to Section 5 where
Theorem 1 is proved. One can then return to Section 3 which contains motivation for
the bilinear almost diagonal estimates, the notion of bilinear smooth molecules, and
three propositions which, combined with Theorem 1, imply Theorem 2. These three
propositions are proved in Section 4. In Section 6 we discuss extensions of Theorem 1
to other function spaces. Examples and applications are given in Section 7.

Acknowledgment. The research presented here originated while the authors were
visiting the Mathematical Sciences Research Institute, Berkeley, during the program
in Harmonic Analysis, Fall 1997. The authors want to express their gratitude to the
institute and the organizers of the program for their support and hospitality.

2. Some background tools

We begin by recalling some of the basics of the work in [10]. Throughout this section

we fix a function φ ∈ S(Rn) such that φ̂ is supported in the annulus π/4 ≤ |ξ| ≤ π and

such that |φ̂(ξ)| is bounded away from zero on a smaller annulus π/4+ε ≤ |ξ| ≤ π−ε.
Such a function can be chosen to be real-valued, radial and satisfying∑

ν∈Z
|φ̂(2νξ)|2 = 1, ξ �= 0.(5)

For ν ∈ Z and k ∈ Zn, let Qνk be the dyadic cube

Qνk = {(x1, . . . , xn) ∈ Rn : ki ≤ 2νxi < ki + 1, i = 1, . . . , n}.(6)
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The lower left-corner of Qνk will be denoted by 2−νk and the characteristic function
of the cube by χQνk . Define

φνk(x) = 2νn/2φ(2νx− k),(7)

so that ‖φνk‖L2 = ‖φ‖L2 and φ̂νk is supported in the annulus 2ν−2π ≤ |ξ| ≤ 2νπ.
Observe that

|∂γφνk(x)| ≤
Cγ,N2νn/22|γ|ν

(1 + 2ν |x− 2−νk|)N ,(8)

for any multi-index γ and positive integer N . A family of functions {mνk} (not
necessarily obtained by translations and dilations) that satisfy the above estimates
as well as the cancellation condition∫

mνk(x)dx = 0,(9)

is called a family of smooth molecules for Lp(Rn), 1 < p < ∞. Observe that the
functions φνk are molecules with vanishing moments of all orders.

The function φ can be selected to generate a useful almost orthogonal wavelet
decomposition of Lp(Rn). Moreover the following holds.

Theorem A. (Frazier and Jawerth [10].) Suppose f ∈ Lp(Rn) for 1 < p < ∞.
Then f can be written as

f =
∑
ν,k

〈f, φνk〉φνk,(10)

where ν ranges over Z, k over Zn, the series in (10) converges in Lp and

‖f‖Lp(Rn) ≈
∥∥∥∥( ∑

ν

( ∑
k

|〈f, φνk〉|2νn/2χQνk
)2)1/2

∥∥∥∥
Lp(Rn)

.(11)

The notation 〈f, g〉 stands for the usual action of a distribution f on a test function
g. Also for two positive expressions A and B we have A ≈ B when they have com-
parable size with constants independent of the parameters involved. The expression
on the left in (11) takes the particularly simple and familiar Parseval’s form when
p = 2 since the functions

χ̃Qνk = 2νn/2χQνk

are L2 normalized. The series in (10) looks then like an orthonormal decomposition
but in general it is not. It is possible to replace the function φ by a family of functions
with similar properties and obtain a true orthonormal wavelet basis for L2(Rn) (see
e.g. [19]). Nevertheless, the above almost orthogonal decomposition will suffice for
our purposes and simplifies the notation. With some abuse of terminology, we will
still refer to {φνk} as a family of wavelets.

Expressions similar to the one on the right hand side of (11) can be used to char-
acterize other function spaces such as the homogeneous Triebel-Lizorkin spaces Ḟα,s

p
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in the entire range of indices 0 < p < +∞, 0 < s ≤ +∞, and α ∈ R (see Sec. 6
below for definitions). In addition the wavelet representation for a function in

S0 = {f ∈ S : ∂γ f̂(0) = 0, for all γ},
converges in the topology of S. The space S0 is clearly dense in all Lp, for 1 < p <∞.

Next we discuss almost diagonal operators and the role of wavelets in their study.
Suppose that T is a linear operator acting on Schwartz functions on Rn. Consider
the matrix of T with respect to a fixed family {φνk}. This is the matrix

a(µl, νk) = 〈T (φνk), φµl〉,(12)

where ν and µ range over Z and k, l over Zn. Because of the wavelet representation
and Theorem A, the boundedness of the operator T on Lp is equivalent to the bound-
edness of the associated matrix on ḟ 0,2

p , the space of sequences {sνk} with norm given
by

‖{sνk}‖ḟ0,2
p

=

∥∥∥∥( ∑
ν

( ∑
k

|sνk|χ̃Qνk
)2)1/2

∥∥∥∥
Lp(Rn)

.

Conversely, any matrix A = {a(µl, νk)} bounded on ḟ 0,2
p gives rise to a bounded

operator T on Lp defined by

Tf =
∑
µ,l

∑
ν,k

a(µl, νk)〈f, φνk〉φµl.

The following theorem gives a sufficient condition for T to be a bounded operator on
Lp(Rn).

Theorem B. (Frazier and Jawerth [10].) Suppose that the matrix {a(µl, νk)} of
the operator T satisfies the almost diagonal estimate

|a(µl, νk)| ≤ C2−|µ−ν|ε 2−|µ−ν|n/2

(1 + 2min(µ,ν)|2−νk − 2−µl|)N ,(13)

for some C > 0, N > n, and ε > 0. Then the corresponding operator T can be
extended to be bounded from Lp(Rn) into itself for 1 < p <∞.

The theorem above is very useful when applied to “reduced” operators, such as
operators from which certain quantities have been subtracted to make them have
cancellation (in the form of T1 = T ∗1 = 0). The almost diagonal estimates have
proved to be useful technical devices in characterizing function spaces in terms of
wavelet coefficients, see [10], [11].

A crucial ingredient in the proof of Theorem B and Theorem 1 is the Fefferman-
Stein vector valued maximal function theorem.

Theorem C. (Fefferman and Stein [9].) Let M be the usual Hardy-Littlewood
maximal operator on Rn. Then for any 1 < p < ∞ and 1 < s ≤ ∞ there exists a
constant C such that for all sequences {fj} of locally integrable functions the following
inequality is valid∥∥( ∑

j

M(fj)
s
)1/s∥∥

Lp(Rn)
≤ C

∥∥( ∑
j

|fj|s
)1/s∥∥

Lp(Rn)
.
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We now set up the corresponding notation for bilinear operators. A given bilinear
operator will be associated to a tensor instead of a matrix. By this we mean the
infinite array of numbers

a(λm, νk, µl) = 〈T (φνk, φµl), φλm〉,(14)

where ν, µ, and λ range over Z and k, l, and m over Zn and {φνk} is a fixed almost
orthogonal wavelet family. Again, the wavelet representation of functions discretizes
the analysis and reduces the study of bilinear operators T on Lp × Lq to the study
of tensors A = {a(λm, νk, µl)} on ḟ 0,2

p × ḟ 0,2
q . Given any such tensor A, we define a

bilinear operator

T (f, g) =
∑
λ,m

∑
µ,l

∑
ν,k

a(λm, νk, µl)〈f, φνk〉〈g, φµl〉φλm,

whose corresponding tensor is A. Using Theorem A, it is easy to see that the ḟ 0,2
p ×

ḟ 0,2
q → f 0,2

r boundedness of A is equivalent to the Lp(Rn) × Lq(Rn) → Lr(Rn)
boundedness of T .

