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Abstract. We establish a uniform estimate for a bilinear fractional integral oper-

ator via restricted weak-type endpoint estimates and Marcinkiewicz interpolation.

This estimate is crucial in the integrability analysis of a tensor-valued bilinear frac-

tional integral operator associated with Euler-Riesz systems modeling mean-field

interactions induced by a singular kernel. The tensorial operator arises from a re-

formulation of the Euler-Riesz system that yields a gain in integrability for finite

energy solutions through compensated integrability. Additionally, for smooth peri-

odic solutions of the reformulated system, we derive a stability result.

1. Introduction

We consider the following Euler-Riesz system for t ≥ 0 and x ∈ Rd (with d ∈ N):∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇ργ + ρ∇Kα ∗ ρ = 0,

(1.1)

where ρ : [0,∞) × Rd → [0,∞) denotes a density, u : [0,∞) × Rd → Rd stands for the

velocity and the exponent γ is greater than 1. The kernel Kα is given by

Kα(x) =
1

d−α |x|
α−d (1.2)

with 0 < α < d; the term ρ∇Kα ∗ ρ describes the nonlocal repelling interaction of

particles. Smooth solutions (ρ, u) of (1.1) decaying sufficiently fast at infinity satisfy the

conservation of energy and mass identities:

d

dt

∫
Rd

1
2ρ|u|

2 + 1
γ−1ρ

γ + 1
2ρ(Kα ∗ ρ) dx = 0,

d

dt

∫
Rd

ρdx = 0 . (1.3)

This, in particular, yields an a priori estimate for weak solutions, which implies the

regularity ρ ∈ L∞((0,∞);L1 ∩ Lγ(Rd)
)

for the density.

In this work, we exploit an intriguing connection between harmonic analysis and the

theory of Euler-Riesz systems hinging on the study of a bilinear fractional integral opera-

tor. The approach is based on a reformulation of the interaction term in divergence form,

as seen in (1.4) below, in conjunction with uniform bounds for an associated bilinear

fractional integral operator that are established here. This reformulation is advanta-

geous for three reasons: (i) On the one hand, all the terms of the equations are written
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in divergence form, allowing the derivatives to be absorbed by the test functions in a

weak formulation. (ii) The harmonic analysis estimates lead to integrability properties

of the nonlocal interaction term. (iii) Finally, for finite energy solutions, it provides a

higher integrability estimate for the density in space-time, achieved by applying the com-

pensated integrability theory for divergence-free positive symmetric tensors [29, 30, 31]

to the setting of Euler-Riesz systems.

To illustrate, note that the only term of (1.1) that is not in divergence form is the

interaction term ρ∇Kα∗ρ. Inspired by a calculation in [30] and exploiting the symmetry

of the kernel Kα, one reaches the identity

ρ∇Kα ∗ ρ = ∇ · Sα(ρ) (1.4)

where Sα(ρ) is a tensor defined by

Sα(ρ)(t, x) =
1
2

∫ 1

0

∫
Rd

ρ(t, x+ (θ − 1)y) ρ(t, x+ θy) |y|α−d−2 y ⊗ y dy dθ. (1.5)

Identity (1.4) is derived in Appendix A and yields a reformulation of (1.1) in which

the equations are expressed as a divergence-free condition of a tensor that fits into

the compensated integrability framework of [29]. This reformulation leads, in turn,

to a higher integrability estimate for finite energy solutions thereby improving on the

integrability provided by the energy identity; see Theorem 3.2.

To analyze Sα(ρ), we consider a bilinear fractional integral operator Iθα defined for

nonnegative measurable functions f and g on Rd by

Iθα(f, g)(x) =

∫
Rd

f(x+ (θ − 1)y) g(x+ θy) |y|α−d dy (1.6)

with 0 < α < d and 0 ≤ θ ≤ 1. The main result of this work provides a uniform bound

in θ for Iθα with assumptions similar in style to the classical Hardy-Littlewood-Sobolev

(HLS) inequality; see Theorem 2.1.

From the natural integrability of ρ induced by the energy identity, one may deduce

using the classical HLS inequality that the term ρ∇Kα∗ρ belongs to L1 in space whenever

1 < α < d. By contrast, when employing the formulation (1.4) via the tensor Sα(ρ), one

improves the range to 0 < α < d. This observation underlines the importance of the

reformulation of (1.1) through identity (1.4).

The paper is organized as follows. In Section 2 we state the main theorem of this

work and describe the associated results. In Section 3 we explain how the theory of

compensated integrability leads to a higher integrability estimate for finite energy solu-

tions of the Euler-Riesz system. Section 4 contains the proof of the main theorem and

its corollary, Proposition 2.6, which yields an integrability result for the tensor given by

(1.5). Finally, in Section 5, we establish a stability result for smooth periodic solutions

of the reformulated Euler-Riesz system via the relative energy method.
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2. Description of results

The main theorem of this work provides a uniform estimate for the bilinear fractional

operator Iθα given by (1.6); see Theorem 2.1 below.

Fractional integral operators have been of great importance in harmonic analysis for

several decades; however, in recent years, their bilinear analogues have also attracted

research attention. In particular, an operator Bα, with 0 < α < d, acting on nonnegative

measurable functions of Rd as

Bα(f, g) =

∫
Rd

f(x− y) g(x+ y) |y|α−d dy

was first considered in [8] and later in [19, 12], in which optimal boundedness properties

between Lebesgue spaces were established. It has subsequently been studied extensively

by several authors; we refer to [6, 28, 25, 18, 16, 20, 17] for estimates concerning Bα (and

related versions) on a variety of spaces. While the operator Iθα is quite similar to Bα

when the dependence on the parameter θ is ignored, its study becomes more intricate

when seeking estimates that are uniform in the auxiliary parameter θ.

These types of operators have sparked significant interest primarily due to the singular

nature of their integrands, but also due to their proximity to Hilbert transforms. No-

table examples include the linear fractional integral operator (also known as the Riesz

potential) and the linear Hilbert transform. In our case, the bilinear operator Iθα is

related to a bilinear Hilbert transform Hθ, given by

Hθ(f, g)(x) = p.v.
∫
R
f(x+ (θ − 1)t) g(x+ θt)

dt

t
.

Uniform bounds in θ for this transform can be deduced by direct application of the results

obtained in [13, 27]. Other boundedness results for similar bilinear Hilbert transforms

can be found in [21, 22].

2.1. Main result.

Theorem 2.1. Let d ∈ N be the dimension, 0 < α < d, and p, q, r be integrability

exponents satisfying

1 < p, q <
d

α
, r ≥ 1, and

1

p
+

1

q
=

1

r
+
α

d
.

