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ABSTRACT. It is well known that the Hörmander smoothness condi-
tion supy6=0

∫
|x|≥2|y| |K(x− y)− K(x)|dx < ∞ implies weak type (1,1)

estimates for associated L2-bounded Calderón-Zygmund operators. It
has been an open question whether Hörmander’s condition also suf-
fices to guarantee weak type (1,1,1/2) estimates for bilinear Calderón-
Zygmund operators that are bounded at one point. In this paper we pro-
vide a negative answer to this question.

1. INTRODUCTION

Hörmander’s [12] adaptation of the Calderón-Zygmund theorem says
that an L2-bounded convolution operator associated with a kernel K on Rd

satisfying the smoothness condition

(1) ‖K‖H = sup
y6=0

∫
|x|≥2|y|

|K(x− y)−K(x)|dx < ∞

is also bounded from L1(Rd) to L1,∞(Rd). By duality and interpolation
this classical result implies that the operator also admits an Lp-bounded ex-
tension for all p ∈ (1,∞). Recent interest in multilinear extensions of the
Calderón-Zygmund theory has led to the development of multilinear har-
monic analysis; see [7, Chapter 7]. This area was introduced by Coifman
and Meyer in their seminal work [3], [4], [5]. A fundamental result in this
theory is that if an m-linear Calderón-Zygmund operator is bounded from
L2×·· ·×L2 to L2/m and its kernel K satisfies an appropriate size condition
and a standard Lipschitz smoothness condition on Rmd , then it is bounded
from L1×·· ·×L1 to L1/m,∞; this result implies strong boundedness for the
operator from product of Lebesgue spaces to another Lebesgue space Lp

in the largest range of indices possible, and also implies weak type bound-
edness at the endpoints. Boundedness in the region where the target space
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is Lp with p > 1 was first proved by Coifman and Meyer [4], [5] and was
extended to the case p ≤ 1 by Kenig and Stein [13], and independently by
Grafakos and Torres [11]. A natural question, inspired by the linear the-
ory, is whether this result also holds if the kernel K, which is a function
on Rmd \ {0}, satisfies only Hörmander’s condition (1). This question has
been around since 2002 and has attracted some attention. In this note, we
provide a negative answer to this question. Our argument is mainly inspired
by two ingredients related to bilinear rough singular integrals. The first is a
reinforced and quantitative version of the counterexample in [6], while the
second is the L2×L2→ L1 boundedness of bilinear rough singular integrals
recently obtained in [8] and [9].

Our counterexample is a homogeneous kernel, i.e., a kernel that has the
form:

KΩ(x1,x2) = Ω((x1,x2)/|(x1,x2)|)|(x1,x2)|−2d, (x1,x2) ∈ R2d

where Ω is integrable on the sphere S2d−1 with vanishing integral. The
associated bilinear Calderón-Zygmund operator TKΩ

is then defined as

TKΩ
( f ,g)(x) = p.v.

∫
R2n

KΩ(x− y1,x− y2) f (y1)g(y2)dy1dy2.

We prove the following result:

Theorem 1. Let 1 ≤ q < ∞. There exists an odd function Ω in Lq(S2d−1)
such that the associated kernel KΩ satisfies the Hörmander kernel condition
(1) but the associated bilinear Calderón-Zygmund operator TKΩ

does not
map Lp1(Rd)×Lp2(Rd)→ Lp,∞(Rd) whenever 1

p1
+ 1

p2
= 1

p , 1≤ p1, p2≤∞

and 1
p +

2d−1
q > 2d. In particular, this operator is not of weak type (1,1, 1

2)

when 1≤ q < 2d−1
2d−2 .

If Ω ∈ Lq(S2d−1) with q ≥ 2 then TKΩ
is always L2(Rd)× L2(Rd)→

L1(Rd) bounded, see [8]; this result was later extended to 4
3 < q≤∞ in [9].

Thus Theorem 1 yields the following corollary:

Corollary 2. Let d ∈ {1,2}. There exists an odd function Ω on S2d−1 such
that KΩ satisfies Hörmander’s condition (1) and the associated operator
TKΩ

is bounded from L2(Rd)× L2(Rd)→ L1(Rd), but is unbounded from
Lp1(Rd)×Lp2(Rd) to Lp,∞(Rd) whenever 1

p1
+ 1

p2
= 1

p , 1≤ p1, p2 ≤∞ and
p < 4

2d+3 . In particular, this operator is not of weak type (1,1, 1
2).