3. Motivation for the almost diagonal conditions

As mentioned in the introduction, we want to study an operator by understanding
its action on simple elementary functions. Wavelets are very useful in this sense
since they are “almost eigenvectors” for Calderón-Zygmund operators. In fact, it
is not hard to see that such operators map the family of wavelets into functions
which still satisfy estimates (8) for some multi-indices γ. Moreover, for convolution
operators (or operators with T ∗1 = 0), the cancellation condition (9) is also preserved.
Thus, Calderón-Zygmund operators “map wavelets into molecules”. All this can
be quantified in a precise way. The estimates (8) together with the cancellation in
wavelets and molecules can be used to show that the matrix associated to the operator
is almost diagonal in the sense of Theorem A. The almost diagonal estimate in that
result is motivated by two simple propositions that we now recall. For a proof, see
for instance [10].

Proposition 1. Suppose that ψν and ψµ are functions defined on Rn satisfying for
some xν, xµ in Rn and all M,N > n

|ψν(x)| ≤
C 2νn/2

(1 + 2ν |x− xν |)N
,(15)

|ψµ(x)| ≤
C 2µn/2

(1 + 2µ|x− xµ|)M
,(16)

for some constants C = C(N,M) > 0. Then, for all N > n there exists a constant
CN > 0 such that the following estimate is valid∫

Rn

|ψν(x)| |ψµ(x)| dx ≤
CN 2−|ν−µ|n/2

(1 + 2min(µ,ν)|xν − xµ|)N
.

A better estimate can be obtained if one of the functions satisfies size estimates
for its derivatives while the other function has cancellation.
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Proposition 2. Suppose that ψν and ψµ are functions defined on Rn satisfying es-
timates (15) and (16) for some xν, xµ in Rn and all M,N > n. Suppose in addition
that ∫

Rn

ψν(x)x
γdx = 0 for all |γ| ≤ L− 1(17)

|∂γxψµ(x)| ≤ CM
2µ|γ|2µn/2

(1 + 2ν |x− xµ|)M
for all |γ| ≤ L(18)

for some L nonnegative integer. If ν ≥ µ and N > M + L, then for some constant
CN,M,L > 0 the following estimate is valid∣∣∣∣

∫
Rn

ψν(x)ψµ(x) dx

∣∣∣∣ ≤ CN,M,L
2−(ν−µ)(L+n/2)

(1 + 2µ|xν − xµ|)M
.(19)

We will now discuss how the bilinear almost diagonal condition in Theorem 1 arises.
It is important to convince our reader that the main expression in Theorem 1 appears
when one considers estimates involving integrals of products of three wavelets. The
propositions below give rise to the bilinear almost diagonal estimate and provide the
motivation for this work.

Proposition 3. Suppose that ψν, ψµ, ψλ are functions defined on Rn satisfying the
following estimates for all x ∈ Rn

|ψν(x)| ≤CN
2νn/2

(1 + 2ν |x− xν |)N
,(20)

|ψµ(x)| ≤CN
2µn/2

(1 + 2µ|x− xµ|)N
,(21)

|ψλ(x)| ≤CN
2λn/2

(1 + 2λ|x− xλ|)N
,(22)

for some xν, xµ, xλ in Rn and for all N > n. Then the following estimate is valid∫
Rn

|ψν(x)| |ψµ(x)| |ψλ(x)| dx ≤

CN 2−max(µ,ν,λ)n/2 2med(µ,ν,λ)n/2 2min(µ,ν,λ)n/2

((1 + 2min(ν,µ)|xν − xµ|)(1 + 2min(µ,λ)|xµ − xλ|)(1 + 2min(λ,ν)|xλ − xν |))N

for some CN > 0.

Next we consider the situation where we are assuming cancellation and estimates
for the derivatives. Fix L to a non-negative integer. (The condition for |γ| ≤ L − 1
below is vacuous when L = 0.)

Proposition 4. Suppose that ψν satisfies (20) and also∫
Rn

ψν(x)x
γ dx = 0 for all |γ| ≤ L− 1.(23)
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Let ψµ,λ be another function satisfying

|∂γψµ,λ(x)| ≤ CN
2µn/22λn/2 max(2µ, 2λ)|γ|

(1 + 2µ|x− xµ|)N(1 + 2λ|x− xλ|)N
for all |γ| ≤ L(24)

for some xµ, xλ in Rn, and all N > n. Suppose that ν ≥ max(µ, λ). Then for all
N > n there exists a CN,L > 0 such that∣∣∣∣

∫
Rn

ψν(x)ψµ,λ(x) dx

∣∣∣∣ ≤
CN,L 2−(ν−max(µ,λ))L 2−νn/2 2µn/2 2λn/2

((1 + 2min(ν,µ)|xν − xµ|)(1 + 2min(µ,λ)|xµ − xλ|)(1 + 2min(λ,ν)|xλ − xν |))N
.

Suppose now that the roles of ψν and ψµ,λ are reversed. We have the following.

Proposition 5. Suppose that ψν satisfies

|∂γψν(x)| ≤ CN,L
2νn/22ν|γ|

(1 + 2µ|x− xν |)N
for all |γ| ≤ L(25)

for some xν in Rn and all N > n. Suppose also that ψµ,λ is another function satisfying
(24) for γ = 0 and ∫

Rn

ψµ,λ(x)x
γ dx = 0 for all |γ| ≤ L− 1.(26)

Assume that max(µ, λ) ≥ ν. Then for all N > 0 there exists a CN,L > 0 such that∣∣∣∣
∫

Rn

ψν(x)ψµ,λ(x) dx

∣∣∣∣ ≤
CN,L 2−(max(µ,λ)−ν)L 2−max(µ,λ)n/2 2min(µ,λ)n/2 2νn/2

((1 + 2min(ν,µ)|xν − xµ|)(1 + 2min(µ,λ)|xµ − xλ|)(1 + 2min(λ,ν)|xλ − xν |))N
.

The proofs of Propositions 3, 4, and 5 involve some simple but long computations
and they are postponed until the next section. The propositions above lead to a
natural notion of bilinear molecules.

Definition 1. A collection of functions {ψµl,λm}, with µ, λ ∈ Z and l, m ∈ Zn is
called a family of bilinear smooth molecules if for all integers N > 0 and all γ multi-
indices, there exist constants CN,γ such that

|∂γψµl,λm(x)| ≤ CN,γ
2µn/22λn/2 max(2µ, 2λ)|γ|

(1 + 2µ|x− 2−µl|)N(1 + 2λ|x− 2−λm|)N(27)

for all N > n and ∫
Rn

ψµl,λm(x) dx = 0,(28)

for all µ, λ, l, and m.

A consequence of Proposition 5 is that if a bilinear operator and its transposes
map products of wavelets into bilinear molecules, then its associated tensor satisfies
the almost diagonal condition of Theorem 1. Theorem 2 is then an easy consequence
of Theorem 1.
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4. Proofs of Propositions 3, 4, 5

We begin with the following auxiliary lemma.