Then there is a constant C = C(α, d, p, q) > 0 independent of θ such that for all f ∈

Lp(Rd) and g ∈ Lq(Rd) we have

∥Iθα(f, g)∥Lr(Rd) ≤ C ∥f∥Lp(Rd) ∥g∥Lq(Rd). (2.1)

Whenever (1/p, 1/q) lies in the interior of the square with vertices (α/d, α/d), (α/d, 1),

(1, α/d), and (1, 1), then Iθα is bounded from Lp(Rd) × Lq(Rd) to Lr(Rd) uniformly in

θ when 1/p + 1/q = 1/r + α/d. If one ignores the uniform bounds in θ, then Iθα is

bounded from Lp(Rd) × Lq(Rd) to Lr(Rd) when the pair (1/p, 1/q) lies in the interior

of the pentagon with vertices (0, α/d), (0, 1), (1, 1) (1, 0), and (α/d, 0). See Figure 1.
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Figure 1. Region of boundedness

The proof of Theorem 2.1 relies on a bilin-

ear version of the Marcinkiewicz interpolation

method, where from a finite set of restricted

weak-type estimates, one deduces strong-type es-

timates; see Proposition 4.6. A more general

version of this method, for multilinear operators,

was established in [12, 14]. In particular, in [12],

this method is deduced as a corollary of a Boyd

interpolation theorem in a framework of quasi-

normed rearrangement-invariant spaces.

Finally, we would like to point out that the

largest possible region in which uniform estimates hold for Iθα is, in fact, the open

square with vertices (α/d, α/d), (α/d, 1), (1, α/d), and (1, 1). In fact, by interpolation,

it suffices to verify that uniform bounds fail on the boundary of this square. To verify

this assertion, let us assume that a uniform bound

sup
0<θ<1

∥Iθα(f, g)∥Lr(Rd) ≤ C ∥f∥Lp(Rd)∥g∥L d
α (Rd)

holds on the horizontal dotted line, that is, when 1/p + 1/q = 1/r + α/d and q = d/α,

for some positive constant C = C(α, d). In this case, we must have p = r. By Fatou’s

lemma, it follows that

∥ lim inf
θ→1

Iθα(f, g)∥Lp(Rd) ≤ C ∥f∥Lp(Rd)∥g∥L d
α (Rd)

hence, for all Schwartz functions f and g we must have

∥fIα(g)∥Lp(Rd) ≤ C ∥f∥Lp(Rd)∥g∥L d
α (Rd)

(2.2)

where Iα is the fractional integral operator

Iα(g)(x) =

∫
Rd

g(x+ y) |y|α−d dy =

∫
Rd

g(x− y) |y|α−d dy.

Now inserting f(x) = fϵ,x0(x) = (1/ϵ)
d
2 e−

π
ϵ |x−x0|2 in (2.2) and letting ϵ→ 0, we obtain

|Iα(g)(x0)| ≤ C ∥g∥
L

d
α (Rd)

for all x0 ∈ Rd. This would imply that Iα maps L
d
α (Rd) to L∞(Rd), a fact known to be

false; see [11, Example 5.1.4]. An analogous argument (letting θ → 0) indicates that a

uniform bound also cannot hold on the vertical dotted line of Figure 1.

2.2. Connections with the HLS inequality.

Recall the HLS inequality [26]:

Proposition 2.2. Let p, q > 1 and 0 < α < d satisfy

1

p
+

1

q
= 1 +

α

d
.



5

If f ∈ Lp(Rd) and g ∈ Lq(Rd), then∣∣∣∣∫
Rd

∫
Rd

f(x)|x− y|α−dg(y) dx dy

∣∣∣∣ ≤ C ∥f∥Lp(Rd) ∥g∥Lq(Rd) (2.3)

for some C = C(α, d, p) > 0.

Note that the assumptions on the integrability exponents p and q in Theorem 2.1 with

r = 1 and Proposition 2.2 are exactly the same. Indeed, the assumptions of Proposition

2.2 imply that p, q < d/α. To check this fact, suppose, without loss of generality, that

p > 1 and q ≥ d/α. Then 1/p+ 1/q < 1 + α/d, which is a contradiction.

Furthermore, the HLS inequality can be used to infer the L1 boundedness of the

operator Iθα, since for nonnegative measurable functions f and g, appropriate changes

of variables yield

∥Iθα(f, g)∥L1(Rd) =

∫
Rd

∫
Rd

f(x)|x− y|α−dg(y) dx dy.

Thus, the uniform estimate (2.1) is particularly important if r > 1.

2.3. A tensorial bilinear fractional integral operator.

Consider a bilinear version of the tensor Sα(ρ), that is, define a tensorial bilinear

fractional integral operator Jα for nonnegative measurable functions f and g on Rd by

Jα(f, g)(x) =

∫ 1

0

∫
Rd

f(x+ (θ − 1)y) g(x+ θy) |y|α−d−2 y ⊗ y dy dθ. (2.4)

Note that Sα(ρ) =
1
2Jα(ρ, ρ). Additionally, identity (1.4) can be written in terms of Jα

as

f∇Kα ∗ f = ∇ ·
(
1
2Jα(f, f)

)
. (2.5)

As a consequence of Theorem 2.1, for the operator Jα we obtain the following result:

Proposition 2.3. Let 0 < α < d and p, q, r be integrability exponents satisfying

1 < p, q <
d

α
, r ≥ 1, and

1

p
+

1

q
=

1

r
+
α

d
.

Then for all f ∈ Lp(Rd) and g ∈ Lq(Rd) we have

∥Jα(f, g)∥Lr(Rd) ≤ C ∥f∥Lp(Rd) ∥g∥Lq(Rd) (2.6)

for some C = C(α, d, p, q) > 0.

The previous proposition leads to an integrability result for Sα(ρ). Indeed, if

ρ ∈ L1(Rd) ∩ Lγ(Rd)

– as implied by the a priori bounds (1.3) – and 1 < 2dr/(d + αr) ≤ γ, for some r ≥ 1,

then Sα(ρ) ∈ Lr(Rd) and there exists a constant C = C(α, d, r) > 0 such that

∥Sα(ρ)∥Lr(Rd) ≤ C ∥ρ∥2Lp(Rd) (2.7)

where p = 2dr/(d + αr). Note that by interpolation, the right hand side of (2.7) is

controlled by the norm ∥ρ∥L1(Rd) + ∥ρ∥Lγ(Rd).
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2.4. Reformulation of the Euler-Riesz system.

Consider the Euler-Riesz system (1.1) supplemented with initial data ρ0 and u0. This

system comprises a continuity equation for the conservation of mass and a second equa-

tion that ensures the conservation of momentum. These equations govern the dynamics

of a compressible fluid with density ρ and linear velocity u, subject to pressure and

interaction forces. The pressure function is given by p(ρ) = ργ , with γ > 1 being the

adiabatic exponent, and the interaction forces are modelled through the kernel Kα given

by (1.2). For d ≥ 3 and α = 2, we recover the Euler-Poisson equations, as in that case,

the interaction kernel K2 is the Newtonian kernel. For existence theories on Euler-Riesz

systems, we refer to [4, 5].

