FAILURE OF THE HÖRMANDER KERNEL CONDITION FOR MULTILINEAR CALDERÓN-ZYGMUND OPERATORS

LOUKAS GRAFAKOS, DANQING HE, LENKA SLAVÍKOVÁ

Abstract

It is well known that the Hörmander smoothness condition $\sup _{y \neq 0} \int_{|x| \geq 2|y|}|K(x-y)-K(x)| d x<\infty$ implies weak type $(1,1)$ estimates for associated L^{2}-bounded Calderón-Zygmund operators. It has been an open question whether Hörmander's condition also suffices to guarantee weak type $(1,1,1 / 2)$ estimates for bilinear CalderónZygmund operators that are bounded at one point. In this paper we provide a negative answer to this question.

1. Introduction

Hörmander's [12] adaptation of the Calderón-Zygmund theorem says that an L^{2}-bounded convolution operator associated with a kernel K on \mathbb{R}^{d} satisfying the smoothness condition

$$
\begin{equation*}
\|K\|_{H}=\sup _{y \neq 0} \int_{|x| \geq 2|y|}|K(x-y)-K(x)| d x<\infty \tag{1}
\end{equation*}
$$

is also bounded from $L^{1}\left(\mathbb{R}^{d}\right)$ to $L^{1, \infty}\left(\mathbb{R}^{d}\right)$. By duality and interpolation this classical result implies that the operator also admits an L^{p}-bounded extension for all $p \in(1, \infty)$. Recent interest in multilinear extensions of the Calderón-Zygmund theory has led to the development of multilinear harmonic analysis; see [7, Chapter 7]. This area was introduced by Coifman and Meyer in their seminal work [3], [4], [5]. A fundamental result in this theory is that if an m-linear Calderón-Zygmund operator is bounded from $L^{2} \times \cdots \times L^{2}$ to $L^{2 / m}$ and its kernel K satisfies an appropriate size condition and a standard Lipschitz smoothness condition on $\mathbb{R}^{m d}$, then it is bounded from $L^{1} \times \cdots \times L^{1}$ to $L^{1 / m, \infty}$; this result implies strong boundedness for the operator from product of Lebesgue spaces to another Lebesgue space L^{p} in the largest range of indices possible, and also implies weak type boundedness at the endpoints. Boundedness in the region where the target space

[^0]is L^{p} with $p>1$ was first proved by Coifman and Meyer [4], [5] and was extended to the case $p \leq 1$ by Kenig and Stein [13], and independently by Grafakos and Torres [11]. A natural question, inspired by the linear theory, is whether this result also holds if the kernel K, which is a function on $\mathbb{R}^{m d} \backslash\{0\}$, satisfies only Hörmander's condition (1). This question has been around since 2002 and has attracted some attention. In this note, we provide a negative answer to this question. Our argument is mainly inspired by two ingredients related to bilinear rough singular integrals. The first is a reinforced and quantitative version of the counterexample in [6], while the second is the $L^{2} \times L^{2} \rightarrow L^{1}$ boundedness of bilinear rough singular integrals recently obtained in [8] and [9].

Our counterexample is a homogeneous kernel, i.e., a kernel that has the form:

$$
K_{\Omega}\left(x_{1}, x_{2}\right)=\Omega\left(\left(x_{1}, x_{2}\right) /\left|\left(x_{1}, x_{2}\right)\right|\right)\left|\left(x_{1}, x_{2}\right)\right|^{-2 d}, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2 d}
$$

where Ω is integrable on the sphere $\mathbb{S}^{2 d-1}$ with vanishing integral. The associated bilinear Calderón-Zygmund operator $T_{K_{\Omega}}$ is then defined as

$$
T_{K_{\Omega}}(f, g)(x)=\text { p.v. } \int_{\mathbb{R}^{2 n}} K_{\Omega}\left(x-y_{1}, x-y_{2}\right) f\left(y_{1}\right) g\left(y_{2}\right) d y_{1} d y_{2} .
$$

We prove the following result:
Theorem 1. Let $1 \leq q<\infty$. There exists an odd function Ω in $L^{q}\left(\mathbb{S}^{2 d-1}\right)$ such that the associated kernel K_{Ω} satisfies the Hörmander kernel condition (1) but the associated bilinear Calderón-Zygmund operator $T_{K_{\Omega}}$ does not map $L^{p_{1}}\left(\mathbb{R}^{d}\right) \times L^{p_{2}}\left(\mathbb{R}^{d}\right) \rightarrow L^{p, \infty}\left(\mathbb{R}^{d}\right)$ whenever $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}, 1 \leq p_{1}, p_{2} \leq \infty$ and $\frac{1}{p}+\frac{2 d-1}{q}>2 d$. In particular, this operator is not of weak type $\left(1,1, \frac{1}{2}\right)$ when $1 \leq q<\frac{2 d-1}{2 d-2}$.