Lemma 1. Let N > n. There exists a constant C depending only on the dimension
n and on N such that for all x0 ∈ Rn and all R > 0 we have

b(x0, R) =

∫
|x−x0|≤R

(1 + |x|)−Ndx ≤ Cmax(Rn, RN)

(1 + |x0|)N
.(29)

Proof. Let us suppose first that R ≤ 10. Then consider the subcases |x0| ≤ 20 and
|x0| ≥ 20. When |x0| ≤ 20 we obtain |b(x0, R)| ≤ CRn which implies (29) since x0

is small. When |x0| ≥ 20 we have |x| ≈ |x0| when |x − x0| ≤ R ≤ 10 and hence the
bound b(x0, R) ≤ CRn(1 + |x0|)−N is easily obtained.

We now consider the case R ≥ 10. In this case we split the region of integration
in (29) into two subregions:

A1 ={x : |x| ≥ |x0| and |x− x0| ≤ R}
A2 ={x : |x| ≤ |x0| and |x− x0| ≤ R}

The part of the integral in (29) over the set A1 is easily shown to be bounded by
CRn(1 + |x0|)−N since |x| ≥ |x0|. It suffices to prove the required bound for the part
of the integral in (29) over the set A2. If |x0| ≤ 2R then∫

A2

(1 + |x|)−Ndx ≤ C ′ ≤ C RN

(1 + |x0|)N
.

If |x0| ≥ 2R we have |x| ≥ |x0| − |x − x0| ≥ |x0|/2 which allows us to estimate the
part of the integral over A2 in (29) by CRn(1 + 1

2
|x0|)N . This finishes the proof of

Lemma 1.

We continue with the proof of Proposition 3.

Proof. By symmetry we may assume that ν ≥ λ ≥ µ. Without loss of generality we
may also assume that xµ = 0. Next we observe that if the proposition is proved when
µ = 0, then applying it to the functions ψν−µ, ψλ−µ, and ψ0 centered at xν−µ = 2µxν ,
xλ−µ = 2µxλ, and x0 = 0 gives the general case after a suitable change of variables.

We may therefore assume that ν ≥ λ ≥ µ = 0 and that xµ = 0. We start by
writing the integral∫

Rn

2νn/2

(1 + 2ν |x− xν |)M
2λn/2

(1 + 2λ|x− xλ|)M
1

(1 + |x|)M dx

as

2(λn+νn)/2

∞∑
t=0

∞∑
s=0

2−tM−sM
∫

|x−xν |∼2−ν2t

|x−xλ|∼2−λ2s

(1 + |x|)−Mdx,(30)
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where the notation |x − xν | ∼ 2−ν2t means 2−ν2t ≤ |x − xν | ≤ 2−ν2t+1 for t ≥ 1
and |x− xν | ≤ 2−ν when t = 0. Next observe the following. If |x− xν | ∼ 2−ν2t and
|x− xλ| ∼ 2−λ2s then

1 + 2λ|xν − xλ| ≤ 1 + 2λ+2 max(2t−ν , 2s−λ) ≤ 8 max(2t, 2s)(31)

and also

1 + |xλ| ≤ 1 + |xν − xλ|+ |xν | ≤ 1 + 4 max(2t−ν , 2s−λ) + |xν |
≤ 8 max(2t, 2s)(1 + |xν |).

(32)

Now use Lemma 1 to estimate

∫
|x−xν |∼2−ν2t

|x−xλ|∼2−λ2s

(1 + |x|)−Mdx ≤Cmax(2(t−ν)n, 2(t−ν)2N)

(1 + |xν |)2N

≤C max(2(t−ν)n, 2(t−ν)2N)

(1 + |xν |)N(1 + |xλ|)N
max(2t, 2s)N ,

where we set M = 2N and the second inequality above is a consequence of (32). We
now use this estimate to bound (30) by

C2(λn+νn)/2

∞∑
t=0

∞∑
s=0

2−tM−sM
max(2(t−ν)n, 2(t−ν)2N)

(1 + |xν |)N(1 + |xλ|)N
max(2t, 2s)N

≤C2(λn+νn)/2

∞∑
t=0

∞∑
s=0

2−tM−sM
max(2(t−ν)n, 2(t−ν)2N)

(1 + |xν |)N(1 + |xλ|)N
max(2t, 2s)2N

(1 + 2λ|xν − xλ|)N

≤C2(λn−νn)/2(1 + |xν |)−N(1 + |xλ|)−N(1 + 2λ|xν − xλ|)−N

which proves the requires estimate. We used (31) at the second estimate above and
we took M = 5N for the last series to converge.

We now continue with the proof of the Proposition 4.

Proof. We have
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∣∣∣∣
∫

Rn

ψν(x)ψµ,λ(x) dx

∣∣∣∣
=

∣∣∣∣∣∣
∫

Rn

ψν(x)

[
ψµ,λ(x)−

∑
|α|≤L−1

(∂αψµ,λ)(xν)

α!
(x− xν)α

]
dx

∣∣∣∣∣∣
≤

∫
Rn

|ψν(x)|
∣∣∣∣ ∑
|α|=L

(∂αψµ,λ)(z)

α!
(x− xν)α

∣∣∣∣ dx
≤C

∫
Rn

|ψν(x)|
2µn/2+λn/2+max(λ,µ)L

(1 + 2µ|z − xµ|)N(1 + 2λ|z − xλ|)N
|x− xν |L dx

≤C
∫

Rn

2µn/2+λn/2+νn/2+max(λ,µ)L−νL(|x− xν |2ν)L
(1 + 2ν |x− xν |)N ′(1 + 2µ|z − xµ|)N(1 + 2λ|z − xλ|)N

dx

≤C
∫

Rn

2−(ν−max(λ,µ))L 2µn/2+λn/2+νn/2

(1 + 2ν |x− xν |)N ′−L(1 + 2µ|z − xµ|)N(1 + 2λ|z − xλ|)N
dx

=Eν,µ,λ(xν , xµ, xλ),

for some z between x and xν . Now write the integral defining Eν,µ,λ(xν , xµ, xλ) as
the sum of the integrals over the regions A0 = {x : |x − xν | ≤ 2−ν} and Aj = {x :
2−ν2j−1 ≤ |x− xν | ≤ 2−ν2j} for j = 1, 2, . . . .

For x ∈ Aj, j ≥ 0, we have that |x − xν | ≤ 2j2−ν . Then |z − x| ≤ |xν − x| and
hence

|x− xµ| ≤ |x− z|+ |z − xµ| ≤ |x− xν |+ |z − xµ| ≤ 2j2−ν + |z − xµ|.

Therefore

1 + 2µ|x− xµ| ≤ 1 + 2j2µ−ν + 2µ|z− xµ| ≤ 1 + 2j + 2µ|z− xµ| ≤ 2j+1(1 + 2µ|z− xµ|).

Likewise we obtain

1 + 2λ|x− xλ| ≤ 2j+1(1 + 2λ|z − xλ|).