Remark 1. To obtain, via these techniques, an example of an L2(Rd)×
L2(Rd) to L1(Rd) bounded bilinear Calderón-Zygmund operator whose ker-
nel satisfies Hörmander’s condition (1) but which does not satisfy a weak
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type (1,1, 1
2) estimate in an arbitrary dimension d, we would need to know

that

(2) ‖TKΩ
‖L2(Rd)×L2(Rd)→L1(Rd) ≤C‖Ω‖Lq(S2d−1)

for all q > 1; but (2) remains open, as of this writing, for 1 < q≤ 4
3 .

Other versions of the Hörmander kernel condition in the multilinear set-
ting are given in [15], [16] and [2]; these conditions are weaker than (1),
so our example applies also in that case. Our result should be contrasted
with the positive result in [17] concerning a stronger geometric version of
condition (1).

Additionally, it was observed in [11] that if Ω ∈ L1(R) is an odd function
then the boundedness of TKΩ

can be obtained as a consequence of the uni-
form boundedness of the bilinear Hilbert transforms, see [10], [14]. Thus,
in particular, TKΩ

is bounded on the hexagon described by the conditions

(3)
∣∣∣ 1

p1
− 1

p2

∣∣∣< 1
2
,

∣∣∣ 1
p1
− 1

p′

∣∣∣< 1
2
,

∣∣∣ 1
p2
− 1

p′

∣∣∣< 1
2
,

where p′ = p
p−1 . We note that this hexagon contains points (p1, p2, p) with

p> 1 arbitrarily close to 1. Another corollary of Theorem 1 is the following.

Corollary 3. There exists an odd function Ω on S1 such that the kernel
KΩ satisfies the 2-dimensional Hörmander condition (1) and the associ-
ated operator TKΩ

is bounded on the hexagon (3) but is unbounded from
Lp1(R)×Lp2(R)→ Lp(R) for p < 1.

We prove the one-dimensional version of Theorem 1 in the next sec-
tion. This is easy to read and contains the main idea. The proof in the
d-dimensional case is given in Section 3; this contains an additional pertur-
bation argument. We verify that KΩ satisfies (1) in Section 4. In Section 5
we briefly discuss the multilinear situation.

2. PROOF OF THEOREM 1 WHEN d = 1

Define points on the circle S1

an =
(

cos
(

π

4
+

π

2n

)
,sin

(
π

4
+

π

2n

))
and define circular arcs I+n with endpoints an and an+1 for n= 10,11,12, . . . .
Let I−n be the reflection about the origin of I+n . We observe that the length
`n of both I+n and I−n is approximately 2−n. Consider the function

Ω =
∞

∑
n=10

hn
(
χI+n −χI−n

)
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where hn = 2nδ for some δ < 1/q. Note that

‖Ω‖Lq(S1) ≤ c
( ∞

∑
n=10

hq
n`n

) 1
q ≤ c

( ∞

∑
n=10

2nδq−n
) 1

q
< ∞

and that Ω is an odd function on S1.
For 0 < ε < 1

100 define fε = (2ε)
− 1

p1 χ[−ε,ε], gε = (2ε)
− 1

p2 χ[−ε,ε]; these
functions satisfy ‖ fε‖Lp1 = ‖gε‖Lp2 = 1.

Let us fix an x ∈ R such that 11
10 ≤ x≤ 12

10 . Then we have
(4)

|TKΩ
( fε ,gε)(x)| ≥ (2ε)

− 1
p1 (2ε)

− 1
p2

∫
|y1|<ε

∫
|y2|<ε

Ω
( (x−y1,x−y2)
|(x−y1,x−y2)|

)
|(x− y1,x− y2)|2

dy1 dy2.

Let Pε be all projections of points of the form (x−y1,x−y2) onto the circle
S1, where (y1,y2) is an arbitrary point in (−ε,ε)× (−ε,ε). As the point
(x−y1,x−y2) lies near the positive diagonal (that forms 45o with the posi-
tive horizontal axis), this projection will only intersect circular caps I+n and
will never intersect caps I−n . In this case every term in the sum that defines
Ω and appears in (4) is positive. We obtain

|TKΩ
( fε ,gε)(x)| ≥ cε

− 1
p1 ε
− 1

p2 ε ∑
n≥10
I+n jPε

`nhn

as |(x−y1,x−y2)|2 ≈ 1 and if I+n ⊆ Pε then the set of those (y1,y2) satisfy-
ing |y1|< ε , |y2|< ε and (x−y1,x−y2)/|(x−y1,x−y2)| ∈ I+n has measure
comparable to ε`n, since x is so close to 1. As 1

p1
+ 1

p2
= 1

p we obtain for
11
10 ≤ x≤ 12

10 that

|TKΩ
( fε ,gε)(x)| ' ε

− 1
p+1

∑
n:

2−n<cε

2nδ−n ' ε
2− 1

p−δ ,

which yields that ‖TKΩ
( fε ,gε)‖Lp,∞ ' ε

2− 1
p−δ

, and

‖TKΩ
‖Lp1×Lp2→Lp,∞ ≥ ‖TKΩ

( fε ,gε)‖Lp,∞

‖ fε‖Lp1‖gε‖Lp2
' ε

2− 1
p−δ .

Choosing δ sufficiently close to 1/q, we conclude that if 2− 1
p−

1
q < 0, then

‖TKΩ
‖Lp1×Lp2→Lp,∞ = ∞.

To complete the proof of the main theorem we need to know that KΩ

satisfies Hörmander’s condition (1). For this we prove the following lemma
in which points in R2 will be denoted by capital letters.
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Lemma 4. Let r > 1 and Ωt = t−
1
r χIt , where It is a circular arc of small

length t > 0 on the the circle S1. Then there is a constant Cr < ∞ such that

sup
t>0

sup
Y 6=0

∫
|X |≥2|Y |

∣∣KΩt (X−Y )−KΩt (X)
∣∣dX ≤Cr.

As the proof of Lemma 4 is contained in that of Lemma 5 proved later,
we do not include it here. Lemma 4 gives that

‖KΩ‖H ≤
∞

∑
n=10

hn`
1
r
n

(∥∥∥ 1

`
1
r
n

χI+n

∥∥∥
H
+
∥∥∥ 1

`
1
r
n

χI−n

∥∥∥
H

)
≤C

∞

∑
n=10

hn`
1
r
n =C

∞

∑
n=10

2nδ−n 1
r

and this sum is convergent if we choose r such that 1 < δ < 1/r. This
concludes the proof of Theorem 1 when d = 1.

3. PROOF OF THEOREM 1 WHEN d ≥ 2

We now extend the proof to higher dimensions. Fix a point

a = ( 1√
2d
, . . . , 1√

2d
) ∈ S2d−1

and for n = 10,11,12, . . . define spherical annuli

A+
n = S2d−1∩

(
B(a,2−n)\B(a,2−n−1)

)
.

Let A−n be the reflection about the origin of A+
n . We observe that the measure

vn of both A+
n and A−n is approximately 2−n(2d−1). Consider the function

Ω =
∞

∑
n=10

hn
(
χA+

n
−χA−n

)
where hn = 2nδ for some δ < 2d−1

q . Note that

‖Ω‖Lq(S2d−1) ≤ c
( ∞

∑
n=10

hq
nvn

) 1
q ≤ c

( ∞

∑
n=10

2n(δq−(2d−1))
) 1

q
< ∞

and that Ω is an odd function on S2d−1.
For 0< ε < 1

100d define fε =(2ε)
− d

p1 χ[−ε,ε]d , gε =(2ε)
− d

p2 χ[−ε,ε]d ; these
functions satisfy ‖ fε‖Lp1 = ‖gε‖Lp2 = 1.

Let us fix an interval on the diagonal line in Rd defined by

(5) Id =
{

x ∈ Rd : x1 = x2 = · · ·= xd ∈ [ 1√
d
+ 1

100d ,
1√
d
+ 2

100d ]
}
.
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Then for x ∈ Id we have

|TKΩ
( fε ,gε)(x)| ≥

(2ε)
− d

p1 (2ε)
− d

p2

∫
[−ε,ε]d

∫
[−ε,ε]d

Ω
( (x−y1,x−y2)
|(x−y1,x−y2)|

)
|(x− y1,x− y2)|2

dy1 dy2.
(6)