If $\Omega \in L^{q}\left(\mathbb{S}^{2 d-1}\right)$ with $q \geq 2$ then $T_{K_{\Omega}}$ is always $L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right) \rightarrow$ $L^{1}\left(\mathbb{R}^{d}\right)$ bounded, see [8]; this result was later extended to $\frac{4}{3}<q \leq \infty$ in [9]. Thus Theorem 1 yields the following corollary:
Corollary 2. Let $d \in\{1,2\}$. There exists an odd function Ω on $\mathbb{S}^{2 d-1}$ such that K_{Ω} satisfies Hörmander's condition (1) and the associated operator $T_{K_{\Omega}}$ is bounded from $L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{1}\left(\mathbb{R}^{d}\right)$, but is unbounded from $L^{p_{1}}\left(\mathbb{R}^{d}\right) \times L^{p_{2}}\left(\mathbb{R}^{d}\right)$ to $L^{p, \infty}\left(\mathbb{R}^{d}\right)$ whenever $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}, 1 \leq p_{1}, p_{2} \leq \infty$ and $p<\frac{4}{2 d+3}$. In particular, this operator is not of weak type $\left(1,1, \frac{1}{2}\right)$.

Remark 1. To obtain, via these techniques, an example of an $L^{2}\left(\mathbb{R}^{d}\right) \times$ $L^{2}\left(\mathbb{R}^{d}\right)$ to $L^{1}\left(\mathbb{R}^{d}\right)$ bounded bilinear Calderón-Zygmund operator whose kernel satisfies Hörmander's condition (1) but which does not satisfy a weak
type $\left(1,1, \frac{1}{2}\right)$ estimate in an arbitrary dimension d, we would need to know that

$$
\begin{equation*}
\left\|T_{K_{\Omega}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right) \times L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{1}\left(\mathbb{R}^{d}\right)} \leq C\|\Omega\|_{L^{q}\left(\mathbb{S}^{2 d-1}\right)} \tag{2}
\end{equation*}
$$

for all $q>1$; but (2) remains open, as of this writing, for $1<q \leq \frac{4}{3}$.
Other versions of the Hörmander kernel condition in the multilinear setting are given in [15], [16] and [2]; these conditions are weaker than (1), so our example applies also in that case. Our result should be contrasted with the positive result in [17] concerning a stronger geometric version of condition (1).

Additionally, it was observed in [11] that if $\Omega \in L^{1}(\mathbb{R})$ is an odd function then the boundedness of $T_{K_{\Omega}}$ can be obtained as a consequence of the uniform boundedness of the bilinear Hilbert transforms, see [10], [14]. Thus, in particular, $T_{K_{\Omega}}$ is bounded on the hexagon described by the conditions

$$
\begin{equation*}
\left|\frac{1}{p_{1}}-\frac{1}{p_{2}}\right|<\frac{1}{2}, \quad\left|\frac{1}{p_{1}}-\frac{1}{p^{\prime}}\right|<\frac{1}{2}, \quad\left|\frac{1}{p_{2}}-\frac{1}{p^{\prime}}\right|<\frac{1}{2}, \tag{3}
\end{equation*}
$$

where $p^{\prime}=\frac{p}{p-1}$. We note that this hexagon contains points $\left(p_{1}, p_{2}, p\right)$ with $p>1$ arbitrarily close to 1 . Another corollary of Theorem 1 is the following.

Corollary 3. There exists an odd function Ω on \mathbb{S}^{1} such that the kernel K_{Ω} satisfies the 2-dimensional Hörmander condition (1) and the associated operator $T_{K_{\Omega}}$ is bounded on the hexagon (3) but is unbounded from $L^{p_{1}}(\mathbb{R}) \times L^{p_{2}}(\mathbb{R}) \rightarrow L^{p}(\mathbb{R})$ for $p<1$.

We prove the one-dimensional version of Theorem 1 in the next section. This is easy to read and contains the main idea. The proof in the d-dimensional case is given in Section 3; this contains an additional perturbation argument. We verify that K_{Ω} satisfies (1) in Section 4. In Section 5 we briefly discuss the multilinear situation.

2. Proof of Theorem 1 when $d=1$

Define points on the circle \mathbb{S}^{1}

$$
a_{n}=\left(\cos \left(\frac{\pi}{4}+\frac{\pi}{2^{n}}\right), \sin \left(\frac{\pi}{4}+\frac{\pi}{2^{n}}\right)\right)
$$

and define circular arcs I_{n}^{+}with endpoints a_{n} and a_{n+1} for $n=10,11,12, \ldots$. Let I_{n}^{-}be the reflection about the origin of I_{n}^{+}. We observe that the length ℓ_{n} of both I_{n}^{+}and I_{n}^{-}is approximately 2^{-n}. Consider the function

$$
\Omega=\sum_{n=10}^{\infty} h_{n}\left(\chi_{I_{n}^{+}}-\chi_{I_{n}^{-}}\right)
$$

