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Abstract. We study nonuniform Sobolev spaces, i.e., spaces of functions whose partial
derivatives lie in possibly different Lebesgue spaces. Although standard proofs do not
apply, we show that nonuniform Sobolev spaces share similar properties as the classical
ones. These spaces arise naturally in the study of certain PDEs. For instance, we illus-
trate that nonuniform fractional Sobolev spaces are useful in the study of local estimates
for solutions of heat equations and the convergence of Schrödinger operators. In this
work we extend recent advances on local energy estimates for solutions of heat equations
and the convergence of Schrödinger operators to nonuniform fractional Sobolev spaces.

1. Introduction

Given a positive integer m, a positive number p ∈ [1,∞] and an open set Ω ⊂ RN ,
we denote by

Wm,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| ≤ m},

the classical Sobolev space, where α = (α1, . . . , αN ) is a multi-index, |α| =
∑N

i=1 αi,
and Dα denotes the weak partial derivatives, that is, partial derivatives in the sense of
distributions. The theory of Sobolev spaces plays an import role in the study of par-
tial differential equations and many other fields. We refer to text books by Adams and
Fournier [1], Demengel and Demengel [16], Evans [20], Grafakos [25, 26], Leoni [29], Pişkin
and Okutmuştur [34] for an overview of Sobolev spaces and applications in PDEs and in
harmonic analysis.

Since a function and its derivatives might have different properties, it is not necessary
for them to lie in the same Lebesgue space. In this paper, we consider nonuniform Sobolev
spaces on RN , i.e., spaces for which a function and its derivatives belong to different
Lebesgue spaces.

Definition 1.1. Let Ω ⊂ RN be an open set. For k ≥ 1 and p⃗ = (p0, . . . , pk) ∈ [1,∞]k+1,

the nonuniform Sobolev space W p⃗
k (Ω) consists of all measurable functions f for which

∂αf ∈ Lp|α|(Ω), where |α| ≤ k. For f ∈W p⃗
k , define its norm by

∥f∥
W p⃗

k
=
∑
|α|≤k

∥Dαf∥Lp|α| .
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These spaces naturally arise in the study of certain PDEs. In particular, some equa-
tions have solutions in nonuniform Sobolev spaces but have no solution in the classical
Sobolev spaces. For example, consider positive solutions of the critical p-Laplace equation

∆pu+ up
∗−1 = 0 (1.1)

in RN , where 1 < p < N , p∗ = Np/(N − p) and ∆pu = div(|∇u|p−2∇u).
This equation is well studied in the literature. It was shown by Damascelli, Merchán,

Montoro and Sciunzi [15], Sciunzi [38] and Vétois [43] that if a function u in the class

D1,p(RN ) = {u ∈ Lp∗(RN ) : ∇u ∈ Lp(RN )}

is a solution of (1.1), then it is of the form

u(x) = Uλ,x0(x) =

(
λ1/(p−1)N1/p((N − p)/(p− 1))(p−1)/p

λp/(p−1) + |x− x0|p/(p−1)

)(N−p)/p

,

where λ is a positive constant and x0 is a point in RN . Moreover, Catino, Monticelli and
Roncoroni [10] provided the classification of positive solutions to the critical p-Laplace
equation. See also Ciraolo, Figalli and Roncoroni [12] for solutions in convex cones.

Observe that D1,p itself is the nonuniform Sobolev space W
(p∗,p)
1 . Since |Uλ,x0(x)| ≈

|x|−(N−p)/(p−1) whenever |x| is large enough, it is easy to see that (1.1) has a positive

solution in W 1,p if and only if 1 < p < N1/2. However, we can increase the integrability
index p of the solution if we consider nonuniform Sobolev spaces. Indeed, we obtain that

(1.1) has a positive solution in W
(p0,p)
1 whenever 1 < p < N and p0 > N(p− 1)/(N − p).

On the other hand, for 1 ≤ p1 < N and f in the classical Sobolev space W 1,p1 , the
Sobolev inequality says that

∥f∥LNp1/(N−p1) ≤ CN,p1∥∇f∥Lp1 . (1.2)

This is proved by showing that

∥f∥(N−1)p1/(N−p1)

LNp1/(N−p1)
≤ CN,p1∥∇f∥Lp1∥f∥N(p1−1)/(N−p1)

LNp1/(N−p1)
(1.3)

for compactly supported differentiable functions f . We refer to [16] for details.

For the nonuniform case, that is, for f ∈ C1 ∩W p⃗
k with p⃗ = (p0, p1), both (1.2) and

(1.3) are still true. However, their proofs are quite different from the uniform case. In the
classical uniform case, one first obtains the density of compactly supported differentiable
functions, then derives (1.2) from (1.3) for such functions, and finally extends (1.2) to all
functions inW 1,p1 by density. For the nonuniform case, compactly supported differentiable

functions are still dense in W p⃗
1 . However, the embedding inequality is required in the

proof. So we have to prove (1.2) directly for functions which is not compactly supported.
In this case, (1.2) is not a straightforward consequence of (1.3): we have to show first that

f ∈ LNp1/(N−p1).
In some applications, only the derivatives are concerned. For example, Fefferman,

Israel and Luli [21, 22] studied Sobolev extension operators for homogeneous Sobolev
spaces. In this case, it is natural to consider nonuniform Sobolev spaces.

Another application we discuss concerns local estimates for solutions of heat equa-
tions. We obtain local energy estimates for initial data in nonuniform Sobolev spaces; this
extends the local estimates by Fefferman, McCormick, Robinson and Rodrigo [23].
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Moreover, nonuniform Sobolev spaces are also useful in the study of the convergence
of Schrödinger operators defined by

eit(−∆)a/2f(x) :=
1

(2π)N

∫
RN

ei(x·ω+t|ω|a)f̂(ω)dω,

where a > 1 is a constant. It is well known that for f nice enough, eit(−∆)a/2f(x) is the
solution of the fractional Schrödinger equation{

i∂tu+ (−∆x)
a/2u = 0, (x, t) ∈ RN ×R,

u(x, 0) = f(x), x ∈ RN .

For the case N = 1 and a = 2, Carleson [9] studied the convergence of e−it∆f(x) as t
tends to 0 for functions f in the Sobolev space

Hs(RN ) := {f ∈ L2 : (1 + |ω|2)s/2f̂(ω) ∈ L2}.
It was shown [9] that when a = 2,

lim
t→0

eit(−∆)a/2f(x) = f(x), a.e. (1.4)

for all f ∈ Hs(R) if s ≥ 1/4.
Since then, many works have appeared on this topic. Dahlberg and Kenig [14] pro-

vided counterexamples indicating that the range s ≥ 1/4 is sharp for N = 1. And Sjölin
[40] extended this result to the case a > 1.

For a = 2 and higher dimensions N ≥ 2, Sjölin [40] and Vega [42] proved that (1.4) is
true when s > 1/2. For the case N = 2, this result was improved to s > 3/8 by Lee [28].
Bourgain [3, 4] proved that s > 1/2 − 1/(4N) is sufficient and s ≥ 1/2 − 1/(2N + 2) is
necessary for the convergence. Du, Guth and Li [18] proved that s > 1/2− 1/(2N + 2) is
sufficient for the dimension N = 2 and Du and Zhang [19] showed that it is also true for
general N ≥ 3.

For the general case a > 1 and N ≥ 2, Sjölin [40] proved that (1.4) is valid when
s > 1/2. Prestini [35] showed that s ≥ 1/4 is necessary and sufficient for radial functions
f and dimensions N ≥ 2. Cho and Ko [11] proved that s > 1/3 is sufficient for the
dimension N = 2.

Related works also include the non-tangential convergence by Shiraki [39], Yuan, Zhao
and Zheng [45], Li, Wang and Yan [32, 33], the convergence along curves by Cao and Miao
[8] and Zheng [46], the Hausdorff dimension of the divergence set by Li, Li and Xiao [31],
and the convergence rate by Cao, Fan and Wang [7]; see also the works by Cowling [13],
Walther [44], and Rogers and Villarroya [36] for the case a < 1.

Although the range s ≥ 1/4 of the index s is sharp for N = 1, and s > 1/2−1/(2N+2)
is also sharp up to the endpoint for N ≥ 2, we show that the result can be further extended
when nonuniform Sobolev spaces are considered.

Suppose that 0 < s < 1 and 1 ≤ p < ∞. Recall that the classical fractional Sobolev
space W p

s consists of all measurable functions f for which

∥f∥W p
s
:= ∥f∥Lp + [f ]W p

s
<∞,

where

[f ]W p
s
:=

(∫∫
RN×RN

|f(x)− f(y)|p

|x− y|N+sp
dxdy

)1/p

is the Gagliardo seminorm of f . Fractional Sobolev spaces were introduced by Aronszajn
[2], Gagliardo [24] and Slobodeckĭı [41]. We refer to the text book by Leoni [30] and papers
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by Brezis and Mironescu [5] and Di Nezza [17] for an overview of fractional Sobolev spaces.
See also recent papers by Brezis, Van Schaftingen and Yung [6] and Gu and Yung [27] for
the limit of norms of fractional Sobolev spaces.

We now provide a formal definition of nonuniform fractional Sobolev spaces.

Definition 1.2. Given 0 < s < 1 and p⃗ = (p0, p1) ∈ [1,∞)2, the nonuniform fractional
Sobolev space is defined by

W p⃗
s (RN ) = {f : ∥f∥

W p⃗
s
:= ∥f∥Lp0 + [f ]W p1

s
<∞}.

For the case s > 1, set νs = s − ⌊s⌋ and p⃗ = (p0, . . . , p⌈s⌉). If s is not an integer,
define

W p⃗
s (RN ) =

{
f : ∥f∥

W p⃗
s
:=

⌊s⌋∑
l=0

∑
|α|=l

∥Dαf∥Lpl +
∑

|α|=⌊s⌋

[Dαf ]
W

p⌈s⌉
νs

<∞
}
.

Here ⌊s⌋ stands for the greatest integer which is less than or equal to s, and ⌈s⌉ stands for
the ceiling, i.e., the least integer which is greater than or equal to s.

Recall that if p0 = . . . = p⌈s⌉ = 2, then W
(2,...,2)
s (RN ) coincides with Hs(RN ). We

refer to [16, Proposition 4.17] for a proof.
The introduction and study of these spaces is motivated by the fact that they provide

stronger results than classical Sobolev spaces. As an application we show that if the
convergence of Schrödinger operators holds for all functions in Hs for some s > 0, then

it also holds for all functions in W p⃗
s with the same index s if p⌈s⌉ = 2. Moreover, we also

obtain convergence results in the case 1 < p⌈s⌉ < 2.
The paper is organized as follows. In Section 2, we show that compactly supported

infinitely differentiable functions are dense in nonuniform Sobolev spaces. We also obtain
the Sobolev inequality for functions in nonuniform Sobolev spaces. In Section 3, we focus
on nonuniform fractional Sobolev spaces and present an embedding theorem for such
spaces. And in Section 4, we give two applications of nonuniform Sobolev spaces. We give
local energy estimates for solutions of the heat equation with initial data in nonuniform
Sobolev spaces. And we prove the almost everywhere convergence of Schrödinger operators
for a large class of functions, extending known results.

Symbols and Notations. {ei : 1 ≤ i ≤ N} stands for the canonical basis for RN ,
that is, ei = (0, . . . , 1, . . . , 0) ∈ RN , where only the i-th component is 1 and all others are

0. For any x = (x1, . . . , xN ) ∈ RN , we have x =
∑N

i=1 xiei. B(0, R) stands for the ball
{x ∈ RN : |x| < R}.

For a tempered distribution f and a function φ in the Schwartz class S , the notation
⟨f, φ⟩ stands for the value of the action of f on φ.

2. Embedding Inequalities for Nonuniform Sobolev Spaces

Denote by C∞
c (RN ) the function space consisting of all compactly supported infinitely

differentiable functions. In this section we obtain the density of C∞
c (RN ) in nonuniform

Sobolev spaces. We then obtain a Sobolev embedding theorem for nonuniform Sobolev
spaces; and the aforementioned density is a crucial tool in this embedding. Both of these
results seem to require proofs that are quite different from the classical case. For the
nonuniform case, we need first to prove the density for special indices. Then we deduce
an embedding result, with which we finally obtain the density of C∞

c (RN ) for full indices.
We begin with a simple lemma.
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Lemma 2.1. For any k ≥ 1 and p⃗ ∈ [1,∞)k+1, the space C∞ ∩ W p⃗
k (R

N ) is dense in

W p⃗
k (R

N ).

Proof. Take some f ∈W p⃗
k and φ ∈ C∞

c such that φ is nonnegative and ∥φ∥L1 = 1. Set

gλ(x) =

∫
RN

f(y)
1

λN
φ(
x− y

λ
)dy, λ > 0.

We have gλ ∈ C∞. For any multi-index α with |α| ≤ k, we have

∂αgλ(x) =

∫
RN

∂αf(y)
1

λN
φ(
x− y

λ
)dy (2.1)

=

∫
RN

∂αf(x− λy)φ(y)dy.

It follows from Minkowski’s inequality and Lebesgue’s dominated convergence theorem
that

lim
λ→0

∥∂αgλ − ∂αf∥Lp|α| ≤ lim
λ→0

∫
RN

∥∂αf(· − λy)− ∂αf∥Lp|α|φ(y)dy = 0.

This completes the proof. □

The proof of the density of C∞
c in nonuniform Sobolev spaces is split in two cases.

First, we consider special indices.

Lemma 2.2. Suppose that k ≥ 1 and p⃗ = (p0, . . . , pk) with 1/pi ≤ 1/pi−1+1/N , 1 ≤ i ≤ k.

Then the space C∞
c (RN ) is dense in W p⃗

k (R
N ).

Proof. By Lemma 2.1, for any f ∈W p⃗
k and ε > 0, there is some g ∈ C∞ ∩W p⃗

k such that

∥g − f∥
W p⃗

k
< ε.

Moreover, if follows from (2.1) and Young’s inequality that we may choose the function g
such that

∂γg ∈ Lr, ∀ r ≥ p|γ|. (2.2)

The proof will be complete if we can show that there is some g̃ ∈ C∞
c such that

∥g − g̃∥
W p⃗

k
< C ′ε. (2.3)

Fix a function ψ ∈ C∞
c such that ψ(x) = 1 whenever |x| < 1 and set gn(x) =

ψ(x/n)g(x). It remains to show that the sequence {gn : n ≥ 1} converges to g in W p⃗
k .