As observed in the introduction, smooth solutions of (1.1) satisfy a priori bounds

of conservation of energy and mass. Given the adiabatic exponent, it is reasonable to

consider solutions such that ρ belongs to L1∩Lγ in space. A natural question is whether

this integrability can be improved by exploiting the structure of the equations. For finite

energy solutions this can be accomplished by compensated integrability. Specifically, for

a finite energy solution (ρ, u) of (1.1), one can prove that for each T > 0

if ρ ∈ L∞(0, T ;Lγ(Rd) ∩ L1(Rd)
)

then ρ ∈ Lγ+ 1
d

(
(0, T )× Rd

)
. (2.8)

The first step towards (2.8) is to rewrite system (1.1) as a space-time divergence-free

condition for an appropriate tensor. This is made possible through identity (1.4). This

reformulates system (1.1) into a divergence-free positive symmetric tensor form, fitting

in the compensated integrability theory of [29, 30, 31], thereby yielding the integrability

improvement (2.8); see Section 3. We refer to [15] for an extension of this theory, and to

[24] where a higher integrability estimate is obtained for one-dimensional finite energy

solutions of an isentropic Euler system using a different methodology.

Next, we explore a possible weak formulation for the Euler-Riesz system (1.1). For

the continuity equation take∫ ∞

0

∫
Rd

ρ∂tφ+ ρu · ∇φdx dt+

∫
Rd

ρ0φ0 dx = 0

where φ ∈ C1
c ([0,∞) × Rd) is a test function with φ|t=0 = φ0. For the momentum

equation we have two options, according to identity (1.4). Let ξ ∈ C1
c ([0,∞)× Rd;Rd)

be a test function with ξ|t=0 = ξ0. Using the left-hand side of (1.4), we get∫ ∞

0

∫
Rd

ρu ·∂tξ+(ρu⊗u+ργId) : ∇ξ−ρ∇(Kα ∗ρ) ·ξ dxdt+
∫
Rd

ρ0u0 ·ξ0 dx = 0, (2.9)

whereas, using the right-hand side of (1.4), we have∫ ∞

0

∫
Rd

ρu · ∂tξ +
(
ρu⊗ u+ ργId + Sα(ρ)

)
: ∇ξ dxdt+

∫
Rd

ρ0u0 · ξ0 dx = 0, (2.10)

where Id is the d×d identity matrix, and for two square matrices A = (aij) and B = (bij),

A : B =
∑

i,j aijbij .

Assume that ρ ∈ L1 ∩ Lγ(Rd). Using the HLS inequality we obtain:
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(i) If 1 < α < d and γ ≥ q = 2d/(d+ α− 1), then ρ∇Kα ∗ ρ ∈ L1(Rd) since

∥ρ∇Kα ∗ ρ∥L1(Rd) ≤ C(α, d) ∥ρ∥2Lq(Rd).

(ii) If 0 < α < d and γ ≥ p = 2d/(d+ α), then Sα(ρ) ∈ L1(Rd) since

∥Sα(ρ)∥L1(Rd) ≤ C(α, d) ∥ρ∥2Lp(Rd).

The second formulation is preferable as it is well-defined for a larger range of the pa-

rameters α and γ.

3. Compensated integrability

In this section we provide a proof for (2.8), which is one of the reasons for having

considered the tensor Sα(ρ) and subsequently the bilinear fractional integral operator

Iθα.

3.1. A divergence-free positive symmetric tensor.

First, we write system (1.1) as a space-time divergence-free condition for an appro-

priate tensor. Thanks to (1.4), system (1.1) can be reformulated into:

∇t,x ·Aα(ρ, u) = 0 (3.1)

where the (1 + d)-tensor Aα(ρ, u) is given by

Aα(ρ, u) =

 ρ (ρu)⊤

ρu ρu⊗ u+ p(ρ)Id + Sα(ρ)

 . (3.2)

Next, we deduce some basic properties of the tensor Sα(ρ) given by (1.5) that are

relevant for the subsequent analysis.

Proposition 3.1. The tensor Sα(ρ) is symmetric, positive semi-definite and

det
(
p(ρ)Id + Sα(ρ)

)
≥

p(ρ)
d,

detSα(ρ).

Proof. It is clear that Sα(ρ) is symmetric since y ⊗ y is symmetric. Moreover, given a

vector v = v(x),

v⊤Sα(ρ)v = 1
2

∫
Rd

∫ 1

0

ρ(x+ (θ − 1)y)ρ(x+ θy)|y|α−d−2(y · v)2 dθ dy ≥ 0

hence Sα(ρ) is positive semi-definite. Therefore, there exist nonnegative eigenvalues

λ1, . . . , λd, and respective eigenvectors v1, . . . , vd, that is, Sα(ρ)vi = λivi. Then p(ρ)+λi

is an eigenvalue of p(ρ)Id+Sα(ρ), since
(
p(ρ)Id+Sα(ρ)

)
vi =

(
p(ρ)+λi

)
vi. Hence, given

that λi ≥ 0,

det
(
p(ρ)Id + Sα(ρ)

)
=

d∏
i=1

(
p(ρ) + λi

)
≥



d∏
i=1

p(ρ) = p(ρ)d,

d∏
i=1

λi = detSα(ρ).
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□

It follows that the tensor Aα(ρ, u) is symmetric and positive semi-definite. To check

the latter, let w = (w0, w̃), with w0 being a scalar and w̃ a d-dimensional vector, and

note that

w⊤Aw =
[
w0 w̃⊤

] ρ (ρu)⊤

ρu ρu⊗ u+ p(ρ)I + Sα(ρ)

w0

w̃


= ρ(w0 + u · w̃)2 + p(ρ)|w̃|2 + w̃⊤Sα(ρ)w̃

≥ 0

where in the last step we used the fact that Sα(ρ) is positive semi-definite.

Consequently Aα(ρ, u) is a divergence-free positive symmetric tensor.

3.2. Higher integrability for finite energy solutions.

Assume that (ρ, u) is a solution of (3.1) with finite mass and energy and such that

Aα(ρ, u) belongs to L1
(
(0, T )× Rd

)
∩ L1+ 1

d

loc

(
(0, T )× Rd

)
for each T > 0. Note that by

the conservation of mass and energy, it suffices to prescribe initial data (ρ0, u0) with

finite mass and energy. We apply [29, Theorem 2.3] to the tensor Aα(ρ, u), along the

same lines of the proof of [29, Theorem 3.1].

Set

Σ = (0, T )×BR, BR = {x ∈ Rd | |x| < R},

∂Σ =
(
{0} ×BR

)
∪
(
(0, T )× ∂BR

)
∪
(
{T} ×BR

)
.

The following estimate holds:∫ T

0

∫
BR

(
detAα(ρ, u)

) 1
d dxdt ≤ cd∥Aα(ρ, u)ν∥

1+ 1
d

L1(∂Σ) (3.3)

where ν is the outward normal vector to the boundary of Σ, given by

ν =


(−1, 0d) on {0} ×BR,

z = (0, x/|x|) on (0, T )×BR,

(1, 0d) on {T} ×BR.

Hence

∥Aα(ρ, u)ν∥L1(∂Σ) =

∫
BR

|(ρ, ρu)|t=0 + |(ρ, ρu)|t=T dx+ ψ(R)

where

ψ(R) =

∫ T

0

∫
∂BR

|Aα(ρ, u)z|dxdt.

