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Abstract. We present some recent results in the theory of Fourier multipliers. These
concern sharp versions of the classical multiplier theorems of Hörmander and of
Marcinkiewicz and their bilinear analogues. We also discuss optimal, and in some
cases necessary and sufficient, criteria for certain bilinear Fourier multiplier operators
to be bounded from L2 × L2 → L1.

1. The Hörmander multiplier theorem - an introduction

Fourier multipliers are formed by composing three operators: the Fourier transform,

multiplication, and the inverse Fourier transform. The Fourier transform of a Schwartz

function f on Rn is given by

f̂(ξ) =

∫
Rn
f(x)e−2πix·ξdx

and its inverse Fourier transform is defined as

f∨(ξ) =

∫
Rn
f(x)e2πix·ξdx.

Using these definitions, a general Fourier multiplier operator has the form

Tσ(f)(x) =
(
f̂ σ
)∨

(x) =

∫
Rn
f̂(ξ)σ(ξ)e2πix·ξdξ,

where σ is a bounded function on Rn; the function σ has to be in L∞ if Tσ is going to

be bounded from Lp(Rn) to Lp(Rn) for some p ∈ [1,∞]. An old and important problem

in harmonic analysis is to find optimal sufficient conditions on σ so that the operator

Tσ, initially defined on Schwartz functions, admits a bounded extension from Lp(Rn) to

itself. If this is the case for a given p, then σ is called an Lp Fourier multiplier. An

easy application of Plancherel’s identity ‖f‖L2 = ‖f̂ ‖L2 yields that σ is an L2 Fourier

multiplier if and only if σ is a bounded function. Also, duality gives that σ is an Lp

Fourier multiplier if and only if it is an Lp
′

Fourier multiplier for any p ∈ (1,∞). Then
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it follows by interpolation that σ is also an Lq Fourier multiplier for any q between p

and p′ = p
p−1

.

The first nontrivial multiplier result was provided by Mikhlin [39] who proved that if

the condition

(1.1) |∂ασ(ξ)| ≤ Cα|ξ|−|α|, ξ 6= 0,

holds for all multi-indices α with size |α| ≤ [n/2]+1, then Tσ admits a bounded extension

from Lp(Rn) to itself for all 1 < p < ∞. Here ∂α = ∂α1
1 · · · ∂αnn where α = (α1, . . . , αn)

and |α| = α1 + · · · + αn, where αj are nonnegative integers denoting the number of

differentiations in the jth coordinate. This theorem is well suited for functions that

are homogeneous of degree zero and are sufficiently differentiable on the unit sphere.

The key point is that the αth derivative of a homogeneous of degree zero function is

homogeneous of degree −|α| and the constant Cα in (1.1) is the L∞ norm of ∂ασ on Sn−1

in this case.

Example: The functions

σ1(ξ1, ξ2, ξ3) =
ξ1ξ2ξ3

(ξ2
1 + ξ2

2 + ξ2
3)

3
2

σ2(ξ1, ξ2, ξ3) =
ξ2ξ3

iξ2
1 + (ξ2

2 + ξ2
3)

σ3(ξ1, ξ2, ξ3) =
ξ1ξ2

1 + i(ξ2
1 + ξ2

2 + ξ2
3)

defined on R3 satisfy condition (1.1). To verify this assertion we use that σ1, σ2 are

homogeneous of degree zero and smooth on S2; this implies that their α-th derivatives

are homogeneous of degree −|α|. For σ3 we introduce the homogeneous of degree zero

function F (t, ξ1, ξ2, ξ3) = ξ1ξ2

(
t2 + i(ξ2

1 + ξ2
2 + ξ2

3)
)−1

on R4 and we note that its α-th

derivative in the variables ξ1, ξ2, ξ3 is homogeneous of degree −|α|.

An extension of Mikhlin’s result was obtained by Hörmander [37] who showed that

the conclusion of Mikhlin’s theorem still holds if condition (1.1) is replaced by

(1.2) sup
k∈Z

2−kn+2k|α|
∫

2k<|ξ|<2k+1

|∂ασ(ξ)|2dξ <∞.

To compare conditions (1.1) and (1.2), for every multiindex α we introduce the function

Mα(ξ) = |∂ασ(ξ)||ξ||α|.

Then condition (1.1) requires Mα to be bounded on Rn\{0} for all α with |α| ≤ [n/2]+1,

while (1.2) relaxes this assumption to the weaker requirement that averages of Mα with

respect to the L2 norms over dyadic annuli of the form {2k < |ξ| < 2k+1} are uniformly
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bounded. Additionally, it is useful to observe that Hörmander’s condition (1.2) can be

rewritten in the form

(1.3) sup
k∈Z
‖∂α[σ(2k·)]‖L2(A) <∞,

where A = {ξ ∈ Rn : 1 < |ξ| < 2} denotes the unit annulus in Rn.

In order to obtain a sharp variant of the Hörmander multiplier theorem, we need to

introduce derivatives of fractional order. Let ∆ be the Laplacian on Rn. We denote by

(I−∆)s/2 the operator given by multiplication by (1+4π2|ξ|2)s/2 on the Fourier transform.

Informally speaking, when s is an even natural number, (I−∆)s/2 corresponds to taking

all derivatives of a function up to and including order s. For other s > 0, (I − ∆)s/2

corresponds to taking all derivatives of a function up to and including the (potentially)

fractional number s. Even when s is an odd integer, (I −∆)s/2 contains all derivatives

of a function up to and including order s, at least when measured in the Lp sense, i.e.,

for 1 < p <∞ and s ∈ Z+ we have

(1.4)
∥∥(I −∆)s/2f

∥∥
Lp
≈
∑
|α|≤s

∥∥∂αf‖Lp .
The quantity ‖(I −∆)s/2f‖Lp is denoted by ‖f‖Lps and is referred to as the Lp Sobolev

norm of order s of a function f ; if s ∈ Z+, this is equivalent with the sum of the Lp

norms of all partial derivatives of f up to and including order s, as indicated in (1.4).

A variant of Hörmander’s result involving fractional derivatives can be formulated as

follows: let s > 0 and let Ψ be a Schwartz function whose Fourier transform is supported

in the annulus {ξ : 1/2 < |ξ| < 2} and which satisfies
∑

j∈Z Ψ̂(2−jξ) = 1 for all ξ 6= 0. If

for some 1 ≤ r ≤ 2 and s > n/r, σ satisfies

(1.5) sup
k∈Z

∥∥(I −∆)s/2
[
Ψ̂σ(2k·)

]∥∥
Lr(Rn)

<∞,

then Tσ admits a bounded extension from Lp(Rn) to itself for all 1 < p <∞. We would

like to point out that in the special case when s is a positive integer and r = 2, the

present version of the Hörmander multiplier theorem is equivalent to the original one;

this can be verified by making use of (1.3) and of the equivalence (1.4).

One may wonder if condition (1.5) still implies that σ is an Lp Fourier multiplier for

some p ∈ (1,∞) if s ≤ n
2
. This is indeed true and, roughly speaking, the closer p is

to 2, the fewer derivatives are needed in condition (1.5). More precisely, Calderón and

Torchinsky [3, Theorem 4.7] showed, via an interpolation argument, that Tσ is bounded

from Lp(Rn) to itself whenever condition (1.5) holds for all p satisfying
∣∣1
p
− 1

2

∣∣ < s
n

and
∣∣1
p
− 1

2

∣∣ = 1
r
. It was observed in [22] that the assumption

∣∣1
p
− 1

2

∣∣ = 1
r

can be
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replaced by a weaker one, namely, by 1
r
< s

n
. We observe that the latter condition is also

necessary as it is dictated by the embedding of Lrs(Rn) ↪→ L∞(Rn) (we recall that all

Lp Fourier multipliers need to be bounded functions). Recently, Grafakos and Slav́ıková

have eliminated the index r from the statement of this theorem, by showing that Tσ is

Lp bounded if
∣∣1
p
− 1

2

∣∣ < s
n

and the L
n
s
,1(Rn) quasinorm of (I−∆)s/2

[
Ψ̂σ(2k·)

]
is bounded

by a finite constant uniformly over all k ∈ Z. Here L
n
s
,1 is the Lorentz space, defined in

Section 2.

In addition, it is known that if Tσ is bounded from Lp(Rn) to itself for every σ satis-

fying (1.5), then
∣∣1
p
− 1

2

∣∣ ≤ s
n
. This can be shown using the following classical example

of Hirschman [36, comments after Theorem 3c], Wainger [53, Part II], and Miyachi [40,

Theorem 3]).

Example: Let a > 0, a 6= 1, b > 0, and assume that φ is a smooth function which

vanishes in a neighborhood of 0 and is equal to 1 for large ξ in Rn. Let σa,b be the

bounded function defined as

σa,b(ξ) = φ(ξ)|ξ|−bei|ξ|a .

Then σa,b satisfies condition (1.5) with s = b/a and r > n/s and Tσa,b is bounded in

Lp(Rn), 1 < p <∞, if and only if |1
p
− 1

2
| ≤ b/a

n
.

Additionally, Slav́ıková [46] recently constructed an example to show that Lp bound-

edness does not hold on the line
∣∣1
p
− 1

2

∣∣ = s
n
. This means that conditions

∣∣1
p
− 1

2

∣∣ < s
n

and rs > n are optimal for assumption (1.5). Prior to this, positive endpoint results on

Lp and on H1 involving Besov spaces were given by Seeger [43], [44], [45].

2. A sharp version of the Hörmander multiplier theorem

In this section, we discuss the aforementioned improvement to the Hörmander multi-

plier theorem in which the Lebesgue space Lr(Rn), r > n
s
, in condition (1.5) is replaced

by the locally larger Lorentz space L
n
s
,1(Rn). This space is defined in terms of the

nonincreasing rearrangement of the function f , namely, the unique nonincreasing left-

continuous function on (0,∞) equimeasurable with f , defined as follows:

f ∗(t) = inf
{
r ≥ 0 : |{y ∈ Rn : |f(y)| > r}| < t

}
.

We recall the definitions of Lorentz spaces. For any measurable function f on Rn, we

define

‖f‖Lp,1(Rn) =

∫ ∞
0

f ∗(t)t
1
p
−1 dt



SHARP ESTIMATES FOR FOURIER MULTIPLIERS 5

and

‖f‖Lp,∞(Rn) = sup
t>0

f ∗(t)t
1
p ,

where 1 < p <∞. It can be shown that

‖f‖Lp,1(Rn) = p

∫ ∞
0

|{x ∈ Rn : |f(x)| > λ}|
1
p dλ

and

‖f‖Lp,∞(Rn) = sup
λ>0

λ|{x ∈ Rn : |f(x)| > λ}|
1
p .

The space Lp
′,∞(Rn), where p′ = p

p−1
, is a sort of a measure-theoretic dual of the space

Lp,1(Rn), in view of the following version of Hölder’s inequality

(2.1)

∫
Rn
|f(x)g(x)| dx ≤ ‖f‖Lp,1(Rn)‖g‖Lp′,∞(Rn).

We now discuss the proof of the following theorem.

Theorem 2.1. [31] Let Ψ be a Schwartz function on Rn whose Fourier transform is

supported in the annulus 1/2 < |ξ| < 2 and satisfies
∑

j∈Z Ψ̂(2−jξ) = 1, ξ 6= 0. Let

p ∈ (1,∞), n ∈ N, and let s ∈ (0, n) satisfy

(2.2)

∣∣∣∣1p − 1

2

∣∣∣∣ < s

n
.

Then for all functions f in the Schwartz class of Rn we have the a priori estimate

(2.3) ‖Tσ(f)‖Lp(Rn) ≤ C sup
j∈Z

∥∥(I −∆)
s
2 [Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

‖f‖Lp(Rn).

The Lorentz space L
n
s
,1(Rn) appears naturally in this context, since at least if deriva-

tives of integer order are considered, this space is locally the largest rearrangement-

invariant function space X such that if all partial derivatives of f of order up to and

including order s lie in X, then f is bounded, see [49, 7].

The strategy to proving Theorem 2.1 is as follows: We show that inequality (2.3)

holds for any p ∈ (1,∞), provided that s ∈ (n/2, n), in Proposition 2.3 stated below.

We then interpolate between this estimate with p near 1 and the trivial L2 bound which

essentially holds with zero derivatives.

In what follows, B(x, r) denotes the ball centered at point x and having the radius r.

If a ball of radius r is centered at the origin, we shall denote it simply by Br.