where $h_{n}=2^{n \delta}$ for some $\delta<1 / q$. Note that

$$
\|\Omega\|_{L^{q}\left(\mathbb{S}^{1}\right)} \leq c\left(\sum_{n=10}^{\infty} h_{n}^{q} \ell_{n}\right)^{\frac{1}{q}} \leq c\left(\sum_{n=10}^{\infty} 2^{n \delta q-n}\right)^{\frac{1}{q}}<\infty
$$

and that Ω is an odd function on \mathbb{S}^{1}.
For $0<\varepsilon<\frac{1}{100}$ define $f_{\varepsilon}=(2 \varepsilon)^{-\frac{1}{p_{1}}} \chi_{[-\varepsilon, \varepsilon]}, g_{\varepsilon}=(2 \varepsilon)^{-\frac{1}{p_{2}}} \chi_{[-\varepsilon, \varepsilon]}$; these functions satisfy $\left\|f_{\mathcal{E}}\right\|_{L^{p_{1}}}=\left\|g_{\varepsilon}\right\|_{L^{p_{2}}}=1$.

Let us fix an $x \in \mathbb{R}$ such that $\frac{11}{10} \leq x \leq \frac{12}{10}$. Then we have

$$
\begin{equation*}
\left|T_{K_{\Omega}}\left(f_{\varepsilon}, g_{\varepsilon}\right)(x)\right| \geq(2 \varepsilon)^{-\frac{1}{p_{1}}}(2 \varepsilon)^{-\frac{1}{p_{2}}} \int_{\left|y_{1}\right|<\varepsilon} \int_{\left|y_{2}\right|<\varepsilon} \frac{\Omega\left(\frac{\left(x-y_{1}, x-y_{2}\right)}{\left|\left(x-y_{1}, x-y_{2}\right)\right|}\right)}{\left|\left(x-y_{1}, x-y_{2}\right)\right|^{2}} d y_{1} d y_{2} \tag{4}
\end{equation*}
$$

Let P_{ε} be all projections of points of the form $\left(x-y_{1}, x-y_{2}\right)$ onto the circle \mathbf{S}^{1}, where $\left(y_{1}, y_{2}\right)$ is an arbitrary point in $(-\varepsilon, \varepsilon) \times(-\varepsilon, \varepsilon)$. As the point $\left(x-y_{1}, x-y_{2}\right)$ lies near the positive diagonal (that forms 45° with the positive horizontal axis), this projection will only intersect circular caps I_{n}^{+}and will never intersect caps I_{n}^{-}. In this case every term in the sum that defines Ω and appears in (4) is positive. We obtain

$$
\left|T_{K_{\Omega}}\left(f_{\varepsilon}, g_{\varepsilon}\right)(x)\right| \geq c \varepsilon^{-\frac{1}{p_{1}}} \varepsilon^{-\frac{1}{p_{2}}} \varepsilon \sum_{\substack{n \geq 10 \\ I_{n}^{+} \subseteq P_{\varepsilon}}} \ell_{n} h_{n}
$$

as $\left|\left(x-y_{1}, x-y_{2}\right)\right|^{2} \approx 1$ and if $I_{n}^{+} \subseteq P_{\varepsilon}$ then the set of those $\left(y_{1}, y_{2}\right)$ satisfying $\left|y_{1}\right|<\varepsilon,\left|y_{2}\right|<\varepsilon$ and $\left(x-y_{1}, x-y_{2}\right) /\left|\left(x-y_{1}, x-y_{2}\right)\right| \in I_{n}^{+}$has measure comparable to $\varepsilon \ell_{n}$, since x is so close to 1 . As $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}$ we obtain for $\frac{11}{10} \leq x \leq \frac{12}{10}$ that

$$
\left|T_{K_{\Omega}}\left(f_{\mathcal{\varepsilon}}, g_{\varepsilon}\right)(x)\right| \gtrsim \varepsilon^{-\frac{1}{p}+1} \sum_{\substack{n: \\ 2^{-n}<c \varepsilon}} 2^{n \delta-n} \gtrsim \varepsilon^{2-\frac{1}{p}-\delta}
$$

which yields that $\left\|T_{K_{\Omega}}\left(f_{\mathcal{\varepsilon}}, g_{\varepsilon}\right)\right\|_{L^{p, \infty}} \gtrsim \varepsilon^{2-\frac{1}{p}-\delta}$, and

$$
\left\|T_{K_{\Omega}}\right\|_{L^{p_{1} \times L^{p_{2}} \rightarrow L^{p, \infty}}} \geq \frac{\left\|T_{K_{\Omega}}\left(f_{\varepsilon}, g_{\varepsilon}\right)\right\|_{L^{p, \infty}}}{\left\|f_{\varepsilon}\right\|_{L^{p_{1}}}\left\|g_{\varepsilon}\right\|_{L^{p_{2}}}} \gtrsim \varepsilon^{2-\frac{1}{p}-\delta}
$$

Choosing δ sufficiently close to $1 / q$, we conclude that if $2-\frac{1}{p}-\frac{1}{q}<0$, then

$$
\left\|T_{K_{\Omega}}\right\|_{L^{p_{1} \times L^{p_{2}} \rightarrow L^{p, \infty}}}=\infty .
$$

To complete the proof of the main theorem we need to know that K_{Ω} satisfies Hörmander's condition (1). For this we prove the following lemma in which points in \mathbb{R}^{2} will be denoted by capital letters.