Let Pε,x be the set of all projections onto the sphere S2d−1 of points of the
form (x− y1,x− y2), where (y1,y2) is an arbitrary point in [−ε,ε]2d . As
the point (x− y1,x− y2) lies near the positive diagonal, this projection will
only intersect spherical annuli A+

n and will never intersect annuli A−n . In this
case every term in the sum that defines Ω and appears in (6) is positive. We
obtain

|TKΩ
( fε ,gε)(x)| ≥ cε

− d
p1 ε
− d

p2 ε ∑
n≥10

A+
n jPε,x

vnhn

as |(x− y1,x− y2)|2 ≈ 1 and if A+
n ⊆ Pε,x then the set of those (y1,y2) sat-

isfying (y1,y2) ∈ [−ε,ε]2d and (x− y1,x− y2)/|(x− y1,x− y2)| ∈ A+
n has

measure comparable to εvn, since x is so close to the unit sphere. Since
1
p1
+ 1

p2
= 1

p , we obtain

|TKΩ
( fε ,gε)(x)| ' ε

− d
p+1

∑
n:

2−n<cdε

2nδ−n(2d−1) ' ε
(2− 1

p )d−δ ,

whenever x ∈ Id . In particular, in the last summation the term with 2−nε ∼
cd
10ε would contribute essentially the same lower bound ε

(2− 1
p )d−δ .

We now fix a point x0 ∈ Id . For any x such that |x− x0| ≤ c′dε with c′d a
small positive constant, we define Pε,x as the projection of (x,x)+ [−ε,ε]2d

onto S2d−1. Recalling that Pε,x0 contains A+
nε

and that the distance between
A+

nε
and S2d−1 \ Pε,x0 is greater than cd

2 ε , we obtain that A+
nε
⊂ Pε,x if c′d

is small enough, since the distance between the boundary of Pε,x0 and the
boundary of Pε,x is bounded by c′dε . In summary, for any point x ∈ Nε , the
c′dε-neighborhood of Id with volume about εd−1, we have

(7) |TKΩ
( fε ,gε)(x)|' ε

− d
p+12nε (δ−2d+1) ≈ ε

(2− 1
p )d−δ .

This yields

‖TKΩ
‖Lp1×Lp2→Lp,∞ ≥

‖TKΩ
( fε ,gε)‖Lp,∞(Rd)

‖ fε‖Lp1‖gε‖Lp2
' ε

d−1
p +(2− 1

p )d−δ
.

Choosing δ sufficiently close to 2d−1
q , we conclude that if

2d− 1
p −

2d−1
q < 0,
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then
‖TKΩ
‖Lp1(Rd)×Lp2(Rd)→Lp,∞(Rd) = ∞.

We have the following d-dimensional extension of Lemma 4.

Lemma 5. Let r > 1
2d−1 and Ωt = t−

1
r χAt , where At is a spherical cap of

small radius t on the sphere S2d−1. Then there is a constant C that depends
on d and r such that

(8) sup
t>0

sup
Y 6=0

∫
|X |≥2|Y |

∣∣KΩt (X−Y )−KΩt (X)
∣∣dX ≤C.

We note that each spherical annulus A+
n , A−n can be written as B+

n \C+
n or

B−n \C−n , where B+
n , C+

n and B−n , C−n are spherical caps of radius approxi-
mately 2−n centered at a and−a, respectively. Therefore, assuming Lemma
5, we obtain

‖KΩ‖H ≤
∞

∑
n=10

hn2−
n
r

∥∥∥2
n
r
(
χB+

n
−χC+

n
−χB−n +χC−n

)∥∥∥
H

≤C
∞

∑
n=10

hn2−
n
r =C

∞

∑
n=10

2nδ− n
r

and this sum is convergent if we choose δ < 1
r < 2d−1, which is possible

since δ < 2d−1
q ≤ 2d−1.

This finishes the proof of Theorem 1 for d≥ 2 assuming Lemma 5, which
is proved in the next section.

4. PROOF OF LEMMA 5

Let X ∈ R2d and X ′ = X/|X |. It suffices to prove that∫
|X |≥2|Y |

∣∣Ωt((X−Y )′)−Ωt(X ′)
∣∣ dX
|X−Y |2d ≤C < ∞

as the part ∫
|X |≥2|Y |

∣∣∣∣ Ωt(X ′)
|X−Y |2d −

Ωt(X ′)
|X |2d

∣∣∣∣dX

is trivially bounded by ‖Ωt‖L1(S2d−1) ≤C since r > 1
2d−1 .

But |X−Y | ≈ |X | and so we look at

(9)
∫

∞

2|Y |

∫
S2d−1

∣∣Ωt((sθ −Y )′)−Ωt(θ)
∣∣dθ

ds
s
.