We see from the choice of ψ that {gn : n ≥ 1} converges to g in Lp0 . On the other
hand, fix some multi-index α with 1 ≤ |α| ≤ k. Then ∂αgn(x) is the sum of ψ(x/n)∂αg(x)

and terms like (1/n|β|)∂βψ(x/n)∂γg(x), where |β|+ |γ| = |α| and |β| ≥ 1.
If p|α| ≥ p|γ|, we deduce from (2.2) that∥∥∥ 1

n|β|
∂βψ(

·
n
)∂γg

∥∥∥
L
p|α|

≤ 1

n|β|
· ∥∂βψ∥L∞∥∂γg1{|x|≥n}∥Lp|α| → 0,

as n→ ∞.
If p|α| < p|γ|, there is some r > 1 such that

1

p|α|
=

1

p|γ|
+

1

r
.

Applying Hölder’s inequality, we have∥∥∥ 1

n|β|
∂βψ(

·
n
)∂γg

∥∥∥
L
p|α|

≤ 1

n|β|
· ∥∂βψ( ·

n
)∥Lr∥∂γg1{|x|≥n}∥Lp|γ|
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=
1

n|β|−N/r
· ∥∂βψ∥Lr∥∂γg1{|x|≥n}∥Lp|γ| . (2.4)

Since 1/pi ≤ 1/pi−1 + 1/N for all 1 ≤ i ≤ k, we have

1

r
=

1

p|α|
− 1

p|γ|
≤ |α| − |γ|

N
=

|β|
N
.

Consequently, |β| −N/r ≥ 0. It follows from (2.4) and (2.2) that∥∥∥ 1

n|β|
∂βψ(

·
n
)∂γg

∥∥∥
L
p|α|

→ 0, as n→ ∞. (2.5)

Hence the sequence {gn : n ≥ 1} converges to g in W p⃗
k and (2.3) is valid. □

To prove the density of C∞
c for full indices, we first establish an embedding theorem.

For classical Sobolev spaces, the embedding inequality

∥φ∥LN/(N−1) ≤ C∥∇φ∥L1

is first proved for functions in C∞
c , and then for general functions in W 1,1 by the density

of C∞
c in W 1,1. We refer to [16, eq. (2.38)] for details.
In the nonuniform case, we have no such density result at the moment. So we need

to prove it directly for functions in C∞ ∩ Lp0(RN ) for some p0 > 0.

Lemma 2.3. Suppose that N ≥ 2.

(i) For any φ ∈ C∞ ∩ Lp0(RN ) with 0 < p0 <∞,

∥φ∥LN/(N−1) ≤
1

N

∑
|α|=1

∥∂αφ∥L1 . (2.6)

Moreover, the above inequality is also true for any f ∈ W p⃗
1 with p⃗ = (p0, 1) and

1 ≤ p0 <∞.
(ii) Suppose that p⃗ = (p0, p1), where 1 ≤ p0 < ∞ and 1 ≤ p1 < N . For any f ∈

W p⃗
1 (RN ), we have

∥f∥LNp1/(N−p1) ≤ CN,p1∥∇f∥Lp1 . (2.7)

Hence for all q between p0 and Np1/(N − p1), we have

∥f∥Lq ≤ C∥f∥
W p⃗

1
. (2.8)

Proof. (i) The proof is similar to that for [16, eq. (2.38)]. Here we only provide a sketch
with emphasis on the difference.

Fix some φ ∈ C∞ ∩ Lp0 . If the right-hand side of (2.6) equals infinity, then (2.6) is
certainly valid. So we only need to consider the case ∥∂αφ∥L1 <∞ for all multi-indices α
with |α| = 1.

For each index i, denote x̃i = (x1, . . . , xi−1, xi+1, . . . , xN ). Since φ ∈ Lp0 , we have∫
RN−1

(∫
R
|φ(x)|p0dxi

)
dx̃i = ∥φ∥p0Lp0 <∞.

Hence there are measurable sets Ai ⊂ RN−1 of measure zero such that∫
R
|φ(x)|p0dxi <∞, ∀ x̃i ∈ RN−1 \Ai.
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Consequently, for each x̃i there is a sequence {an : n ≥ 1} ⊂ R (depending on x̃i) such
that limn→∞ an = −∞ and limn→∞ φ(x+ (an − xi)ei) = 0. Since for each xi we have

φ(x)− φ(x+ (an − xi)ei) =

∫ xi

an

∂xiφ(x+ (t− xi)ei)dt,

by the Fundamental Theorem of Calculus, letting n→ ∞, we obtain

φ(x) =

∫ xi

−∞
∂xiφ(x+ (t− xi)ei)dt, ∀xi ∈ R, ∀ x̃i ∈ RN−1 \Ai.

Here and henceforth ei = (0, . . . , 1, . . . , 0) with 1 only on the ith entry and 0 elsewhere.
It follows that

|φ(x)| ≤
∫
R
|∂xiφ(x+ (t− xi)ei)| dt, ∀x ∈ RN \Bi, (2.9)

where
Bi = {x ∈ RN : xi ∈ R, x̃i ∈ Ai}

is of measure zero in RN . Observe that the integral in (2.9) is independent of xi.
For 1 ≤ i ≤ N , define the function Fi on RN−1 by

Fi(x̃i) =

∫
R
|∂xiφ(x+ (t− xi)ei)| dt.

We have

|φ(x)|N/(N−1) ≤
N∏
i=1

Fi(x̃i)
1/(N−1), ∀x ∈ RN \

N⋃
i=1

Bi.

Now following the same arguments as that in [16, Page 76] we obtain

∥φ∥LN/(N−1) ≤
1

N

∑
|α|=1

∥∂αφ∥L1 .

For the general case, i.e., f ∈ W p⃗
1 with p1 = 1, since C∞ ∩W p⃗

1 is dense in W p⃗
1 , there

is a sequence {φn : n ≥ 1} ⊂ C∞ ∩W p⃗
1 which is convergent to f in W p⃗

1 , as well as on RN

almost everywhere.
For each n, we have

∥φn∥LN/(N−1) ≤
1

N

∑
|α|=1

∥∂αφn∥L1 .

Letting n→ ∞, we apply Fatou’s lemma to finally deduce

∥f∥LN/(N−1) ≤
1

N

∑
|α|=1

∥∂αf∥L1 .

(ii) We see from the embedding theorem for Sobolev’s spaces (see [16, eq. (2.46)]) that
for any f ∈ C∞

c (RN ),
∥f∥LNp1/(N−p1) ≤ C∥∇f∥Lp1 .

If 1/p1 ≤ 1/p0 + 1/N , then C∞
c is dense in W p⃗

1 , thanks to Lemma 2.2. Similar arguments

as the previous case we get that the above inequality is true for all f ∈W p⃗
1 .

It remains to consider the case 1/p1 > 1/p0 + 1/N .

Take f ∈ W p⃗
1 . Set ⃗̃p = (p̃0, p1), where 1/p̃0 = 1/p1 − 1/N . It is easy to see that

1 < p̃0 < p0. We conclude that f ∈W
⃗̃p
1 , for which we only need to show that f ∈ Lp̃0 .
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To this end, set r = p0/p
′
1 + 1 and h = |f |r−1f . We have ∇h = r|f |r−1∇f . Since

f ∈ Lp0 , ∇f ∈ Lp1 and (r − 1)/p0 + 1/p1 = 1, we see from Hölder’s inequality that

∥∇h∥1 ≤ r∥|f |r−1∥Lp0/(r−1)∥∇f∥Lp1 = r∥f∥r−1
Lp0 ∥∇f∥Lp1 .

It follows from (2.6) that

∥h∥LN/(N−1) ≤ C∥∇h∥L1 ≤ Cr∥f∥r−1
Lp0 ∥∇f∥Lp1 .

Denote q = rN/(N − 1). Observe that ∥h∥LN/(N−1) = ∥f∥rLq . We have

∥f∥Lq ≤ ∥f∥1−1/r
Lp0

(
Cr∥∇f∥Lp1

)1/r
. (2.10)

Since 1/p1 > 1/p0 + 1/N , we have

q

p0
=

N

N − 1

( 1

p0
+ 1− 1

p1

)
< 1.

On the other hand, it follows from 1/p0 < 1/p1 − 1/N that

1

p′1
<
p0
p′1

( 1

p1
− 1

N

)
.

Hence,

1− 1

N
<

1

p1
− 1

N
+
p0
p′1

( 1

p1
− 1

N

)
.

Therefore we have
1

q
=
N − 1

N
· 1

1 + p0/p′1
<

1

p1
− 1

N
.

Set q0 = p0. For n ≥ 1, define rn and qn recursively by

rn =
qn−1

p′1
+ 1 and qn =

rnN

N − 1
.

We see from above arguments that both {qn : n ≥ 1} and {rn : n ≥ 1} are decreasing,
1/p1 > 1/qn + 1/N and

∥f∥Lqn ≤ ∥f∥1−1/rn
Lqn−1

(
Crn∥∇f∥Lp1

)1/rn
. (2.11)

Since qn is bounded from below, the limits r̃ := limn→∞ rn and q̃ := limn→∞ qn exist.
Moreover, q̃ = r̃N/(N − 1) > r̃ ≥ 1.

Take some constant ε small enough such that ε · Cr1∥∇f∥Lp1 < 1. Since rn ≤ r1, we

have ε ·Crn∥∇f∥Lp1 < 1 for all n ≥ 1. Set f̃ = εf and substitute f̃ for f in (2.11), we get

∥f̃∥Lqn ≤ ∥f̃∥1−1/rn
Lqn−1 , n ≥ 1.

Applying the above inequality recursively, we obtain

∥f̃∥Lqn ≤ ∥f̃∥(1−1/rn)(1−1/rn−1)
Lqn−2

≤ · · ·

≤ ∥f̃∥
∏n

i=1(1−1/ri)
Lq0

≤ max{∥f̃∥Lq0 , 1}.
Hence, ∫

RN

|f̃(x)|qndx ≤ max{∥f̃∥Lq0 , 1}qn .

Letting n→ ∞, we see from Fatou’s lemma that f̃ ∈ Lq̃. Consequently f ∈ Lq̃.
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Observe that

qn =
rnN

N − 1
=

N

N − 1

(qn−1

p′1
+ 1
)
.

Letting n→ ∞, we get

q̃ =
N

N − 1

( q̃
p′1

+ 1
)
.

Hence 1/p1 = 1/q̃ + 1/N . Therefore, q̃ = p̃0 and f ∈ Lp̃0 .
Set r = p̃0/p

′
1 + 1. Then (2.10) turns out to be

∥f∥Lp̃0 ≤ ∥f∥1−1/r

Lp̃0

(
Cr∥∇f∥Lp1

)1/r
.

Finally, we have

∥f∥Lp̃0 ≤ Cr∥∇f∥Lp1

and this establishes (2.7) since 1/p1 − 1/N = 1/q̃ = 1/p̃0.
Moreover, (2.7) implies that ∥f∥LNp1/(N−p1) ≤ C∥f∥

W p⃗
1
. Since ∥f∥Lp0 ≤ C ′∥f∥

W p⃗
1
, by

interpolation, we get that for any q between p0 and Np1/(N − p1),

∥f∥Lq ≤ C∥f∥
W p⃗

1
.

This completes the proof. □

The following is an immediate consequence.

Corollary 2.4. Suppose that p⃗ = (p0, p1), q⃗ = (q0, q1), 1 ≤ p0, p1, q0, q1 <∞ and p1 < N .
If q1 = p1 and q0 lies between p0 and Np1/(N − p1), then

W p⃗
1 (R

N ) ↪→W q⃗
1 (R

N ).

Remark 2.5. The range for q in the inequality (2.8) is the best possible, which can be
shown as that for classical Sobolev spaces.

For example, take some f ∈ W p⃗
1 . Suppose that (2.8) is true for some q. Replacing

f(·/λ) for f in (2.8), we obtain∥∥f( ·
λ

)∥∥
Lq ≲

∥∥f( ·
λ

)∥∥
Lp0

+
1

λ

∥∥∇f( ·
λ

)∥∥
Lp1

.

Thus we have

λN/q∥f∥Lq ≲ λN/p0∥f∥Lp0 +
1

λ1−N/p1
∥∇f∥Lp1

and therefore

1 ≲ λN(1/p0−1/q) + λN(1/p1−1/N−1/q).

First, we assume that p0 ≤ Np1/(N − p1). If q > Np1/(N − p1), then both 1/p1 −
1/N − 1/q and 1/p0 − 1/q are positive. Letting λ→ 0, we get a contradiction.

If q < p0, then both 1/p1 − 1/N − 1/q and 1/p0 − 1/q are negative. Letting λ→ ∞,
we also get a contradiction.

Next, we assume that p0 > Np1/(N − p1). With similar arguments we get a contra-
diction. Hence (2.8) is true if and only if q is between p0 and Np1/(N − p1).

With the help of Lemma 2.3, we prove the density of compactly supported infinitely
many differentiable functions in nonuniform Sobolev spaces with general indices.

Theorem 2.6. For any k ≥ 1 and p⃗ ∈ [1,∞)k+1, the space C∞
c (RN ) is dense in W p⃗

k (R
N ).
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Proof. By Lemma 2.2, it suffices to consider the case 1/pi0 > 1/pi0−1 + 1/N for some i0
with 1 ≤ i0 ≤ k.

In this case, we have N ≥ 2. Let q⃗ = (q0, . . . , qN ), where qn is defined recursively by

qN = pN ,

qn =

{
pn, if 1/pn ≥ 1/qn+1 − 1/N,

Nqn+1/(N − qn+1), otherwise,
n = N − 1, . . . , 0.

By Lemma 2.3 (ii), we have f ∈W q⃗
k . Since 1/pn ≤ 1/qn ≤ 1/qn−1+1/N for all 1 ≤ n ≤ N ,

we have
1

pn
≤ 1

qn
≤ 1

qm
+
n−m

N
, n > m. (2.12)

It suffices to show that (2.5) is also true in this case.
In the sequel we adopt the notation introduced in the proof of Lemma 2.2. Recall

that ∂γf ∈ Lq|γ| . As in the proof of Lemma 2.2, we may assume that ∂γg ∈ Lr for any
r > q|γ|. If p|α| ≥ q|γ|, then we get (2.5) as in the proof of Lemma 2.2. For the case
p|α| < q|γ|, we see from (2.12) that

1

p|α|
≤ 1

q|γ|
+

|β|
N
.

Hence there is some r ≥ N/|β| such that

1

p|α|
=

1

q|γ|
+

1

r
.

Applying Hölder’s inequality, we get∥∥∥ 1

n|β|
∂βψ(

·
n
)∂γg

∥∥∥
L
p|α|

≤ 1

n|β|−N/r
· ∥∂βψ∥Lr∥∂γg1{|x|≥n}∥Lq|γ| → 0.