These two estimates imply that when x ∈ A0 for we have

(1 + 2µ|z − xµ|)−N ≤ C(1 + 2µ|x− xµ|)−N

and similarly

(1 + 2λ|z − xλ|)−N ≤ C(1 + 2λ|x− xλ|)−N ,
while for x ∈ Aj for j = 1, 2, . . . we have

(1 + 2µ|z − xµ|)−N ≤ C2jN(1 + 2µ|x− xµ|)−N ≤ C(2ν |x− xν |)N(1 + 2µ|x− xµ|)−N

and likewise

(1 + 2λ|z − xλ|)−N ≤ C2jN(1 + 2λ|x− xλ|)−N ≤ C(2ν |x− xν |)N(1 + 2λ|x− xλ|)−N .
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We now conclude that

Eν,µ,λ(xν , xµ, xλ)

=
∞∑
j=0

∫
Aj

2µn/2+λn/2+νn/22max(λ,µ)L−νL

(1 + 2ν |x− xν |)N ′−L(1 + 2µ|z − xµ|)N(1 + 2λ|z − xλ|)N
dx

≤C
∞∑
j=0

∫
Aj

2µn/2+λn/2+νn/22max(λ,µ)L−νL(2ν |x− xν |)2N

(1 + 2ν |x− xν |)N ′−L(1 + 2µ|x− xµ|)N(1 + 2λ|x− xλ|)N
dx

≤C
∫

Rn

2νn/22µn/22λn/22max(λ,µ)L−νL

(1 + 2ν |x− xν |)N ′−L−2N(1 + 2µ|x− xµ|)N(1 + 2λ|x− xλ|)N
dx

≤C2−(ν−max(λ,µ))L

∫
Rn

2νn/22µn/22λn/2

(1 + 2ν |x− xν |)N(1 + 2µ|x− xµ|)N(1 + 2λ|x− xλ|)N
dx

where we picked N ′ > 3N + L. Things now reduce to the situation discussed in the
previous proposition times the fixed factor 2−(ν−max(λ,µ))L.

Finally we discuss the proof of Proposition 5.

Proof. For the proof below take µ ≥ λ because of symmetry. We now use the cancel-
lation on ψν to subtract a suitable Taylor polynomial. We have

∣∣∣∣
∫

Rn

ψµ,λ(x)ψν(x) dx

∣∣∣∣
=

∣∣∣∣∣∣
∫

Rn

ψµ,λ(x)

[
ψν(x)−

∑
|α|≤L−1

(∂αψν)(xµ)

α!
(x− xµ)α

]
dx

∣∣∣∣∣∣
≤

∫
Rn

|ψµ,λ(x)|
∣∣∣∣ ∑
|α|=L

(∂αψν)(z)

α!
(x− xµ)α

∣∣∣∣ dx
≤C

∫
Rn

|ψµ,λ(x)|
2νn/22νL|x− xµ|L
(1 + 2ν |z − xν |)N

dx

≤C
∫

Rn

2µn/2

(1 + 2µ|x− xµ|)N1

2λn/2

(1 + 2λ|x− xλ|)N2

2λn/22νL2−µL(2µ|x− xµ|)L
(1 + 2ν |z − xν |)N

dx

≤C2−(µ−ν)L
∫

Rn

2µn/2

(1 + 2µ|x− xµ|)N1−L
2λn/2

(1 + 2λ|x− xλ|)N2

2νn/2

(1 + 2ν |z − xν |)N
dx

=Dµ,ν,λ(xµ, xν , xλ),

for some z between x and xµ. Now split Rn as union of the sets Aj where A0 = {x :
|x− xµ| ≤ 2−µ} and Aj = {x : 2−µ2j−1 ≤ |x− xµ| ≤ 2−µ2j} for j = 1, 2, . . . .

For x ∈ Aj, j ≥ 0, we have |x− xµ| ≤ 2j2−µ. Then |z − x| ≤ |xµ − x| and thus

|x− xν | ≤ |x− z|+ |z − xν | ≤ |x− xµ|+ |z − xν | ≤ 2j2−µ + |z − xµ|.
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Therefore

1 + 2ν |x− xν | ≤ 1 + 2j2ν−µ + 2ν |z − xν | ≤ 1 + 2j + 2ν |z − xν | ≤ 2j+1(1 + 2ν |z − xν |).
Now for x ∈ Aj for j = 1, 2, . . . we have

(1 + 2ν |z − xν |)−N ≤ C2jN(1 + 2ν |x− xν |)−N ≤ C(2µ|x− xµ|)N(1 + 2ν |x− xν |)−N .
Now write

Dµ,ν,λ(xµ, xν , xλ)

=C2−(µ−ν)L
∞∑
j=0

∫
Aj

2µn/2

(1 + 2µ|x− xµ|)N1−L
2λn/2

(1 + 2λ|x− xλ|)N2

2νn/2

(1 + 2ν |z − xν |)N
dx

≤C2−(µ−ν)L
∞∑
j=0

∫
Aj

2µn/2(2µ|x− xµ|)N
(1 + 2µ|x− xµ|)N1−L

2λn/2

(1 + 2λ|x− xλ|)N2

2νn/2

(1 + 2ν |x− xν |)N
dx

≤C2−(µ−ν)L
∞∑
j=0

∫
Aj

2µn/2

(1 + 2µ|x− xµ|)N1−L−N
2λn/2

(1 + 2λ|x− xλ|)N2

2νn/2

(1 + 2ν |x− xν |)N
dx

≤C2−(µ−ν)L
∞∑
j=0

∫
Aj

2µn/2

(1 + 2µ|x− xµ|)N
2λn/2

(1 + 2λ|x− xλ|)N
2νn/2

(1 + 2ν |x− xν |)N
dx,

where we picked N1 > 2N + L and N2 = N . We can now use Proposition 3 to
complete the proof.

5. The proof of Theorem 1

We now give the proof of our main result, Theorem 1.

Proof. Fix a family of almost orthogonal wavelets {φνk} as in Sec. 2. For f and g in
S0 the action of T can be written as

T (f, g) =
∑
λ,m

∑
µ,l

∑
ν,k

〈T (φνk, φµl), φλm〉〈f, φνk〉〈g, φµl〉φλm.

Let uνk = 〈f, φνk〉, vµl = 〈g, φµl〉, and a(λm, νk, µl) = 〈T (φνk, φµl), φλm〉 . Let us
denote by

Sλm =
∑
µ,l

∑
ν,k

a(λm, νk, µl)uνkvµl.(33)

We use the estimate

|Sλm| ≤
6∑

j=1

|Sjλm|,

where S1
λm is the part of Sλm where ν ≤ µ ≤ λ, S2

λm is the part of Sλm where
µ ≤ ν ≤ λ, S3

λm is the part of Sλm where ν ≤ λ ≤ µ, S4
λm is the part of Sλm where
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µ ≤ λ ≤ ν, S5
λm is the part of Sλm where λ ≤ ν ≤ µ, and S6

λm is the part of Sλm
where λ ≤ µ ≤ ν. We shall see that is enough to analyze S1

λm and S2
λm.

Bound S1
λm by a constant multiple of

∑
µ≤λ

∑
ν≤µ

∞∑
i=0

∞∑
j=0

∑
k

∑
l

|uνk||vµl|
2

(µ+ν−λ)n
2 2−(λ−ν)ε2−iN2−jN

(1 + 2ν |2−νk − 2−µl|)N ,(34)

where k ranges over the set Iνλmi of all multi-indices in Zn such that

2ν |2−νk − 2−λm| ≈ 2i

and l ranges over the set Iµλmj of all multi-indices in Zn such that

2µ|2−µl − 2−λm| ≈ 2j.