We consider the centered Hardy-Littlewood maximal operator M defined by

M(f)(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy
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for a measurable function f . An important property of this operator is that for any

p ∈ (1,∞] there is a constant Cp,n such that

(2.4)
∥∥M(f)

∥∥
Lp(Rn)

≤ Cp,n
∥∥f∥∥

Lp(Rn)
.

Moreover, when p = 1 there is an analogous inequality with L1,∞ in place of L1 on the

left in (2.4). There is also a vector-valued version of the preceding inequality due to

Fefferman and Stein [16] saying:

(2.5)
∥∥∥(∑

k

M(fk)
q
) 1
q
∥∥∥
Lp(Rn)

≤ Cp,q,n

∥∥∥(∑
k

|fk|q
) 1
q
∥∥∥
Lp(Rn)

,

where 1 < p, q <∞.

We now consider a related maximal operator defined for q ≥ 1 and q <∞. We define

a maximal operator MLq by

MLq(f)(x) = sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q dy
) 1

q

.

Observe that

MLq(f) = (M(|f |q))
1
q ,

where M stands for the classical Hardy-Littlewood maximal operator, which coincides

with ML1 .

A crucial step in proving Proposition 2.3 is the next lemma, which in some sense

sharpens the following estimate (see [18, Theorem 2.1.10])

(2.6) sup
j∈Z

∫
Rn

|f(x+ 2−jy)|
(1 + |y|)s

dy ≤ Cn,sM(f)(x), s > n,

valid for measurable functions f ; here Cn,s is a constant depending only on the dimension

and on s > n.

Lemma 2.2. Assume that n ∈ N, s ∈ (0, n) and q > n
s
. Then there is a positive constant

C depending on n, s and q such that for any j ∈ Z and any measurable function f on

Rn,

(2.7)

∥∥∥∥f(x+ 2−jy)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn,dy)

≤ CMLq(f)(x), x ∈ Rn.

Proof. Setting g(y) = f(x+ 2−jy), we obtain

(2.8)

∥∥∥∥f(x+ 2−jy)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn,dy)

=

∥∥∥∥ g(y)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn,dy)
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and

MLq(f)(x) = sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|q dy
) 1

q

(2.9)

= sup
r>0

(
1

2jn|B(x, r)|

∫
B(0,2jr)

|f(x+ 2−jz)|q dz
) 1

q

= sup
r′>0

(
1

|B(0, r′)|

∫
B(0,r′)

|g(y)|q dy
) 1

q

= MLq(g)(0).

This says that we may assume, without loss of generality, that j = 0 and x = 0. Hence,

it suffices to show that for any measurable function g on Rn,

(2.10)

∥∥∥∥ g(y)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn,dy)

≤ CMLq(g)(0).

If MLq(g)(0) = ∞, then inequality (2.10) holds trivially, so we can assume in what

follows that MLq(g)(0) <∞. Since the case MLq(g)(0) = 0 is trivial as well (as g needs

to vanish a.e. in this case), dividing the function g by the positive constant MLq(g)(0),

we can in fact assume that MLq(g)(0) = 1.

Fix any a > 0 and k ∈ N0. Then

|{y ∈ B2k+1 \B2k : |g(y)| > a}| ≤ 1

aq

∫
B

2k+1\B2k

|g(y)|q dy

≤ |B2k+1|
aq

· 1

|B2k+1|

∫
B

2k+1

|g(y)|q dy

≤ ωn2(k+1)n

aq
,

where ωn denotes the volume of the unit ball in Rn. Combining this with the trivial

estimate

|{y ∈ B2k+1 \B2k : |g(y)| > a}| ≤ ωn2(k+1)n,

we deduce that∣∣∣∣{y ∈ Rn :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣
=

∣∣∣∣{y ∈ B1 :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣+
∞∑
k=0

∣∣∣∣{y ∈ B2k+1 \B2k :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣
≤ |{y ∈ B1 : |g(y)| > a}|+

∞∑
k=0

∣∣{y ∈ B2k+1 \B2k : |g(y)| > 2ksa
}∣∣
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≤ |{y ∈ B1 : |g(y)| > a}|+
∞∑
k=0

ωn2(k+1)n min

{
1

2ksqaq
, 1

}
≤ |{y ∈ B1 : |g(y)| > a}|+

∑
k∈N0:2k< 1

a1/s

ωn2n · 2kn +
∑

k∈N0:2k≥ 1

a1/s

ωn2n

aq
· 2k(n−sq)

≤ |{y ∈ B1 : |g(y)| > a}|+ C

a
n
s

.

Notice that in the last inequality we have used the fact that n− sq < 0. Hence,∥∥∥∥ g(y)

(1 + |y|)s

∥∥∥∥
L
n
s ,∞(Rn,dy)

= sup
a>0

a

∣∣∣∣{y ∈ Rn :
|g(y)|

(1 + |y|)s
> a

}∣∣∣∣ sn
≤ sup

a>0
a |{y ∈ B1 : |g(y)| > a}|

s
n + C

= ‖g‖
L
n
s ,∞(B1)

+ C

≤ C ′‖g‖Lq(B1) + C

≤ C ′ω
1
q
nMLq(g)(0) + C

≤ C
′′
,

where C ′ > 0 is the constant from the embedding Lq(B1) ↪→ L
n
s
,∞(B1). As MLq(g)(0) =

1, this proves (2.10), and thus (2.7). �

Assume that Ψ is the function from the statement of Theorem 2.1. For any j ∈ Z we

define the Littlewood-Paley operator ∆Ψ
j as

∆Ψ
j (f)(x) =

∫
Rn
f(x− y)2jnΨ(2jy)dy.

The associated square function is given by

f 7→
(∑
j∈Z

|∆Ψ
j f |2

) 1
2
,

and the Littlewood-Paley theorem asserts that if 1 < p <∞ then

(2.11) ‖f‖Lp(Rn) ≈
∥∥∥(∑

j∈Z

|∆Ψ
j f |2

) 1
2
∥∥∥
Lp(Rn)

for any f ∈ Lp(Rn).

Let us also recall some properties of the Fourier transform that will be needed in the

sequel. It is well known that the Fourier transform is an isometry on L2, and a bounded

operator from L1 into L∞. An interpolation argument then yields that

(2.12) ‖f̂‖Lp′ (Rn) ≤ C‖f‖Lp(Rn)
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whenever 1 ≤ p ≤ 2. This result is called the Hausdorff-Young inequality, and can be

extended to the setting of Lorentz spaces as well. In particular, one has

(2.13) ‖f̂‖Lp′,1(Rn) ≤ C‖f‖Lp,1(Rn)

for any 1 < p < 2.

Proposition 2.3. Let p ∈ (1,∞), n ∈ N, s ∈ (n
2
, n). Let Ψ be as in Theorem 2.1. Then

(2.14) ‖Tσ(f)‖Lp(Rn) ≤ C sup
j∈Z

∥∥(I −∆)
s
2 [Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

‖f‖Lp(Rn).

Proof. Let

K = sup
j∈Z

∥∥(I −∆)
s
2

[
Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

<∞ .

Define a function Θ in terms of

Θ̂(ξ) = Ψ̂(ξ/2) + Ψ̂(ξ) + Ψ̂(2ξ),

and observe that Θ̂ is equal to 1 on the support of the function Ψ̂.

Let us denote by ∆Ψ
j and ∆Θ

j the Littlewood-Paley operators associated with Ψ and

Θ, respectively. If f is a Schwartz function on Rn, then standard manipulations yield

∆Ψ
j Tσ(f)(x) =

∫
Rn
f̂(ξ)Ψ̂(2−jξ)σ(ξ)e2πix·ξdξ

=

∫
Rn

(∆Θ
j f) (̂ξ)Ψ̂(2−jξ)σ(ξ)e2πix·ξdξ

= 2jn
∫
Rn

(∆Θ
j f) (̂2jξ′)Ψ̂(ξ′)σ(2jξ′)e2πix·2jξ′dξ′

=

∫
Rn

(∆Θ
j f)(x+ 2−jy)

[
Ψ̂σ(2j·)

]
(̂y) dy

=

∫
Rn

(∆Θ
j f)(x+ 2−jy)

(1 + |y|)s
(1 + |y|)s

[
Ψ̂σ(2j·)

]
(̂y) dy.

By the Hölder inequality in Lorentz spaces (2.1), we therefore obtain

|∆Ψ
j Tσ(f)(x)| ≤

∥∥∥∥∥(∆Θ
j f)(x+ 2−jy)

(1 + |y|)s

∥∥∥∥∥
L
n
s ,∞(Rn,dy)

∥∥∥(1 + |y|)s
[
Ψ̂σ(2j·)

]
(̂y)
∥∥∥
L(ns )′,1(Rn,dy)

.

Since n
s
< 2, we can find a real number q such that n

s
< q < 2. Lemma 2.2 now yields

that ∥∥∥∥∥(∆Θ
j f)(x+ 2−jy)

(1 + |y|)s

∥∥∥∥∥
L
n
s ,∞(Rn,dy)

≤ CMLq(∆
Θ
j f)(x).

Using inequality (2.13) with p = n
s
, we deduce that∥∥∥(1 + |y|)s

[
Ψ̂σ(2j·)

]
(̂y)
∥∥∥
L(ns )′,1(Rn)

≤ C
∥∥∥(1 + |y|2)

s
2

[
Ψ̂σ(2j·)

]
(̂y)
∥∥∥
L(ns )′,1(Rn)
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≤ C
∥∥(I −∆)

s
2

[
Ψ̂σ(2j·)

]∥∥
L
n
s ,1(Rn)

≤ CK.

Altogether, we obtain the estimate

|∆Ψ
j Tσ(f)|(x) ≤ CKMLq(∆

Θ
j f)(x).

Assume that p ≥ 2. Then applying the Littlewood-Paley theorem (2.11) and the

Fefferman-Stein inequality (2.5) (since p
q
≥ 2

q
> 1) we obtain the following sequence of

inequalities: ∥∥Tσ(f)
∥∥
Lp(Rn)

≤ C
∥∥∥(∑

j∈Z

|∆Ψ
j Tσ(f)|2

) 1
2
∥∥∥
Lp(Rn)

≤ CK
∥∥∥(∑

j∈Z

|MLq(∆
Θ
j f)|2

) 1
2
∥∥∥
Lp(Rn)

= CK
∥∥∥(∑

j∈Z

(M(|∆Θ
j f |q)

2
q

) q
2
∥∥∥ 1
q

L
p
q (Rn)

≤ CK
∥∥∥(∑

j∈Z

|∆Θ
j f |

q· 2
q

) q
2
∥∥∥ 1
q

L
p
q (Rn)

= CK
∥∥∥(∑

j∈Z

|∆Θ
j f |2

) 1
2
∥∥∥
Lp(Rn)

≤ CK‖f‖Lp(Rn).

If p ∈ (1, 2) then the result follows by duality. �

To complete the proof, we need to properly interpolate between L2 and Lp1 , for p1

near 1. This is achieved via the following result, whose proof is not included here but

the reader is referred to [31] for a proof.

Proposition 2.4. Suppose that 1 < p1 <∞ and 0 < s1 < n. If

(2.15) ‖Tσ(f)‖Lp1 (Rn) ≤ C sup
j∈Z
‖(I −∆)

s1
2 [Ψ̂σ(2j·)]‖

L
n
s1
,1

(Rn)
‖f‖Lp1 (Rn),

then

‖Tσ(f)‖Lp(Rn) ≤ C sup
j∈Z
‖(I −∆)

s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

‖f‖Lp(Rn)

for any 1 < p <∞ and 0 < s < s1 satisfying

(2.16)
1

s

∣∣∣∣1p − 1

2

∣∣∣∣ < 1

s1

∣∣∣∣ 1

p1

− 1

2

∣∣∣∣ .
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Assuming Proposition 2.4, and using the estimate from Proposition 2.3 as the assump-

tion (2.15), we complete the proof of Theorem 2.1 as follows:

Proof of Theorem 2.1. If s ∈ (n
2
, n), then inequality (2.3) follows from Proposition 2.3.