This completes the proof. □

Recall that for an integer n ≥ 0, the space Cn
b (RN ) consists of all functions f such

that f is n times continuously differentiable and for any multi-index α with |α| ≤ n,
Dαf ∈ L∞.

For an integer n ≥ 0 and a positive number ν ∈ (0, 1), the space Cn,ν(RN ) consists
of all functions f in Cn

b such that for any multi-index α with |α| = n,

|Dαf(x)−Dαf(y)| ≤ Cn,ν |x− y|ν , ∀x, y ∈ RN .

Below is an embedding theorem for higher-order nonuniform Sobolev spaces.

Theorem 2.7. Let k be a positive integer and p⃗ = (p0, . . . , pk) ∈ [1,∞)k+1.

(i) If kpk < N , then for any q between p0 and Npk/(N − kpk), we have

W p⃗
k (R

N ) ↪→ Lq(RN ).

(ii) If kpk = N , then for any q with p0 ≤ q <∞, we have

W p⃗
k (R

N ) ↪→ Lq(RN ).

(iii) If kpk > N , then W p⃗
k (R

N ) ↪→ L∞(RN ). More precisely, if kpk > N and N/pk ̸∈
Z, then there is some integer k0 such that (k0 − 1)pk < N < k0pk and

W p⃗
k (R

N ) ↪→ C
k−k0,k0−N/pk
b (RN ).
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If N/pk ∈ Z and k ≥ k0 := N/pk + 1, then for any 0 < λ < 1,

W p⃗
k (R

N ) ↪→ Ck−k0,λ
b (RN ).

Proof. (i) First, we consider the case kpk < N . We see from Lemma 2.3 that the conclu-
sion is true for k = 1.

For the case k ≥ 2, applying (2.7) recursively, we get

∥f∥LNpk/(N−kpk) ≤ C1

∑
|α|=1

∥∂αf∥LNpk/(N−(k−1)pk)

≤ C2

∑
|α|=2

∥∂αf∥LNpk/(N−(k−2)pk)

≤ . . .

≤ Ck

∑
|α|=k

∥∂αf∥Lpk . (2.13)

By interpolation, we get that for any q between p0 and Npk/(N − kpk), W
p⃗
k ↪→ Lq.

(ii) Next, we consider the case kpk = N .

First, we assume that k = 1 and N > 1. Take some f ∈ W p⃗
1 , where p⃗ = (p0, N). Set

r = p0(N−1)/N+1 and h = |f |r−1f . We have ∇h = r|f |r−1∇f . Since (r−1)/p0+1/N =
1, we see from Hölder’s inequality that

∥∇h∥L1 ≤ r∥f∥r−1
Lp0 ∥∇f∥LN <∞.

Hence ∇h ∈ L1. By Lemma 2.3, h ∈ LN/(N−1). Therefore, f ∈ LrN/(N−1) = Lp0+N/(N−1).
Replacing p0 by p0 + N/(N − 1) in the preceding argument, we obtain that f lies

in Lp0+2N/(N−1). Repeating this procedure yields that f ∈ Lp0+nN/(N−1) for any n ≥ 1.
Hence f ∈ Lq for any q satisfying p0 ≤ q <∞.

For the case k = N = 1, we see from (2.9) that for smooth functions f ,

∥f∥L∞ ≲ ∥f ′∥L1 .

Applying the density of Cc(R) in W p⃗
1 (R), we get that the above inequality is valid for all

f ∈W p⃗
1 . Hence f ∈ Lq for any q satisfying p0 ≤ q <∞.

Next we assume that kpk = N for some k ≥ 2. Take some f ∈ W p⃗
k , where p⃗ =

(p0, . . . , pk). For any multi-index α with |α| = 1, we have ∂αf ∈ W
(p1,...,pk)
k−1 . Note that

(k − 1)pk < N . We see from (i) that ∂αf ∈ LNpk/(N−(k−1)pk) = LN . Hence f ∈ W
(p0,N)
1 .

Now we see from arguments in the case k = 1 that f ∈ Lq for any q satisfying p0 ≤ q <∞.

(iii) Finally, we consider the case kpk > N .

First, we show that W p⃗
k ⊂ C0

b . We prove it by induction on k. For k = 1, the
arguments in [16, pages 80-82] work well for the nonuniform case with minor changes.
Specifically, applying the Lp1 norm for derivatives and the Lp0 norm for the function

itself, the same arguments yield that W p⃗
1 ↪→ C0

b . That is, functions in W
p⃗
1 are continuous

and bounded.
Now we assume that the conclusion is true for the cases 1, . . ., k − 1. Consider the

case k. Fix some f ∈W p⃗
k . There are two cases:

(a) (k − 1)pk ≥ N .
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If (k− 1)pk > N , then we see from the inductive assumption that for any multi-index
α with |α| = 1,

∥∂αf∥L∞ ≲ ∥∂αf∥
W

(p1,...,pk)

k−1

≤ ∥f∥
W p⃗

k
.

If (k − 1)pk = N , then we see from (ii) that for any multi-index α with |α| = 1, ∂αf ∈ Lq

for all q with p0 ≤ q <∞.
Hence for (k − 1)pk ≥ N , there is some q > max{N, p0} such that

∥∇f∥Lq ≲ ∥f∥
W p⃗

k
.

Consequently, f ∈ W
(p0,q)
1 . Applying the inductive assumption for the case k = 1, we get

that f is continuous and

∥f∥L∞ ≲ ∥f∥
W

(p0,q)
1

≲ ∥f∥
W p⃗

k
.

(b) (k − 1)pk < N .

In this case, we see from (i) that f ∈W
(p0,q1)
1 with q1 = Npk/(N − (k − 1)pk). Since

kpk > N , we have q1 > N . Applying the inductive assumption for the case k = 1 again,
we get that f is continuous and

∥f∥L∞ ≲ ∥f∥
W

(p0,q1)
1

≲ ∥f∥
W p⃗

k
.

By induction, the embedding W p⃗
k ↪→ C0

b is valid for all k ≥ 1.
Next we prove the Hölder continuity.
First, we assume that N/pk is not an integer. When k = 1, we have p1 > N . Take

some f ∈W p⃗
1 . Let φ and gλ be defined as in Lemma 2.1. We have

gλ(x+y)−gλ(x) =
∫ 1

0
∇gλ(x+ty)·ydt =

∫ 1

0

∫
RN

∇f(x+ty−z)·yφ(z)dzdt, ∀x, y ∈ RN .

It follows from Minkowski’s inequality that

∥gλ(·+ y)− gλ∥Lp1 ≤ |y| · ∥∇f∥Lp1 .

Since f is continuous and limλ→0 gλ(x) = f(x) for all x ∈ RN , letting λ→ 0 in the above
inequality, we see from Fatou’s lemma that

∥f(·+ y)− f∥Lp1 ≤ |y| · ∥∇f∥Lp1 .

On the other hand, it is easy to see that

∥∇(f(·+ y)− f)∥Lp1 ≤ 2∥∇f∥Lp1 .

Applying the fact for classical Sobolev spaces that if u, |∇u| ∈ Lp1 and p1 > N , then

∥u∥L∞ ≲ ∥u∥1−N/p1
Lp1 ∥∇u∥N/p1

Lp1 , (2.14)

we get

∥f(·+ y)− f∥L∞ ≤ |y|1−N/p1 · ∥∇f∥Lp1 .

Hence f ∈ C
0,1−N/p1
b .

When k ≥ 2, there is some positive integer k0 ≤ k such that (k0 − 1)pk < N < k0pk.

It follows that for any multi-index α with |α| = k−k0, we have Dαf ∈W
(pk−k0

,...,pk)

k0
. Now

we see from (i) that for any multi-index β with |β| = 1,

Dα+βf ∈ LNpk/(N−(k0−1)pk).
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Since Npk/(N − (k0 − 1)pk) > N , applying the conclusion for k = 1, we deduce that Dαf

lies in C
0,1−N/(Npk/(N−(k0−1)pk))
b = C

0,k0−N/pk
b .

Moreover, by the embedding inequality we have proved, Dβf ∈ Lq whenever 1 ≤
|β| ≤ k − k0 and q is large enough. In particular, Dβf ∈ Lq for some q > N . Applying
the conclusion for k = 1 again, we get Dαf ∈ C0

b when |α| ≤ k − k0 − 1. Hence f lies in

C
k−k0,k0−N/pk
b .

It remains to consider the case N/pk ∈ Z. When (k0 − 1) = N < k0pk, for any

multi-index α with |α| = k − k0, we have Dαf ∈W
(pk−k0

,...,pk)

k0
. Now we see from (ii) that

for q large enough and |β| = 1,

Dα+βf ∈ Lq.

The arguments for the case k = 1 show that for q large enough, Dαf ∈ C
0,1−N/q
b . Conse-

quently, Dαf ∈ C0,λ
b whenever |α| = k − k0 and 0 < λ < 1.

On the other hand, the same arguments as those for the case N/pk ̸∈ Z show that

Dαf ∈ C0
b when |α| ≤ k − k0 − 1. Hence f ∈ Ck−k0,λ

b for any 0 < λ < 1. □

Theorem 2.7 has some interesting consequences. In fact, the following corollary can
be proved with similar arguments as in the proof of Theorem 2.7 (iii), for which we leave
the details to interested readers.

Corollary 2.8. Let k be a positive integer and p⃗ = (p0, . . . , pk) ∈ [1,∞)k+1. If pk > N ,
then

W p⃗
k ↪→ C

k−1,1−N/pk
b .

On the other hand, the following result shows that the Sobolev space W q⃗
k with 1 ≤

qk < N/k and 1/qi = 1/qk − (k − i)/N is the largest one among all Sobolev spaces W p⃗
k

with pk = qk.

Corollary 2.9. Suppose that p⃗ = (p0, . . . , pk) ∈ [1,∞)k+1 with 1 ≤ pk < N/k. Let
q⃗ = (q0, . . . , qk) be such that qk = pk and qi = Npk/(N − (k − i)pk) for 0 ≤ i ≤ k − 1.
Then we have

W p⃗
k ↪→W q⃗

k .

Moreover, set q⃗(i) = (q0, . . . , qi), 1 ≤ i ≤ k. We have

W q⃗(k)

k ↪→W q⃗(k−1)

k−1 ↪→ · · · ↪→W q⃗(1)

1 ↪→ Lq0 .

Proof. We see from (2.13) that for any f ∈W p⃗
k ,

∥f∥
W q⃗

k
≤ C

∑
|α|=k

∥∂αf∥Lpk ≤ C∥f∥
W p⃗

k
.

Hence W p⃗
k ↪→W q⃗

k . The second conclusion is obvious. This completes the proof. □

3. Nonuniform Fractional Sobolev Spaces

Recall that nonuniform fractional Sobolev spaces are introduced in Definition 1.2. We

point out that for any 0 < s < 1 and p⃗ = (p0, p1) ∈ [1,∞)2, W p⃗
s (RN ) is a Banach space, a

fact that can be proved with almost the same arguments as that used in the proof of [16,
Proposition 4.24].
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3.1. Embedding Theorem for Nonuniform Fractional Sobolev Spaces. The main
result in this subsection is the following embedding theorem.

Theorem 3.1. Suppose that p⃗ = (p0, p1) with 1 ≤ p0 < ∞, 1 < p1 < ∞ and 0 < s < 1.
When p0 ≤ p1, we have

(i) If sp1 < N , then W p⃗
s (RN ) ↪→ Lq(RN ) for all p0 ≤ q ≤ Np1/(N − sp1).

(ii) If sp1 = N , then W p⃗
s (RN ) ↪→ Lq(RN ) for all p0 ≤ q <∞.

(iii) If sp1 > N , then W p⃗
s (RN ) ↪→ C

0,s−N/p1
b (RN ).

For the case p0 > p1, if sp1 < N and p0 < Np1/(N − sp1), we also have W p⃗
s (RN ) ↪→

Lq(RN ) for all p0 ≤ q ≤ Np1/(N − sp1).

To prove Theorem 3.1, we need some preliminary results.
We see from [16, Lemma 4.33] that for any f ∈ Lp,∫∫

RN×RN

|f(x)− f(y)|p

|x− y|N+ps
dx dy <∞

is equivalent to∫∫
RN×R

|f(x)− f(x+ aej)|p

|a|1+ps
dx da <∞, ∀ 1 ≤ j ≤ N.

Checking the arguments in the proof of [16, Lemma 4.33], we find that the hypothesis
f ∈ Lp is not used. Moreover, with the same arguments we get the following result.

Proposition 3.2. Let 0 < s < 1 and 1 ≤ p < ∞. Then there exist positive constants C1

and C2 such that for any measurable function f which is finite almost everywhere,

C1[f ]
p
W p

s
≤

N∑
j=1

∫∫
RN×R

|f(x)− f(x+ aej)|p

|a|1+ps
dx da ≤ C2[f ]

p
W p

s
, ∀ 1 ≤ j ≤ N.

The following construction is used in the proof of the embedding theorem. Unlike
the classical case, here we need that φ equals 1 in a neighborhood of 0 to ensure that its
derivatives vanish near 0.

Lemma 3.3. Suppose that 1 ≤ p0, p1 < ∞, 0 < s ≤ 1, f ∈ W p⃗
s (RN ), φ ∈ C∞

c (R) with
φ(t) = 1 for |t| < 1 and φ(t) = 0 for |t| > A, where A is a constant. Let α = 1− 1/p1 − s
for 0 < s < 1 and α = −1/p1 + η for s = 1, where 0 < η < 1. Set

g(t, x) =
φ(t)

tN

∫
[0,t]N

f(x+ y) dy, t > 0, (3.1)

g(0, x) = lim
t→0

g(t, x). (3.2)

We have

∥tα∇xg(t, x)∥Lp1 (RN+1) ≲ ∥f∥
W p⃗

s
. (3.3)

Moreover, there are two functions h0 and h1 such that ∂tg(t, x) = h0(t, x) + h1(t, x) and

∥tαh0(t, x)∥Lp1 (RN+1) ≲ ∥f∥
W p⃗

s
, (3.4)

∥h1(t, ·)∥Lp0 (RN ) ≲ ∥f∥Lp01[1,A](t). (3.5)

Furthermore, if p0 ≤ p1, we have

∥tα∇g(t, x)∥Lp1 (RN+1) ≲ ∥f∥
W p⃗

s
. (3.6)
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Proof. First, we estimate ∥∂xig(t, x)∥Lp1 (RN+1), 1 ≤ i ≤ N . Denote

x̂i = x− xiei and dx̂i =
∏
j ̸=i

dxj .