Lemma 4. Let $r>1$ and $\Omega_{t}=t^{-\frac{1}{r}} \chi_{I_{t}}$, where I_{t} is a circular arc of small length $t>0$ on the the circle \mathbb{S}^{1}. Then there is a constant $C_{r}<\infty$ such that

$$
\sup _{t>0} \sup _{Y \neq 0} \int_{|X| \geq 2|Y|}\left|K_{\Omega_{t}}(X-Y)-K_{\Omega_{t}}(X)\right| d X \leq C_{r} .
$$

As the proof of Lemma 4 is contained in that of Lemma 5 proved later, we do not include it here. Lemma 4 gives that

$$
\begin{aligned}
\left\|K_{\Omega}\right\|_{H} & \leq \sum_{n=10}^{\infty} h_{n} \ell_{n}^{\frac{1}{r}}\left(\left\|\frac{1}{\ell_{n}^{\frac{1}{r}}} \chi_{I_{n}^{+}}\right\|_{H}+\left\|\frac{1}{\ell_{n}^{\frac{1}{r}}} \chi_{I_{n}^{-}}\right\|_{H}\right) \\
& \leq C \sum_{n=10}^{\infty} h_{n} \ell_{n}^{\frac{1}{r}}=C \sum_{n=10}^{\infty} 2^{n \delta-n \frac{1}{r}}
\end{aligned}
$$

and this sum is convergent if we choose r such that $1<\delta<1 / r$. This concludes the proof of Theorem 1 when $d=1$.

3. PRoof of Theorem 1 when $d \geq 2$

We now extend the proof to higher dimensions. Fix a point

$$
a=\left(\frac{1}{\sqrt{2 d}}, \ldots, \frac{1}{\sqrt{2 d}}\right) \in \mathbb{S}^{2 d-1}
$$

and for $n=10,11,12, \ldots$ define spherical annuli

$$
A_{n}^{+}=\mathbb{S}^{2 d-1} \cap\left(B\left(a, 2^{-n}\right) \backslash B\left(a, 2^{-n-1}\right)\right)
$$

Let A_{n}^{-}be the reflection about the origin of A_{n}^{+}. We observe that the measure v_{n} of both A_{n}^{+}and A_{n}^{-}is approximately $2^{-n(2 d-1)}$. Consider the function

$$
\Omega=\sum_{n=10}^{\infty} h_{n}\left(\chi_{A_{n}^{+}}-\chi_{A_{n}^{-}}\right)
$$

where $h_{n}=2^{n \delta}$ for some $\delta<\frac{2 d-1}{q}$. Note that

$$
\|\Omega\|_{L^{q}\left(\mathbb{S}^{2 d-1}\right)} \leq c\left(\sum_{n=10}^{\infty} h_{n}^{q} v_{n}\right)^{\frac{1}{q}} \leq c\left(\sum_{n=10}^{\infty} 2^{n(\delta q-(2 d-1))}\right)^{\frac{1}{q}}<\infty
$$

and that Ω is an odd function on $\mathbb{S}^{2 d-1}$.
For $0<\varepsilon<\frac{1}{100 d}$ define $f_{\varepsilon}=(2 \varepsilon)^{-\frac{d}{p_{1}}} \chi_{[-\varepsilon, \varepsilon]^{d}}, g_{\varepsilon}=(2 \varepsilon)^{-\frac{d}{p_{2}}} \chi_{[-\varepsilon, \varepsilon]^{d}}$; these functions satisfy $\left\|f_{\mathcal{\varepsilon}}\right\|_{L^{p_{1}}}=\left\|g_{\varepsilon}\right\|_{L^{p_{2}}}=1$.