If s ≤ n
2
, then we denote

α =
1

s

∣∣∣∣1p − 1

2

∣∣∣∣ .
Since α ∈ (0, 1

n
), we can find p1 ∈ (1,∞) and s1 ∈ (n

2
, n) such that

α <
1

s1

∣∣∣∣ 1

p1

− 1

2

∣∣∣∣ .
A combination of Propositions 2.3 and 2.4 thus yields the desired assertion (2.3). �

3. An example

Unlike the Mikhlin multiplier theorem, the Hörmander multiplier theorem and its

extension due to Calderón and Torchinsky (see Section 1 for more details) apply to

multipliers whose derivatives have infinitely many singularities, such as the multiplier

(3.1) σ(x) =
∑
k∈Z

φ(2−kx)|2−kx− ak|β,

where β > 0, φ is a smooth function supported in the set {x ∈ Rn : 1
2
< |x| < 2} and,

for every k ∈ Z, ak ∈ Rn belongs to the same set.

As an application of Theorem 2.1 we show that the function σ in (3.1) continues to be

an Lp Fourier multiplier for any p ∈ (1,∞) if |2−kx−ak| is replaced by
(

log e4n

|2−kx−ak|n
)−1

.

This conclusion cannot be reached via the multiplier theorems of Hörmander or Calderón

and Torchinsky as the s-order derivative of the function (log e4n

|x|n )−β, with β > 0, does

not belong locally to any Lebesgue space Lr(Rn) with r > n/s (but it does belong locally

to the Lorentz space L
n
s
,1(Rn), as we will see below).

Example 3.1. Assume that n ∈ N, n ≥ 2, and β < 0. Let φ be a smooth function

supported in the set A = {x ∈ Rn : 1/2 < |x| < 2} and let ak ∈ A, k ∈ Z. Then the

function

(3.2) σ(x) =
∑
k∈Z

φ(2−kx)

(
log

e4n

|2−kx− ak|n

)β
is an Lp Fourier multiplier for any p ∈ (1,∞).
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To verify the statement of Example 3.1, we fix a positive integer s and observe that

for any j ∈ Z,

‖(I −∆)
s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

≤

∥∥∥∥∥(I −∆)
s
2

[
Ψ̂(x)φ(x)

(
log

e4n

|x− aj|n

)β]∥∥∥∥∥
L
n
s ,1(Rn)

+

∥∥∥∥∥(I −∆)
s
2

[
Ψ̂(x)φ(2x)

(
log

e4n

|2x− aj−1|n

)β]∥∥∥∥∥
L
n
s ,1(Rn)

+

∥∥∥∥∥(I −∆)
s
2

[
Ψ̂(x)φ

(
x/2
)(

log
e4n

|x
2
− aj+1|n

)β]∥∥∥∥∥
L
n
s ,1(Rn)

.

In what follows, let us deal with the first term only, since the remaining two terms can

be estimated in a similar way.

Fix j ∈ Z and denote

fj(x) = Ψ̂(x)φ(x)

(
log

e4n

|x− aj|n

)β
.

For any multiindex α satisfying |α| ≥ 1 we have

|∂αfj(x)| ≤ CχA(x)

(
log

e4n

|x− aj|n

)β−1

|x− aj|−|α|.

Since |A| ≤ 2nωn, where ωn stands for the volume of the unit ball in Rn, the previous

estimate implies

(∂αfj)
∗ (t) ≤ Cχ(0,2nωn)(t)

(
log

e4nωn
t

)β−1

t−
|α|
n ,

where the constant C is independent of j. Therefore, if s is a positive integer and α is a

multiindex with 1 ≤ |α| ≤ s, then

(∂αfj)
∗ (t) ≤ Cχ(0,2nωn)(t)

(
log

e4nωn
t

)β−1

t−
s
n .

Consequently,

(3.3) sup
1≤|α|≤s

‖∂αfj‖Lns ,1(Rn)
≤ C

∫ 2nωn

0

(
log

e4nωn
t

)β−1

t−1 dt <∞.

Since each |fj| is bounded by a constant independent of j and compactly supported in

the set A, we also have

‖fj‖Lns (Rn)
≤ C <∞.

It remains to observe that the quantity ‖(I −∆)
s
2fj‖Lns ,1(Rn)

is equivalent to∑
|α|≤s

‖∂αfj‖Lns ,1(Rn)
.
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This can be proved in exactly the same way as the corresponding result for the Lebesgue

spaces (1.4), see, e.g., [48, Theorem 3, Chapter 5]. Therefore, we deduce that

sup
j∈Z
‖(I −∆)

s
2 [Ψ̂σ(2j·)]‖

L
n
s ,1(Rn)

<∞

for any positive integer s. Theorem 2.1 now yields that σ is an Lp Fourier multiplier for

any p ∈ (1,∞).

4. The Marcinkiewicz multiplier theorem

We recall the classical version of the Marcinkiewicz multiplier theorem:

Theorem 4.1. Suppose that σ(ξ1, . . . , ξn) is a function on Rn such that

(4.1)
∣∣∣∂β11 · · · ∂βnn σ(ξ1, . . . , ξn)

∣∣∣ ≤ Aβ1,...,βn|ξ1|−β1 · · · |ξn|−βn

for all βj ∈ {0, 1}, j = 1, . . . , n. Then σ is an Lp Fourier multiplier for all 1 < p < ∞
with bound

‖Tσ‖Lp→Lp ≤ Cn,p sup
βj∈{0,1}

Aβ1,...,βn .

Example: The following functions satisfy conditions (4.1) for all βj ∈ Z+ ∪ {0}:

m1(ξ) =
ξ1

ξ1 + i(ξ2
2 + · · ·+ ξ2

n)
,

m2(ξ) =
|ξ1|α1 · · · |ξn|αn

(ξ2
1 + ξ2

2 + · · ·+ ξ2
n)α/2

,

where α1 + α2 + · · ·+ αn = α, αj > 0,

m3(ξ) =
ξ2ξ

2
3

iξ1 + ξ2
2 + ξ4

3

.

The functions m1 and m2 are defined on Rn \ {0} and m3 on R3 \ {0}.
These examples and many other examples that satisfy conditions (4.1) are invariant

under a set of dilations in the following sense: suppose that there exist k1, . . . , kn ∈ R+

and s ∈ R such that the smooth function m on Rn \ {0} satisfies

m(λk1ξ1, . . . , λ
knξn) = λism(ξ1, . . . , ξn)

for all ξ1, . . . , ξn ∈ R and λ > 0. Then m satisfies condition (4.1). Indeed, differentiation

gives

λα1k1+···+αnkn∂αm(λk1ξ1, . . . , λ
knξn) = λis∂αm(ξ1, . . . , ξn)
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for every multi-index α = (α1, . . . , αn). Now for every ξ ∈ Rn \ {0} pick the unique

λξ > 0 such that (λk1ξ ξ1, . . . , λ
kn
ξ ξn) ∈ Sn−1. Then λ

kjαj
ξ ≤ |ξj|−αj , and it follows that

|∂αm(ξ1, . . . , ξn)| ≤
[

sup
Sn−1

|∂αm|
]
λα1k1+···+αnkn
ξ ≤ Cα|ξ1|−α1 · · · |ξn|−αn .

Example: Let κ ∈ R. Consider the function

m(ξ, η) =

(
1 + |ξ + η|2

(1 + |ξ|2)(1 + |η|2)

)κ
defined on R2n. Define the function

M(ξ, t, η, s) =

(
t2s2 + |sξ + tη|2

(t2 + |ξ|2)(s2 + |η|2)

)κ
on R2n+2. Notice that

M(λξ, λt, µη, µs) = M(ξ, t, η, s)

for any λ, µ > 0. This says that for fixed (η, s), the function (ξ, t) 7→ M(ξ, t, η, s)

is homogeneous of degree zero, hence ∂αξM(ξ, t, η, s) is homogeneous of degree −|α| in

(ξ, t). By the same argument the function (η, s) 7→ ∂βη ∂
α
ξM(ξ, t, η, s) is homogeneous of

degree −|β| in (η, s). From these observations we conclude that∣∣∂αξ ∂βηm(ξ, η)
∣∣ =

∣∣∣∂αξ ∂βηM(ξ, 1, η, 1)
∣∣∣ ≤ Cα,β,s

(1 + |ξ|)|α|(1 + |η|)|β|

Here α and β are multiindices of n entries. It follows that∣∣∂αξ ∂βηm(ξ, η)
∣∣ ≤ Cα,β,s|ξ1|−α1 · · · |ξn|−αn |η1|−β1 · · · |ηn|−βn ,

that is, condition (4.1) holds for all βj ∈ Z+ ∪ {0}.

Let us now study a product-type Sobolev space version of the Marcinkiewicz multiplier

theorem. We define (I − ∂2
` )

γ`
2 f as the linear operator ((1 + 4π2|η`|2)

γ`
2 f̂(η))∨ associated

with the multiplier (1 + 4π2|η`|2)
γ`
2 . We present here a proof of the Marcinkiewicz

multiplier theorem in which only |1/p− 1/2|+ ε derivatives per variable are required to

guarantee Lp boundedness of Tσ, instead of a full derivative as in (4.1).

Theorem 4.2. Let n ∈ N, n ≥ 2. Suppose that 1 ≤ r < ∞ and ψ is a Schwartz

function on the line whose Fourier transform is supported in [−2,−1/2] ∪ [1/2, 2] and

which satisfies
∑

j∈Z ψ̂(2−jξ) = 1 for all ξ 6= 0. Let γ` > 1/r, ` = 1, . . . , n. If a function

σ on Rn satisfies

(4.2) sup
j1,...,jn∈Z

∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

(
ψ̂(ξ1) · · · ψ̂(ξn)σ(2j1ξ1, . . . , 2

jnξn)
)∥∥

Lr
<∞,
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then Tσ admits a bounded extension from Lp(Rn) to itself for all 1 < p <∞ with

(4.3)
∣∣∣1
p
− 1

2

∣∣∣ < min(γ1, . . . , γn).

Moreover, (4.3) is optimal in the sense that if Tσ is Lp-bounded for every σ satisfy-

ing (4.2), then the strict inequality in (4.3) must necessarily hold.

Carbery [4] first formulated a version of Theorem 4.2 in which the multiplier lies in a

product-type L2-based Sobolev space. Carbery and Seeger [5, Remark after Prop. 6.1]

obtained Theorem 4.2 in the case when γ1 = · · · = γn >
∣∣1
p
− 1

2

∣∣ = 1
r
. The positive

direction of their result also appeared in [6, Condition (1.4)] but this time the range of

p is
∣∣1
p
− 1

2

∣∣ < 1
r
. The present variant of Theorem 4.2 appeared in [32].

Let us now focus on the proof of Theorem 4.2. We use ψ to denote the bump from

Theorem 4.2; further, θ will stand for the function on the line satisfying

θ̂(η) = ψ̂(η/2) + ψ̂(η) + ψ̂(2η).

One can observe that θ̂ is supported in {1
4
≤ |ξ| ≤ 4} and θ̂ = 1 on the support of ψ̂.

To simplify the notation, if ξ = (ξ1, . . . , ξn) ∈ Rn and J = (j1, . . . , jn) ∈ Zn, we shall

write

2Jξ =
(
2j1ξ1, . . . , 2

jnξn
)

and

ψ̂(ξ) =
n∏
`=1

ψ̂(ξ`), θ̂(ξ) =
n∏
`=1

θ̂(ξ`).

Let k ∈ 1, . . . , n. For j ∈ Z we define the Littlewood-Paley operators associated to

the bumps ψ and θ by

∆ψ,k
j (f)(x) =

∫
R
f(x1, . . . , xk−1, xk − y, xk+1, . . . , xn)2jψ(2jy)dy

and

∆θ,k
j (f)(x) =

∫
R
f(x1, . . . , xk−1, xk − y, xk+1, . . . , xn)2jθ(2jy)dy.

We begin with the following lemma:

Lemma 4.3. Let 1 ≤ r < ∞, let 1 ≤ ρ < 2 satisfy 1 ≤ ρ ≤ r and let γ1, . . . , γn be real

numbers such that γ`ρ > 1, ` = 1, . . . , n. Then, for any function f on Rn and for all

integers j1, . . . jn, we have

(4.4) |∆ψ,1
j1
· · ·∆ψ,n

jn
Tσ(f)| ≤ C K

[
M (1) · · ·M (n)(|∆θ,1

j1
· · ·∆θ,n

jn
f |ρ)

] 1
ρ
,
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where M (`) denotes the one-dimensional Hardy-Littlewood maximal operator in the `-th

coordinate and

K = sup
j1,...,jn∈Z

∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ
(
2j1ξ1, . . . , 2

jnξn
)
ψ̂(ξ1) · · · ψ̂(ξn)

]∥∥∥∥
Lr
.