Observe

g(t, x) =
φ(t)

tN

∫ xi+t

xi

∫
[0,t]N−1

f(x̂i + ŷi + yiei) dŷi dyi.

We get

∂xig(t, x) =
φ(t)

tN

∫
[0,t]N−1

(
f(x̂i + ŷi + (xi + t)ei)− f(x̂i + ŷi + xiei)

)
dŷi

=
φ(t)

tN

∫
[0,t]N−1

(
f(x+ tei + ŷi)− f(x+ ŷi)

)
dŷi

=
φ(t)

t

∫
[0,1]N−1

(
f(x+ tei + tŷi)− f(x+ tŷi)

)
dŷi.

Hence for 0 < s < 1,

∥tα∂xig(t, x)∥
p1
Lp1 (RN+1)

≤∥φ(t)∥p1L∞

∫ ∞

0

∫
RN

∫
[0,1]N−1

|f(x+ tei + tŷi)− f(x+ tŷi)|p1
t1+sp1

dŷi dx dt

≲ [f ]p1
W

p1
s
.

For the case s = 1, we have α = −1/p1 + η. We see from (3.1) that

∇xg(t, x) =
φ(t)

tN

∫
[0,t]N

∇f(x+ y)dy.

Thus we obtain

∥tα∇xg(t, x)∥Lp1 (RN+1) ≤ ∥tαφ(t)∥Lp1∥∇f∥Lp1 <∞

proving (3.3).
Next we deal with ∂tg(t, x). A simple computation shows that

∂tg(t, x) = φ(t)

(
−N
tN+1

∫
[0,t]N

f(x+ y)dy +
1

tN

N∑
i=1

∫
[0,t]N−1

f(x+ ŷi + tei)dŷi

)
+
φ′(t)

tN

∫
[0,t]N

f(x+ y)dy

=
φ(t)

tN+1

N∑
i=1

∫
[0,t]N

(
f(x+ ŷi + tei)− f(x+ y)

)
dy + φ′(t)

∫
[0,1]N

f(x+ ty)dy

=
φ(t)

t

N∑
i=1

∫
[0,1]N

(
f(x+ tŷi + tei)− f(x+ ty)

)
dy + φ′(t)

∫
[0,1]N

f(x+ ty)dy

:= h0(t, x) + h1(t, x).

Next, we prove (3.4). For 0 < s < 1, we have

∥tαh0(t, x)∥p1Lp1 (RN+1)
≲ ∥φ∥p1L∞

N∑
i=1

∫ ∞

0

∫
[0,1]N

∫
RN

|f(x+ tŷi + tei)− f(x+ ty)|p1
t1+sp1

dx dy dt.
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By the change of variables x→ x+ ty, we write

∥tαh0(t, x)∥p1Lp1 (RN+1)
≲ ∥φ∥p1L∞

N∑
i=1

∫ ∞

0

∫
[0,1]N

∫
RN

|f(x+ t(1− yi)ei)− f(x)|p1
t1+sp1

dx dy dt

= ∥φ∥p1L∞

N∑
i=1

∫ ∞

0

∫ 1

0
(1− yi)

sp1

∫
RN

|f(x+ tei)− f(x)|p1
t1+sp1

dx dyi dt

≲ [f ]p1
W

p1
s
, (3.7)

having used the change of variables t→ (1− yi)t. And for the case s = 1, we have

∥tαh0(t, x)∥Lp1
x

≤ |tα−1φ(t)|
N∑
i=1

∫
[0,1]N

∥∥∥f(x+ tŷi + tei)− f(x+ ty)
∥∥∥
L
p1
x

dy

= |tα−1φ(t)|
N∑
i=1

∫
[0,1]N

∥∥∥∫ t

tyi

∂xif(x+ tŷi + τei)dτ
∥∥∥
L
p1
x

dy

≲ |tαφ(t)| · ∥∇f∥Lp1 .

Hence

∥tαh0(t, x)∥Lp1 (RN+1) ≲ ∥∇f∥Lp1 . (3.8)

To prove (3.5), note that φ′(t) = 0 for 0 < t < 1 or t > A. For 1 ≤ t ≤ A, we see
from Minkowski’s inequality that

∥h1(t, ·)∥Lp0 (RN ) ≤ |φ′(t)|
∫
[0,1]N

∥f(·+ ty)∥Lp0dy ≤ |φ′(t)| · ∥f∥Lp0 . (3.9)

Hence (3.5) is valid.
Finally, we consider the case p0 ≤ p1. To prove (3.6), it suffices to show that

∥tαh1(t, x)∥Lp1 (RN+1) ≲ ∥f∥Lp0 , thanks to (3.3) and (3.4).

Recall that φ′(t) = 0 for 0 < t < 1. For t ≥ 1, we have

|h1(t, x)| ≤ |φ′(t)|
(∫

[0,1]N
|f(x+ ty)|p0dy

)1/p0
= |φ′(t)|

( 1

tN

∫
[0,t]N

|f(x+ y)|p0dy
)1/p0

≤ |φ′(t)| · ∥f∥Lp0 .

Hence

∥tαh1(t, x)∥p1Lp1 (RN+1)
≤
∫
RN

∫ ∞

1
|tαφ′(t)|p1∥f∥p1−p0

Lp0

(∫
[0,1]N

|f(x+ ty)|dy
)p0

dt dx

≤
∫
RN

∫ ∞

1
|tαφ′(t)|p1∥f∥p1−p0

Lp0

∫
[0,1]N

|f(x+ ty)|p0 dy dt dx

≤ ∥f∥p1Lp0 .

This completes the proof. □

For the case 1 ≤ p0 ≤ p1 < ∞, the nonuniform Sobolev space W
(p0,p1)
s is a subspace

of the classical one W p1
s . Moreover, the inclusion is in fact an embedding and is also valid

for s = 1.
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Lemma 3.4. Suppose that 0 < s ≤ 1 and 1 ≤ p0 ≤ p1 <∞. We have

W p⃗
s ↪→W p1

s .

Moreover, the inclusion is not true if p0 > p1.

Proof. Let φ and ψ be functions in C∞
c (RN ) and C∞

c (R), respectively, with values between
0 and 1 and equal to 1 in neighborhoods of 0. Set Φ(t, x) = φ(x)ψ(t). Take some A > 0
such that suppΦ ⊂ [−A,A]N+1.

Fix some f ∈W p⃗
s . Let α and g be defined as in Lemma 3.3, δ0 be the Dirac measure

at 0, and

E(t, x) =


cN

(t2 + |x|2)(N−1)/2
, N ≥ 2,

c1 log(t
2 + |x|2), N = 1,

be the fundamental solution of the Laplacian satisfying ∆E = δ0.
Recall that for a tempered distribution Λ and a function h ∈ C∞, for which the

function itself and all of its derivatives have at most polynomial growth at infinity, the
product hΛ is the tempered distribution [25, Definition 2.3.15] defined by

⟨hΛ, u⟩ = ⟨Λ, hu⟩, ∀u ∈ S . (3.10)

Since Φ(t, x) equals 1 in a neighbourhood of 0, we have

Φ∆E = Φδ0 = δ0.

Hence

g = δ0 ∗ g
= ∆(ΦE) ∗ g − 2(∇Φ · ∇E) ∗ g − ((∆Φ)E) ∗ g
= ((∇Φ)E) ∗ ∇g + (Φ∇E) ∗ ∇g − 2(∇Φ · ∇E) ∗ g − ((∆Φ)E) ∗ g, (3.11)

where we use the notation

u ∗ v =
N+1∑
i=1

ui ∗ vi

to denote the convolution of two CN+1-valued functions.
Since g(0, x) = f(x) a.e., it suffices to show that ∥g(0, ·)∥Lp1 ≲ ∥f∥

W p⃗
s
. We prove it

in the following steps:

(S1) First, we estimate ∥((∇Φ)E) ∗ ∇g(0, ·)∥Lp1 . For N ≥ 2, we have

((∇Φ)E) ∗ ∇g(0, x) =
∫ A

0

∫
RN

(∇Φ)(−t, y) · ∇g(t, x− y)

(t2 + |y|2)(N−1)/2
dy dt.

Applying Minkovski’s inequality, we get

∥((∇Φ)E) ∗ ∇g(0, ·)∥Lp1 ≤ ∥∇Φ∥L∞

∫ A

0
∥∇g(t, ·)∥Lp1

∫
[−A,A]N

dy

(t+ |y|)N−1
dt

≲
∫ A

0
∥∇g(t, ·)∥Lp1

∫
[0,A]2

dy1dy2
t+ y1 + y2

dt

≈
∫ A

0
∥∇g(t, ·)∥Lp1

∫ A

0
log

t+ y1 +A

t+ y1
dy1 dt

≲
∫ A

0
∥∇g(t, ·)∥Lp1

∫ A

0

1

(t+ y1)ε
dy1 dt (0 < ε < 1)
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≲
∫ A

0
∥∇g(t, ·)∥Lp1dt

≲ ∥t−α · 1[0,A](t)∥Lp′1
∥tα∇g(t, x)∥Lp1 (RN+1)

≈ ∥tα∇g(t, x)∥Lp1 (RN+1)

≲ ∥f∥
W p⃗

s
,

where we applied (3.6) in the last step. When N ≥ 3, the first inequality is obtained
by successively integrating the variables yN , yN−1, . . . , y3 over [0,∞); the effect of this is
the reduction of the exponent by 1 in each integration, so after N − 2 integrations, the
exponent becomes (N − 1)− (N − 2) = 1.

For the case N = 1, we have |E(t, y)| = |cN log(t2 + y2)| ≲ (|t|+ |y|)−ε for any ε > 0.
Hence

∥((∇Φ)E) ∗ ∇g(0, ·)∥Lp1 ≲
∫ A

0
∥∇g(t, ·)∥Lp1

∫ A

0

1

(t+ y1)ε
dy1 dt (0 < ε < 1)

≲ ∥f∥
W p⃗

s
.

(S2) Next, we estimate ∥(Φ∇E) ∗ ∇g(0, ·)∥Lp1 . Observe that for (t, y) ∈ [−A,A]N+1,

|∇E(t, y)| ≲ 1

(|t|+ |y|)N
.

Similar arguments as the previous case show that

∥(Φ∇E) ∗ ∇g(0, ·)∥Lp1 ≲
∫ A

0
∥∇g(t, ·)∥Lp1

∫
[−A,A]N

dy

(t+ |y|)N
dt

≈
∫ A

0
∥∇g(t, ·)∥Lp1

∫ A

0

dy1
t+ y1

dt

≈
∫ A

0
∥∇g(t, ·)∥Lp1 log

t+A

t
dt

≲
∫ A

0
∥∇g(t, ·)∥Lp1 t−εdt

≲ ∥t−(α+ε) · 1[0,A](t)∥Lp′1
∥tα∇g(t, x)∥Lp1 (RN+1)

≲ ∥f∥
W p⃗

s
,

where 0 < ε < s for s < 1 and 0 < ε < 1− η for s = 1. Again, we apply (3.6) in the last
step.

(S3) We deal with the last two terms. Observe that both ∇Φ and ∆Φ vanish in a
neighborhood of 0. Hence both (∇Φ · ∇E) and (∆Φ)E are compactly supported bounded
functions. Hence

F (x) := |2(∇Φ · ∇E) ∗ g(0, x)|+ |((∆Φ)E) ∗ g(0, x)| ≲
∫ A

0

∫
[−A,A]N

|g(t, x− y)|dy dt.

For any q > p0, there is some r > 1 such that

1

r
+

1

p0
=

1

q
+ 1.
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Observe that

∥g(t, ·)∥Lp0 = |φ(t)| ·
∥∥∥∫

[0,1]N
f(·+ ty)dy

∥∥∥
Lp0

≲ ∥φ∥L∞ · ∥f∥Lp0 . (3.12)

We see from Young’s inequality that

∥F∥Lq ≲ ∥f∥Lp0 .

Setting q = p1, we get ∥F∥Lp1 ≲ ∥f∥Lp0 .
Combing results in (S1), (S2), and (S3), yields

W (p0,p1)
s ↪→W (p1,p1)

s =W p1
s .

For the case p0 > p1, we provide a counterexample in Example 3.6. This completes
the proof. □

The following is an immediate consequence.

Corollary 3.5. Suppose that p⃗ = (p0, p1) with 1 ≤ p0 ≤ p1 <∞. For any 0 < s̃ < s < 1,
we have

W p⃗
1 ↪→W p⃗

s ↪→W p⃗
s̃ . (3.13)

Proof. First, we prove that W p⃗
1 ↪→ W p⃗

s . Take some f ∈ W p⃗
1 . As for functions in classical

Sobolev spaces, for almost all x ∈ RN , we have

|f(x)− f(x+ aej)|p1 =
∣∣∣ ∫ a

0
∂xjf(x+ tej)dt

∣∣∣p1 ≤ |a|p1−1

∫ a

0
|∂xjf(x+ tej)|p1dt.

Hence ∫
RN

|f(x)− f(x+ aej)|p1dx ≤ |a|p1∥∂xjf∥
p1
Lp1 .

Therefore,∫
|a|<1

∫
RN

|f(x)− f(x+ aej)|p1
|a|1+sp1

dx da ≤
∫
|a|<1

|a|p1
|a|1+sp1

∥∂xjf∥
p1
Lp1da ≲ ∥∂xjf∥

p1
Lp1 .

On the other hand, since p0 ≤ p1, we have W p⃗
1 ↪→W p1

1 , thanks to Lemma 3.4. Hence∫
|a|≥1

∫
RN

|f(x)− f(x+ aej)|p1
|a|1+sp1

dx da ≲
∫
|a|≥1

∥f∥p1Lp1

|a|1+sp1
da ≲ ∥f∥p1Lp1 .

Consequently, ∥f∥
W p⃗

s
≲ ∥f∥

W p⃗
1
.

Next, we show that W p⃗
s ↪→W p⃗

s̃ . Fix some f ∈W p⃗
s . Since s̃ < s, we have∫

|a|<1

∫
RN

|f(x)− f(x+ aej)|p1
a1+p1s̃

dx da ≤
∫
|a|<1

∫
RN

|f(x)− f(x+ aej)|p1
a1+p1s

dx da ≲ [f ]p1
W

p1
s
.

On the other hand, by Lemma 3.4, f ∈ Lp1 . Hence∫
|a|≥1

∫
RN

|f(x)− f(x+ aej)|p1
a1+p1s̃

dx da ≤
∫
|a|≥1

Cp1∥f∥
p1
Lp1

a1+p1s̃
da ≲ ∥f∥p1Lp1 .