Let us fix an interval on the diagonal line in \mathbb{R}^{d} defined by

$$
\begin{equation*}
I_{d}=\left\{x \in \mathbb{R}^{d}: x_{1}=x_{2}=\cdots=x_{d} \in\left[\frac{1}{\sqrt{d}}+\frac{1}{100 d}, \frac{1}{\sqrt{d}}+\frac{2}{100 d}\right]\right\} . \tag{5}
\end{equation*}
$$

Then for $x \in I_{d}$ we have

$$
\begin{align*}
& \quad\left|T_{K_{\Omega}}\left(f_{\varepsilon}, g_{\varepsilon}\right)(x)\right| \geq \\
& (2 \varepsilon)^{-\frac{d}{p_{1}}}(2 \varepsilon)^{-\frac{d}{p_{2}}} \int_{[-\varepsilon, \varepsilon]^{d}} \int_{[-\varepsilon, \varepsilon]^{d}} \frac{\Omega\left(\frac{\left(x-y_{1}, x-y_{2}\right)}{\left|\left(x-y_{1}, x-y_{2}\right)\right|}\right)}{\left|\left(x-y_{1}, x-y_{2}\right)\right|^{2}} d y_{1} d y_{2} . \tag{6}
\end{align*}
$$

Let $P_{\varepsilon, x}$ be the set of all projections onto the sphere $\mathbb{S}^{2 d-1}$ of points of the form $\left(x-y_{1}, x-y_{2}\right)$, where $\left(y_{1}, y_{2}\right)$ is an arbitrary point in $[-\varepsilon, \varepsilon]^{2 d}$. As the point $\left(x-y_{1}, x-y_{2}\right)$ lies near the positive diagonal, this projection will only intersect spherical annuli A_{n}^{+}and will never intersect annuli A_{n}^{-}. In this case every term in the sum that defines Ω and appears in (6) is positive. We obtain

$$
\left|T_{K_{\Omega}}\left(f_{\varepsilon}, g_{\varepsilon}\right)(x)\right| \geq c \varepsilon^{-\frac{d}{p_{1}}} \varepsilon^{-\frac{d}{p_{2}}} \varepsilon \sum_{\substack{n \geq 10 \\ A_{n}^{n} \subseteq P_{\varepsilon, x}}} v_{n} h_{n}
$$

as $\left|\left(x-y_{1}, x-y_{2}\right)\right|^{2} \approx 1$ and if $A_{n}^{+} \subseteq P_{\varepsilon, x}$ then the set of those $\left(y_{1}, y_{2}\right)$ satisfying $\left(y_{1}, y_{2}\right) \in[-\varepsilon, \varepsilon]^{2 d}$ and $\left(x-y_{1}, x-y_{2}\right) /\left|\left(x-y_{1}, x-y_{2}\right)\right| \in A_{n}^{+}$has measure comparable to εv_{n}, since x is so close to the unit sphere. Since $\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p}$, we obtain

$$
\left|T_{K_{\Omega}}\left(f_{\mathcal{\varepsilon}}, g_{\varepsilon}\right)(x)\right| \gtrsim \varepsilon^{-\frac{d}{p}+1} \sum_{\substack{n: \\ 2^{-n}<c_{d} \varepsilon}} 2^{n \delta-n(2 d-1)} \gtrsim \varepsilon^{\left(2-\frac{1}{p}\right) d-\delta},
$$

whenever $x \in I_{d}$. In particular, in the last summation the term with $2^{-n_{\varepsilon}} \sim$ $\frac{c_{d}}{10} \varepsilon$ would contribute essentially the same lower bound $\varepsilon^{\left(2-\frac{1}{p}\right) d-\delta}$.

We now fix a point $x_{0} \in I_{d}$. For any x such that $\left|x-x_{0}\right| \leq c_{d}^{\prime} \varepsilon$ with c_{d}^{\prime} a small positive constant, we define $P_{\varepsilon, x}$ as the projection of $(x, x)+[-\varepsilon, \varepsilon]^{2 d}$ onto $\mathbb{S}^{2 d-1}$. Recalling that $P_{\varepsilon, x_{0}}$ contains $A_{n_{\varepsilon}}^{+}$and that the distance between $A_{n_{\varepsilon}}^{+}$and $\mathbb{S}^{2 d-1} \backslash P_{\varepsilon, x_{0}}$ is greater than $\frac{c_{d}}{2} \varepsilon$, we obtain that $A_{n_{\varepsilon}}^{+} \subset P_{\varepsilon, x}$ if c_{d}^{\prime} is small enough, since the distance between the boundary of $P_{\varepsilon, x_{0}}$ and the boundary of $P_{\varepsilon, x}$ is bounded by $c_{d}^{\prime} \varepsilon$. In summary, for any point $x \in N_{\mathcal{\varepsilon}}$, the $c_{d}^{\prime} \varepsilon$-neighborhood of I_{d} with volume about ε^{d-1}, we have

$$
\begin{equation*}
\left|T_{K_{\Omega}}\left(f_{\varepsilon}, g_{\varepsilon}\right)(x)\right| \gtrsim \varepsilon^{-\frac{d}{p}+1} 2^{n_{\varepsilon}(\delta-2 d+1)} \approx \varepsilon^{\left(2-\frac{1}{p}\right) d-\delta} . \tag{7}
\end{equation*}
$$