Proof. Throughout the proof we shall use the notation introduced above and, whenever

J = (j1, . . . , jn), we write

∆ψ
Jf = ∆ψ,1

j1
· · ·∆ψ,n

jn
f, ∆θ

Jf = ∆θ,1
j1
· · ·∆θ,n

jn
f.

Since θ̂ is equal to 1 on the support of ψ̂, we have

∆ψ
JTσ(f)(x1, . . . , xn)

=

∫
Rn
f̂(ξ)ψ̂(2−Jξ)σ(ξ)e2πix·ξdξ

=

∫
Rn
f̂(ξ)θ̂(2−Jξ)ψ̂(2−Jξ)σ(ξ)e2πix·ξdξ

=

∫
Rn

(∆θ
Jf) (̂ξ)ψ̂(2−Jξ)σ(ξ)e2πix·ξdξ

=

∫
Rn

2j1+···+jn(∆θ
Jf) (̂2Jξ′)ψ̂(ξ′)σ(2Jξ′)e2πi(2Jx·ξ′)dξ′

= 2j1+···+jn
∫
Rn

(∆θ
Jf)(y)

[
ψ̂(ξ′)σ(2Jξ′)

]̂
(2J(x− y))dy

=

∫
Rn

2j1+···+jn(∆θ
Jf)(y)∏n

`=1(1 + 2j` |x` − y`|)γ`
·
n∏
`=1

(1 + 2j`|x` − y`|)γ`
[
ψ̂(ξ)σ(2Jξ)

]̂
(2J(x− y)) dy.

Hölder’s inequality thus yields that |∆JTσ(f)(x)| is bounded by(∫
Rn

2j1+···+jn |(∆θ
Jf)(y)|ρ∏n

`=1(1 + 2j`|x` − y`|)γ`ρ
dy

) 1
ρ

·
(∫

Rn
2j1+···+jn

∣∣∣∣ n∏
`=1

(1 + 2j` |x` − y`|)γ` ·
[
ψ̂(ξ)σ(2Jξ)

]
(̂2J(x− y))

∣∣∣∣ρ′ dy) 1
ρ′

,

where, when ρ = 1, the second term in the product is to be interpreted as∥∥∥∥ n∏
`=1

(1 + 2j` |x` − y`|)γ` ·
[
ψ̂(ξ)σ(2Jξ)

]
(̂2J(x− y))

∥∥∥∥
L∞
.

Since γ`ρ > 1 for all ` = 1, . . . , n, n consecutive applications of (2.6) yield the estimate(∫
Rn

2j1+···+jn |(∆θ
Jf)(y)|ρ∏n

`=1(1 + 2j`|x` − y`|)γ`ρ
dy

) 1
ρ

≤ C
[
M (1) · · ·M (n)

(
|∆θ

Jf |ρ
)
(x)
] 1
ρ
.
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We now write(∫
Rn

2j1+···+jn
∣∣∣∣ n∏
`=1

(1 + 2j` |x` − y`|)γ`
[
ψ̂(ξ)σ(2Jξ)

]
(̂2J(x− y))

∣∣∣∣ρ′dy) 1
ρ′

≤
(∫

Rn

∣∣∣∣ n∏
`=1

(1 + |y`|2)
γ`
2

[
ψ̂(ξ)σ(2Jξ)

]
(̂y)

∣∣∣∣ρ′ dy) 1
ρ′

≤
∥∥∥∥(I − ∂2

1)
γ1
2 · · · (I − ∂2

n)
γn
2

[
σ
(
2Jξ
)
ψ̂(ξ)

]∥∥∥∥
Lρ

≤ C

∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ
(
2Jξ
)
ψ̂(ξ)

]∥∥∥∥
Lr

(4.5)

≤ CK.

Notice that the second inequality is the Hausdorff-Young inequality (2.12) while (4.5)

is a consequence of the Kato-Ponce inequality [29] (if ρ < r). A combination of the

preceding estimates yields (4.4). �

Proposition 4.4. Let 1 ≤ r < ∞ and let γ` > max{1/2, 1/r}, ` = 1, . . . , n. If a

function σ on Rn satisfies (4.2), then Tσ admits a bounded extension from Lp(Rn) to

itself for all 1 < p <∞.

Proof. Suppose first that p > 2. Since γ` > max{1/2, 1/r}, ` = 1, . . . , n, we can find

ρ ∈ [1, 2) such that ρ ≤ r and ργ` > 1, ` = 1, . . . , n. Then∥∥Tσ(f)
∥∥
Lp(Rn)

≤ Cp(n)
∥∥∥( ∑

j1,...,jn∈Z

|∆ψ,1
j1
· · ·∆ψ,n

jn
Tσ(f)|2

) 1
2
∥∥∥
Lp

≤ Cp(n)K
∥∥∥( ∑

j1,...,jn∈Z

[
M (1) · · ·M (n)(|∆θ,1

j1
· · ·∆θ,n

jn
f |ρ)

] 2
ρ
) 1

2
∥∥∥
Lp

≤ Cp(n)K
∥∥∥( ∑

j1,...,jn∈Z

|∆θ,1
j1
· · ·∆θ,n

jn
f |2
) 1

2
∥∥∥
Lp

≤ Cp(n)K‖f‖Lp .

Notice that the second inequality follows from Lemma 4.3 and the third inequality is

obtained by applying the Fefferman-Stein inequality (2.5) on the Lebesgue space L
p
2 in

each of the variables y1, . . . , yn. Observe that the Fefferman-Stein inequality makes use

of the assumptions 2/ρ > 1 and p/2 > 1. The first and last inequality follow from

Proposition 4.5 below.

The case 1 < p < 2 follows by a duality argument, while the case p = 2 is a consequence

of Plancherel’s theorem and of a Sobolev embedding into L∞. �
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Proposition 4.5. If ψ satisfies
∑

j∈Z ψ̂(2−jξ) = 1 for all ξ 6= 0, then we have

(4.6)
∥∥∥( ∑

j1,...,jn∈Z

|∆θ,1
j1
· · ·∆θ,n

jn
f |2
) 1

2
∥∥∥
Lp(Rn)

≈ ‖f‖Lp(Rn),

where θ̂(ξ) = ψ̂(2ξ) + ψ̂(ξ) + ψ̂(2−1ξ).

Before we discuss the proofs we recall the Rademacher functions, which we plan to

use. The Rademacher functions are defined on [0, 1] as follows: r0(t) = 1; r1(t) = 1 for

0 ≤ t ≤ 1/2 and r1(t) = −1 for 1/2 < t ≤ 1; r2(t) = 1 for 0 ≤ t ≤ 1/4, r2(t) = −1 for

1/4 < t ≤ 1/2, r2(t) = 1 for 1/2 < t ≤ 3/4, and r2(t) = −1 for 3/4 < t ≤ 1; and so on.

According to this definition, we have that rj(t) = sgn(sin(2jπt)) for j = 0, 1, 2, . . . . They

are mutually independent random variables on [0, 1] that satisfy Khintchine’s inequalities:

For any 0 < p < ∞ and for any complex-valued square summable sequences {zj} we

have

(4.7) Bp

(∑
j

|zj|2
)1

2

≤
∥∥∥∑

j

zjrj

∥∥∥
Lp([0,1])

≤ Ap

(∑
j

|zj|2
)1

2

for some constants 0 < Ap, Bp <∞ that depend only on p.

These inequalities also extend to several variables. Set

Fn(t1, . . . , tn) =
∑
j1

· · ·
∑
jn

cj1,...,jnrj1(t1) · · · rjn(tn),

for tj ∈ [0, 1], where cj1,...,jn is a sequence of complex numbers.

For any 0 < p < ∞ and for any complex-valued square summable sequence of n

variables {cj1,...,jn}j1,...,jn , we have the following inequalities for Fn:

Bn
p

(∑
j1

· · ·
∑
jn

|cj1,...,jn|2
)1

2

≤
∥∥Fn∥∥Lp([0,1]n)

≤ Anp

(∑
j1

· · ·
∑
jn

|cj1,...,jn|2
)1

2

,

where Ap, Bp are the constants in (4.7).

Using the Rademacher functions we can now prove Proposition 4.5.

Proof. We begin by noting that (4.6) holds when n = 1, as
∑

j∈Z θ̂(2
−jξ) = 3 when ξ 6= 0;

see [18, Theorem 6.1.6, Corollary 6.1.7] So it suffices to prove (4.6) in higher dimensions.

Using the preceding inequalities we write:∥∥∥( ∑
j1,...,jn∈Z

|∆θ,1
j1
· · ·∆θ,n

jn
f |2
) 1

2
∥∥∥p
Lp(Rn)

=

∫
Rn

( ∑
j1,...,jn∈Z

|∆θ,1
j1
· · ·∆θ,n

jn
f |2
) p

2
dx
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≈
∫
Rn

∫
[0,1]n

∣∣∣∣ ∑
j1,...,jn∈Z

rj1(t1) · · · rjn(tn)∆θ,1
j1
· · ·∆θ,n

jn
f(x)

∣∣∣∣pdt1 · · · dtn dx∫
Rn

∫
[0,1]n

∣∣∣∣(∑
j1∈Z

rj1(t1)∆θ,1
j1

)
· · ·
(∑
jn∈Z

rjn(tn)∆θ,n
jn

)
f(x)

∣∣∣∣p dt1 · · · dtn dx
≈
∫
Rn−1

∫
[0,1]n−1

∫
R

(∑
j1∈Z

∣∣∣∣∆θ,1
j1

{ n−1∏
i=2

(∑
ji∈Z

rji(ti)∆
θ,i
ji

)
f

}
(x1, x

′)

∣∣∣∣2) p
2

dx1 dt2 · · · dtndx′

where x′ = (x2, . . . , xn). We now apply the Littlewood-Paley theorem (2.11) in the first

variable x1 to eliminate the square function in j1 and replace the inner integral by the

p-th power of the function in the curly brackets. We then continue the same reasoning

to the remaining variables x2, . . . , xn to conclude the proof of (4.6). �

5. The interpolation argument needed in the proof of Theorem 4.2

When p = 2 no derivatives are required of σ for Tσ to be bounded. To mitigate the

effect of the requirement of the derivatives of σ for Tσ to be bounded on Lp for p 6= 2,

we apply an interpolation argument between p = 2 and p near 1.

We shall use the notation introduced at the beginning of the previous section, and we

shall denote

Γ
(
{s`}n`=1

)
= Γ(s1, . . . , sn) = (I − ∂2

1)
s1
2 · · · (I − ∂2

n)
sn
2 .

The following result will be the key interpolation estimate:

Theorem 5.1. Fix 1 < p0, p1, r0, r1 < ∞, 0 < s0
1, . . . , s

0
n, s

1
1, . . . , s

1
n < ∞. Suppose that

r0s
0
` > 1 and r1s

1
` > 1 for all ` = 1, . . . , n. Let ψ be as before. Assume that for k ∈ {0, 1}

we have

(5.1) ‖Tσ(f)‖Lpk ≤ Kk sup
j1,...,jn∈Z

∥∥∥∥Γ(sk1, . . . , s
k
n)
[
σ(2Jξ)

n∏
`=1

ψ̂(ξ`)
]∥∥∥∥

Lrk

‖f‖Lpk

for all f ∈ C∞0 (Rn). For 0 < θ < 1 and ` = 1, . . . , n define

1

p
=

1− θ
p0

+
θ

p1

,
1

r
=

1− θ
r0

+
θ

r1

, s` = (1− θ)s0
` + θs1

` .

Then there is a constant C∗ such that for all f ∈ C∞0 (Rn) we have

(5.2) ‖Tσ(f)‖Lp ≤ C∗K
1−θ
0 Kθ

1 sup
j1,...,jn∈Z

∥∥∥∥Γ(s1, . . . , sn)
[
σ(2Jξ)

n∏
`=1

ψ̂(ξ`)
]∥∥∥∥

Lr
‖f‖Lp .

Assuming Theorem 5.1, we complete the proof of Theorem 4.2 as follows:
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Proof. Given 1 ≤ r ≤ ∞ and γ` > 1/r, ` = 1, . . . , n, fix p ∈ (1,∞) satisfying (4.3). In

fact, we can assume that p ∈ (1, 2), since the case p ∈ (2,∞) follows by duality and the

case p = 2 is a consequence of Plancherel’s theorem and of a Sobolev embedding into

L∞. In addition, assume first that min` γ` ≤ 1
2
. In view of (4.3), there is τ ∈ (0, 1) such

that

(5.3)
1

p
− 1

2
< τ min

`
γ`.