Since Aα(ρ, u) is integrable it follows that ψ ∈ L1(0,∞). Indeed,∫ ∞

0

|ψ(R)|dR ≤
∫ ∞

0

∫ T

0

∫
∂BR

|Aα(ρ, u)|dxdtdR

=

∫ ∞

0

d

dR

∫ T

0

∫
BR

|Aα(ρ, u)|dx dtdR

= ∥Aα(ρ, u)∥L1((0,T )×Rd).
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Therefore, there exists a sequence Rn → ∞ such that ψ(Rn) → 0. Considering this limit

in (3.3), and using the conservation of mass and momentum, gives∫ T

0

∫
Rd

(
detAα(ρ, u)

) 1
d dxdt ≤ cd

(∫
Rd

|(ρ, ρu)|t=0 + |(ρ, ρu)|t=T dx
)1+ 1

d

= 2cd

(∫
Rd

√
ρ20 + ρ20|u0|2 dx

)1+ 1
d

≤ 2cd

(∫
Rd

ρ0 + ρ0|u0|dx
)1+ 1

d

where in the last inequality we used that
√
a2 + b2 ≤ a+ b for a, b ≥ 0.

Now, using Proposition 3.1,

detAα(ρ, u) = ρdet

(
ρu⊗ u+ p(ρ)I + Sα(ρ)− ρu

1

ρ
ρu⊤

)
= ρdet

(
p(ρ)Id + Sα(ρ)

)
≥ ρp(ρ)d.

Consequently,∫ T

0

∫
Rd

ρ
1
d p(ρ) dxdt =

∫ T

0

∫
Rd

(
ρp(ρ)d

) 1
d dxdt

≤
∫ T

0

∫
Rd

(detAα(ρ, u))
1
d dxdt

≤ 2cd

(∫
Rd

3
2ρ0 +

1
2ρ0|u0|

2 dx

)1+ 1
d

≤ 2cd

(
3
2

∫
Rd

ρ0 dx+

∫
Rd

1
2ρ0|u0|

2 + h(ρ0) +
1
2ρ0K ∗ ρ0 dx

)1+ 1
d

<∞

which establishes the desired higher integrability estimate given that p(ρ) = ργ .

Letting T → ∞ we obtain:

Theorem 3.2. Solutions of the Euler-Riesz system (1.1) with 0 < α < d and repelling

potentials satisfy the a priori estimate

ρ ∈ Lγ+ 1
d

(
(0,∞)× Rd

)
.

Remark 3.3. Note that the special case α = 2 with d ≥ 3 corresponds to the Euler-

Poisson system
∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) = −∇ργ − ρ∇ϕ,

−∆ϕ = ρ,

(3.4)

commonly used in models for electrically charged fluids.

In this case, as the potential is given as the solution of Poisson’s equation, one could

also write

ρ∇ϕ = ∇ ·
(
1
2 |∇ϕ|

2Id −∇ϕ⊗∇ϕ
)
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however, the tensor being applied by the divergence on the right-hand side is not positive

semi-definite, and therefore it does not fit into the theory of compensated integrability.

4. Bilinear harmonic analysis

The aim of this section is to prove Theorem 2.1. Since all the operators involved are

positive, we assume that all the considered functions are nonnegative. Given that all

the Lebesgue spaces in this section are over Rd, we shorten the notation of Lp(Rd) to

Lp.

4.1. An auxiliary operator Iθ.

For 0 ≤ θ ≤ 1, let Iθ be the bilinear operator defined for (nonnegative) measurable

functions f and g on Rd by

Iθ(f, g)(x) =

∫
|y|≤1

f(x+ (θ − 1)y) g(x+ θy) dy.

Lemma 4.1. The operator Iθ maps L1 × L1 to L
1
2 uniformly in θ. Precisely:

∥Iθ(f, g)∥
L

1
2
≤ C ∥f∥L1 ∥g∥L1 (4.1)

with C = 3d52d.

Proof. We first prove (4.1) with C = 3d for integrable functions f and g supported

in cubes with sides of length one parallel to the axes. Let Q0 = [0, 1]d and for each

k ∈ Zd, let Qk = k + Q0 denote the cube with side length one whose sides are parallel

to the axes and whose lower left corner is k. For k = (k1, . . . , kd) and l = (l1, . . . , ld)

in Zd, assume that f is supported in Qk and that g is supported in Ql. Under these

conditions, we claim that Iθ(f, g) is supported in a cube Q of side length 3. Indeed, for

each i = 1, . . . , d, the inequalities

ki ≤ xi + (θ − 1)yi ≤ ki + 1, li ≤ xi + θyi ≤ li + 1,

together with |y| ≤ 1 and 0 ≤ θ ≤ 1 imply that

ki − 1 ≤ xi ≤ ki + 2, li − 1 ≤ xi ≤ li + 2,

which establishes the claim. Thus, for these f and g, the Cauchy-Schwarz inequality

gives

∥Iθ(f, g)∥
L

1
2
=

(∫
Rd

χQ|Iθ(f, g)|
1
2 dx

)2

≤ 3d
∫
Rd

∫
Rd

f(x+ (θ − 1)y)g(x+ θy) dy dx

≤ 3d
∫
Rd

∫
Rd

f(z − y)g(z) dz dy

≤ 3d∥f∥L1∥g∥L1 .
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Now that we have established (4.1) for all integrable f and g supported in cubes with

side length one, we proceed to the general case. For each k and m in Zd, set fk = χQk
f ,

gm = χQmg.

Given x ∈ Rd, we claim that if Iθ(fk, gm)(x) ̸= 0, then each mi satisfies ki ≤ mi ≤

ki +2. Indeed, under the hypothesis Iθ(fk, gm)(x) ̸= 0, we have that x+ (θ− 1)y ∈ Qk,

x+ θy ∈ Qm, and so the conditions below hold

ki ≤ xi + (θ − 1)yi ≤ ki + 1,

and

mi ≤ xi + θyi ≤ mi + 1,

for each i = 1, . . . , d. Since |y| ≤ 1, the conditions above imply that

ki ≤ xi + θyi − yi ≤ xi + θyi + 1 ≤ mi + 2,

and

mi ≤ xi + θyi = xi + (θ − 1)yi + yi ≤ ki + 2,

which establishes the claim. So, for any fixed k ∈ Zd, if Iθ(fk, gm)(x) ̸= 0, thenm = k+l,

where l ∈ [−2, 2]d ∩ Zd = F . Note that F contains at most 5d elements.

We have:

|Iθ(f, g)| 12 ≤
∑
k∈Zd

∑
m∈Zd

|Iθ(fk, gm)| 12 =
∑
l∈F

∑
k∈Zd

|Iθ(fk, gk+l)|
1
2

and so, using the fact that (4.1) with C = 3d holds for the functions fk and gk+l, it

follows that

∥Iθ(f, g)∥
L

1
2
≤

∑
l∈F

∑
k∈Zd

∥Iθ(fk, gk+l)∥
1
2

L1/2

2

≤ 3d

∑
l∈F

∑
k∈Zd

∥fk∥
1
2

L1∥gk+l∥
1
2

L1

2

.

Finally, applying the Cauchy-Schwarz inequality to the last term above yields

∥Iθ(f, g)∥
L

1
2
≤ 3d

∑
l∈F

( ∑
k∈Zd

∥fk∥L1

) 1
2
( ∑

k∈Zd

∥gk+l∥L1

) 1
2

2

≤ 3d

(∑
l∈F

∥f∥
1
2

L1∥g∥
1
2

L1

)2

≤ 3d52d∥f∥L1∥g∥L1

which concludes the proof. □
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4.2. A dilated version of Iθ.