This yields

$$
\left\|T_{K_{\Omega}}\right\|_{L^{p_{1} \times L^{p_{2}} \rightarrow L^{p, \infty}}} \geq \frac{\left\|T_{K_{\Omega}}\left(f_{\mathcal{\varepsilon}}, g_{\varepsilon}\right)\right\|_{L^{p, \infty}\left(\mathbb{R}^{d}\right)}}{\left\|f_{\mathcal{E}}\right\|_{L^{p_{1}}}\left\|g_{\varepsilon}\right\|_{L^{p_{2}}}} \gtrsim \varepsilon^{\frac{d-1}{p}+\left(2-\frac{1}{p}\right) d-\delta} .
$$

Choosing δ sufficiently close to $\frac{2 d-1}{q}$, we conclude that if

$$
2 d-\frac{1}{p}-\frac{2 d-1}{q}<0
$$

then

$$
\left\|T_{K_{\Omega}}\right\|_{L^{p_{1}}\left(\mathbb{R}^{d}\right) \times L^{p_{2}}\left(\mathbb{R}^{d}\right) \rightarrow L^{p, \infty}\left(\mathbb{R}^{d}\right)}=\infty .
$$

We have the following d-dimensional extension of Lemma 4.
Lemma 5. Let $r>\frac{1}{2 d-1}$ and $\Omega_{t}=t^{-\frac{1}{r}} \chi_{A_{t}}$, where A_{t} is a spherical cap of small radius t on the sphere $\mathbb{S}^{2 d-1}$. Then there is a constant C that depends on d and r such that

$$
\begin{equation*}
\sup _{t>0} \sup _{Y \neq 0} \int_{|X| \geq 2|Y|}\left|K_{\Omega_{t}}(X-Y)-K_{\Omega_{t}}(X)\right| d X \leq C \tag{8}
\end{equation*}
$$

We note that each spherical annulus A_{n}^{+}, A_{n}^{-}can be written as $B_{n}^{+} \backslash C_{n}^{+}$or $B_{n}^{-} \backslash C_{n}^{-}$, where B_{n}^{+}, C_{n}^{+}and B_{n}^{-}, C_{n}^{-}are spherical caps of radius approximately 2^{-n} centered at a and $-a$, respectively. Therefore, assuming Lemma 5 , we obtain

$$
\begin{aligned}
\left\|K_{\Omega}\right\|_{H} & \leq \sum_{n=10}^{\infty} h_{n} 2^{-\frac{n}{r}}\left\|2^{\frac{n}{r}}\left(\chi_{B_{n}^{+}}-\chi_{C_{n}^{+}}-\chi_{B_{n}^{-}}+\chi_{C_{n}^{-}}\right)\right\|_{H} \\
& \leq C \sum_{n=10}^{\infty} h_{n} 2^{-\frac{n}{r}}=C \sum_{n=10}^{\infty} 2^{n \delta-\frac{n}{r}}
\end{aligned}
$$

and this sum is convergent if we choose $\delta<\frac{1}{r}<2 d-1$, which is possible since $\delta<\frac{2 d-1}{q} \leq 2 d-1$.

This finishes the proof of Theorem 1 for $d \geq 2$ assuming Lemma 5, which is proved in the next section.

4. Proof of Lemma 5

Let $X \in \mathbb{R}^{2 d}$ and $X^{\prime}=X /|X|$. It suffices to prove that

$$
\int_{|X| \geq 2|Y|}\left|\Omega_{t}\left((X-Y)^{\prime}\right)-\Omega_{t}\left(X^{\prime}\right)\right| \frac{d X}{|X-Y|^{2 d}} \leq C<\infty
$$

as the part

$$
\int_{|X| \geq 2|Y|}\left|\frac{\Omega_{t}\left(X^{\prime}\right)}{|X-Y|^{2 d}}-\frac{\Omega_{t}\left(X^{\prime}\right)}{|X|^{2 d}}\right| d X
$$

is trivially bounded by $\left\|\Omega_{t}\right\|_{L^{1}\left(\mathbb{S}^{2 d-1}\right)} \leq C$ since $r>\frac{1}{2 d-1}$.
But $|X-Y| \approx|X|$ and so we look at

$$
\begin{equation*}
\int_{2|Y|}^{\infty} \int_{\mathbb{S}^{2 d-1}}\left|\Omega_{t}\left((s \theta-Y)^{\prime}\right)-\Omega_{t}(\theta)\right| d \theta \frac{d s}{s} \tag{9}
\end{equation*}
$$