Set p1 = 2
τ+1

, r1 = 2rmin` γ` and γ1
` = 1

2
+ ε, ` = 1, . . . , n, where ε > 0 is a real number

whose exact value will be specified later. Since p1 > 1 and r1γ
1
` > 2γ1

` > 1, ` = 1, . . . , n,

Proposition 4.4 yields that

(5.4) ‖Tσ(f)‖Lp1 ≤ C1 sup
j1,...,jn∈Z

∥∥∥∥Γ(γ1
1 , . . . , γ

1
n)
[
σ(2Jξ)

n∏
`=1

ψ̂`(ξ`)
]∥∥∥∥

Lr1

‖f‖Lp1 .

Pick p0 = 2. Let θ be the real number satisfying

1

p
=

1− θ
p0

+
θ

p1

,

namely, θ = 2
τ
(1
p
− 1

2
). Observe that, by (5.3), 0 < θ < 2 min` γ` ≤ 1. Finally, choose

real numbers r0 and γ0
` , ` = 1, . . . , n, in such a way that

(5.5)
1

r
=

1− θ
r0

+
θ

r1

, γ` = (1− θ)γ0
` + θγ1

` .

We claim that, for a suitable choice of ε > 0, one has r0 > 2 and r0γ
0
` > 1, ` = 1, . . . , n.

Indeed, since min` γ` ≤ 1
2
, we have r1 ≤ r, and thus, by (5.5), r0 ≥ r ≥ r1 > 2. Further,

r0γ
0
` =

r1r(γ` − θγ1
` )

r1 − θr
=
rmink γk(γ` − θ

2
− θε)

mink γk − θ
2

≥
rmink γk(mink γk − θ

2
− θε)

mink γk − θ
2

.

Since rmink γk > 1 and mink γk − θ
2
> 0, one gets r0γ

0
` > 1 if ε > 0 is small enough.

Consequently, the space {g : Γ(γ0
1 , . . . , γ

0
n)g ∈ Lr0} embeds in L∞, and we thus have

(5.6) ‖Tσ(f)‖L2 ≤ C1 sup
j1,...,jn∈Z

∥∥∥∥Γ(γ0
1 , . . . , γ

0
n)
[
σ(2Jξ)

n∏
`=1

ψ̂`(ξS`)
]∥∥∥∥

Lr0

‖f‖L2 .

The boundedness of Tσ on Lp(Rn) for any σ satisfying (4.2) thus follows from The-

orem 5.1. Finally, if min` γ` >
1
2
, then the required assertion follows directly from

Proposition 4.4. �

Proof of Theorem 5.1. The proof of Theorem 5.1 follows closely that of [3, Theorem 4.7]

and for this reason we only provide an outline of its proof with few details. Throughout
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the proof we shall use the notation introduced at the beginning of the previous section.

Also, whenever J ∈ Zn, we denote

ϕJ = Γ(s1, . . . , sn)
[
σ(2Jξ)ψ̂(ξ)

]
,

and for z with real part in [0, 1] we define

(5.7) σz(ξ) =
∑
J∈Zn

Γ
(
{−s0

`(1− z)− s1
`z}n`=1

)[
|ϕJ |r(

1−z
r0

+ z
r1

)
eiArg (ϕJ )

]
(2−Jξ)θ̂(2−Jξ).

For any given ξ ∈ Rn, this sum has only finitely many terms and one can show that

(5.8) ‖στ+it‖L∞ . (1 + |t|)
3n
2

(
sup
J∈Zn

∥∥Γ(s1, . . . , sn)[σ(2Jξ)ψ̂(ξ)]
∥∥
Lr

) r
rτ
,

where rτ is the real number satisfying 1
rτ

= 1−τ
r0

+ τ
r1

.

Let Tz be the family of operators associated to the multipliers σz. Fix f, g ∈ C∞0
and 1 < p0 < p < p1 < ∞. Given ε > 0 there exist functions f εz and gεz such that

‖f εθ − f‖Lp < ε, ‖gεθ − g‖Lp′ < ε, and that

‖f εit‖Lp0 ≤
(
‖f‖pLp + ε

) 1
p0 ,

∥∥f ε1+it

∥∥
Lp1
≤
(
‖f‖pLp + ε

) 1
p1 ,

‖gεit‖Lp′0 ≤
(
‖g‖p

′

Lp′
+ ε
) 1
p′0 ,

∥∥gε1+it

∥∥
Lp
′
1
≤
(
‖g‖p

′

Lp′
+ ε
) 1
p′1 .

The existence of f εz and gεz is folklore and is omitted; for a similar construction see [3,

Theorem 3.3]. Let F (z) =
∫
Tσz(f

ε
z )gεz dx. Then F (z) is equal to∫

Rn
σz(ξ)f̂ εz (ξ)ĝεz(ξ) dξ

=
∑
J∈Zn

∫
Rn

Γ
(
{−s0

`(1− z)− s1
`z}n`=1

)[
|ϕJ |r(

1−z
r0

+ z
r1

)
eiArg (ϕJ )

]
(2−jξ)θ̂(2−Jξ)f̂ εz (ξ)ĝεz(ξ) dξ

=
∑
J∈Zn

∫
Rn

[
|ϕJ |r(

1−z
r0

+ z
r1

)
eiArg (ϕJ )

]
(2−Jξ)Γ

(
{−s0

`(1− z)− s1
`z}n`=1

)[
θ̂(2−J ·)f̂ εz ĝεz

]
(ξ) dξ.

The function F (z) is analytic on the strip 0 < <(z) < 1 and continuous up to the

boundary. Notice that σit(2
K ·)ψ̂ picks up only the terms of (5.7) for which J differs from

K in some coordinate by at most one unit. For simplicity we may therefore take K = J

in the calculation below. Using the Kato-Ponce inequality we may “remove” the factor

θ̂ and write

‖Tσit(f εit)‖Lp0
≤K0 sup

K∈Zn

∥∥∥Γ(s0
1, . . . , s

0
n)
[
σit(2

K ·)ψ̂
]∥∥∥

Lr0
‖f εit‖Lp0

≤K0 sup
K∈Zn

∥∥Γ
(
{s0

` − s0
`(1− it)− s1

` it}n`=1

)[
|ϕK |r(

1−it
r0

+ it
r1

)
eiArg (ϕK)

]∥∥
Lr0
‖f εit‖Lp0
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.(1 + |t|)
3n
2 K0 sup

K∈ZN
‖ϕK‖

r
r0
Lr

(
‖f‖pLp + ε

) 1
p0 .

Using Hölder’s inequality |F (it)| ≤ ‖Tσit(f εit)‖Lp0 ‖gεit‖Lp′0 , we may therefore write

|F (it)| ≤ C(1 + |t|)
3n
2 K0 sup

J∈Zn

∥∥Γ({s`}n`=1)[σ(2J ·)ψ̂]
∥∥ r
r0
Lr

(
‖f‖pLp + ε

) 1
p0

(
‖g‖p

′

Lp
′ + ε

) 1
p′0

for some constant C = C(n, r0, s
0
` , s

1
`). Similarly, for some constant C = C(n, r1, s

0
` , s

1
`)

we obtain

|F (1 + it)| ≤ C(1 + |t|)
3n
2 K1 sup

J∈Zn

∥∥Γ({s`}n`=1)[σ(2J ·)ψ̂]
∥∥ r
r1
Lr

(
‖f‖pLp + ε

) 1
p1

(
‖g‖p

′

Lp′
+ ε
) 1
p′1 .

Thus for z = τ + it, t ∈ R and 0 ≤ τ ≤ 1 it follows from (5.8) and from the definition of

F (z) that

|F (z)| ≤ C ′′(1 + |t|)
3n
2

(
sup
J∈Zn

∥∥Γ(s1, . . . , sn)
[
σ(2J ·)ψ̂

]∥∥
Lr

) r
rτ ‖f εz‖L2‖gεz‖L2 = Aτ (t) ,

noting that ‖f εz‖L2‖gεz‖L2 is bounded above by constants independent of t and τ . Since

Aτ (t) ≤ exp(Aea|t|), the hypotheses of three lines lemma are valid. It follows that

|F (θ)| ≤ C K1−θ
0 Kθ

1 sup
J∈Zn

∥∥Γ({s`}n`=1)[σ(2J ·)ψ̂]
∥∥
Lr

(
‖f‖pLp + ε

) 1
p
(
‖g‖p

′

Lp′
+ ε
) 1
p′ .

Taking the supremum over all functions g ∈ Lp
′

with ‖g‖Lp′ ≤ 1, a simple density

argument yields for some C∗ = C∗(n, r1, r2, s
0
` , s

1
`)

‖Tσ(f)‖Lp ≤ C∗K
1−θ
0 Kθ

1 sup
J∈Zn

∥∥Γ(s1, . . . , sn)[σ(2J ·)ψ̂]
∥∥
Lr
‖f‖Lp .

This completes the proof of the sufficiency part of Theorem 4.2. The proof of the necessity

part is postponed to section 6. �

6. The sharpness of the Marcinkiewicz multiplier theorem

In this section we discuss examples indicating the sharpness of Theorem 4.2. We first

consider the multiplier

σ(ξ) = ei|ξ|
2

n∏
`=1

φ(ξ`)|ξ`|−2γ` ,

where φ is a smooth function on R which vanishes in a neighborhood of the origin and

is equal to 1 near infinity, and γ > 0. This multiplier can be obtained by taking tensor

products of the functions σa,b introduced at the end of Section 1, with a = 2 and b = 2γ`.

Then σ satisfies (4.2) when r > 1 and min1≤`≤n γ` >
1
r
. In addition, if boundedness

holds for Tσ from Lp(Rn) to itself, then by testing on tensor type functions, we must

necessarily have that each m2,2γ`(ξ`) is bounded from Lp(R) to itself and thus we must

have
∣∣1

2
− 1

p

∣∣ ≤ γ` for all ` = 1, . . . , n.
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Next we discuss an example indicating that Theorem 4.2 does not hold in the limiting

case when
∣∣1

2
− 1

p

∣∣ = γ` for some ` = 1, . . . , n. Such an example appeared, at least in the

two-dimensional case with both smoothness parameters equal, in Carbery and Seeger [5,

remark after Proposition 6.1]. We provide an example in the spirit of theirs, given by

an explicit closed-form expression and valid in all dimensions n ≥ 2.

Example 6.1 ([32]). Given α ∈ (0, 1), consider the function

σ(ξ, η) = ϕ(|η|)e−
ξ2

2 |η|iξ(log |η|)−α, (ξ, η) ∈ R× Rn−1 = Rn,

where ϕ is a smooth function on the line such that 0 ≤ ϕ ≤ 1, ϕ = 0 on (−∞, 8] and

ϕ = 1 on [9,∞). Then

(i) σ satisfies (4.2), with r large enough, whenever γ1 = α and γ2, . . . , γn are arbitrary

positive real numbers;

(ii) σ is an Lp Fourier multiplier for a given 1 < p <∞ if and only if α > |1
p
− 1

2
|.

The previous example indicates that condition (4.2) does not guarantee that Tσ is Lp

bounded unless all indices γ1, . . . , γn in (4.2) are larger than |1
p
− 1

2
|. In particular, for a

given i ∈ {1, . . . , n}, one does not have boundedness on the critical line γi = |1
p
− 1

2
|, no

matter how large the remaining parameters are.

Let us now verify the statement of part (i) of Example 6.1. We shall first prove that

(6.1) sup
k,`∈Z
‖(I − ∂2

ξ )
α
2 (I −∆η)

s
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2`η)]‖Lr <∞

for any s > 0 and r > 1. Here, Φ denotes a Schwartz function on Rn−1 whose Fourier

transform is supported in the set {η ∈ Rn−1 : 1
2
≤ |η| ≤ 2} and which satisfies∑

`∈Z Φ̂(2`η) = 1 for all η 6= 0. Indeed, for any k, ` ∈ Z, ` ≥ 3, and for any given

nonnegative integer m, we have

‖ψ̂(ξ)Φ̂(η)σ(2kξ, 2`η)‖Lr ≤ C`−α

and

‖(I − ∂ξ)
1
2 (I −∆η)

m
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2`η)]‖Lr ≤ C` · `−α,

where the constant C is independent of k and `. Interpolating between these two esti-

mates, we obtain

‖(I − ∂ξ)
α
2 (I −∆η)

αm
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2`η)]‖Lr ≤ C.
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Notice also that the last inequality in fact holds for all integers k, `, since the function

ψ̂(ξ)Φ̂(η)σ(2kξ, 2`η) is identically equal to 0 if ` ≤ 2. Hence, we have

sup
k,`∈Z
‖(I − ∂ξ)

α
2 (I −∆η)

αm
2 [ψ̂(ξ)Φ̂(η)σ(2kξ, 2`η)]‖Lr ≤ C,

and interpolating between variants of this estimate corresponding to different values of

m, we obtain (6.1) for any s > 0. Now, part (i) of Example 6.1 follows by an application

of Theorem 7.1, which will be stated and proved in the next section, in the variable η.