This completes the proof. □
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We point out that the inclusion in Corollary 3.5 is not true in general for the case
p0 > p1, which is quite different from the classical case, since for any 1 ≤ p < ∞ and
0 < s̃ < s < 1,

W p
1 ↪→W p

s ↪→W p
s̃ .

Below is a counterexample.

Example 3.6. Suppose that 0 < s ≤ 1, 1 ≤ p0, p1 < ∞ and p1δ < N < p0δ. Let

f(x) = (1 + |x|2)−δ/2, x ∈ RN and let p⃗ = (p0, p1). We have f ∈ W p⃗
s (RN ) if and only if

p1(δ + s) > N . Consequently, for any 0 < s ≤ 1 and p0 > p1, W
p⃗
s ̸⊂W p1

s .

Moreover, if 0 < s̃ < s ≤ 1 and s̃ < N/p1 −N/p0, we have W p⃗
s ̸⊂W p⃗

s̃ .

Proof. (i) We show that f ∈W p⃗
s (RN ) if and only if p1(δ+ s) > N , for which we only need

to consider the case 0 < s < 1 since the other case s = 1 is obvious.
First, we assume that p1(δ + s) > N . Let us estimate the integral∫

RN

|f(x)− f(x+ aej)|p1dx, 1 ≤ j ≤ N.

Denote x̂j = x− xjej and dx̂j =
∏

i̸=j dxi. Observe that

|f(x)− f(x+ aej)|p1 =
∣∣∣ ∫ a

0
∂xjf(x+ tej)dt

∣∣∣p1 ≤ |a|p1−1
∣∣∣ ∫ a

0
|∂xjf(x+ tej)|p1dt

∣∣∣. (3.14)
When |a| > 1, |t| ≤ |a| and |x| > 2|a|, we have |x+ tej | > |a|. Hence∫

|x|>2|a|
|f(x)− f(x+ aej)|p1dx

≲ |a|p1−1

∣∣∣∣ ∫ a

0

∫
|x|>2|a|

|xj + t|p1
(1 + |x̂j |2 + |xj + t|2)(δ+2)p1/2

dx dt

∣∣∣∣
≤ |a|p1−1

∣∣∣∣ ∫ a

0

∫
|x|>|a|

|xj |p1
(1 + |x̂j |2 + |xj |2)(δ+2)p1/2

dx dt

∣∣∣∣
= |a|p1

(∫
|xj |>|a|

∫
RN−1

|xj |p1
(1 + |x̂j |2 + |xj |2)(δ+2)p1/2

dx̂j dxj

+

∫
|xj |<|a|

∫
|x̂j |>(a2−x2

j )
1/2

|xj |p1
(1 + |x̂j |2 + |xj |2)(δ+2)p1/2

dx̂j dxj

)
≈ |a|p1

(∫
|xj |>|a|

|xj |p1dxj
(1 + |xj |)(δ+2)p1−(N−1)

+

∫
|xj |<|a|

|xj |p1dxj
(1 + |a|)(δ+2)p1−(N−1)

)
≈ |a|N−p1δ, (3.15)

where we use the fact that (δ + 1)p1 > (δ + s)p1 > N . On the other hand,∫
|x|≤2|a|

|f(x)− f(x+ aej)|p1dx

≲
∫
|x|≤2|a|

( 1

(1 + |x|2)p1δ/2
+

1

(1 + |x+ aej |2)p1δ/2
)
dx

≤
∫
|x|≤2|a|

1

(1 + |x|2)p1δ/2
dx+

∫
|x+aej |≤3|a|

1

(1 + |x+ aej |2)p1δ/2
dx

≲ |a|N−p1δ. (3.16)
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Putting (3.15) and (3.16) together, we get∫
RN

|f(x)− f(x+ aej)|p1dx ≲ |a|N−p1δ, |a| > 1.

For |a| ≤ 1, since |∂xjf(x)| ≲ 1/(1 + |x|2)(δ+1)/2 and p1(δ + 1) > p1(δ + s) > N , we
have ∂xjf ∈ Lp1 . It follows from (3.14) that∫

RN

|f(x)− f(x+ aej)|p1dx ≤ |a|p1∥∂xjf∥
p1
Lp1 .

Combining the preceding estimates we deduce∫
R

∫
RN

|f(x)− f(x+ aej)|p1
|a|1+p1s

dx da =

∫
|a|≤1

∫
RN

|f(x)− f(x+ aej)|p1
|a|1+p1s

dx da

+

∫
|a|>1

∫
RN

|f(x)− f(x+ aej)|p1
|a|1+p1s

dx da

≲
∫
|a|≤1

|a|p1−1−p1sda+

∫
|a|>1

da

|a|p1(δ+s)−N+1

<∞.

Hence f ∈W p⃗
s .

Next we show that f ̸∈W p⃗
s whenever p1(δ + s) ≤ N .

When a > 2, a2 < |x|2 < 5a2/4 and xj > 0, we have 1 + |x|2 < 3a2/2 and 1 + |x +
aej |2 = 1 + |x|2 + 2axj + a2 > 2a2. Hence∫

RN

|f(x)− f(x+ aej)|p1dx ≥
∫
a2<|x|2<5a2/4

xj>0

|f(x)− f(x+ aej)|p1dx

≳
∫
a2<|x|2<5a2/4

xj>0

dx

ap1δ

≈ aN−p1δ.

Therefore, ∫
R

∫
RN

|f(x)− f(x+ aej)|p1
|a|1+p1s

dx da ≳
∫
a≥2

da

ap1(δ+s)−N+1
= ∞.

(ii) Now assume that p0 > p1. Take some ε > 0 such that ε < min{s,N/p1 − N/p0}.
Set δ = N/p1 − ε. We have p1δ < N < p0δ and p1(δ + s) = N + p1(s − ε) > N . Hence

f ∈W p⃗
s \W p1

s .

(iii) When s̃ < N/p1 −N/p0, we have p0 > p1. Take some constant δ such that

max
{N
p0
,
N

p1
− s
}
< δ <

N

p1
− s̃.

Then p0δ > N > p1δ, p1(δ + s) > N and p1(δ + s̃) < N . Hence f ∈W p⃗
s \W p⃗

s̃ . □

Proof of Theorem 3.1. For the case p0 ≤ p1, the conclusion follows from Lemma 3.4 and
the embedding theorem for classical fractional Sobolev spaces.

Now we assume that p0 > p1. It suffices to show that if f ∈ W p⃗
s , then f ∈ Lq with

q = Np1/(N − sp1).
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We adopt the notation used in the proof of Lemma 3.4. We rewrite (3.11) as

g = ((∇xΦ)E) ∗ ∇xg + (Φ∇xE) ∗ ∇xg + ((∂tΦ)E) ∗ h0 + (Φ∂tE) ∗ h0
+ ((∂tΦ)E) ∗ h1 + (Φ∂tE) ∗ h1 − 2(∇Φ · ∇E) ∗ g − ((∆Φ)E) ∗ g. (3.17)

Checking the proof of [16, Proposition 4.47], we find that∥∥∥(((∇xΦ)E)∗∇xg+(Φ∇xE)∗∇xg+((∂tΦ)E)∗h0+(Φ∂tE)∗h0
)
(0, ·)

∥∥∥
Lq

≲ ∥f∥
W p⃗

s
. (3.18)

In fact, the only property of g used in the proof of [16, Proposition 4.47] is that tα∇g(t, x)
lies in Lp1 . In our case, ∂tg is replaced by h0. By Lemma 3.3, tαh0(t, x) ∈ Lp1 . So (3.18)
is true.

It remains to consider the last four terms in (3.17). Since Φ is compactly supported,
we have

|(∂tΦ)E(t, x)| ≲ 1

(|t|+ |x|)N
,

and

|Φ∂tE(t, x)| ≲ 1

(|t|+ |x|)N
.

Observe that h1(t, x) = 0 for t < 1 or t > A. We have∣∣∣(((∂tΦ)E) ∗ h1 + (Φ∂tE) ∗ h1
)
(0, x)

∣∣∣ ≲ ∫ A

1

∫
[−A,A]N

|h1(t, x− y)|
(t+ |y|)N

dy dt.

Take some r > 1 such that 1/p0 +1/r = 1/q+1. Applying Young’s inequality, we deduce
from (3.5) that∥∥∥(((∂tΦ)E) ∗ h1 + (Φ∂tE) ∗ h1

)
(0, ·)

∥∥∥
Lq

≲
∫ A

1
∥h1(t, ·)∥Lp0

∥∥∥ 1

(t+ | · |)N
∥∥∥
Lr
dt ≲ ∥f∥Lp0 .

For the last two terms in (3.17), we show in (S3) of the proof of Lemma 3.4 that∥∥∥(|(∇Φ · ∇E) ∗ g|+ |((∆Φ)E) ∗ g|
)
(0, ·)

∥∥∥
Lq

≲ ∥f∥Lp0 .

Combining these facts we derive the desired conclusion. □

3.2. Density of Compactly Supported Infinitely Differentiable Functions. In this
subsection, we show that compactly supported infinitely differentiable functions are dense
in fractional nonuniform Sobolev spaces for certain indices.

First, we show that smooth functions are dense in nonuniform fractional Sobolev
spaces.

Lemma 3.7. For any 0 < s < 1 and p⃗ = (p0, p1) with 1 ≤ p0, p1 < ∞, C∞ ∩W p⃗
s (RN ) is

dense in W p⃗
s (RN ).

Proof. As in the proof of Lemma 2.1, take some φ ∈ C∞
c such that φ is nonnegative and

∥φ∥L1 = 1. Fix some f ∈W p⃗
s and set

gλ(x) =

∫
RN

f(y)
1

λN
φ(
x− y

λ
)dy, λ > 0.

We have gλ ∈ C∞. Moreover, since

gλ(x) =

∫
RN

f(x− λy)φ(y)dy,
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we have

gλ(x)− f(x) =

∫
RN

(f(x− λy)− f(x))φ(y)dy.

Now we derive from Minkowski’s inequality and the continuity of translation operators in
Lebesgue spaces that

lim
λ→0

∥gλ − f∥Lp0 ≤ lim
λ→0

∫
RN

∥f(· − λy)− f∥Lp0φ(y)dy = 0 (3.19)

and

lim
λ→0

[gλ − f ]W p1
s

≤ lim
λ→0

∫
RN

∥∥∥∥
(
f(x− λy)− f(x)

)
−
(
f(z − λy)− f(z)

)
|x− z|N/p1+s

∥∥∥∥
L
p1
(x,z)

(RN×RN )

φ(y)dy

= lim
λ→0

∫
RN

∥∥∥∥ f(x− λy)− f(z − λy)

|(x− λy)− (z − λy)|N/p1+s
− f(x)− f(z)

|x− z|N/p1+s

∥∥∥∥
L
p1
(x,z)

(RN×RN )

φ(y)dy

= 0,

having applied the fact that (f(x)− f(z))/|x− z|N/p1+s ∈ Lp1
(x,z). Hence,

lim
λ→0

∥gλ − f∥
W p⃗

s
= 0,

and this concludes the proof. □

As in the classical case, to prove the density of compactly supported smooth functions,
we first approximate a function in fractional nonuniform Sobolev spaces by its truncation,
then approximate the truncation by its regularization. However, since p0 needs not to be
identical to p1, the technique details are quite different.

Theorem 3.8. Suppose that 0 < s < 1, p⃗ = (p0, p1) ∈ [1,∞)2 and s/N ≥ 1/p1 − 1/p0.

Then C∞
c (RN ) is dense in W p⃗

s (RN ).

Proof. Take some nonnegative function φ ∈ C∞
c such that φ(x) = 1 when |x| < 1 and

φ(x) = 0 when |x| > 2.

Fix some f ∈ W p⃗
s . First, we show that φ(·/n)f tends to f in W p⃗

s as n tends to the
infinity. Since φ(·/n)f tends to f in Lp0 , thanks to Lebesgue’s dominated convergence
theorem, it suffices to show that limn→∞[φ(·/n)f − f ]W p1

s
= 0.

If p0 ≤ p1, by Lemma 3.4, we have W p⃗
s ↪→ W p1

s . Now we see from the density result
in the classical fractional Sobolev spaces that limn→∞[φ(·/n)f − f ]W p1

s
= 0.

It remains to consider the case p0 > p1. Observe that(
φ
(x
n

)
− 1
)
f(x)−

(
φ
(y
n

)
− 1
)
f(y) =

(
φ
(x
n

)
− 1
)
(f(x)− f(y)) +

(
φ
(x
n

)
− φ

(y
n

))
f(y).

We have

[φ
( ·
n

)
f − f ]p1

W
p1
s

≲
∫∫

R2N

|(φ(x/n)− 1)(f(x)− f(y))|p1
|x− y|N+sp1

dx dy

+

∫∫
R2N

|(φ(x/n)− φ(y/n))f(y)|p1
|x− y|N+sp1

dx dy.
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Since f ∈W p⃗
s , we see from Lebesgue’s dominated convergence theorem that

lim
n→∞

∫∫
R2N

|(φ(x/n)− 1)(f(x)− f(y))|p1
|x− y|N+sp1

dx dy = 0.

Now we only need to show that

lim
n→∞

∫∫
R2N

|(φ(x/n)− φ(y/n))f(y)|p1
|x− y|N+sp1

dx dy = 0. (3.20)

We split the integral into two parts,∫∫
R2N

|(φ(x/n)− φ(y/n))f(y)|p1
|x− y|N+sp1

dx dy

=
(∫∫

|y|≤4n
+

∫∫
|y|>4n

) |(φ(x/n)− φ(y/n))f(y)|p1
|x− y|N+sp1

dx dy

= I + II.

We have

I =
(∫∫

|y|≤4n
|x−y|≤8n

+

∫∫
|y|≤4n

|x−y|>8n

) |(φ(x/n)− φ(y/n))f(y)|p1
|x− y|N+sp1

dx dy

= I1 + I2,

where

I1 ≤
∥∇φ∥p1L∞

np1

∫∫
|y|≤4n

|x−y|≤8n

|x− y|p1 |f(y)|p1
|x− y|N+sp1

dx dy ≲
1

nsp1

∫
|y|≤4n

|f(y)|p1dy,

and

I2 =

∫∫
|y|≤4n

|x−y|>8n

|φ(y/n)f(y)|p1
|x− y|N+sp1

dx dy ≲
1

nsp1

∫
|y|≤4n

|f(y)|p1dy.

Hence

I ≲
1

nsp1

∫
|y|≤4n

|f(y)|p1dy.

Denote r = p0/p1. For any k ≥ 1, there is some n0 such that

∥f · 1{|y|≤n0}∥Lp0 ≥
(
1− 1

k

)
∥f∥Lp0 .