The interior integral vanishes if both terms $\chi_{A_{t}}\left((s \theta-Y)^{\prime}\right)$ and $\chi_{A_{t}}(\theta)$ are 1 or 0 . Thus we may consider the case when one term is one and the other is
zero. In this case we estimate the expression on the left in (8) by
$t^{-\frac{1}{r}} \int_{2|Y|}^{\infty}\left|\left\{\theta \in A_{t},\left(\theta-\frac{Y}{s}\right)^{\prime} \notin A_{t}\right\}\right| \frac{d s}{s}+t^{-\frac{1}{r}} \int_{2|Y|}^{\infty}\left|\left\{\theta \notin A_{t},\left(\theta-\frac{Y}{s}\right)^{\prime} \in A_{t}\right\}\right| \frac{d s}{s}$.
Both A_{t} and the set of all $\theta \in \mathbb{S}^{2 d-1}$ for which $\left(\theta-\frac{Y}{s}\right)^{\prime} \in A_{t}$ have spherical measure at most $c t^{2 d-1}$, where to show the latter we use the fact that $\left|\frac{Y}{s}\right| \leq \frac{1}{2}$. Let us now assume that $\frac{|Y|}{s} \leq \frac{t}{100} \ll 1$. In the first integral the set has spherical measure at most $c \frac{|Y|}{s} t^{2 d-2}$, because it is comparable to $\left|A_{t}^{\prime} \backslash A_{t}\right|$ with A_{t}^{\prime} an appropriate rotation of A_{t} with displacement $\sim \frac{|Y|}{s}$. Similarly the set in the second integral has spherical measure at most $c \frac{|Y|}{s} t^{2 d-2}$ as well. We therefore obtain the estimate for (9)
$c t^{-\frac{1}{r}}\left[\int_{2|Y|}^{\frac{100|Y|}{t}} t^{2 d-1} \frac{d s}{s}+\int_{\frac{100|Y|}{t}}^{\infty} \frac{|Y|}{s} t^{2 d-2} \frac{d s}{s}\right] \leq c t^{-\frac{1}{r}}\left[t^{2 d-1} \log \left(t^{-1}\right)\right] \leq C<\infty$, since $2 d-1-\frac{1}{r}>0$ and $t \leq 1$. This proves (8).

5. The Multilinear case

The argument needed to prove a multilinear version of Theorem 1 is similar to the one performed above. We sketch it below for completeness.

Let Ω be an integrable function on the sphere $\mathbb{S}^{m d-1}$ with vanishing integral. We define

$$
K_{\Omega}\left(x_{1}, \ldots, x_{m}\right)=\Omega\left(\left(x_{1}, \ldots, x_{m}\right) /\left|\left(x_{1}, \ldots, x_{m}\right)\right|\right)\left|\left(x_{1}, \ldots, x_{m}\right)\right|^{-m d}
$$

for $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m d}$. The m-linear rough singular integral operator $T_{K_{\Omega}}$ is then defined by

$$
T_{K_{\Omega}}\left(f_{1}, \ldots, f_{m}\right)(x)=\text { p.v. } \int_{\mathbb{R}^{m d}} K_{\Omega}\left(x-y_{1}, \ldots, x-y_{m}\right) f_{1}\left(y_{1}\right) \cdots f_{m}\left(y_{m}\right) d \vec{y},
$$

where $d \vec{y}=d y_{1} \cdots d y_{m}$.
Let $1 \leq q<\infty$. We choose $a=\left(\frac{1}{\sqrt{m d}}, \ldots, \frac{1}{\sqrt{m d}}\right) \in \mathbb{S}^{m d-1}$, and define $\Omega=\sum_{n} h_{n}\left(\chi_{A_{n}^{+}}-\chi_{A_{n}^{-}}\right)$with $h_{n}=2^{n \delta}$ and $\delta<(m d-1) / q$. Here, A_{n}^{+}is a spherical annulus centered at point a whose radius is 2^{-n} and measure $\sim 2^{-(m d-1) n}$, and A_{n}^{-}is its reflection with respect to the origin. We can easily check that $\Omega \in L^{q}\left(\mathbb{S}^{m d-1}\right)$.

Let $1 \leq p_{1}, \ldots, p_{m} \leq \infty$ and $p>0$ be such that $\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{p}$. We take $f_{j}=(2 \varepsilon)^{-d / p_{j}} \chi_{[-\varepsilon, \varepsilon]^{d}}$; then $\left\|f_{j}\right\|_{L^{p_{j}}\left(\mathbb{R}^{d}\right)}=1$ for $j=1, \ldots, m$. Let I_{d} be
as in (5) and let N_{ε} be a $c_{d}^{\prime} \varepsilon$-neighborhood of I_{d}, then we can verify that

$$
T_{K_{\Omega}}\left(f_{1}, \ldots, f_{m}\right)(x) \geq c \varepsilon^{-\frac{d}{p}} \varepsilon \sum_{n: 2^{-n} \leq \varepsilon}\left|A_{n}^{+}\right| h_{n} \sim c \varepsilon^{-\frac{d}{p}+m d-\delta}
$$

for all $x \in N_{\varepsilon}$. Therefore

$$
\left\|T_{K_{\Omega}}\right\|_{L^{p_{1} \times L^{p_{m}} \rightarrow L^{p, \infty}}} \gtrsim \varepsilon^{m d-\frac{1}{p}-\delta},
$$

which tends to ∞ as $\varepsilon \rightarrow 0$ when $m d<\frac{1}{p}+\frac{m d-1}{q}$ if we choose δ close to $\frac{m d-1}{q}$. It is straightforward to verify Lemma 6 in the multilinear setting under the condition $r>\frac{1}{m d-1}$. In summary, we have showed the following.