Let us finally focus on part (ii) of Example 6.1. If α > |1
p
− 1

2
|, then σ is an Lp Fourier

multiplier thanks to (i) and Theorem 4.2. Let us now prove that Tσ is not Lp bounded if

α ≤ |1
p
− 1

2
|. By duality, it suffices to discuss only the case when 1 < p < 2. Furthermore,

one can make use of the result of Herz and Rivière [34] which asserts that if Tσ is Lp

bounded then it is necessarily bounded also on the mixed norm space Lp(R;L2(Rn−1)),

defined as

‖f‖Lp(R;L2(Rn−1)) =

(∫
R

(∫
Rn−1

|f(ξ, η)|2d η
) p

2

dξ

) 1
2

.

Thus, the proof will be complete if we show that Tσ is not bounded on Lp(R;L2(Rn−1)).

Let f be the function on Rn whose Fourier transform satisfies

f̂(ξ, η) = e−
ξ2

2 ϕ(|η|)|η|
1−n
2 (log |η|)−

1
2 (log log |η|)−β, (ξ, η) ∈ R× Rn−1.

Using Plancherel’s theorem in the variable η, it is easy to check that f ∈ Lp(R;L2(Rn−1))

whenever β > 1
2
. Our next goal is to prove that Tσf = F−1(σf̂) does not belong to

Lp(R;L2(Rn−1)) if β ∈ (1
2
, 1
p
]. Using Plancherel’s theorem in the variable η again, this

is equivalent to showing that F−1
ξ (σf̂ ) is not in Lp(R;L2(Rn−1)), where F−1

ξ stands for

the inverse Fourier transform in the ξ variable.

Observe that

F−1
ξ (σf̂ )(x, η) = Ce−

1
4

(2πx+log |η|)2ϕ2(|η|)|η|
1−n
2 (log |η|)−α−

1
2 (log log |η|)−β

≥ Cχ{(x,η): x<−2, e−2πx−1<|η|<e−2πx}(x, η)e2πxn−1
2 (−x)−α−

1
2 (log(−x))−β.

Therefore,

‖F−1
ξ (σf̂ )‖Lp(R;L2(Rn−1)) ≥ C

(∫ −2

−∞
(−x)(−α− 1

2
)p(log(−x))−βp dx

) 1
p

=∞,

which yields the desired conclusion.
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7. Comparison between the Hörmander and Marcinkiewicz multiplier

theorems

In this section we show that the class of multipliers which satisfies the assumptions

of Theorem 4.2 is strictly larger than the set of multipliers treated by the version of the

Hörmander multiplier theorem due to Calderón and Torchinsky [3, Theorem 4.6]; see

Section 1 for the statement of this theorem. Before we come to the proof we would like

to emphasize that such a comparison is not possible for the classical versions of these

two theorems (see (1.2) for the Hörmander condition and (4.1) for the Marcinkiewicz

condition). Indeed, while condition (1.2) requires the multiplier to have more than n/2

derivatives in each variable, condition (4.1) assumes n derivatives in total, but only one

in each variable. Therefore, there are multipliers satisfying (1.2) but not (4.1), and also

multipliers satisfying (4.1) but not (1.2).

To compare the fractional versions of the Hörmander and Marcinkiewicz multiplier

theorems, we first notice that Theorem 4.2 assumes the multiplier σ to have 1/r + ε

derivatives in each variable, while the Hörmander multiplier theorem requires more than

n/r derivatives in all variables, and so there are multipliers which can be treated by

Theorem 4.2, but not by [3, Theorem 4.6]. On the other hand, it is an easy consequence of

the following theorem that every multiplier satisfying the assumptions of the Hörmander

multiplier theorem falls under the scope of Theorem 4.2 as well.

Theorem 7.1. Let ψ be a Schwartz function on the line whose Fourier transform is

supported in the set {ξ : 1
2
≤ |ξ| ≤ 2} and which satisfies

∑
k∈Z ψ̂(2kξ) = 1 for every ξ 6=

0. Also, let Φ be a Schwartz function on Rn having analogous properties. If 1 < r <∞
and γ1, . . . , γn are real numbers larger than 1

r
, then

sup
j1,...,jn∈Z

∥∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j1ξ1, . . . , 2

jnξn)
n∏
`=1

ψ̂(ξ`)

]∥∥∥∥∥
Lr

(7.1)

≤ C sup
j∈Z

∥∥∥∥(I −∆)
γ1+···+γn

2

[
σ(2jξ)Φ̂(ξ)

]∥∥∥∥
Lr
.

Crucial ingredients needed for the proof of Theorem 7.1 are two one-dimensional in-

equalities contained in the following lemma.

Lemma 7.2. Let ψ be as in Theorem 7.1. If k ∈ Z, γ > 0 and 1 < r <∞ are such that

γr > 1, then

(7.2)
∥∥f(2k·)ψ̂

∥∥
Lr(R)

≤ C
∥∥(I − ∂2)

γ
2 f
∥∥
Lr(R)
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and

(7.3)
∥∥(−∂2)

γ
2

[
f(2k·)ψ̂

]∥∥
Lr(R)

≤ C
(
1 + 2k(γ− 1

r
)
)∥∥(I − ∂2)

γ
2 f
∥∥
Lr(R)

.

Proof. Since γr > 1, the Sobolev embedding theorem yields

(7.4) |f(2kx)| ≤ ‖f‖L∞(R) ≤ C
∥∥(I − ∂2)

γ
2 f
∥∥
Lr(R)

for a.e. x ∈ R.

Therefore,∥∥f(2k·)ψ̂
∥∥
Lr(R)

≤ C
∥∥(I − ∂2)

γ
2 f
∥∥
Lr(R)

∥∥ψ̂ ∥∥
Lr(R)

= C ′
∥∥(I − ∂2)

γ
2 f
∥∥
Lr(R)

.

This proves (7.2).

Further, using the Kato-Ponce inequality [29], the estimate (7.4) and the fact that ψ̂

is smooth and with compact support, we obtain∥∥(−∂2)
γ
2

[
f(2k·)ψ̂

]∥∥
Lr(R)

≤ C
(∥∥(−∂2)

γ
2

[
f(2k·)

]∥∥
Lr(R)

∥∥ψ̂ ∥∥
L∞(R)

+
∥∥f(2k·)

∥∥
L∞(R)

∥∥(−∂2)
γ
2 ψ̂
∥∥
Lr(R)

)
≤ C

(∥∥(−∂2)
γ
2

[
f(2k·)

]∥∥
Lr(R)

+
∥∥(I − ∂2)

γ
2 f
∥∥
Lr(R)

)
= C

(
2k(γ− 1

r
)
∥∥(−∂2)

γ
2 f
∥∥
Lr(R)

+
∥∥(I − ∂2)

γ
2 f
∥∥
Lr(R)

)
≤ C

(
2k(γ− 1

r
) + 1

)∥∥(I − ∂2)
γ
2 f
∥∥
Lr(R)

,

namely, (7.3). �

Proof of Theorem 7.1. Set F (ξ) =
∑n

κ=−n Φ̂(2κξ), ξ ∈ Rn. Then F (ξ) = 1 for any ξ

satisfying 1
2n
≤ |ξ| ≤ 2n. Therefore, if j1, . . . , jn are integers and j := max{j1, . . . , jn},

then F (2j1−jξ1, . . . , 2
jn−jξn) = 1 on {(ξ1, . . . , ξn) : 1

2
≤ |ξ1| ≤ 2, . . . , 1

2
≤ |ξn| ≤ 2}.

Consequently,
n∏
`=1

ψ̂(ξ`) = F (2j1−jξ1, . . . , 2
jn−jξn)

n∏
`=1

ψ̂(ξ`).

Using this, we can write∥∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j1ξ1, . . . , 2

jnξn)
n∏
`=1

ψ̂(ξ`)

]∥∥∥∥∥
Lr

=

∥∥∥∥∥(I − ∂2
1)

γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j1ξ1, . . . , 2

jnξn)F (2j1−jξ1, . . . , 2
jn−jξn)

n∏
`=1

ψ̂(ξ`)

]∥∥∥∥∥
Lr

≤ C
n∑

a=−n

∑
{i1,...,ik}⊆{1,...,n}
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i1

)
γi1
2 · · · (−∂2

ik
)
γik
2

[
σ(2j1ξ1, . . . , 2

jnξn)Φ̂(2j1−j+aξ1, . . . , 2
jn−j+aξn)

n∏
`=1

ψ̂(ξ`)

]∥∥∥∥∥
Lr

.

Using the estimate (7.3) in variables i1, . . . , ik and inequality (7.2) in the remaining vari-

ables, we estimate the corresponding term in the last expression by a constant multiple

of [ n∏
s=1

(
1 + 2(jis−j+a)(γis−

1
r

)
)] ∥∥∥∥(I − ∂2

1)
γ1
2 · · · (I − ∂2

n)
γn
2

[
σ(2j−aξ)Φ̂(ξ)

]∥∥∥∥
Lr

≤ C
(
1 + 2nmax`=1,...,n(γ`− 1

r
)
)n ∥∥∥∥(I −∆)

γ1+···+γn
2

[
σ(2j−aξ)Φ̂(ξ)

]∥∥∥∥
Lr

≤ C sup
m∈Z

∥∥∥∥(I −∆)
γ1+···+γn

2

[
σ(2mξ)Φ̂(ξ)

]∥∥∥∥
Lr
.

This implies (7.1). �

8. A boundedness criterion for bilinear Fourier multiplier operators

As physical and natural phenomena depend on numerous inputs, it natural to develop

theories that model dependencies on many variables. Multilinear Fourier Analysis pro-

vides a framework to study operations that depend linearly on several input functions.

Multilinear multiplier operators are special kinds of multilinear operators in which the

product of frequencies is jointly altered by a common symbol. Based on this definition,

bilinear multiplier operators are given by

Tm(f, g)(x) =

∫
Rn

∫
Rn
m(ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξdη ,

where f, g are Schwartz functions and m is a bounded function on R2n. These are exactly

the bilinear operators that commute with simultaneous translations of functions. The

study of general bilinear operators was initiated by Coifman and Meyer [9], [10] but since

the turn of the present century this area has been enjoying a resurgence of activity. We

refer to [11], [33], and [19] for general material related to the multilinear operators. A

classical by now criterion for boundedness of bilinear multiplier operators says that if m

satisfies

|∂α∂βσ(ξ, η)| ≤ Cα,β(|ξ|+ |η|)−|α|−|β|

for sufficiently large multiindices α, β, then the associated bilinear operator Tm admits

a bounded extension from Lp1(Rn) × Lp2(Rn) to Lp(Rn) when 1/p1 + 1/p2 = 1/p, 1 <

p1, p2 ≤ ∞ and 1/2 < p < ∞. This was proved by Coifman and Meyer [10] in the

case when p > 1 and was extended to the case p ≤ 1 by Grafakos and Torres [33] and
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independently by Kenig and Stein [38]. This theorem is essentially saying that linear

Mikhlin multipliers on R2n are bounded bilinear multipliers on Rn × Rn. It should be

noted that the analogue to the Marcinkiewicz condition

|∂α∂βσ(ξ, η)| ≤ Cα,β|ξ|−|α||η|−|β|

does not suffice to guarantee boundedness of Tm on any product of Lebesgue spaces; a

counterexample to indicate this fact was constructed in Grafakos and Kalton [25].

Extensions of the Coifman-Meyer–Kenig-Stein–Grafakos-Torres result for bilinear mul-

tipliers that satisfy Hörmander’s [37] classical Sobolev space weakening of Mikhlin’s con-

dition for linear operators are available in the literature as well. They were initiated by

Tomita [50] and subsequently further investigated by Grafakos, Fujita, Miyachi, Nguyen,

Si, and Tomita among others; see [30] [17], [26], [41], [42], [28], [27].