In this section we consider a dilated version of Iθ, denoted by Iθj , for j ∈ Z. This is

defined as follows:

Iθj (f, g)(x) =

∫
|y|≤2j

f(x+ (θ − 1)y) g(x+ θy) dy.

Lemma 4.2. The operator Iθj maps L1 × L1 to L1 uniformly in θ and in j. Precisely:

∥Iθj (f, g)∥L1 ≤ ∥f∥L1∥g∥L1 . (4.2)

Proof. Let f, g ∈ L1. By Fubini’s theorem and the change of variables x+ (θ − 1)y = z

it holds that

∥Iθj (f, g)∥L1 =

∫
|y|≤2j

∫
Rd

f(z)g(z + y) dz dy.

Using Fubini’s theorem once more, together with the change of variables z + y = w, it

follows that

∥Iθj (f, g)∥L1 =

∫
Rd

f(z)

∫
|w−z|≤2j

g(w) dwdz ≤ ∥f∥L1∥g∥L1

as desired. □

Lemma 4.3. The operator Iθj maps L1 × L1 to L
1
2 uniformly in θ. Precisely:

∥Iθj (f, g)∥L 1
2
≤ 2dj3d52d∥f∥L1∥g∥L1 . (4.3)

Proof. This is a consequence of (4.1) via a dilation argument which we include for

convenience.

We have:

∥Iθj (f, g)∥L 1
2
=

(∫
Rd

|Iθj (f, g)(2jx)|
1
2 2dj dx

)2

= 22dj

(∫
Rd

(∫
|y|≤2j

f(2jx+ (θ − 1)y)g(2jx+ θy) dy
) 1

2

dx

)2

= 22dj

(∫
Rd

(∫
|y|≤1

f(2j(x+ (θ − 1)y))g(2j(x+ θy))2dj dy
) 1

2

dx

)2

= 23dj∥Iθ(fj , gj)∥
L

1
2

where fj(x) = f(2jx) and gj(x) = g(2jx).

Using (4.1), it follows that

∥Iθj (f, g)∥L 1
2
≤ 23dj3d52d

∫
Rd

fj(x) dx

∫
Rd

gj(x) dx

= 23dj3d52d
∫
Rd

f(x)2−dj dx

∫
Rd

g(x)2−dj dx

= 2dj3d52d∥f∥L1∥g∥L1 ,

as desired. □
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Lemma 4.4. There exists c > 0, depending only on d, such that for all measurable sets

E,A,B ⊆ Rd it holds:

(∫
E

|Iθj (χA, χB)|
1
2 dx

)2

≤


c|A||B|min{2dj , |E|},

c|A||E|min{2dj , |B|},

c|B||E|min{2dj , |A|},

(4.4)

(4.5)

(4.6)

and ∫
E

|Iθj (χA, χB)|dx ≤ cmin{2dj |E|, |A||B|}. (4.7)

Proof. First we prove estimate (4.4). Using (4.3) with f = χA and g = χB we have that(∫
E

|Iθj (χA, χB)|
1
2 dx

)2

≤
(∫

Rd

|Iθj (χA, χB)|
1
2 dx

)2

≤ 3d52d2dj |A||B|.

On the other hand, by (4.2) and the Cauchy-Schwarz inequality it holds:(∫
E

|Iθj (χA, χB)|
1
2 dx

)2

=

(∫
R2

χE |Iθj (χA, χB)|
1
2 dx

)2

≤ |E||A||B|

≤ 3d52d|E||A||B|.

Estimate (4.4) follows from combining the two estimates above.

Next, we turn our attention to estimates (4.5) and (4.6). We only give a proof of the

former due to their symmetrical nature. First, we use the Cauchy-Schwarz inequality as

above to obtain (∫
E

|Iθj (χA, χB)|
1
2 dx

)2

≤ |E|
∫
Rd

Iθj (χA, χB) dx.

There are two ways to estimate the integral on the right-hand side of the previous

inequality. One way is by |A||B| (using (4.2)), and the other is as follows (using that

χB ≤ 1): ∫
Rd

Iθj (χA, χB) dx ≤
∫
Rd

∫
|y|≤2j

χA(x+ (θ − 1)y) dy dx

=

∫
|y|≤2j

∫
Rd

χA(x+ (θ − 1)y) dxdy

≤ νd2
dj |A|

where νd denotes the measure of the unit ball in Rd. This proves (4.5).

In order to prove (4.7), we observe that

Iθj (χA, χB) ≤ νd2
dj

from which it follows that ∫
E

|Iθj (χA, χB)|dx ≤ νd2
dj |E|.
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The previous inequality together with∫
E

|Iθj (χA, χB)|dx ≤
∫
Rd

|Iθj (χA, χB)|dx ≤ |A||B|

yields the desired estimate. □

4.3. Bilinear Marcinkiewicz interpolation.

Recall the definition of weak Lebesgue spaces. For 0 < r < ∞, the weak Lr space,

denoted by Lr,∞, is the space of all measurable functions f on Rd such that

∥f∥Lr,∞ := sup
λ>0

λ
∣∣{x ∈ Rd : |f(x)| > λ

}∣∣ 1r <∞. (4.8)

The map ∥ · ∥Lr,∞ is a quasi-norm, and the following holds [9]:

∥f∥Lr,∞ ≤ sup
0<|E|<∞

|E|− 1
s+

1
r

(∫
E

|f |s dx
) 1

s

(4.9)

where 0 < s < r and the supremum is taken over measurable sets E ⊆ Rd with finite

measure.

Definition 4.5. Let 0 < p, q, r < ∞. A bilinear operator U acting on measurable

functions is said to be of restricted weak type (p, q, r) (with constant c > 0) if

∥U(χA, χB)∥Lr,∞ ≤ c |A|
1
p |B|

1
q (4.10)

for all measurable sets A and B with finite measure.

The next proposition, a version of the multilinear Marcinkiewicz interpolation, is the

main step towards establishing Theorem 2.1. It yields strong-type bounds for bilinear

operators, assuming only a finite set of restricted weak-type estimates. For a proof of

the general case, see [14] or [10, Theorem 7.2.2 and Corollary 7.2.4].

Proposition 4.6. Let 0 < pi, qi, ri <∞ for i = 1, 2, 3. Suppose that the points( 1

p1
,
1

q1

)
,
( 1

p2
,
1

q2

)
,
( 1

p3
,
1

q3

)
,

do not lie on the same line in R2. For 0 < θ1, θ2, θ3 < 1 satisfying θ1 + θ2 + θ3 = 1

consider the points 0 < p, q, r <∞ such that(1
p
,
1

q
,
1

r

)
= θ1

( 1

p1
,
1

q1
,
1

r1

)
+ θ2

( 1

p2
,
1

q2
,
1

r2

)
+ θ3

( 1

p3
,
1

q3
,
1

r3

)
and

1

r
≤ 1

r1
+

1

r2
+

1

r3

Let U be a bilinear operator that is of restricted weak-type (pi, qi, ri) (with constant

ci > 0) for all i = 1, 2, 3. Then there is a constant C > 0 depending only on pi, qi, ri,

and θi (i = 1, 2, 3) such that∥∥U(f, g)
∥∥
Lr ≤ C cθ11 c

θ2
2 c

θ3
3 ∥f∥Lp∥g∥Lq

for all functions f ∈ Lp and g ∈ Lq.
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We note that the conclusion of Proposition 4.6 is also valid in the interior of the

convex hull of four (or more) points at which initial restricted weak-type estimates are

known. The reason is that any polygon can be written as a union of triangles.