For a fixed λ andm, let Qλm be the unique dyadic cube in Rn of side-length 2−λ whose
lower left corner is the point 2−λm. For x ∈ Qλm we have |x−2−λm| ≤ C2−λ ≤ C2−ν ,
since we are assuming that λ ≥ µ ≥ ν. Also, since |2−νk− 2−λm| ≤ C2i−ν , it follows
that

|x− 2−νk| ≤ C2i−ν(35)

for all x ∈ Qλm and k ∈ Iνλmi. Similarly, using λ ≥ µ we obtain that

|x− 2−µl| ≤ C2j−µ(36)

for all x ∈ Qλm and l ∈ Iµλmj.
Recall that for Qνk a dyadic cube in Rn, χ̃Qνk = 2νn/2χQνk is its L2-normalized

characteristic function. Fix now a ν, µ, i, and j in (34) above and write∑
k∈Iνλmi

|uνk| = 2νn/2
∑

k∈Iνλmi

∫
Qνk

|uνk|χ̃Qνk(y)dy,(37)

and similarly ∑
l∈Iµλmj

|vµl| = 2µn/2
∑

l∈Iµλmj

∫
Qµl

|vµl|χ̃Qµl(y)dy.(38)

Next we observe that the union of dyadic cubes Qνk over all k ∈ Iνλmi in (37) is
contained in a ball of measure C2(i−ν)n. Similarly the union of all cubes in (38) is
contained in a ball of measure C2(j−µ)n. Now write

M ν
1 = M

( ∑
k

|uνk|χ̃Qνk
)
,

Mµ
2 = M

( ∑
l

|vµl|χ̃Qµl
)
,

where M is the Hardy-Littlewood maximal function. We can then estimate the
expression in (37) by

C2νn/22(i−ν)nM ν
1 (x),

and the expression in (38) by

C2µn/22(j−µ)nMµ
2 (x),
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for any x ∈ Qλm. We now return to (34) which we can estimate by

C
∑
µ≤λ

∑
ν≤µ

∞∑
i=0

∞∑
j=0

2−(λ−ν)ε2
(µ+ν−λ)n

2 2−iN2−jN2
νn
2 2

µn
2 2(i−ν)nM ν

1 (x)2(j−µ)nMµ
2 (x)

for any x ∈ Qλm. We therefore obtain that

|S1
λmχQλm| ≤ C

∑
µ≤λ

∑
ν≤µ

2−(λ−ν)ε2−
λn
2 M ν

1M
µ
2

or equivalently

|S1
λmχ̃Qλm| ≤ C

∑
µ≤λ

∑
ν≤µ

2−(λ−ν)εM ν
1M

µ
2 .(39)

We will now use this estimate to prove that

‖(
∑
λ

(
∑
m

|S1
λm|χ̃Qλm)2)1/2‖Lr ≤

C ‖(
∑
ν

(
∑
k

|uνk|χ̃Qνk)2)1/2‖Lp ‖(
∑
µ

(
∑
l

|vµl|χ̃Qµl)2)1/2‖Lq .(40)

Use (39) and the inequality ab ≤ a2 + b2 to estimate the square of the function in the
Lr norm inside the left hand side of (40) by

C
∑
λ

∑
µ≤λ

∑
ν≤µ

∑
µ′≤λ

∑
ν′≤µ′

2−(λ−ν)ε2−(λ−ν′)ε[(M ν
1 )2 + (M ν′

1 )2][(Mµ
2 )2 + (Mµ′

2 )2].(41)

By symmetry it suffices to bound only the term

C
∑
λ

∑
µ≤λ

∑
ν≤µ

∑
µ′≤λ

∑
ν′≤µ′

2−(λ−ν)ε2−(λ−ν′)ε(M ν
1 )2(Mµ

2 )2(42)

and a similar term where Mµ
2 is replaced by Mµ′

2 in (42). First sum over ν ′ ≤ µ′ and
then over µ′ ≤ λ to estimate (42) by

C
∑
λ

∑
µ≤λ

∑
ν≤µ

2−(λ−ν)ε(M ν
1 )2(Mµ

2 )2 = C
∑
µ

∑
λ≥µ

∑
ν≤µ

2−(λ−ν)ε(M ν
1 )2(Mµ

2 )2.(43)

Next apply Fubini’s theorem to change the order of summation and sum over λ from
µ to ∞. We conclude that (43), and thus (42) are bounded above by

C
( ∑

ν

(M ν
1 )2

)( ∑
µ

(Mµ
2 )2

)
.

We now consider the expression obtained when Mµ
2 is replaced by Mµ′

2 in (42), that
is

C
∑
λ

∑
µ≤λ

∑
ν≤µ

∑
µ′≤λ

∑
ν′≤µ′

2−(λ−ν)ε2−(λ−ν′)ε(M ν
1 )2(Mµ′

2 )2 =(44)

C
∑
λ

∑
ν≤λ

∑
µ′≤λ

∑
ν′≤µ′

∑
ν≤µ≤λ

2−(λ−ν)ε2−(λ−ν′)ε(M ν
1 )2(Mµ′

2 )2.
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First we sum over µ and then over ν ′ in (44) to obtain the bound

C
∑
λ

∑
ν≤λ

2−(λ−ν)ε(λ− ν)
∑
µ′≤λ

2−(λ−µ′)ε(M ν
1 )2(Mµ′

2 )2 ≤(45)

C
∑
ν

(M ν
1 )2

∑
λ≥ν

2−(λ−ν)ε(λ− ν)
∑
µ′

(Mµ′

2 )2.

(45) and sum over λ ∈ Z. Summing first in λ we easily obtain the bound

C
( ∑

ν

(M ν
1 )2

)( ∑
µ′

(Mµ′

2 )2
)

for (45) and hence for (44).
We conclude that the square function inside the Lr norm in (40) is bounded above

by

C
( ∑

ν

M
( ∑

k

|uνk|χ̃Qνk
)2)1/2( ∑

µ

M
( ∑

l

|vµl|χ̃Qµl
)2)1/2

.(46)

We now estimate the Lr norm of (46) using Hölder’s inequality with exponents 1/p+
1/q = 1/r. We are then in a position to use the Fefferman-Stein vector-valued
maximal inequality (Theorem C) to deduce the bound in (40). Observe that a simple
interchange of the indices µ and ν gives that the term S2

λm also satisfies estimate
(40).

To treat Sjλm for 3 ≤ j ≤ 6 we use duality. Recall that ḟ 0,2
p is the space of sequences

{uνk} which satisfy

‖(
∑
ν

(
∑
k

|uνk|χ̃Qνk)2)1/2‖Lp < +∞,

and that the dual space of ḟ 0,2
p is ḟ 0,2

p′ , where p′ = p/(p− 1) for 1 < p <∞. We have

seen that the discrete operators Sjλm, j = 1, 2 map ḟ 0,2
p × ḟ 0,2

q → ḟ 0,2
r .

This means that if T has tensor a(λm, νk, µl) which satisfies a(λm, νk, µl) = 0
unless λ ≥ µ ≥ ν or λ ≥ ν ≥ µ, then it must be bounded from Lp × Lq → Lr.

Let us denote by A a tensor acting on sequences whose entries are a(λm, νk, µl).

If A is a bounded operator from ḟ 0,2
p × ḟ 0,2

q → ḟ 0,2
r , then A∗1 is a bounded operator

from ḟ 0,2
r′ × ḟ 0,2

q → ḟ 0,2
p′ by duality. But as we have discussed earlier, the transpose

A∗1 has entries a∗1(λm, νk, µl) given by

a∗1(λm, νk, µl) = a(νk, λm, µl).

Now, having proved that the tensor associated to T is bounded in the case where
a(λm, νk, µl) = 0 unless λ ≥ µ ≥ ν or λ ≥ ν ≥ µ, we use duality as above to
deduce the case where λ and ν are interchanged, that is when a(λm, νk, µl) = 0
unless ν ≥ µ ≥ λ or ν ≥ λ ≥ µ. (Note that we can use this duality argument because
the hypothesis of the theorem are “p-independent”, i.e. they are the valid for all
1 < p, q, r <∞ with 1/p+ 1/q = 1/r). Similarly we obtain the two remaining cases
using the second transpose A∗2.
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Finally, the boundedness of T follows from the fact that

‖T (f, g)‖Lr ≤ C
6∑

j=1

‖(
∑
λ

(
∑
m

|Sjλm|χ̃Qλm)2)1/2‖Lr ,

and the wavelet characterization of Lp spaces using the spaces ḟ 0,2
p .