Applying Hölder’s inequality, we get

I ≲
1

nsp1

(∫
|y|≤n0

|f(y)|p1dy +
∫
n0<|y|≤4n

|f(y)|p1dy
)

≲
1

nsp1

(
n
N/r′

0 ∥|f |p1∥Lr + nN/r′∥|f |p1 · 1{|y|>n0}∥Lr

)
≤ n

N/r′

0

nsp1
∥f∥p1Lp0 +

1

kp1
· 1

nNp1(s/N−1/p1+1/p0)
∥f∥p1Lp0 .

Since s/N ≥ 1/p1 − 1/p0, letting n→ ∞ and k → ∞ successively, we get

lim
n→∞

I = 0.
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Next we deal with II. Recall that φ(x) = 0 when |x| > 2. We have

II =

∫∫
|y|>4n

|(φ(x/n)− φ(y/n))f(y)|p1
|x− y|N+sp1

dxdy

=

∫
|x|≤2n

∫
|y|>4n

|φ(x/n)f(y)|p1
|x− y|N+sp1

dxdy

≲
∫
|x|≤2n

|φ(x
n
)|p1dx

∫
|y|>4n

|f(y)|p1
|y|N+sp1

dy

≲ nN · ∥f · 1{|y|≥4n}∥
p1
Lp0 · 1

nsp1+N/r

=
1

nNp1(s/N−1/p1+1/p0)
∥f · 1{|y|≥4n}∥

p1
Lp0 .

Hence limn→∞ II = 0. Therefore, (3.20) is true.

The above arguments show that the sequence {φ(·/n)f n ≥ 1} is a subset of W p⃗
s and

is convergent to f in W p⃗
s .

To finish the proof, it suffices to show that for any compactly supported function

f ∈W p⃗
s , f can be approximated by functions in C∞

c , which can be achieved with the same
arguments as in the proof of Lemma 3.7. □

4. Applications

4.1. Local estimates for solutions of heat equations. Consider the classical solution
of the heat equation {

∂tu(t, x)−∆xu(t, x) = 0, t > 0,

u(0, x) = u0(x).

That is,

u(t, x) =
1

(4πt)N/2

∫
RN

e−|x−y|2/(4t)u0(y)dy, t > 0, x ∈ RN . (4.1)

Fefferman, McCormick, Robinson, and Rodrigo [23] studied local energy estimates for
u(t, x). They proved that if the initial data u0 belongs to the Sobolev space Hs, then for
any T > 0, the classical solution of the heat equation satisfies that u ∈ L∞(0, T ;Hs) ∩
L2(0, T ;Hs+1) and t1/2u(t, x) ∈ L2(0, T ;Hs+2). As a result, u ∈ Lq(0, T ;Hs+2) for any
0 < q < 1.

In this subsection, we show that the local estimates for solutions of heat equations
are also valid when the initial data belong to nonuniform Sobolev spaces.

Theorem 4.1. Suppose that s > 0, T > 0 and p⃗ = (p0, . . . , p⌈s⌉) with 1 < pi < ∞ for
0 ≤ i ≤ ⌈s⌉. Set r⃗ = (p0, . . . , p⌊s⌋, 2) for s ̸∈ Z and r⃗ = p⃗ for s ∈ Z. Let u be the classical

solution of the heat equation with initial data u0 ∈W p⃗
s (RN ). Then u ∈ L∞(0, T ;W p⃗

s (RN ))
with

sup
0≤t≤T

∥u(t, ·)∥
W p⃗

s
≤ Cs,p⃗,N∥u0∥W p⃗

s
. (4.2)

Moreover, if 1 < p⌊s⌋, p⌈s⌉ ≤ 2, then∫ T

0
tϱ∥u(t, ·)∥2

W
(r⃗,2)
s+1

dt ≤ Cs,p⃗,N (1 + T θ1)∥u0∥2W p⃗
s
, (4.3)
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0
t1+ϱ∥u(t, ·)∥2

W
(r⃗,2,2)
s+2

dt ≤ Cs,p⃗,N (1 + T θ2)∥u0∥2W p⃗
s
, (4.4)

where

ϱ = (2− ps)σ, ps = min{p⌊s⌋, p⌈s⌉}, σ =
N

2p⌊s⌋
+

1

2
,

and θ1, θ2 are constants. Consequently, for any 0 < q < 2/(2+ϱ), u ∈ Lq(0, T ;W
(r⃗,2,2)
s+2 (RN ))

and ∫ T

0
∥u(t, ·)∥q

W
(r⃗,2,2)
s+2

dt ≤ Cs,p⃗,NT
1−(1+ϱ/2)q(1 + T θ2)q/2∥u0∥q

W p⃗
s
. (4.5)

Before giving a proof of Theorem 4.1, we discuss a lemma.

Lemma 4.2. Suppose that f ∈ C2
b (R) and f, f ′′ ∈ Lp(R) for some 1 < p < ∞. Then

f ′′|f |p−2f ∈ L1(R) and∫
R
f ′′(x)|f(x)|p−2f(x)dx = −(p− 1)

∫
R
|f ′(x)|2|f(x)|p−2dx,

where we apply the convention that |f ′(x)|2|f(x)|p−2 = 0 whenever f ′(x) = 0.

Proof. Since f, f ′′ ∈ Lp, we see from Hölder’s inequality that f ′′|f |p−2f ∈ L1. To prove
the conclusion, it suffices to show the following equations,∫ ∞

0
f ′′(x)|f(x)|p−2f(x)dx = −f ′(0)|f(0)|p−2f(0)− (p− 1)

∫ ∞

0
|f ′(x)|2|f(x)|p−2dx,

(4.6)∫ 0

−∞
f ′′(x)|f(x)|p−2f(x)dx = f ′(0)|f(0)|p−2f(0)− (p− 1)

∫ 0

−∞
|f ′(x)|2|f(x)|p−2dx. (4.7)

We prove only the first equation, and the second one can be proved similarly.
Since f ∈ Lp(R), there exists a sequence {xn : n ≥ 1} ⊂ (0,∞) such that

lim
n→∞

xn = ∞ and lim
n→∞

f(xn) = 0. (4.8)

When p ≥ 2, |f(x)|p−2f(x) is continuously differentiable. Integrating by parts we obtain∫ ∞

0
f ′′(x)|f(x)|p−2f(x)dx

= lim
n→∞

∫ xn

0
f ′′(x)|f(x)|p−2f(x)dx

= lim
n→∞

(
f ′(xn)|f(xn)|p−2f(xn)− f ′(0)|f(0)|p−2f(0)− (p− 1)

∫ xn

0
|f ′(x)|2|f(x)|p−2dx

)
= −f ′(0)|f(0)|p−2f(0)− (p− 1)

∫ ∞

0
|f ′(x)|2|f(x)|p−2dx.

Hence (4.6) is valid.
It remains to consider the case 1 < p < 2. Since f is continuous, the set E := {x > 0 :

f(x) ̸= 0} is open in (0,∞). Consequently, E is the union of at most countable pairwise
disjoint intervals (ai, bi), i ∈ I. There are three cases:

(i) bi <∞ for each i ∈ I.
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For each interval (ai, bi) and ε > 0 small enough, |f(x)|p−2f(x) is continuously differ-
entiable on [ai + ε, bi − ε]. Integrating by parts again, we write∫ bi

ai

f ′′(x)|f(x)|p−2f(x)dx

= lim
ε→0

∫ bi−ε

ai+ε
f ′′(x)|f(x)|p−2f(x)dx

= lim
ε→0

(
(f ′|f |p−2f)(bi − ε)− (f ′|f |p−2f)(ai + ε)− (p− 1)

∫ bi−ε

ai+ε
|f ′(x)|2|f(x)|p−2dx

)
= −(f ′|f |p−2f)(ai)− (p− 1)

∫ bi

ai

|f ′(x)|2|f(x)|p−2dx, (4.9)

where f(ai) = 0 if ai ̸= 0. Moreover, if 0 ̸∈ {ai : i ∈ I}, then f(0) = 0. It follows that∫ ∞

0
f ′′(x)|f(x)|p−2f(x)dx =

∑
i∈I

∫ bi

ai

f ′′(x)|f(x)|p−2f(x)dx

= −f ′(0)|f(0)|p−2f(0)−
∑
i∈I

(p− 1)

∫ bi

ai

|f ′(x)|2|f(x)|p−2dx.

(4.10)

Next we show that the set F := {x > 0 : f(x) = 0 and f ′(x) ̸= 0} is at most
countable.

Take some x0 ∈ F . If for any ε > 0, ((x0− ε, x0+ ε)∩F )\{x0} ̸= ∅, then there exists
a sequence {yk : k ≥ 1} ⊂ F \ {x0} such that limk→∞ yk = x0. Consequently,

f ′(x0) = lim
k→∞

f(yk)− f(x0)

yk − x0
= 0,

which contradicts the fact f ′(x0) ̸= 0. Hence for any x ∈ F , there is some ε > 0 such
that (x− ε, x+ ε)∩ F = {x}. Consequently, there exist rational numbers rx and Rx such
that rx < x < Rx and (rx, Rx) ∩ F = {x}. Since {(rx, Rx) : x ∈ F} is at most countable,
F = ∪x∈F (rx, Rx) ∩ F is also at most countable.

Using the convention that |f ′(x)|2|f(x)|p−2 = 0 whenever f ′(x) = 0, we see from
(4.10) that∫ ∞

0
f ′′(x)|f(x)|p−2f(x)dx = −f ′(0)|f(0)|p−2f(0)− (p− 1)

∫
{x: f(x)̸=0}

|f ′(x)|2|f(x)|p−2dx

− (p− 1)

∫
{x: f(x)=f ′(x)=0}

|f ′(x)|2|f(x)|p−2dx

= −f ′(0)|f(0)|p−2f(0)− (p− 1)

∫ ∞

0
|f ′(x)|2|f(x)|p−2dx.

Hence (4.6) is valid.

(ii) bi0 = ∞ for some i0 ∈ I and ai0 > 0.

In this case, bi ≤ ai0 for all i ∈ I \ {i0}. Note that (f ′|f |p−2f)(ai0) = 0. Similar
arguments as to those in Case (i) yield that∫ ai0

0
f ′′(x)|f(x)|p−2f(x)dx = −(f ′|f |p−2f)(0)− (p− 1)

∫ ai0

0
|f ′(x)|2|f(x)|p−2dx. (4.11)
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Recall that there is a sequence {xn : n ≥ 1} satisfying (4.8). In analogy with (4.9)
we obtain∫ ∞

ai0

f ′′(x)|f(x)|p−2f(x)dx

= lim
n→∞
ε→0

∫ xn

ai0+ε
f ′′(x)|f(x)|p−2f(x)dx

= lim
n→∞
ε→0

(
(f ′|f |p−2f)(xn)− (f ′|f |p−2f)(ai0 + ε)− (p− 1)

∫ xn

ai0

|f ′(x)|2|f(x)|p−2dx
)

= −(p− 1)

∫ ∞

ai0

|f ′(x)|2|f(x)|p−2dx. (4.12)

Now (4.6) follows from (4.11) and (4.12).

(iii) E = (0,∞).

Similar arguments as in (4.12) yield (4.6). This completes the proof. □

Proof of Theorem 4.1. First, we assume that s ̸∈ Z. We have the following sequence of
steps.

(S1) We prove that

∥∂αxu(t, ·)∥Lp|α| ≤ ∥∂αu0∥Lp|α| , |α| ≤ ⌊s⌋, t > 0. (4.13)

Without loss of generality, we assume that u and u0 are real functions. Since ∂tu =
∆xu, we have∫

RN

(∂tu(t, x))|u(t, x)|p0−2u(t, x)dx =

∫
RN

(∆xu(t, x))|u(t, x)|p0−2u(t, x)dx. (4.14)

From (4.1) we see that for fixed t > 0 and 0 < ε < t/2, all of (u(t + ε, x) − u(t, x))/ε,
u(t+ ε, x) and u(t, x) are bounded by some function F ∈ Lp0(RN ), which is independent
of ε. Applying the inequality∣∣∣|a|p0 − |b|p0

∣∣∣ ≤ Cp0 |a− b|(|a|p0−1 + |b|p0−1),

we get∣∣∣∣ |u(t+ ε, x)|p0 − |u(t, x)|p0
ε

∣∣∣∣ ≤ Cp0

|u(t+ ε, x)− u(t, x)|
ε

· (|u(t+ ε, x)|p0−1 + |u(t, x)|p0−1)

≤ Cp0 |F (x)|p0 .

Note that ∂t|u(t, x)|p0 = p0|u(t, x)|p0−2u(t, x)∂tu(t, x). We see from the Lebesgue domi-
nated convergence theorem that∫

RN

(∂tu(t, x))|u(t, x)|p0−2u(t, x)dx =
1

p0
· d

dt
∥u(t, ·)∥p0Lp0 .

On the other hand, applying Lemma 4.2 yields that∫
RN

(∆xu(t, x))|u(t, x)|p0−2u(t, x)dx = −(p0 − 1)

∫
RN

|∇xu(t, x)|2|u(t, x)|p0−2dx.
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Now we see from (4.14) that

1

p0
· d

dt
∥u(t, ·)∥p0Lp0 + (p0 − 1)

∫
RN

|∇xu(t, x)|2|u(t, x)|p0−2dx = 0.

Integrating with respect to t, we obtain

1

p0
∥u(t, ·)∥p0Lp0 + (p0 − 1)

∫ t

0

∫
RN

|∇xu(τ, x)|2|u(τ, x)|p0−2dx dτ =
1

p0
∥u0∥p0Lp0 . (4.15)

Note that for any multi-index α with |α| ≤ ⌊s⌋, ∂αxu(t, x) meets the heat equation with
initial data ∂αu0. Replacing ∂

α
xu for u and p|α| for p0 in (4.15), respectively, we get when

|α| ≤ ⌊s⌋,

1

p|α|
∥∂αxu(t, ·)∥

p|α|

L
p|α| + (p|α| − 1)

∫ t

0

∫
RN

|∇x∂
α
xu(τ, x)|2|∂αxu(τ, x)|p|α|−2dx dτ

=
1

p|α|
∥∂αu0∥

p|α|

L
p|α| . (4.16)

Hence (4.13) is true.

(S2) We prove (4.2).
Set g(t, a, x) := ∂αxu(t, x + aej) − ∂αxu(t, x), where a ∈ R, |α| = ⌊s⌋ and 1 ≤ j ≤ N .

We have

∂tg(t, a, x)−∆xg(t, a, x) = 0.