Proposition 6. For any $1 \leq q<\infty$ there is an odd function Ω in $L^{q}\left(\mathbb{S}^{m d-1}\right)$ such that the associated kernel K_{Ω} satisfies Hörmander's condition (1) but the Calderón-Zygmund operator $T_{K_{\Omega}}$ does not map $L^{p_{1}}\left(\mathbb{R}^{d}\right) \times \cdots \times L^{p_{m}}\left(\mathbb{R}^{d}\right)$ to $L^{p}\left(\mathbb{R}^{d}\right)$ whenever $\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{p}, 1 \leq p_{1}, \ldots, p_{m} \leq \infty$, and $\frac{1}{p}+\frac{m d-1}{q}>$ $m d$. In particular, this operator is not of weak type $\left(1, \ldots, 1, \frac{1}{m}\right)$ when $1 \leq$ $q<\frac{m d-1}{m(d-1)}$.
Remark 2. It is known from [1] that the m-linear operator $T_{K_{\Omega}}$ is bounded from $L^{2}\left(\mathbb{R}^{d}\right) \times \cdots \times L^{2}\left(\mathbb{R}^{d}\right)$ to $L^{2 / m}\left(\mathbb{R}^{d}\right)$ whenever $\Omega \in L^{q}\left(\mathbb{S}^{m d-1}\right)$ with $q>\frac{2 m}{m+1}$. Thus, in the multilinear case, boundedness on the product of L^{2} spaces and Hörmander's condition are not sufficient to yield the weak type $(1,1, \ldots, 1,1 / m)$ endpoint when $d \leq 2$.

References

[1] E. Buriánková, D. He, and P. Honzík, Multilinear rough singular integrals, in preparation.
[2] L. Chaffee, R. H. Torres, and X. Wu, Multilinear weighted norm inequalities under integral type regularity conditions, Harmonic analysis, partial differential equations and applications, 193-216, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2017
[3] R. R. Coifman; Y. Meyer, On commutators of singular integrals and bilinear singular integrals. Transactions American Mathematical Society 212 (1975), 315-331.
[4] R. R. Coifman and Y. Meyer, Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. de l' Inst. Fourier, Grenoble 28 (1978), 177-202.
[5] R. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57, 1978.
[6] G. Diestel, L. Grafakos, P. Honzík, Z. Si, E. Terwilleger, Method of rotations for bilinear singular integrals, Commun. Math. Anal. 2011, Conference 3, 99-107.
[7] L. Grafakos, Modern Fourier Analysis, Third edition, Graduate Texts in Mathematics 250, Springer, New York, 2014.
[8] L. Grafakos, D. He, and P. Honzík, Rough bilinear singular integrals, Adv. Math. 326 (2018), 54-78.
[9] L. Grafakos, D. He, and L. Slavíková, $L^{2} \times L^{2} \rightarrow L^{1}$ boundedness criteria, Math. Ann., to appear.
[10] L. Grafakos and X. Li, Uniform bounds for the bilinear Hilbert transforms, I, Ann. of Math. 159 (2004), 889-933.
[11] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), 124-164.
[12] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[13] C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. Volume 6 (1999), 1-15.
[14] X. Li, Uniform bounds for the bilinear Hilbert transform II. Rev. Mat. Iberoam. 22 (2006), 1069-1126.
[15] J. M. Martell, C. Pérez, and R. Trujillo-González, Lack of natural weighted estimates for some singular integral operators, Trans. Amer. Math. Soc. 357 (2005), 385-396.
[16] K. Li, Sparse domination theorem for multilinear singular integral operators with L^{r}-Hörmander condition, Mich. Math. J. 67 (2018), 253-265.
[17] C. Pérez and R. H. Torres, Minimal regularity conditions for the end-point estimate of bilinear Calderón-Zygmund operators, Proc. Amer. Math. Soc. Ser. B 1, (2014), 1-13.

Department of Mathematics, University of Missouri, Columbia MO 65211, USA

E-mail address: grafakosl@missouri.edu
Department of Mathematics Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong, China

E-mail address: hedanqing@mail.sysu.edu.cn
Department of Mathematics, University of Missouri, Columbia MO 65211, USA

E-mail address: slavikoval@missouri.edu

[^0]: The first author was supported by the Simons Foundation. The second author was supported by NNSF of China (No. 11701583), Guangdong Natural Science Foundation (No. 2017A030310054) and the Fundamental Research Funds for the Central Universities (No. 17lgpy11).

 2010 Mathematics Classification Number 42B20.