6. Almost diagonal condition for other function spaces

Our almost diagonal theorem can be extended to other function spaces. Here we
will discuss the Triebel-Lizorkin spaces Ḟα,s

p in the range 0 < p < ∞, 1 ≤ s ≤ ∞,
and arbitrary α. These spaces are defined by the quasi-norm

‖f‖Ḟα,sp
=

∥∥∥∥( ∑
ν

(|f ∗ φν |2να)s
)1/s

∥∥∥∥
Lp(Rn)

,(47)

where φ is a smooth function as in Section 2 and φν(x) = 2νnφ(2νx). As usual, in
the case s = ∞, the sup norm in ν is employed inside the Lp norm in (47). These
spaces should be interpreted as spaces of tempered distributions modulo polynomials
but for particular values of the parameters they are identified with other classical

spaces. The space S0 is dense in all Ḟα,s
p and we have the duality (Ḟα,s

p )′ = Ḟ−α,s
′

p′ ,

for 1 < p, s < ∞. In particular, Ḟ 0,2
p ≈ Lp for 1 < p < ∞. For the same range of p,

Ḟα,2
p ≈ L̇pα, the homogeneous Sobolev space of order α. For 0 < p ≤ 1, Ḟ 0,2

p ≈ Hp,

the Hardy space in Rn. Also, the “diagonal” spaces Ḟα,p
p coincide with the Besov

spaces Ḃα,p
p , often encountered, for example, in approximation theory. For details

about Triebel-Lizorkin spaces see [22].
The Triebel-Lizorkin spaces admit wavelet decompositions as in Theorem A and

the wavelet coefficients satisfy

‖f‖Ḟα,sp
≈ ‖{〈f, φνk〉}‖ḟα,sp

,

where the spaces ḟα,sp are the spaces of sequences {uνk} for which∥∥∥∥( ∑
ν

∑
k

(|uνk|2ναχ̃Qνk)s
)1/s

∥∥∥∥
Lp(Rn)

<∞.(48)

We are now ready to give some extensions of Theorem 1 to other function spaces.
The Lp case was treated separately for the sake of clarity in the presentation.

6.1. The case s �= 2. In this case we have the following result.

Theorem 3. Suppose that the tensor {a(λm, νk, µl)} associated to a bilinear oper-
ator T satisfies the same almost diagonal estimate of Theorem 1. Then the corre-
sponding operator T can be extended to be bounded from Ḟ 0,s1

p × Ḟ 0,s2
q into Ḟ 0,s3

r when
1 < p, q, r <∞, 1/p+1/q = 1/r, 1 < s1, s2 ≤ ∞, 1 ≤ s3 <∞ and 1/s1+1/s2 = 1/s3.
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Proof. As in the proof of Theorem 1 and with the same notation, we first need to
establish ( ∑

λ

(
∑
m

|S1
λm|χ̃Qλm)s3

)1/s3 ≤ C
( ∑

ν

(M ν
1 )s1

)1/s1( ∑
µ

(Mµ
2 )s2

)1/s2 .(49)

(With obvious modifications in the notation if one of the sj = ∞.) We go back to
(39) and obtain

( ∑
λ

(
∑
m

|S1
λm|χ̃Qλm)s3

)1/s3 ≤ C
( ∑

λ

( ∑
µ≤λ

∑
ν≤µ

2−(λ−ν)ε/22−(µ−ν)ε/2M ν
1M

µ
2

)s3)1/s3

.

(50)

We write the inner double sum in the right hand side of (50) as∑
µ

∑
ν

K(λ, ν, µ)χν≤µ(ν, µ)2−(µ−ν)ε/2M ν
1M

µ
2 ,

where
K(λ, ν, µ) = 2−(λ−ν)ε/2χµ≤λ(λ, ν, µ)χν≤µ(λ, ν, µ).

The easy proof of the following is omitted.

Lemma 2. ∑
µ

∑
ν

K(λ, ν, µ) ≤ C for all λ

and ∑
λ

K(λ, ν, µ) ≤ C for all (ν, µ),

so the operator

T (m)(λ) =
∑
µ

∑
ν

K(λ, ν, µ)m(ν, µ)

is bounded from ls(ν, µ) into ls(λ) for all 1 ≤ s ≤ ∞.

Using the Lemma 2 and (50) we obtain

( ∑
λ

∑
m

|S1
λm|χ̃Qλm)s3

)1/s3 ≤ C
( ∑

µ

∑
ν

(
2−(µ−ν)ε/2χν≤µ(ν, µ)M ν

1M
µ
2

)s3)1/s3

.(51)

We now apply Hölder’s inequality with 1/s1 + 1/s2 = 1/s3 to control the above by( ∑
ν

∑
µ≥ν

2−(µ−ν)ε1(M ν
1

)s1)1/s1( ∑
µ

∑
ν≤µ

2−(µ−ν)ε2(Mµ
2

)s2)1/s2

,(52)

which leads to (49). We took ε1 = εs1/4 and ε2 = εs2/4 in (52) above.
As in Theorem 1, the bounds for S2

λm follow by simply interchanging the roles of µ
and ν. To obtain the estimates for the remaining cases, we observe that if a tensor A
is bounded from ḟ 0,s1

p × ḟ 0,s2
q into ḟ 0,s3

r for all 1/p+ 1/q = 1/r, 1/s1 + 1/s2 = 1 then

its first transpose A∗1 is bounded from ḟ
0,s′3
r′ × ḟ 0,s2

q into ḟ
0,s′1
p′ , where 1/r′+1/q = 1/p′
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and 1/s′3 + 1/s2 = 1/s′1. Note also that the restrictions on the sj’s in the statement
of the theorem translate into 1 < s′3, s2 ≤ ∞ and 1 ≤ s′1 < ∞ . Similarly with A∗2.
Finally, the same duality arguments used in Theorem 1 now complete the proof.

Note that the restrictions s1, s2 > 1 in this proof are imposed by Theorem C.

Observe that by taking s1 = s2 = 2, Theorem 3 actually gives a sharper version of
Theorem 1. In fact, if T satisfies the almost diagonal condition of Theorem 1, then
T must map Lp × Lq → Ḟ 0,1

r which is a proper subspace of Lr = Ḟ 0,2
r .

The following is a corollary of Theorem 3.

Corollary 1. Under the hypotheses of Theorem 3, T extends to a bounded operator

from Ḟ 0,s1
p × Ḟ 0,s2

q into Ḟ
0,min(s1,s2)
r .

Proof. Note that s3 ≤ min(s1, s2). The trivial embeddings Ḟ 0,s
p ⊂ Ḟ 0,t

p and ḟ 0,s
p ⊂ ḟ 0,t

p

when s < t imply the required conclusion.

6.2. The case p ≤ 1. The following result gives, in particular, boundedness of a
bilinear operator on product of Hardy spaces Hp = Ḟ 0,2

p , for 0 < p ≤ 1.