Replacing g(t, a, x) for u(t, x) and p⌈s⌉ for p0 in (4.15), respectively, we get

1

p⌈s⌉
∥g(t, a, ·)∥p⌈s⌉

L
p⌈s⌉ + (p⌈s⌉ − 1)

∫ t

0

∫
RN

|∇xg(τ, a, x)|2|g(τ, a, x)|p⌈s⌉−2dτ dx

=
1

p⌈s⌉
∥g(0, a, ·)∥p⌈s⌉

L
p⌈s⌉ , |α| = ⌊s⌋. (4.17)

Recall that νs = s − ⌊s⌋. Multiplying both sides by 1/|a|1+νsp⌈s⌉ and integrating with
respect to a ∈ R yields, for all t > 0,[

∂αxu(t, ·)
]p⌈s⌉
W

p⌈s⌉
νs

≤ Cs,p⃗,N

[
∂αu0

]p⌈s⌉
W

p⌈s⌉
νs

, (4.18)

where we applied Proposition 3.2. It follows from (4.13) and (4.18) that

sup
0≤t≤T

∥u(t, ·)∥
W p⃗

s
= sup

0≤t≤T

( ∑
|α|≤⌊s⌋

∥∂αxu(t, ·)∥Lp|α| +
∑

|α|=⌊s⌋

[
∂αxu(t, ·)

]
W

p⌈s⌉
νs

)
≤

∑
|α|≤⌊s⌋

∥∂αu0∥Lp|α| + Cs,p⃗,N

∑
|α|=⌊s⌋

[
∂αu0

]
W

p⌈s⌉
νs

≤ C ′
s,p⃗,N∥u0∥W p⃗

s
,

which proves (4.2).

(S3) We prove (4.3).
Taking derivatives on both sides of (4.1), we obtain

∂αxu(t, x) =
1

(4πt)N/2

∫
RN

e−|x−y|2/(4t)∂αu0(y)dy, ∀t > 0, x ∈ RN , |α| = ⌊s⌋.
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It follows from Hölder’s inequality that

|∂αxu(t, x)| ≤
C

tN/(2p⌊s⌋)
∥∂αu0∥Lp⌊s⌋ , ∀x ∈ RN . (4.19)

Since p⌊s⌋ ≤ 2, we have

|∂αxu(t, x)|p⌊s⌋−2 ≥
( C

tN/(2p⌊s⌋)
∥∂αu0∥Lp⌊s⌋

)p⌊s⌋−2
, ∀x ∈ RN .

As a consequence of (4.16) we obtain∫ T

0

∫
RN

|∇x∂
α
xu(t, x)|2

( C

tN/(2p⌊s⌋)
∥∂αu0∥Lp⌊s⌋

)p⌊s⌋−2
dx dt ≤ 1

p⌊s⌋(p⌊s⌋ − 1)
∥∂αu0∥

p⌊s⌋

L
p⌊s⌋ .

Hence, ∫ T

0
t(2−p⌊s⌋)N/(2p⌊s⌋)∥∇x∂

α
xu(t, ·)∥2L2dt ≤ C ′∥∂αu0∥2Lp⌊s⌋ , |α| = ⌊s⌋. (4.20)

Therefore,∫ T

0
t(2−p⌊s⌋)σ∥∇x∂

α
xu(t, ·)∥2L2dt ≤ CT 1−p⌊s⌋/2∥∂αu0∥2Lp⌊s⌋ , |α| = ⌊s⌋.

Consequently,∫ T

0
tϱ∥∇x∂

α
xu(t, ·)∥2L2dt ≤ CT (p⌊s⌋−ps)σT 1−p⌊s⌋/2∥∂αu0∥2Lp⌊s⌋ , |α| = ⌊s⌋. (4.21)

Next we estimate [∂α+β
x u(t, ·)]W 2

νs
. Setting t = T in (4.17), we get∫ T

0

∫
RN

|∇xg(t, a, x)|2|g(t, a, x)|p⌈s⌉−2dt dx ≤ 1

p⌈s⌉(p⌈s⌉ − 1)
∥g(0, a, ·)∥p⌈s⌉

L
p⌈s⌉ , |α| = ⌊s⌋.

(4.22)
Thus,∫ T

0

∫
RN

|∇xg(t, a, x)|2

|a|1+2νs
· |g(t, a, x)|

p⌈s⌉−2

|a|(p⌈s⌉−2)νs
dt dx ≤ C

∥g(0, a, ·)∥p⌈s⌉
L
p⌈s⌉

|a|1+p⌈s⌉νs
, |α| = ⌊s⌋. (4.23)

If |a| ≥ 1, we see from (4.19) that

|g(t, a, x)|
|a|νs

≤ C

tN/(2p⌊s⌋)
∥∂αu0∥Lp⌊s⌋ ≤ CT 1/2

tN/(2p⌊s⌋)+1/2
∥∂αu0∥Lp⌊s⌋ , ∀0 < t < T, x ∈ RN .

If |a| < 1, we have

|g(t, a, x)|
|a|νs

=
1

|a|νs

∣∣∣∣ ∫ a

0
∂xj∂

α
xu(t, x+ τej)dτ

∣∣∣∣ ≤ ∥∂xj∂
α
xu(t, ·)∥L∞ .

By (4.1),

∂xj∂
α
xu(t, x) =

1

(4πt)N/2

∫
RN

−(xj − y)

2t1/2
e−|x−y|2/(4t)∂αu0(y)dy.

Therefore, for |a| < 1,

|g(t, a, x)|
|a|νs

≤ C

tN/(2p⌊s⌋)+1/2
∥∂αu0∥Lp⌊s⌋ , ∀t > 0, x ∈ RN .
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Consequently

|g(t, a, x)|p⌈s⌉−2

|a|(p⌈s⌉−2)νs
≥
(
Cmax{1, T 1/2}
tN/(2p⌊s⌋)+1/2

∥∂αu0∥Lp⌊s⌋

)p⌈s⌉−2

, ∀0 < t < T, a ∈ R, x ∈ RN .

It follows from (4.23) that∫ T

0

∫
RN

t(2−p⌈s⌉)(N/(2p⌊s⌋)+1/2) |∇xg(t, a, x)|2

|a|1+2νs
dt dx

≤
(
Cmax{1, T 1/2}∥∂αu0∥Lp⌊s⌋

)2−p⌈s⌉ ∥g(0, a, ·)∥
p⌈s⌉

L
p⌈s⌉

|a|1+p⌈s⌉νs
, |α| = ⌊s⌋.

Integrating with respect to a ∈ R yields∫ T

0
t(2−p⌈s⌉)(N/(2p⌊s⌋)+1/2)

[
∇x∂

α
xu(t, ·)

]2
W 2

νs

dt

≤
(
Cmax{1, T 1/2}∥∂αu0∥Lp⌊s⌋

)2−p⌈s⌉
[
∂αu0

]p⌈s⌉
W

p⌈s⌉
νs

≤ C ′max{1, T 1−p⌈s⌉/2}∥u0∥2W p⃗
s
, |α| = ⌊s⌋. (4.24)

Thus, we obtain∫ T

0
tϱ
[
∇x∂

α
xu(t, ·)

]2
W 2

νs

dt ≤ C ′T (p⌈s⌉−ps)σ max{1, T 1−p⌈s⌉/2}∥u0∥2W p⃗
s
, |α| = ⌊s⌋. (4.25)

On the other hand, applying (4.13) yields that∫ T

0
tϱ∥∂αxu(t, ·)∥2Lp|α|dt ≤ T 1+ϱ∥∂αu0∥2Lp|α| , when |α| ≤ ⌊s⌋. (4.26)

Summing up (4.21), (4.25) and (4.26), we get∫ T

0
tϱ∥u(t, ·)∥2

W
(r⃗,2)
s+1

dt ≤ C(1 + Tmax{1+ϱ,1−p⌈s⌉/2+|p⌈s⌉−p⌊s⌋|σ})∥u0∥2W p⃗
s
.

Hence (4.3) is valid.

(S4) We prove (4.4).

Set h(t, a, x) := ∂α+β
x u(t, x+ aej)− ∂α+β

x u(t, x), where |α| = ⌊s⌋, |β| = 1 and 1 ≤ j ≤
N . We have

∂th(t, a, x)−∆xh(t, a, x) = 0.

Taking the L2
x inner product with t1+ϱh(t, a, x), we get∫

RN

(∂th(t, a, x))t
1+ϱh(t, a, x)dx−

∫
RN

(∆xh(t, a, x))t
1+ϱh(t, a, x)dx = 0.

Hence

1

2
· d

dt
(t1+ϱ∥h(t, a, ·)∥2L2) + t1+ϱ∥∇xh(t, a, ·)∥2L2 =

1 + ϱ

2
tϱ∥h(t, a, ·)∥2L2 .

Integrating with respect to t ∈ [0, T ] yields

T 1+ϱ

2
∥h(T, a, ·)∥2L2 +

∫ T

0
t1+ϱ∥∇xh(t, a, ·)∥2L2dt =

1 + ϱ

2

∫ T

0
tϱ∥h(t, a, ·)∥2L2dt. (4.27)
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Consequently,

T 1+ϱ

2

[
∂α+β
x u(T, ·)

]2
W 2

νs

+

∫ T

0
t1+ϱ

[
∇x∂

α+β
x u(t, ·)

]2
W 2

νs

dt =
1 + ϱ

2

∫ T

0
t1+ϱ

[
∂α+β
x u(t, ·)

]2
W 2

νs

dt

≤ Cs,p⃗,NT
1+(p⌈s⌉−ps)σ max{1, T 1−p⌈s⌉/2}∥u0∥2W p⃗

s
,

applying (4.25). Hence for |α| = ⌊s⌋ and |β| = 1,∫ T

0
t1+ϱ

[
∇x∂

α+β
x u(t, ·)

]2
W 2

νs

dt ≤ Cs,p⃗,NT
1+(p⌈s⌉−ps)σ max{1, T 1−p⌈s⌉/2}∥u0∥2W p⃗

s
. (4.28)

On the other hand, substituting ∂α+β
x u(t, x) for h(t, a, x) in (4.27), where |β| = 1 and

|α| = ⌊s⌋, we get

T 1+ϱ

2
∥∂α+β

x u(T, ·)∥2L2 +

∫ T

0
t1+ϱ∥∇x∂

α+β
x u(t, ·)∥2L2dt =

1 + ϱ

2

∫ T

0
tϱ∥∂α+β

x u(t, ·)∥2L2dt

≤ CT (p⌊s⌋−ps)σT 1−p⌊s⌋/2∥∂αu0∥2Lp⌊s⌋ ,

applying (4.21). Hence∫ T

0
t1+ϱ∥∇x∂

α+β
x u(t, ·)∥2L2dt ≤ CT (p⌊s⌋−ps)σT 1−p⌊s⌋/2∥∂αu0∥2Lp⌊s⌋ . (4.29)

Moreover, we see from (4.21) that when |α| = ⌊s⌋ and |β| = 1,∫ T

0
t1+ϱ∥∂α+β

x u(t, ·)∥2L2dt ≤ CT 1+(p⌊s⌋−ps)σT 1−p⌊s⌋/2∥∂αu0∥2Lp⌊s⌋ . (4.30)

When |α| ≤ ⌊s⌋, we apply (4.13) to obtain∫ T

0
t1+ϱ∥∂αxu(t, ·)∥2Lp|α|dt ≤ T 2+ϱ∥∂αu0∥2Lp|α| . (4.31)

Combining (4.28), (4.29), (4.30) and (4.31) we deduce∫ T

0
t1+ϱ∥u(t, ·)∥2

W
(r⃗,2,2)
s+2

dt ≤ Cs,p⃗,N

(
T (p⌊s⌋−ps)σ+1−p⌊s⌋/2 + T 2+ϱ

)
∥u0∥2W p⃗

s
.

Hence (4.4) is true.
This completes the proof of (4.2), (4.3) and (4.4) in the case s ̸∈ Z.
When s ∈ Z, we apply similar arguments; we only provide a sketch. First, (4.2)

follows from (4.13). Then we get (4.3) by (4.13) and (4.20). Finally, (4.4) follows from
(4.3) and (4.29). In both cases, (4.2), (4.3) and (4.4) are valid. It follows that for any
0 < q < 2/(2 + ϱ),∫ T

0
∥u(t, ·)∥q

W
(r⃗,2,2)
s+2

dt =

∫ T

0
t−q(1+ϱ)/2tq(1+ϱ)/2∥u(t, ·)∥q

W
(r⃗,2,2)
s+2

dt

≤
(∫ T

0
t−q(1+ϱ)/(2−q)dt

)1−q/2(∫ T

0
t(1+ϱ)∥u(t, ·)∥2

W
(r⃗,2,2)
s+2

dt
)q/2

≤ Cs,p⃗,NT
1−(1+ϱ/2)q(1 + T θ2)q/2∥u0∥q

W p⃗
s
.

This completes the proof. □

Remark 4.3.
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(i) Whenever p⌊s⌋ = p⌈s⌉ = 2, we have ϱ = 0. In this case, the local estimate (4.5) is
valid for all 0 < q < 1, which coincides with [23, Lemma 2.1].

Moreover, (4.3), (4.4) and (4.5) now turn out to be∫ T

0
∥u(t, ·)∥2

W
(p⃗,2)
s+1

dt ≤ Cs,p⃗,N (1 + T )∥u0∥2W p⃗
s
,∫ T

0
t∥u(t, ·)∥2

W
(p⃗,2,2)
s+2

dt ≤ Cs,p⃗,N (1 + T 2)∥u0∥2W p⃗
s
,∫ T

0
∥u(t, ·)∥q

W
(p⃗,2,2)
s+2

dt ≤ Cs,p⃗,NT
1−q(1 + T 2)q/2∥u0∥q

W p⃗
s
, 0 < q < 1.

(ii) Theorem 4.1 extends the local estimates for initial data in classical Sobolev spaces
Hs. For example, consider the initial data

u0(x) =
1

(1 + |x|2)δ/2
.

When max{0, N/2−1} < δ < N/2 and 1 < s < 2, u0 ∈W
(p0,2,2)
s for all p0 > N/δ.

Now Theorem 4.1 gives local energy estimates for the heat equation with initial
data u0, while one has no local estimates with classical Sobolev spaces since
u0 ̸∈ L2.

4.2. Convergence of Schrödinger Operators. In this subsection, we study the con-
vergence of Schrödinger operators.

Take some function φ such that φ̂ ∈ C∞
c , 0 ≤ φ̂(ω) ≤ 1, φ̂(ω) = 1 for |ω| < 1 and

φ̂(ω) = 0 for |ω| > 2. Set f̂1 = φ̂ · f̂ and f2 = f − f1.