As we have seen, bilinear Fourier multiplier operators may map Lp1 ×Lp2 to Lp when

1/p1 +1/p2 = 1/p for a variety of parameters p1 and p2 but in this note, we only focus on

the L2 × L2 → L1 boundedness of such operators. Such estimates are central and play

the same role in bilinear theory as the L2 boundedness plays in linear multiplier theory.

As Plancherel’s identity ‖f‖L2 = ‖f̂‖L2 does not hold on L1, there does not seem to be

a straightforward way to characterize the boundedness of bilinear multiplier operators

from L2 × L2 → L1; however, different types of sharp sufficient conditions are available.

For instance, a bilinear variant of the Hörmander multiplier theorem asserts that if the

functions m(2k·)φ have s derivatives in Lr(R2n) (1 < r < ∞) uniformly in k ∈ Z, with

φ being a suitable smooth bump supported in 1/2 < |ξ| < 2, then Tm is bounded from

L2 × L2 to L1 when s > s0 = max(n/2, 2n/r) and s0 cannot be replaced by any smaller

number; see [21]. Thus more than n/2 derivatives of m(2k·)φ in L4(R2n) uniformly in k

are required of a generic multiplier m for Tm to map L2(Rn)× L2(Rn) to L1(Rn).

In this note we restrict our attention to multipliers whose derivatives are merely

bounded. We introduce the space

L∞(R2n) =
{
m : R2n → C : ∂αm exist for all α and ‖∂αm‖L∞ <∞

}
.

In the linear setting we have m ∈ L∞ if and only if the corresponding linear operator is

bounded on L2. So one may guess that a bilinear operator Tm is bounded from L2×L2 to

L1 when m lies in L∞. However Bényi and Torres [2] provided an example of a function

m ∈ L∞ for which the associated bilinear operator Tm is unbounded from Lp1 × Lp2 to

Lp for any 1 ≤ p1, p2 < ∞ satisfying 1/p = 1/p1 + 1/p2. The counterexample of Bényi

and Torres is also complemented by a positive result of the same authors [2] involving
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mixed norm spaces and a subsequent positive result of Grafakos, He and Honźık [20,

Corollary 8], who showed that the mere L2 integrability of functions in L∞ suffices to

yield the L2 × L2 → L1 boundedness of Tm.

It turns out that if m ∈ L∞ then a sharp criterion for the boundedness of the bilinear

multiplier operator Tm from L2×L2 → L1 can be formulated in terms of the magnitude

of integrability of the function m. We provide a proof of the main direction of this result,

the one that yields the boundedness of the operator. In what follows, CM(R2n) denotes

the class of all functions on R2n whose partial derivatives of order up to and including

order M are continuous.

Theorem 8.1. [24] Let 1 ≤ q < 4 and set Mq =
⌊

2n
4−q

⌋
+ 1. Let m be a function in

Lq(R2n) ∩ CMq(R2n) satisfying

(8.1) ‖∂αm‖L∞ ≤ C0 <∞ for all multiindices α with |α| ≤Mq.

Then there is a constant C depending on n and q such that the bilinear operator Tm with

multiplier m satisfies

(8.2) ‖Tm‖L2×L2→L1 ≤ C C
1− q

4
0 ‖m‖

q
4
Lq .

Additionally, we are aware of examples indicating that for any q ≥ 4 there exist

functions m ∈ Lq(R2n) ∩L∞(R2n) such that the associated operator Tm does not map

L2×L2 to L1; see [24] for q > 4 and [47] for q = 4. These counterexamples are discussed

in Section 11.

9. Bumps centered at lattice points

Before we prove Theorem 8.1 we present the idea of its proof in a simpler context. We

examine the situation where the bilinear operator is given as a finite sum of products of

smooth bumps supported in small discs centered at some lattice points in R2. As the set

of lattice points may not be a product of subsets of Z, the associated bilinear operator

cannot be written as a product of linear operators and an alternative approach needs to

be employed for its boundedness.

Let us define a linear operator as follows:

(9.1) Sk(f)(x) =

∫
R
f̂(ξ)φ(ξ − k)e2πiξxdξ,

where φ is a smooth function on the line supported in the interval (−1/10, 1/10).

Let E be a subset of Z2 of size N . We denote by E1 the set of all k ∈ Z with the

property that there exists an l ∈ Z such that the point (k, l) ∈ E. That is E1 is the set
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of all first coordinates of elements of E. We think of the set E as a union of columns

Colk indexed by k ∈ E1 and we write

E =
⋃
k∈E1

Colk

and

TσN (f, g) =
∑
k∈E1

Sk(f)
∑

l: (k,l)∈Colk

Sl(g).

We split the columns in large and small. Precisely, we write

E = Elarge ∪ Esmall,

where Elarge contains all columns of size ≥ K and Esmall contains all columns of size

< K, for some K to be chosen later. Analogously we split

E1 = Elarge
1 ∪ Esmall

1 ,

where Elarge
1 and Esmall

1 is the set of all first coordinates of columns in Elarge and Esmall,

respectively. Correspondingly we define:

T largeσN
(f, g) =

∑
k∈Elarge1

Sk(f)
∑

l: (k,l)∈Colk

Sl(g)

and

T smallσN
(f, g) =

∑
k∈Esmall1

Sk(f)
∑

l: (k,l)∈Colk

Sl(g)

=
∑

l: ∃k (k,l)∈Esmall
Sl(g)

∑
k: (k,l)∈Esmall

Sk(f)

so that

TσN (f, g) = T largeσN
(f, g) + T smallσN

(f, g).

We start with T largeσN
. We have∥∥T largeσN

(f, g)
∥∥
L1 ≤

∑
k∈Elarge1

∥∥Sk(f)
∑

l: (k,l)∈Colk

Sl(g)
∥∥
L1

≤
∑

k∈Elarge1

∥∥Sk(f)
∥∥
L2

∥∥∥ ∑
l: (k,l)∈Colk

Sl(g)
∥∥∥
L2

≤
( ∑
k∈Elarge1

∥∥Sk(f)
∥∥2

L2

) 1
2
( ∑
k∈Elarge1

∥∥∥ ∑
l: (k,l)∈Colk

Sl(g)
∥∥∥2

L2

) 1
2

≤‖φ‖L∞‖f‖L2(#Elarge
1 )

1
2‖φ‖L∞‖g‖L2 ,

exploiting the orthogonality of Sk’s on L2.
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Notice that as there are N points in E and each column in Elarge has at least K

elements, this means that there are at most N/K columns in Elarge. We conclude that

(9.2)
∥∥T largeσN

(f, g)
∥∥
L1 ≤ (N/K)

1
2‖φ‖2

L∞‖f‖L2‖g‖L2 .

We continue with T smallσN
. We have∥∥T smallσN

(f, g)
∥∥
L1

=
∥∥∥ ∑
l: ∃k (k,l)∈Esmall

Sl(g)
∑

k: (k,l)∈Esmall
Sk(f)

∥∥∥
L1

≤
∑

l: ∃k (k,l)∈Esmall

∥∥∥Sl(g)
∑

k: (k,l)∈Esmall
Sk(f)

∥∥∥
L1

≤
∑

l: ∃k (k,l)∈Esmall

∥∥Sl(g)
∥∥
L2

∥∥∥ ∑
k: (k,l)∈Esmall

Sk(f)
∥∥∥
L2

≤
( ∑
l: ∃k (k,l)∈Esmall

∥∥Sl(g)
∥∥2

L2

) 1
2
( ∑
l: ∃k (k,l)∈Esmall

∥∥∥ ∑
k: (k,l)∈Esmall

Sk(f)
∥∥∥2

L2

) 1
2

≤‖φ‖L∞‖g‖L2

( ∑
l: ∃k (k,l)∈Esmall

∑
k: (k,l)∈Esmall

∥∥Sk(f)
∥∥2

L2

) 1
2

=‖φ‖L∞‖g‖L2

( ∑
k∈Esmall1

∑
l: (k,l)∈Colk

∥∥Sk(f)
∥∥2

L2

) 1
2

≤‖φ‖L∞‖g‖L2K
1
2

( ∑
k∈Esmall1

∥∥Sk(f)
∥∥2

L2

) 1
2

≤‖φ‖L∞‖g‖L2K
1
2‖φ‖L∞‖f‖L2 ,

as all columns in Esmall have size at most K. This yields

(9.3)
∥∥T smallσN

(f, g)
∥∥
L1 ≤ K

1
2‖φ‖2

L∞‖f‖L2‖g‖L2 .

In view of (9.2) and (9.3), the optimal choice of K = N1/2. This proves

(9.4)
∥∥TσN (f, g)

∥∥
L1 ≤ N

1
4‖φ‖2

L∞‖f‖L2‖g‖L2 .

10. Proof of Theorem 8.1

We plan to outline the proof of Theorem 8.1. This is based on the product-type wavelet

method initiated in [20]. Our approach here incorporates several crucial combinatorial

improvements compared to [20].
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We recall some facts related to product-type wavelets that will be crucial in our ap-

proach of proving Theorem 8.1 For a fixed M ∈ N there exist real-valued compactly

supported functions ψF , ψM in Ck(R), called father wavelet and mother wavelet, respec-

tively, that satisfy

‖ψF‖L2(R) = ‖ψM‖L2(R) = 1

and ∫
R
xkψM(x)dx = 0 for all 0 ≤ k ≤M .

Then the family of functions of the variables (x1, x2) ∈ Rn × Rn⋃
µ1,µ2∈Zn

{
ψF (x1 − µ1)ψF (x2 − µ2)

}
∪

⋃
µ1,µ2∈Zn

∞⋃
λ=0

{
2
nλ
2 ψF (2λx1 − µ1)2

nλ
2 ψM(2λx2 − µ2)

}
∪

⋃
µ1,µ2∈Zn

∞⋃
λ=0

{
2
nλ
2 ψM(2λx1 − µ1)2

nλ
2 ψF (2λx2 − µ2)

}
∪

⋃
µ1,µ2∈Zn

∞⋃
λ=0

{
2
nλ
2 ψM(2λx1 − µ1)2

nλ
2 ψM(2λx2 − µ2)

}
forms an orthonormal basis of L2(R2n). This result is due to Triebel [52].

We denote by J the set of all pairs (λ,G) such that either λ = 0 and G = (F, F ), or λ

is a nonnegative integer and G has the form (F,M), (M,F ), or (M,M). For (λ,G) ∈ J
and (µ1, µ2) ∈ Z2n we set

Ψλ,G
µ1,µ2

(x1, x2) = 2
nλ
2 ψG1(2

λx1 − µ1)2
nλ
2 ψG2(2

λx2 − µ2).

for (x1, x2) ∈ R2n, where G = (G1, G2) and (λ,G) ∈ J .

The cancellation of wavelets is manifested in the following result.

Lemma 10.1. Let M be a positive integer. Assume that m ∈ CM+1 is a function on

R2n such that

sup
|α|≤M+1

‖∂αm‖L∞ ≤ C0 <∞ .

Then for (λ,G) ∈ J and (µ1, µ2) ∈ Z2n we have

(10.1) |〈Ψλ,G
µ1,µ2

,m〉| ≤ CC02−(M+n+1)λ ,

provided that ψM has M vanishing moments.
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This lemma can be easily proved and is essentially a restatement of Lemma 7 in [20].

Note that if G = (F, F ) there is no cancellation, however, there is no decay claimed in

(10.1), as λ = 0 in this case.

Proof of Theorem 8.1. To prove the theorem we use the product type wavelets intro-

duced. We begin by fixing a large number M to be determined later, which denotes the

number of vanishing moments of the mother wavelet.

For (λ,G) ∈ J and µ ∈ Z2n we denote the wavelet coefficient by

bλ,Gµ = 〈Ψλ,G
µ ,m〉.

By [51, Theorem 1.64] and by the fact that Lq coincides with the Triebel-Lizorkin space

F 0
q,2, we obtain

(10.2) ‖m‖Lq(R2n) ≈
∥∥∥( ∑

(λ,G)∈J

∑
µ∈Z2n

|bλ,Gµ 2λχQλµ |2
)1/2∥∥∥

Lq(R2n)
,

where Qλµ is the cube centered at 2−λµ with sidelength 21−λ.