Theorem 4. Let {a(λm, νk, µl)} be the tensor associated to a bilinear operator T .
Let 0 < p, q, r <∞, 1/p+1/q = 1/r, 1 < s1, s2 ≤ ∞, 1 ≤ s3 <∞, 1/s1+1/s2 = 1/s3,
and fix t < min(1, p, q, r). Suppose that

|a(λm, νk, µl)| ≤
C 2−(max(µ,ν,λ)−min(µ,ν,λ))ε/t 2(−max(µ,ν,λ)+med(µ,ν,λ)+min(µ,ν,λ))n/2t 2(λ−ν−µ)n(t−1)/2t

((1+2min(ν,µ)|2−νk−2−µl|)(1+2min(µ,λ)|2−µl−2−λm|)(1+2min(λ,ν)|2−λm−2−νk|))N/t
for some C > 0, N > n, and ε > 0. Then the operator T can be extended to be a
bounded operator from Ḟ 0,s1

p × Ḟ 0,s2
q into Ḟ 0,s3

r .

Proof. For sequence u = {uνk} let ũ = {ũνk} = {2νn(1−t)/2|uνk|t}. It is easy to see
that

‖ũ‖1/t
ḟ
0,s/t
p/t

= ‖u‖ḟ0,s
p
.(53)

Given this observation, the result that we are trying to prove can be reduced to
previous cases. Note that by the choice of t, we have p/t, q/t, r/t > 1. Let A be the
tensor associated with T and let B be the tensor with entries given by

b(λm, νk, µl) = |a(λm, νk, µl)|t2−λn(t−1)/22νn(t−1)/22µn(t−1)/2.

Since t < 1, for any pair of sequences u = {uνk} and v = {vµl} we have,

|A(u, v)λm| ≤
( ∑

µl

∑
νk

|a(λm, νk, µl)|t|uνk|t|vµl|t
)1/t

=

(
2λn(t−1)/2

∑
µl

∑
νk

b(λm, νk, µl)2−νn(t−1)/22−µn(t−1)/2|uνk|t|vµl|t
)1/t

.
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Observe that the tensor B satisfies the hypotheses of Theorem 3. Using (53) and the
boundedness of B we get that

‖A(u, v)‖
ḟ
0,s3
r
≤ ‖B(ũ, ṽ)‖1/t

ḟ
0,s3/t

r/t

≤ C‖ũ‖1/t
ḟ
0,s1/t

p/t

‖ṽ‖1/t
ḟ
0,s2/t
q /t

≤ C‖u‖
ḟ
0,s1
p
‖v‖

ḟ
0,s2
q
.

6.3. The case α �= 0. This case includes results for (homogeneous) Sobolev spaces
L̇pα = Ḟα,2

p .

Theorem 5. Let {a(λm, νk, µl)} be the tensor associated to a bilinear operator T .
Let 0 < p, q, r < ∞, 1/p + 1/q = 1/r, 1 < s1, s2, s3 < ∞, 1/s1 + 1/s2 = 1/s3, let
α3 = α1 + α2 for any α1, α2, α3 and fix t < min(1, p, q, r). Suppose that

2(λα3−να2−µα1)/t|a(λm, νk, µl)| ≤
C 2−(max(µ,ν,λ)−min(µ,ν,λ))ε/t 2(−max(µ,ν,λ)+med(µ,ν,λ)+min(µ,ν,λ))n/2t 2(λ−ν−µ)n(t−1)/2t

((1+2min(ν,µ)|2−νk−2−µl|)(1+2min(µ,λ)|2−µl−2−λm|)(1+2min(λ,ν)|2−λm−2−νk|))N/t
for some C > 0, N > n, and ε > 0. Then the operator T can be extended to be a
bounded operator from Ḟα1,s1

p × Ḟα2,s2
q into Ḟα3,s3

r .

Proof. The theorem reduces to the previous cases with α = 0 by observing now that
for ũ = {ũνk} = {2ναuνk}.

‖ũ‖ḟ0,s
p

= ‖u‖ḟα,sp
.(54)

We leave the simple computations to the reader.

7. Examples and applications

We now look at some examples given by bilinear operators defined by their symbols.
First we consider general symbols σ(x, ξ, η) which are C∞ function on Rn × (Rn −
{0})× (Rn − {0}) and satisfy the homogeneous estimates

|∂γx∂βξ ∂δησ(x, ξ, η)| ≤ Cγ,β,δ|ξ|−|β||η|−|δ|(|ξ|+ |η|)|γ|(55)

for all x, ξ �= 0, η �= 0 and all multi-indices γ, β and δ. Example of such symbols
are the often encountered “homogeneous multipliers”, that is functions σ(ξ, η) inde-
pendent of x and homogeneous of degree zero in ξ and in η. We have the following
estimate for the action of such bilinear operators on pairs of wavelets.

Lemma 3. Let T be a bilinear operator with symbol σ(x, ξ, η) satisfying (55). Then,
for any family of almost orthogonal wavelets {φνk} as in Section 2,

|∂γT (φνk, φµl)(x)| ≤ CN,γ
2νn/22µn/2 max(2ν , 2µ)|γ|

(1 + 2ν |x− 2−νk|)N(1 + 2µ|x− 2−µl|)N
for all γ and all N > n.
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Proof. With a simple change of variable, we compute that

T (φνk, φµl)(x) = 2νn/22µn/2
∫ ∫

ei((2
νx−k)ξ+(2µx−l)η)σ(x, 2νξ, 2µη)φ̂(ξ)φ̂(η)dξdη,

where the integration takes place for |ξ| ≈ 1 and |η| ≈ 1 because of the conditions on

the support of φ̂. Taking γ derivatives in x we obtain a sum of terms with integrands
of the form

Cγ1,γ2e
i((2νx−k)ξ+(2µx−l)η)(i(2νξ + 2µη))γ1∂γ2

x σ(x, 2νξ, 2µη)φ̂(ξ)φ̂(η)

where γ1 + γ2 = γ.
Now, if �ξ is the Laplace operator in ξ, then

(1−�ξ)
Nei((2

νx−k)ξ+(2µx−l)η) = (1 + |2νx− k|)Nei((2νx−k)ξ+(2µx−l)η),

and integration by parts in ξ gives

∂γT (φνk, φµl)(x) =
2νn/22µn/2

(1 + |2νx− k|)N
∫ ∫

ei((2
νx−k)ξ+(2µx−l)η)

∑
γ1,γ2,β1,β2,β3

dξdη,

where
∑

γ1,γ2,β1,β2,β3
is a finite sum with β1 + β2 + β3 = β and |β| ≤ 2N , and each of

the summands is of the form

Cγ1,γ2,β1,β2,β3∂
β1

ξ (2νξ + 2µη))γ1 ∂β2

ξ ∂
γ2
x σ(x, 2νξ, 2µη) ∂β3

ξ φ̂(ξ)φ̂(η).

Using the size of ξ and η and the conditions on the symbol we obtain the simple
estimates

|∂β1

ξ (2νξ + 2µη)γ1 | ≤ Cγ1,β1 max(2ν , 2µ)|γ1|,(56)

|∂β2

ξ ∂
γ2
x σ(x, 2νξ, 2µη)| ≤ Cγ2,β2|2νξ|−|β2|2ν|β2|(2ν |ξ|+ 2µ|η|)|γ2| ≤ Cγ2,β2 max(2ν , 2µ)|γ2|,

(57)

and

|∂β3

ξ φ̂(ξ)φ̂(η)| ≤ Cβ3 .(58)

Combining (56), (57), and (58) we obtain

|∂γT (φνk, φµl)(x)| ≤ CN,γ
2νn/22µn/2

(1 + |2νx− k|)N max(2ν , 2µ)γ.(59)

The same computations using integration by parts in the variable η give

|∂γT (φνk, φµl)(x)| ≤ CN,γ
2ν/22µ/2

(1 + |2µx− l|)N max(2ν , 2µ)γ.(60)

Estimates (59) and (60) together yield the desired result.