4.4. Proof of Theorem 2.1.

Turning our attention to the bilinear fractional integral operator Iθα defined by (1.6),

we note that by a dilation argument, if it maps Lp × Lq to Lr, then necessarily

1

p
+

1

q
=

1

r
+
α

d
. (4.11)

Moreover, Theorem 2.1 affirms that Iθα is bounded uniformly in θ from Lp×Lq to Lr

when (p, q) lies in the open square with vertices (1, 1), (1, d
α ), (

d
α , 1), (

d
α ,

d
α ) and (4.11)

holds. In this case, we have:

(i) If (p, q) = (1, 1), then r = d
2d−α ,

(ii) If (p, q) = (1, d
α ), then r = 1,

(iii) If (p, q) = ( dα , 1), then r = 1,

(iv) If (p, q) = ( dα ,
d
α ), then r = d

α .

Set

(p1, q1, r1) =

(
1, 1,

d

2d− α

)
, (p2, q2, r2) =

(
1,
d

α
, 1

)

(p3, q3, r3) =

(
d

α
, 1, 1

)
, (p4, q4, r4) =

(
d

α
,
d

α
,
d

α

)
.

To establish Theorem 2.1 it suffices to prove that Iθα is of restricted weak type (pi, qi, ri)

(with constant ci that is independent of θ), for i = 1, 2, 3, 4. Then, the result follows by

bilinear Marcinkiewicz interpolation, Proposition 4.6.

That is, we need to prove the following estimates:

∥Iθα(χA, χB)∥
L

d
2d−α

,∞ ≤ c1|A||B|, (4.12)

∥Iθα(χA, χB)∥L1,∞ ≤ c2|A||B|αd , (4.13)

∥Iθα(χA, χB)∥L1,∞ ≤ c3|A|
α
d |B|, (4.14)

∥Iθα(χA, χB)∥
L

d
α

,∞ ≤ c4|A|
α
d |B|αd , (4.15)

uniformly in θ, for all measurable sets A and B with finite measure.

In the proof of (4.12)-(4.15) we utilize the following lemma.

Lemma 4.7. Let d ∈ N, 0 < α < d and a, b > 0. There exists c = c(d, α) > 0 such that∑
j∈Z

2
(α−d)j

2 (min{2dj , a}) 1
2

2

≤ c a
α
d , (4.16)

∑
j∈Z

2(α−d)j min{2dja, b} ≤ c a

(
b

a

)α
d

. (4.17)
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Proof. We only prove (4.16) as the other one is similar. Let m = max{j ∈ Z | 2dj < a}.

Then

∑
j∈Z

2
(α−d)j

2 (min{2dj , a}) 1
2 =

m∑
j=−∞

2
αj
2 +

∞∑
j=m+1

2
(α−d)j

2 a
1
2

=

∞∑
k=0

2−
α(k−m)

2 +

∞∑
i=0

2
(α−d)

2 (i+m+1)a
1
2

=
( ∞∑

k=0

2−
αk
2

)
2

αm
2 +

( ∞∑
i=0

2
(α−d)i

2

)
2

(α−d)
2 (m+1)a

1
2 .

The desired inequality is achieved by noting that 2
αm
2 < a

α
2d and 2

(α−d)
2 (m+1) ≤ a

α−d
2d .

□

Proof of Theorem 2.1.

First, note that Rd can be expressed as the union of annuli:

Rd =
⋃
j∈Z

(
B(2j) \B(2j−1)

)
,

where B(R) denotes the open ball in Rd centered at the origin with radius R.

Therefore:

Iθα(f, g)(x) ≤
∑
j∈Z

∫
2j−1≤|y|≤2j

f(x+ (θ − 1)y)g(x+ θy)|y|α−d dy

≤
∑
j∈Z

2d−α

∫
2j−1≤|y|≤2j

f(x+ (θ − 1)y)g(x+ θy)2(α−d)j dy

≤ 2d−α
∑
j∈Z

2(α−d)jIθj (f, g)(x).

Let A,B be measurable sets of Rd with finite measure. In what follows, the positive

constant C might change from line to line, but it will always be independent of θ.

To prove the restricted estimate (4.12) we use (4.4), (4.9) with s = 1/2, and (4.16)

as follows:

∥Iθα(χA, χB)∥
L

d
2d−α

,∞ ≤ C sup
0<|E|<∞

|E|−2+ 2d−α
d

∫
E

∣∣∣∑
j∈Z

2(α−d)jIθj (χA, χB)
∣∣∣ 12 dx

2

≤ C sup
0<|E|<∞

|E|−α
d

∑
j∈Z

2
(α−d)j

2

∫
E

Iθj (χA, χB)
1
2 dx

2

≤ C |A||B| sup
0<|E|<∞

|E|−α
d

∑
j∈Z

2
(α−d)j

2 (min{2dj , |E|}) 1
2

2

≤ C |A||B|.
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Next we prove (4.13). Here we use (4.5), (4.9) with s = 1/2, and (4.16) as follows:

∥Iθα(χA, χB)∥L1,∞ ≤ C sup
0<|E|<∞

|E|−2+1

∫
E

∣∣∣∑
j∈Z

2(α−d)jIθj (χA, χB)
∣∣∣ 12 dx

2

≤ C sup
0<|E|<∞

|E|−1

∑
j∈Z

2
(α−d)j

2

∫
E

Iθj (χA, χB)
1
2 dx

2

≤ C sup
0<|E|<∞

|E|−1|A||E|

∑
j∈Z

2
(α−d)j

2 (min{2dj , |B|}) 1
2

2

≤ C |A||B|αd .

The estimate (4.14) is based on (4.6) and is deduced similarly as the one above.

Finally, we turn to (4.15). Here we use (4.7), (4.9) with s = 1, and (4.17) as follows:

∥Iθα(χA, χB)∥
L

d
α

,∞ ≤ C sup
0<|E|<∞

|E|−1+α
d

∫
E

∣∣∣∑
j∈Z

2(α−d)jIθj (χA, χB)
∣∣∣ dx

≤ C sup
0<|E|<∞

|E|−1+α
d

∑
j∈Z

2(α−d)j

∫
E

Iθj (χA, χB) dx

≤ C sup
0<|E|<∞

|E|−1+α
d

∑
j∈Z

2(α−d)j min{2dj |E|, |A||B|}

≤ C sup
0<|E|<∞

|E|−1+α
d |E|

(
|A||B|
|E|

)α
d

= C |A|αd |B|αd .