The interior integral vanishes if both terms χAt ((sθ −Y )′) and χAt (θ) are 1
or 0. Thus we may consider the case when one term is one and the other is
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zero. In this case we estimate the expression on the left in (8) by

t−
1
r

∫
∞

2|Y |
|{θ ∈At ,

(
θ− Y

s

)′
/∈At}|

ds
s
+t−

1
r

∫
∞

2|Y |
|{θ /∈At ,

(
θ− Y

s

)′ ∈At}|
ds
s
.

Both At and the set of all θ ∈ S2d−1 for which
(
θ − Y

s

)′ ∈ At have spherical
measure at most ct2d−1, where to show the latter we use the fact that |Ys | ≤

1
2 .

Let us now assume that |Y |s ≤
t

100 � 1. In the first integral the set has
spherical measure at most c |Y |s t2d−2, because it is comparable to |A′t \At |
with A′t an appropriate rotation of At with displacement ∼ |Y |s . Similarly the
set in the second integral has spherical measure at most c |Y |s t2d−2 as well.
We therefore obtain the estimate for (9)

ct−
1
r

∫ 100|Y |
t

2|Y |
t2d−1 ds

s +
∫

∞

100|Y |
t

|Y |
s t2d−2 ds

s

≤ ct−
1
r [t2d−1 log(t−1)]≤C <∞,

since 2d−1− 1
r > 0 and t ≤ 1. This proves (8).

5. THE MULTILINEAR CASE

The argument needed to prove a multilinear version of Theorem 1 is sim-
ilar to the one performed above. We sketch it below for completeness.

Let Ω be an integrable function on the sphere Smd−1 with vanishing inte-
gral. We define

KΩ(x1, . . . ,xm) = Ω((x1, . . . ,xm)/|(x1, . . . ,xm)|)|(x1, . . . ,xm)|−md

for (x1, . . . ,xm) ∈Rmd . The m-linear rough singular integral operator TKΩ
is

then defined by

TKΩ
( f1, . . . , fm)(x) = p.v.

∫
Rmd

KΩ(x− y1, . . . ,x− ym) f1(y1) · · · fm(ym)d~y,

where d~y = dy1 · · ·dym.
Let 1 ≤ q < ∞. We choose a = ( 1√

md
, . . . , 1√

md
) ∈ Smd−1, and define

Ω = ∑n hn(χA+
n
− χA−n ) with hn = 2nδ and δ < (md− 1)/q. Here, A+

n is
a spherical annulus centered at point a whose radius is 2−n and measure
∼ 2−(md−1)n, and A−n is its reflection with respect to the origin. We can
easily check that Ω ∈ Lq(Smd−1).

Let 1 ≤ p1, . . . , pm ≤ ∞ and p > 0 be such that 1
p1
+ · · ·+ 1

pm
= 1

p . We
take f j = (2ε)−d/p j χ[−ε,ε]d ; then ‖ f j‖Lp j (Rd) = 1 for j = 1, . . . ,m. Let Id be
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as in (5) and let Nε be a c′dε-neighborhood of Id , then we can verify that

TKΩ
( f1, . . . , fm)(x)≥ cε

−d
p ε ∑

n: 2−n≤ε

|A+
n |hn ∼ cε

−d
p+md−δ

for all x ∈ Nε . Therefore

‖TKΩ
‖Lp1×Lpm→Lp,∞ ' ε

md− 1
p−δ

,

which tends to ∞ as ε → 0 when md < 1
p +

md−1
q if we choose δ close to

md−1
q . It is straightforward to verify Lemma 6 in the multilinear setting

under the condition r > 1
md−1 . In summary, we have showed the following.

Proposition 6. For any 1≤ q < ∞ there is an odd function Ω in Lq(Smd−1)
such that the associated kernel KΩ satisfies Hörmander’s condition (1) but
the Calderón-Zygmund operator TKΩ

does not map Lp1(Rd)×·· ·×Lpm(Rd)

to Lp(Rd) whenever 1
p1
+ · · ·+ 1

pm
= 1

p , 1≤ p1, . . . , pm≤∞, and 1
p +

md−1
q >

md. In particular, this operator is not of weak type (1, . . . ,1, 1
m) when 1 ≤

q < md−1
m(d−1) .

Remark 2. It is known from [1] that the m-linear operator TKΩ
is bounded

from L2(Rd)× ·· · × L2(Rd) to L2/m(Rd) whenever Ω ∈ Lq(Smd−1) with
q > 2m

m+1 . Thus, in the multilinear case, boundedness on the product of L2

spaces and Hörmander’s condition are not sufficient to yield the weak type
(1,1, . . . ,1,1/m) endpoint when d ≤ 2.
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