The above lemma implies a “reduced” T1-theorem for bilinear pseudodifferential
operators.
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Theorem 6. Let T be a bilinear operator. Assume that the symbols of T , T ∗1, T ∗2

satisfy (55). Assume further that for a family of wavelets {φνk}∫
T (φνk, φµl)(x)dx =

∫
T ∗1(φνk, φµl)(x)dx =

∫
T ∗2(φνk, φµl)(x)dx = 0.(61)

Then T can be extended as a bounded operator from Lp(Rn) × Lq(Rn) into Lr(Rn)
when 1/p+ 1/q = 1/r and 1 < p, q, r <∞.

Proof. We just observe that as a consequence of Lemma 3, T , T ∗1, T ∗2, map pairs of
wavelets into bilinear molecules. The result then follows from Theorem 2.

Replacing (61) by higher order vanishing moments one can obtain versions of the
theorem above for other function spaces. We illustrate this below.

The cancellation conditions in (61) take a very simple form for bilinear multipliers,
i.e. when there is no x–dependence in the symbol. In fact, it is easy to see that∫

T (φνk, φµl)(x)x
γdx = 0(62)

for all |γ| ≤ L is equivalent to

∂γξ (σ(ξ,−ξ)) = 0(63)

for all |γ| ≤ L. Similarly, the corresponding higher order cancellations for T ∗1 and
T ∗2 are equivalent to

∂γξ (σ(ξ, 0)) = 0(64)

and

∂γξ (σ(0, ξ)) = 0(65)

for all |γ| ≤ L.
We can now extend the Lp multiplier result of Coifman and Meyer [5] to Hp spaces

in the full range 0 < p ≤ 1. See also the works of Coifman, Dobyinsky, and Meyer[2]
and of Youssfi [23]. In the theorem below we identify Hp with Lp for p > 1.

Theorem 7. Let σ(ξ, η) be a C∞ function on Rn ×Rn − {(0, 0)} such that

|∂γξ ∂βη σ(ξ, η)| ≤ Cγ,β(|ξ|+ |η|)−|γ|−|β|(66)

for all ξ �= 0, η �= 0 and all multi-indices γ and β. Assume that 0 < p, q, r < ∞,
1/p + 1/q = 1/r, and r ≤ 1. In addition, assume that, σ satisfies (63), (64), (65),
with L = [n(1

r
− 1)] + 1. Then the corresponding bilinear operator T with symbol σ is

bounded from Hp ×Hq into Ḟ 0,1
r ⊂ Hr.

Proof. It is easy to see that the class of operators with symbols satisfying (66) is
invariant by taking either transpose. Hence, Lemma 3 can be applied to T , T ∗1, and
T ∗2. We will use this and Proposition 5 to verify that T satisfies the estimate in the
hypotheses of Theorem 4. To do this, fix t < min(1, p, q, r) = r and let

BN = ((1+2min(ν,µ)|2−νk−2−µl|)(1+2min(µ,λ)|2−µl−2−λm|)(1+2min(λ,ν)|2−λm−2−νk|))N .
By symmetry, we may assume µ ≥ ν and consider the following three cases.
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a) λ ≥ µ ≥ ν. Using Proposition 5 with T ∗1(φλm, φµl) and φνk, we obtain

|a(λm, νk, µl)| ≤ C

BN

2−(λ−ν)L2(−λ+µ+ν)n/2

≤ C

BN

2−(λ−ν)ε/t2(−λ+µ+ν)n(t−1)/2t2(−λ+µ+ν)n/2t,

when L ≥ ε/t.
b) µ ≥ λ ≥ ν. Apply again Proposition 5 to now obtain

|a(λm, νk, µl)| ≤ C

BN

2−(µ−ν)L2(−µ+λ+ν)n/2

≤ C

BN

2−(µ−ν)ε/t2(−λ+µ+ν)n(t−1)/2t2(−µ+λ+ν)n/2t,

when L ≥ ε/t+ n(1/t− 1).
c) µ ≥ ν ≥ λ. This time Proposition 5 with T (φνk, φµl) and φλm, gives

|a(λm, νk, µl)| ≤ C

BN

2−(µ−λ)L2(−µ+λ+ν)n/2

≤ C

BN

2−(µ−λ)ε/t2(−λ+µ+ν)n(t−1)/2t2(−µ+λ+ν)n/2t,

again when L ≥ ε/t+ n(1/t− 1).
By selecting ε > 0 sufficiently small and t < r sufficiently close to r, we obtain the

requirement L ≥ n(1
r
− 1) + δ for δ > 0 arbitrarily small. This justifies the choice of

L = [n(1
r
− 1)] + 1 in the statement of the theorem. To complete the proof we pick

N so that Nt > n and we apply Theorem 4.

8. Concluding remarks

Using these methods, it is possible to consider not only bilinear but also more
general k-linear operators for k ≥ 3. Nevertheless, having preferred to minimize the
cumbersome notation and for the sake of clarity in the exposition, we have limited
ourselves to the bilinear case. We also note that the proofs in this article do not
require the symbols or molecules to be C∞, but only Ck for sufficiently large k
depending on the parameters involved. We find no need in this work to state the
amount of smoothness required in the proofs.

As in the introduction, we remark that the almost diagonal conditions are p-
independent provided 1 < p < ∞. This is an indication that our results should
apply to a larger class of bilinear operators defined by singular kernels. We have
in mind kernels which satisfy bilinear analogues of the standard estimates of linear
operators of Calderón-Zygmund type. We plan to address this issue in a forthcoming
collaboration.

In general, the almost diagonal conditions are only sufficient to get boundedness
results. Nevertheless, when combined with appropriate cancellation they become
very close to also being necessary for certain classes of operators (again analogues of
the linear Calderón-Zygmund operators). For example, Theorem 7 with p = q = 2
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gives the boundedness of T from L2×L2 into Ḟ 0,1
1 . This last space coincides with the

Besov (“special atoms”) space Ḃ0,1
1 . It has been proved in [2] that in this particular

case the hypotheses of Theorem 7 are necessary and sufficient for such a boundedness
result. The other cases treated in Theorem 7 are new. We do not know whether the
cancellation hypotheses are also necessary.

Examples of operators to which Theorem 7 applies are provided by homogeneous
multipliers of degree zero in R2n which are smooth on the unit sphere and vanish in
a neighborhood of ξ = −η, ξ = 0, and η = 0. A different approach to homogeneous
bilinear multipliers has been pursued by Gilbert and Nahmod [12] using tiles in
the spirit of the work [17]. The methods in [12] treat bilinear multipliers with less
regularity than the ones we are considering but so far the techniques using tiles are
only available in dimension one.

The interested reader may check that, with the appropriate amount of cancellation
on T and its transposes, the method of this article gives versions of Theorem 7 for
other Triebel-Lizorkin spaces Ḟα,s

p . Also by combining with the Lp results in [5] one

can obtain versions for the inhomogeneous spaces Fαs
p = Lp ∩ Ḟαs

p for 1 < p < ∞
and α > 0. Besov spaces can also be considered. However for those spaces there
is a more direct alternative approach based on a multilinear version of Schur’s test.
Details will appear elsewhere [14].
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