This completes the proof of the theorem. □

4.5. Proof of Proposition 2.3.

First, we observe that the tensor Jα(f, g) is pointwise bounded by
∫ 1

0
Iθα(f, g) dθ.

Indeed, for any x ∈ Rd and v(x) ∈ Rd \ {0} it holds that

|Jα(f, g)(x)v(x)| =
∣∣∣∣∫ 1

0

∫
Rd

f(x+ (θ − 1)y) g(x+ θy)|y|α−d−2(y · v(x))y dy dθ
∣∣∣∣

≤
∫ 1

0

∫
Rd

f(x+ (θ − 1)y) g(x+ θy)|y|α−d−2|y · v(x)||y|dy dθ

≤
∫ 1

0

Iθα(f, g)(x) dθ|v(x)|

and hence

|Jα(f, g)(x)| = sup
v(x)̸=0

|Jα(f, g)(x)v(x)|
|v(x)|

≤
∫ 1

0

Iθα(f, g)(x) dθ.

Therefore, using Jensen’s inequality we deduce that

∥Jα(f, g)∥rLr ≤
∫
Rd

∣∣∣∣∫ 1

0

Iθα(f, g) dθ

∣∣∣∣r dx ≤
∫
Rd

∫ 1

0

|Iθα(f, g)|r dθ dx.

Now, we use Fubini’s theorem to obtain

∥Jα(f, g)∥rLr ≤
∫ 1

0

∫
Rd

|Iθα(f, g)|r dx dθ =
∫ 1

0

∥Iθα(f, g)∥rLr dθ

from which the desired result follows upon applying Theorem 2.1.
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5. Stability for Euler-Riesz systems

In this section, we establish a stability result for smooth solutions of an Euler-Riesz

system with periodic boundary conditions, written according to identity (1.4). Two

smooth solutions are compared using the relative energy functional. Using the abstract

formalism developed in [7], we derive an identity that describes the time evolution of

the relative energy. The right-hand side of the relative energy identity is controlled with

the help of the HLS inequality and then Gronwall’s lemma provides a stability result.

Stability results of this type have been obtained for similar systems of equations, where

one of the considered solutions is assumed to be merely a weak or even measure-valued

solution, yielding a weak-strong uniqueness or measure-valued versus strong uniqueness

principle (see [1, 2, 3, 23] and references therein). The result obtained here can be

phrased in the language of weak-strong stability, but we avoid doing that and we refer

to [2] for details of such a formulation.

Let T > 0 and denote by Td the d-dimensional open cube (−1/2, 1/2)d. Consider

the following Euler-Riesz system in (0, T )× Td, expressed using the abstract functional

framework developed in [7]:
∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ ·
(
ρu⊗ u) + ρ∇δE

δρ
(ρ) = 0,

ρ|t=0 = ρ0, u|t=0 = u0,

(5.1)

with the potential energy functional E defined as

E(ρ) =
∫
Rd

h(ρ) + κ 1
2ρ(Kα ∗ ρ) dx

where h(ρ) = 1
γ−1ρ

γ is the internal energy function, Kα is the kernel given by (1.2), and

the constant κ represents the interaction strength and for this section it is allowed to

take positive and negative values. The size of |κ| will be restricted to ensure that the

relative energy is nonnegative.

The density ρ and velocity u are assumed to be periodic in space with unit period.

5.1. Relative energy identity.

The functional derivative δE/δρ is given by

δE
δρ

(ρ) = h′(ρ) + κKα ∗ ρ (5.2)

which can be computed through the formula〈
δE
δρ

(ρ), φ

〉
=

∫
Td

δE
δρ

(ρ)φdx :− lim
δ→0

E(ρ+ δφ)− E(ρ)
δ

where φ is an arbitrary test function.

Furthermore, using (1.4), we have

ρ∇δE
δρ

(ρ) = ∇ ·Rα(ρ) (5.3)
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where Rα(ρ) = p(ρ)Id + κSα(ρ), with p(ρ) = ργ being the pressure function. Note that

the calculations in the Appendix A that lead to identity (1.4) are valid if one replaces

Rd by Td due to the symmetrical assumption on the torus.

The relative potential energy functional E(·|·) is defined as follows:

E(ρ|ρ̄) = E(ρ)− E(ρ̄)−
〈
δE
δρ

(ρ̄), ρ− ρ̄

〉
=

∫
Td

h(ρ|ρ̄) + κ 1
2 (ρ− ρ̄)

(
Kα ∗ (ρ− ρ̄)

)
dx

where h(ρ|ρ̄) = h(ρ)− h(ρ̄)− h′(ρ̄)(ρ− ρ̄).

Next, we present the evolution of E(ρ|ρ̄) over time, assuming that ρ and ρ̄ evolve

according to system (5.1). For the full details of the calculations involved, refer to [7].

The following holds:

d

dt
E(ρ|ρ̄) = −

∫
Td

∇ū : Rα(ρ|ρ̄) dx−
〈
δE
δρ

(ρ)− δE
δρ

(ρ̄),∇ ·
(
ρ(u− ū)

)〉
(5.4)

where

Rα(ρ|ρ̄) = p(ρ|ρ̄)Id + κSα(ρ|ρ̄).

Now, the linear velocities satisfy
∂tu+ (u · ∇)u+∇δE

δρ
(ρ) = 0,

∂tū+ (ū · ∇)ū+∇δE
δρ

(ρ̄) = 0,

from which it can be deduced that
d

dt

∫
Td

1
2ρ|u− ū|2 dx =−

∫
Td

∇ū : ρ(u− ū)⊗ (u− ū) dx

+

〈
δE
δρ

(ρ)− δE
δρ

(ρ̄),∇ ·
(
ρ(u− ū)

)〉
.

(5.5)

Combining (5.4) with (5.5) yields the relative total energy identity:

d

dt

(
E(ρ|ρ̄) +

∫
Td

1
2ρ|u− ū|2 dx

)
= −

∫
Td

∇ū :
(
ρ(u− ū)⊗ (u− ū)+Rα(ρ|ρ̄)

)
dx. (5.6)

5.2. Stability of smooth solutions.

Let (ρ, u) and (ρ̄, ū) be two smooth solutions of (5.1), and suppose additionally that

for (ρ̄, ū) the density ρ̄ is bounded away from vacuum, that is, there exist δ̄ > 0 and

M̄ <∞ such that

δ̄ ≤ ρ̄(t, x) ≤ M̄ for (t, x) ∈ [0, T )× Td

and also

∇ū ∈ L∞(0, T ;L∞(Td)
)
.