Now, let us fix (λ,G) ∈ J . For notational simplicity, we write bµ instead of bλ,Gµ

in what follows. We also denote by Q̃λµ the cube centered at 2−λµ with sidelength

2−λ. Noting that these cubes are pairwise disjoint in µ (for the fixed value of λ), the

equivalence (10.2) yields

‖m‖Lq(R2n) & 2nλ
∥∥(∑

µ∈Z2

|bµ|2χQλµ
) 1

2
∥∥
Lq(R2n)

≥ 2nλ
∥∥(∑

µ∈Z2

|bµ|2χQ̃λµ
) 1

2
∥∥
Lq(R2n)

= 2nλ
∥∥ ∑
µ∈Z2n

|bµ|χQ̃λµ
∥∥
Lq(R2n)

= 2nλ(1− 2
q

)
( ∑
µ∈Z2

|bµ|q
) 1
q .

Setting b = (bµ)µ∈Z2n , the preceding sequence of inequalities yields

(10.3) ‖b‖`q ≤ C2−nλ(1− 2
q

)‖m‖Lq .

Also, Lemma 10.1 implies that

(10.4) ‖b‖`∞ ≤ CC02−λ(M+n+1),

where M is the number of vanishing moments of ψM .
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We have an infinite × infinite matrix of wavelet coefficients indexed by Z2n. To better

organize these coefficients, define

Ur = {(k, l) ∈ Zn × Zn = Z2n : 2−r−1‖b‖`∞ < |b(k,l)| ≤ 2−r‖b‖`∞},

where r is a nonnegative integer. Also, we write Ur as a union of the following two

disjoint sets:

U1
r = {(k, l) ∈ Ur : card{s : (k, s) ∈ Ur} ≥ K};

U2
r = {(k, l) ∈ Ur : card{s : (k, s) ∈ Ur} < K},

where K is a positive number to be determined. Thinking of Ur as an infinite × infinite

matrix with integer entries, in this splitting, we placed in U1
r all columns of U r that

have size greater than or equal to K and in U2
r the remaining ones. We call U1

r the long

columns of Ur and U1
r the short columns. Let us denote

E = {k ∈ Zn : (k, l) ∈ U1
r for some l ∈ Zn}.

This set is exactly the set of projections of all long columns. Then

(#E)K
[
2−(r+1)‖b‖`∞

]q ≤ ∑
(k,l)∈U1

r

|b(k,l)|q ≤ ‖b‖q`q ,

and therefore

(10.5) #E ≤ K−1
[
2−(r+1)‖b‖`∞

]−q‖b‖q`q .
Having broken down the wavelet coefficients in groups we proceed with the analysis of

the sums of the decomposition associated with these groups. Given (k, l) ∈ Zn × Zn, it

follows from the definition of Ψλ,G
(k,l) that Ψλ,G

(k,l) can be written in the tensor product form

Ψλ,G
(k,l)(x1, x2) = ω1,k(x1)ω2,l(x2)

and

‖ω1,k‖L∞ ≈ ‖ω2,l‖L∞ ≈ 2
nλ
2 .

Define

mr,1 =
∑

(k,l)∈U1
r

b(k,l)Ψ
λ,G
(k,l) =

∑
(k,l)∈U1

r

b(k,l)ω1,kω2,l.

Let F−1 denote the inverse Fourier transform. Then∥∥Tmr,1(f, g)
∥∥
L1 ≤

∥∥∥ ∑
(k,l)∈U1

r

b(k,l)F−1(ω1,kf̂ )F−1(ω2,lĝ )
∥∥∥
L1

≤
∑
k∈E

∥∥ω1,kf̂
∥∥
L2

∥∥∥ ∑
l:(k,l)∈U1

r

b(k,l)ω2,lĝ
∥∥∥
L2



SHARP ESTIMATES FOR FOURIER MULTIPLIERS 35

≤ C
∑
k∈E

∥∥ω1,kf̂
∥∥
L22

nλ
2 2−r‖b‖`∞‖g‖L2

≤ C
(∑
k∈E

1
)1/2(∑

k∈E

∥∥ω1,kf̂
∥∥2

L2

) 1
2
2
nλ
2 2−r‖b‖`∞‖g‖L2

≤ C
{
K−

1
2

[
2−(r+1)‖b‖`∞

]− q
2‖b‖

q
2
`q

}{
2
nλ
2 2−r‖b‖`∞

}
2
nλ
2 ‖f‖L2‖g‖L2 ,

where we used estimate (10.5) and the property that the supports of the functions ω1,k

and ω2,l have finite overlap.

Now define

mr,2 =
∑

(k,l)∈U2
r

b(k,l)ω1,kω2,l.

Then

‖Tmr,2(f, g)‖L1 ≤
∥∥∥ ∑

(k,l)∈U2
r

b(k,l)F−1(ω1,kf̂ )F−1(ω2,lĝ )
∥∥∥
L1

≤
∑

l: ∃k (k,l)∈U2
r

∥∥ω2,lĝ
∥∥
L2

∥∥∥ ∑
k:(k,l)∈U2

r

b(k,l)ω1,kf̂
∥∥∥
L2

≤
(∑
l∈Zn

∥∥ω2,lĝ
∥∥2

L2

) 1
2
( ∑
l: ∃k (k,l)∈U2

r

∥∥∥ ∑
k:(k,l)∈U2

r

b(k,l)ω1,kf̂
∥∥∥2

L2

) 1
2

≤ C2
λ
2 ‖g‖L2

( ∑
k: ∃l (k,l)∈U2

r

∥∥ω1,kf̂
∥∥2

L2

∑
l:(k,l)∈U2

r

|b(k,l)|2
) 1

2

≤ C2
nλ
2 ‖g‖L22−r‖b‖`∞K

1
2

(∑
k∈Z

∥∥ω1,kf̂
∥∥2

L2

) 1
2

≤ C2
nλ
2 2−r‖b‖`∞K

1
2 2

nλ
2 ‖f‖L2‖g‖L2 .

We have now obtained the estimates for an unknown quantity K:

‖Tmr,1(f, g)‖L1 ≤ CK−
1
2

[
2−(r+1)‖b‖`∞

]− q
2‖b‖

q
2
`q2

nλ2−r‖b‖`∞‖f‖L2‖g‖L2 ,(10.6)

‖Tmr,2(f, g)‖L1 ≤ C2nλ2−r‖b‖`∞K
1
2‖f‖L2‖g‖L2 .(10.7)

We choose K optimally so that the two quantities on the right in (10.6) and (10.7) are

equal. The optimal choice of K is

K =

(
2r‖b‖`q
‖b‖`∞

) q
2

.

This choice of K yields for

mr =
∑

(k,l)∈Ur

b(k,l)ω1,kω2,l = mr,1 +mr,2
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the estimate

(10.8) ‖Tmr‖L2×L2→L1 ≤ C 2nλ 2−r(1−
q
4

)‖b‖1− q
4

`∞ ‖b‖
q
4
`q .

Using (10.3) and (10.4) in (10.8) we obtain

‖Tmr‖L2×L2→L1 ≤ CC
1− q

4
0 2nλ−λ(1− q

4
)(M+n+1)+n( 2

q
−1) q

4
λ2−r(1−

q
4

)‖m‖
q
4
Lq .

Notice that when q < 4 we have 1− q
4
< 0, hence we can sum in r ∈ Z+. Also,

2nλ−λ(1− q
4

)(M+n+1)+n( 2
q
−1) q

4
λ = 2λ[n

2
− 4−q

4
(M+1)]

and the exponent is negative only when M +1 > 2n
4−q . Thus, if we choose M = b 2n

4−qc, we

can sum first over λ ∈ Z+ ∪ {0} when G ∈ {(F,M), (M,M), (M,F )}. For G = (F, F )

there is no need to sum over λ. This yields (8.2) for any G and completes the proof of

Theorem 8.1. �

11. The sharpness of the condition q < 4

In this section we discuss optimality of the assumption q < 4 of Theorem 8.1. The

main result is the following.

Theorem 11.1. Suppose that q ≥ 4. Then there exists a function m ∈ Lq(R2n) ∩
L∞(R2n) such that the associated operator Tm does not map L2 × L2 to L1.

Theorem 11.1 was proved in [24] in the case q > 4. The limiting case q = 4 is

discussed in [47]. We do not include the full proof here as it is somewhat technical but

we will describe the main ideas needed to reach the conclusion. To further simplify the

presentation, we will assume that n = 1.

We start by studying a randomized variant of the operator TσN from Section 9. Namely,

we fix a (large) positive integer K and consider the set E = {(j, k) ∈ N2 : j + k ≤ K}.
We observe that N := #E = K(K−1)

2
.

Let (rj(t))
∞
j=0 denote the sequence of Rademacher functions; see Section 4 for the defi-

nition. Assume that φ is a smooth function on R supported in the interval [−1/10, 1/10]

assuming value 1 in [−1/20, 1/20]. Let Sk be the operator given by (9.1). We fix t ∈ [0, 1]

and define the operator TK,t as

TK,t(f, g) =
∑

(j,k)∈E

rj+k(t)Sj(f)Sk(g) =
K−1∑
j=1

K−j∑
k=1

rj+k(t)Sj(f)Sk(g).
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This operator is associated with the multiplier

mK,t(ξ, η) =
K−1∑
j=1

K−j∑
k=1

rj+k(t)φ(ξ − j)φ(η − k).

Let ϕ be a Schwartz function on R whose Fourier transform is supported in the interval

[−1/100, 1/100]. We define functions f and g on R in terms of their Fourier transform

by

(11.1) f̂(ξ) = K−
1
2

K∑
j=1

ϕ̂(ξ − j)

and

(11.2) ĝ(η) = K−
1
2

K∑
k=1

ϕ̂(η − k).

Then both f and g are Schwartz functions whose L2-norms are bounded by a constant

independent of K. We observe that

TmK,t(f, g)(x) = K−1

K−1∑
j=1

K−j∑
k=1

rj+k(t)(ϕ(x))2e2πix(j+k)

= K−1

K∑
l=2

(l − 1)rl(t)e
2πixl(ϕ(x))2.

Using Fubini’s theorem and Khintchine’s inequality (4.7), we obtain∫ 1

0

‖TmK,t(f, g)‖L1 dt = K−1

∫
R

∫ 1

0

∣∣∣∣∣
K∑
l=2

(l − 1)rl(t)e
2πixl(ϕ(x))2

∣∣∣∣∣ dt dx
≈ K−1

∫
R

(
K∑
l=2

(l − 1)2|ϕ(x)|4
) 1

2

dx

≈ K
1
2 ≈ N

1
4 .

This indicates the sharpness of the estimate in Section 9. Let us now observe that this

calculation is also relevant for proving Theorem 11.1. We fix q ∈ [1,∞) and consider the

function

MK,t = K−
2
qmK,t.

Then the Lq norm of MK,t is bounded uniformly in K and t, and the same is true for

the L∞ norms of all partial derivatives of MK,t. The calculation above yields∫ 1

0

‖TMK,t
(f, g)‖L1 dt ≈ K

1
2
− 2
q .
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We see that the right-hand side approaches infinity as K → ∞ if q > 4, which implies

that Tm is not bounded from L2 × L2 to L1 with a constant depending only on the Lq

norm of m and on the L∞ norms of its derivatives in this case. A modification of this

example can then be used to construct a single function m ∈ Lq(R2n) ∩ L∞(R2n) for

which the associated operator Tm does not map L2 × L2 to L1.
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[24] L. Grafakos, D. He, L. Slav́ıková. L2 × L2 → L1 boundedness criteria, Math. Ann., to appear.



SHARP ESTIMATES FOR FOURIER MULTIPLIERS 39

[25] L. Grafakos, N. Kalton. The Marcinkiewicz multiplier condition for bilinear operators, Studia Math.
146 (2001), 115–156.

[26] L. Grafakos, A. Miyachi, N. Tomita. On multilinear Fourier multipliers of limited smoothness.
Canad. J. Math. 65 (2013), 299–330.

[27] L. Grafakos, A. Miyachi, H. V. Nguyen, N. Tomita. Multilinear Fourier multipliers with minimal
Sobolev regularity, II. J. Math. Soc. Japan 69 (2017), 529–562.

[28] L. Grafakos, H. V. Nguyen. Multilinear Fourier multipliers with minimal Sobolev regularity, I.
Colloq. Math. 144 (2016), 1–30.

[29] L. Grafakos, S. Oh. The Kato-Ponce inequality, Comm. in PDE 39 (2014), 1128–1157.
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