The solutions (ρ, u) and (ρ̄, ū) satisfy the relative energy identity (5.6). Let Ψ :

[0, T ) → R denote the relative energy between this pair of solutions,

Ψ(t) =

∫
Td

1
2ρ|u− ū|2 dx+ E(ρ|ρ̄)

=

∫
Td

1
2ρ|u− ū|2 + h(ρ|ρ̄) + κ 1

2 (ρ− ρ̄)
(
Kα ∗ (ρ− ρ̄)

)
dx.
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The objective is to prove a stability estimate connecting the behavior at time T to the

initial behavior at time zero. The identity (5.6) yields

d

dt
Ψ(t) =−

∫
Td

∇ū : ρ(u− ū)⊗ (u− ū) dx−
∫
Td

(∇ · ū)p(ρ|ρ̄) dx

− κ

∫
Td

∇ū : Sα(ρ|ρ̄) dx.
(5.7)

To use Ψ as a yardstick for comparing the two solutions, we need to show that Ψ is

nonnegative. This is based on two key ingredients. First, the HLS inequality (2.3) gives

∥(ρ− ρ̄)
(
Kα ∗ (ρ− ρ̄)

)
∥L1(Td) ≤ C0 ∥ρ− ρ̄∥2Lp(Td)

for some positive constant C0 = C0(α, d), where p = 2d/(d + α). This is improved by

using interpolation and properties of the function h(ρ|ρ̄) to show (see [23, Lemma 3.6]

for the Newtonian potential and [2, Proposition 4.2] for the general case):

Lemma 5.1. Consider the function h(ρ) = 1
γ−1ρ

γ with γ ≥ 2−α/d and 0 < α < d. Let

ρ ∈ Lγ(Td) be nonnegative, and let ρ̄ ∈ L∞(Td) be bounded away from vacuum. Then,

there exists a positive constant C∗ such that

∥(ρ− ρ̄)Kα ∗ (ρ− ρ̄)∥L1(Td) ≤ C∗

∫
Td

h(ρ|ρ̄) dx. (5.8)

Choosing κ so that 0 < |κ| < 2
C∗

and setting λ := 1− |κ|C∗
2 > 0, we obtain

λ

∫
Td

h(ρ|ρ̄) dx ≤
∫
Td

h(ρ|ρ̄) + κ 1
2 (ρ− ρ̄)Kα ∗ (ρ− ρ̄) dx

from which the nonnegativity of Ψ follows.

Next, we bound the terms on the right-hand side of identity (5.7) in terms of Ψ. The

first term is bounded by the relative kinetic energy, and hence by Ψ. The bound for the

second term is also clear as p(ρ|ρ̄) = (γ − 1)h(ρ|ρ̄). Regarding the last term, we first

observe that due to the quadratic nature of Sα(ρ) one has

Sα(ρ|ρ̄) = Sα(ρ− ρ̄).

Moreover, for any fixed time t ∈ [0, T ), the L1-norm of Sα(ρ− ρ̄) is bounded by

I := 1
2

∫ 1

0

∫
Td

∫
Td

|(ρ− ρ̄)(x+ (θ − 1)y)||(ρ− ρ̄)(x+ θy)||y|α−d dxdy dθ

where the dependency on time is omitted for simplicity. We then estimate

I ≤ 1
2

∫ 1

0

∫
Td

∫
|z|<1

|(ρ− ρ̄)(z)||(ρ− ρ̄)(z + y)||y|α−d dz dy dθ

≤ 1
2

∫
Rd

∫
Rd

|(ρ− ρ̄)(z)|χ(−2,2)d(z)|(ρ− ρ̄)(w)|χ(−2,2)d(w)|z − w|α−d dz dw

≤ C(α, d) ∥(ρ− ρ̄)χ(−2,2)d∥2Lp(Rd)

where p = 2d/(d+ α), by the HLS inequality. Finally, the periodicity in space of ρ− ρ̄

implies that

∥(ρ− ρ̄)χ(−2,2)d∥Lp(Rd) = 4d∥ρ− ρ̄∥Lp(Td).
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Hence, similarly to Lemma 5.1,∫
Td

∇ū : Sα(ρ|ρ̄) dx ≤ κ∥∇ū∥∞∥Sα(ρ− ρ̄)∥L1(Td)

≤ C

∫
Td

h(ρ|ρ̄) dx ≤ CΨ.

In summary, we have obtained the following inequality:

d

dt
Ψ ≤ CΨ.

By Gronwall’s lemma, for each t ∈ [0, T ), it follows that Ψ(t) ≤ eCTΨ(0) which, together

with the strict convexity of the internal energy function h, yields the desired stability

result.

A weak-strong uniqueness theorem is proved in [2, Theorem 3.1] following the general

approach outlined above. The method of proof differs in the treatment of the nonlocal

term, achieved here via the use of the representation formula (1.4). This provides an

improvement in the range of parameters α achieving the full range 0 < α < d. By

contrast, the range of γ is still restricted by γ ≥ 2− α/d.

Appendix A.

Here we give a formal proof that for our symmetric kernel Kα : Rd → R, with

Kα(x) = Kα(|x|) it holds that

f∇Kα ∗ f = ∇ · Sα(f) (A.1)

for any sufficiently smooth f : Rd → R, where the tensor Sα(f) is given by

Sα(f)(x) = −1

2

∫
Rd

∫ 1

0

K′
α(|y|)

1

|y|
f(x+ (θ − 1)y) f(x+ θy) y ⊗ y dθ dy. (A.2)

Note that for Kα(|y|) = 1
d−α |y|

α−d we have K′
α(|y|) = −|y|α−d−1 and thus the corre-

sponding tensor is positive semi-definite for nonnegative f .

To prove (A.1), we first deduce that

f∇Kα ∗ f(x) = −1

2

∫
Rd

K′
α(y)

y

|y|
∇x ·

∫ 1

0

yf(x+ (θ − 1)y)f(x+ θy) dθ dy. (A.3)

Using the symmetry of the convolution one has:

(f∇Kα ∗ f)(x) = f(x)

∫
Rd

K′
α(|y|)

y

|y|
f(x− y) dy

= −f(x)
∫
Rd

K′
α(|y|)

y

|y|
f(x+ y) dy

where in the second equality we used the change of variables y → −y.

Hence

f∇Kα ∗ f(x) = 1

2

∫
Rd

K′
α(|y|)

y

|y|
f(x)

(
f(x− y)− f(x+ y)

)
dy.

Now it is claimed that

f(x)
(
f(x− y)− f(x+ y)

)
= −∇x ·

∫ 1

0

yf(x+ (θ − 1)y)f(x+ θy) dθ,
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from which identity (A.3) follows. Indeed,

−f(x)
(
f(x− y)− f(x+ y)) =

∫ 1

0

d

dθ

(
f(x+ (θ − 1)y)f(x+ θy)

)
dθ

=

∫ 1

0

(
∇f(x+ (θ − 1)y) · y

)
f(x+ θy) +

(
∇f(x+ θy) · y

)
f(x+ (θ − 1)y) dθ

=

∫ 1

0

∇
(
f(x+ (θ − 1)y)f(x+ θy)

)
dθ · y

= ∇x ·
∫ 1

0

yf(x+ (θ − 1)y)f(x+ θy) dθ

as desired.

Consequently, component-wise one has:

(
∇ · Sα(f)(x)

)
i
= −1

2
∇x ·

∫
Rd

∫ 1

0

K′
α(|y|)

yi
|y|
yf(x+ (θ − 1)y)f(x+ θy) dθ dy

= −1

2

∫
Rd

K′
α(|y|)

yi
|y|

∇x ·
∫ 1

0

yf(x+ (θ − 1)y)f(x+ θy) dθ dy

=
(
f∇Kα ∗ f(x)

)
i

which establishes identity (A.1).

It is noted that for a d-dimensional cube [−a, a]d centered at the origin, with a > 0,

and periodic functions with period equal to 2a, the formulas (A.1) and (A.2) are still

valid with the integrations performed over [−a, a]d.
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