Note that (f ∗ φ)̂ = φ̂f̂ (for a proof, see [37, Theorem 7.19]). Hence f1 = f ∗ φ and

f2 = f − f ∗ φ. Now we rewrite eit(−∆)a/2 as

eit(−∆)a/2f = eit(−∆)a/2f1 + eit(−∆)a/2f2. (4.32)

If f ∈ Hs, then f̂ is locally integrable. Hence the convergence for

lim
t→0

eit(−∆)a/2f1(x) = lim
t→0

1

(2π)N

∫
RN

ei(x·ω+t|ω|a)f̂1(ω)dω

is obvious.
However, for f ∈W p⃗

s with p0 > 2, we do not know whether f̂ is locally integrable. So

we have to deal with the term eit(−∆)a/2f1 with new method.

For the case p⌈s⌉ = 2, we show that if eit(−∆)a/2f is convergent as t tends to zero for

all functions in Hs for some s > 0, then the same is true for all functions in W p⃗
s with the

same index s.

Theorem 4.4. Let s > 0, a > 1, p⃗ = (p0, . . . , p⌈s⌉) with p⌈s⌉ = 2 and 1 ≤ pl < ∞ for all

0 ≤ l ≤ ⌈s⌉ − 1. Suppose that for all functions f ∈ Hs(RN ),

lim
t→0

eit(−∆)a/2f(x) = f(x), a.e. (4.33)

We have:

(i) If 0 < s < N/2, then (4.33) is valid for all functions f ∈W p⃗
s .
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(ii) If s ≥ N/2 and a = 2, then (4.33) is also true if we interpret the operator e−it∆

as

e−it∆f(x) = lim
ε→0

1

(2π)N

∫
RN

ei(x·ω+t|ω|2)
(
1− φ0(

ω

ε
)
)
f̂(ω)dω, (4.34)

where φ0 ∈ C∞
c (R) satisfies that φ0(x) = 1 for |x| < 1 and φ0(x) = 0 for |x| > 2,

the limit exists almost everywhere, and the limit is independent of the choice of
φ0 with the aforementioned properties.

For the case 1 < p⌈s⌉ < 2 and a = 2, we have similar results.

Theorem 4.5. Let s > 0, p⃗ = (p0, . . . , p⌈s⌉) with 1 < p⌈s⌉ < 2 and 1 ≤ pl < ∞ for all
0 ≤ l ≤ ⌈s⌉ − 1. We have:

(i) If
1

p⌈s⌉
− N

2(N + 1)
<

s

N
<

1

p⌈s⌉
, (4.35)

then for any f ∈W p⃗
s ,

lim
t→0

e−it∆f(x) = f(x), a.e. (4.36)

(ii) If s ≥ N/p⌈s⌉, then (4.36) is also true if we interpret the operator e−it∆ as in
(4.34).

Remark 4.6. If 0 < s < 1, p0 > N/δ > p1 = 2 and 2(δ + s) > N , then the function f

defined in Example 3.6 satisfies that f ∈W
(p0,2)
s \W (2,2)

s . That is, W
(p0,2)
s is not contained

in W
(2,2)
s = Hs.

For the case p0 > 2, the Fourier transform of functions in W p⃗
s might be distributions.

In this case, we show that f̂ is the distributional limit of a sequence of locally integrable
functions. Moreover, we prove that f̂ is locally integrable if s/N < 1/p⌈s⌉.

Lemma 4.7. Suppose that s > 0 and p⃗ = (p0, . . . , p⌈s⌉) with 1 < p⌈s⌉ ≤ 2 and 1 ≤ pl <∞
for 0 ≤ l ≤ ⌈s⌉−1. For any f ∈W p⃗

s , f̂ coincides with a function λ in the domain RN \{0}
such that |x|sλ(x) ∈ L

p′⌈s⌉ and f̂(x) = limε→0(1−φ0(x/ε))λ(x) in the distributional sense,
where φ0 ∈ C∞(RN ) satisfies that φ0(x) = 1 for |x| < 1 and φ0(x) = 0 for |x| > 2.

Consequently, if sp⌈s⌉ < N , then λ is locally integrable and f̂ = λ.

Proof. First, we show that there is some function λ such that |x|sλ(x) ∈ L
p′⌈s⌉ and

⟨f̂ , φ⟩ =
∫
RN

λ(x)φ(x)dx, ∀φ ∈ C∞
c (RN \ {0}). (4.37)

There are three cases:

(A1) 0 < s < 1.

In this case, p⃗ = (p0, p1). We see from Proposition 3.2 that∫∫
RN×RN

|f(x)− f(y)|p1
|x− y|N+p1s

dx dy <∞

is equivalent to∫∫
RN×R

|f(x)− f(x+ aej)|p1
|a|1+p1s

dx da <∞, ∀1 ≤ j ≤ N. (4.38)
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Applying Fubini’s theorem, we get that for almost all real numbers a, f−f(·+aej) ∈ Lp1 .

It is easy to see that f(· − aej )̂ = ϕj(a·)f̂ in the distributional sense, where

ϕj(x) = e−ixj .

Hence
(f − f(·+ aej))̂ = (1− ϕj(a·))f̂ .

Since f − f(·+ aej) ∈ Lp1 for almost all a > 0, by the Hausdorff-Young inequality, there

exist functions ga ∈ Lp′1 such that

(f − f(·+ aej))̂ = ga.

Hence for any φ ∈ C∞
c (B(0, 1/a) \ {0}),

⟨(1− ϕj(a·))f̂ , φ⟩ =
∫
RN

ga(x)φ(x)dx.

Therefore,

⟨|1− ϕj(a·)|2f̂ , φ⟩ = ⟨(1− ϕj(a·))f̂ , (1− ϕj(a·))∗φ⟩ =

∫
RN

(1− ϕj(ax))
∗ga(x)φ(x)dx,

where z∗ denotes the conjugate of a complex number z. It follows that〈 N∑
j=1

|1− ϕj(a·)|2f̂ , φ
〉
=

∫
RN

N∑
j=1

(1− ϕj(ax))
∗ga(x)φ(x)dx,

Set

λa(x) =

∑N
j=1(1− ϕj(ax))

∗ga(x)∑N
j=1 |1− ϕj(ax)|2

. (4.39)

Note that
∑N

j=1 |1− ϕj(a·)|2 has no zero in the area 0 < |x| < 1/a. Hence

φ∑N
j=1 |1− ϕj(a·)|2

∈ C∞
c (RN \ {0}).

It follows that〈 N∑
j=1

|1− ϕj(a·)|2f̂ ,
φ∑N

j=1 |1− ϕj(a·)|2
〉
=

∫
RN

λa(x)φ(x)dx.

On the other hand, 〈 N∑
j=1

|1− ϕj(a·)|2f̂ ,
φ∑N

j=1 |1− ϕj(a·)|2
〉
= ⟨f̂ , φ⟩.

Hence

⟨f̂ , φ⟩ =
∫
RN

λa(x)φ(x)dx, ∀φ ∈ C∞
c (B(0, 1/a) \ {0}). (4.40)

That is, f̂ coincides with a function λa in the domain B(0, 1/a) \ {0}. By the uniqueness,
we have

λa(x) = λa′(x), a′ < a, 0 < |x| < 1

a
.

Take a sequence {an : n ≥ 1} such that an → 0. Then the limit

λ(x) := lim
n→∞

λan(x)

exists for almost all x ̸= 0. Now we see from (4.40) that (4.37) is true.
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Since f − f(·+ aej) ∈ Lp1 , we see from the above equation that for all a ∈ R,(
f − f(·+ aej)

)
(̂x) = λ(x)(1− ϕj(ax)), ∀ε < |x| < A.

Applying the Hausdorff-Young inequality and the Minkowski inequality successively, we
obtain that ∫∫

RN×R

|f(x)− f(x+ aej)|p1
|a|1+p1s

dx da

≥
∫
R

(∫
RN

|(f − f(·+ aej))̂ (x)|p
′
1

|a|(s+1/p1)p′1
dx

)p1/p′1
da

≥
(∫

RN

(∫
R

|(f − f(·+ aej))̂ (x)|p1
|a|1+p1s

da

)p′1/p1

dx

)p1/p′1

= lim
ε→0
A→∞

(∫
ε<|x|<A

(∫
R

|(f − f(·+ aej))̂ (x)|p1
|a|1+p1s

da

)p′1/p1

dx

)p1/p′1

= lim
ε→0
A→∞

(∫
ε<|x|<A

(∫
R

|λ(x)(1− ϕj(ax))|p1
|a|1+p1s

da

)p′1/p1

dx

)p1/p′1

=

(∫
RN

(∫
R

|λ(x)|p1 |2 sin(axj/2)|p1
|a|1+p1s

da

)p′1/p1

dx

)p1/p′1

=

(∫
RN

(∫
R

|λ(x)|p1 |2 sin(a/2)|p1
|a|1+p1s

da · |xj |p1s
)p′1/p1

dx

)p1/p′1

= Cs,j

(∫
RN

|λ(x)|p′1 |xj |p
′
1sdx

)p1/p′1
. (4.41)

Hence(∫
RN

|λ(x)|p′1 |xj |p
′
1sdx

)1/p′1
≤ 1

C
1/p1
s,j

(∫∫
RN×R

|f(x)− f(x+ aej)|p1
|a|1+p1s

dx da

)1/p1

<∞.

(4.42)

That is, |xj |sλ(x) ∈ Lp′1 for all 1 ≤ j ≤ N . Consequently, |x|sλ(x) ∈ Lp′1 .

(A2) s = k ≥ 1 is an integer.

For all multi-index α with |α| = k, let hα be the Fourier transform of Dαf and

ψα(x) = (ix)α. Then hα = ψαf̂ is a function in Lp′k . Consequently,

|ω|s|f̂(ω)| ≈
∑
|α|=k

|hα(ω)| ∈ Lp′k .

For any φ ∈ C∞
c (RN ) with φ(x) = 0 in a neighbourhood of 0, since hα = ψαf̂ is a

function in Lp′k , we have

⟨ψαf̂ , φ⟩ =
∫
RN

hα(x)φ(x)dx.

Hence

⟨ψ2
αf̂ , φ⟩ = ⟨ψαf̂ , ψαφ⟩ =

∫
RN

hα(x)ψα(x)φ(x)dx.
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Therefore, 〈 ∑
|α|=k

ψ2
αf̂ , φ

〉
=

∫
RN

∑
|α|=k

hα(x)ψα(x)φ(x)dx.

Note that
∑

|α|=k ψ
2
α(x) has no zero other than x = 0. Substituting φ/

∑
|α|=k ψ

2
α for φ in

the above equation, we get

⟨f̂ , φ⟩ =
〈 ∑

|α|=k

ψ2
αf̂ ,

φ∑
|α|=k ψ

2
α

〉
=

∫
RN

∑
|α|=k hα(x)ψα(x)∑

|α|=k ψα(x)2
φ(x)dx.

Let

λ(x) =

∑
|α|=k hα(x)ψα(x)∑

|α|=k ψα(x)2
.

We get (4.37) and |x|s|λ(x)| ≲
∑

α |hα(x)| ∈ L
p′⌈s⌉ .

(A3) s > 1 is not an integer.

For any multi-index α with |α| = ⌊s⌋, set ψα(x) = (ix)α. Substituting (p⌈s⌉−1, p⌈s⌉),

s−⌊s⌋ and Dαf for (p0, p1), s and f respectively in (A1), we get |ω|s−⌊s⌋(Dαf )̂ (ω) ∈ L
p′⌈s⌉

and there exists a function λα such that |ω|s−⌊s⌋λα(ω) ∈ L
p′⌈s⌉ and for any φ ∈ C∞

c (RN )
with φ(x) = 0 in a neighbourhood of 0,

⟨ψαf̂ , φ⟩ = ⟨(Dαf )̂ , φ⟩ =
∫
RN

λα(x)φ(x)dx.

With similar arguments as in the previous case, we get

⟨f̂ , φ⟩ =
∫
RN

∑
|α|=⌊s⌋ λα(x)ψα(x)∑

|α|=⌊s⌋ ψα(x)2
φ(x)dx.

Let

λ(x) =

∑
|α|=⌊s⌋ λα(x)ψα(x)∑

|α|=⌊s⌋ ψα(x)2
.

We get (4.37) and |x|sλ(x)| ≲
∑

α |x|s−⌊s⌋|λα(x)| ∈ L
p′⌈s⌉ .

Recall that C∞
c is dense in S . For any φ ∈ S with φ(x) = 0 in a neighbourhood of

0, we see from (4.37) that

⟨f̂ , φ⟩ =
∫
RN

λ(x)φ(x)dx. (4.43)

Take some φ0 ∈ C∞(RN ) such that φ0(x) = 1 for |x| < 1 and φ0(x) = 0 for |x| > 2.
We conclude that

lim
ε→0

φ0

( ·
ε

)
f̂ = 0, in S ′.

It suffices to show that for any φ ∈ S ,

lim
ε→0

⟨φ0

( ·
ε

)
f̂ , φ⟩ = 0. (4.44)

In fact,

|⟨φ0

( ·
ε

)
f̂ , φ⟩| = |⟨f̂ , φ0

( ·
ε

)
φ⟩|

=
∣∣∣〈f,(φ0

( ·
ε

)
φ
)
ˆ
〉∣∣∣
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=
∣∣∣〈f, εN φ̂0(ε·) ∗ φ̂

〉∣∣∣
≤ ∥f∥Lp0 · ∥εN φ̂0(ε·) ∗ φ̂∥Lp′0

≤ ∥f∥Lp0 · ∥εN φ̂0(ε·)∥Lp′0
· ∥φ̂∥L1

→ 0.

Hence (4.44) is true. Consequently,

f̂ = lim
ε→0

(
1− φ0

( ·
ε

))
f̂ in S ′.

It follows that for any φ ∈ S ,

⟨f̂ , φ⟩ = lim
ε→0

〈(
1− φ0

( ·
ε

))
f̂ , φ

〉
= lim

ε→0

〈
f̂ ,
(
1− φ0

( ·
ε

))
φ
〉

= lim
ε→0

∫
RN

λ(x)
(
1− φ0

(x
ε

))
φ(x)dx

= lim
ε→0

∫
|x|>ε

λ(x)
(
1− φ0

(x
ε

))
φ(x)dx. (4.45)

Hence f̂ = limε→0(1− φ0(x/ε))λ(x) in distributional sense.

Recall that |x|sλ(x) ∈ L
p′⌈s⌉ . If sp⌈s⌉ < N , we see from Hölder’s inequality that

λ(x) = |x|−s|x|sλ(x) ∈ L1(B(0, R)) for any R > 0. Hence λ(x) is locally integrable. This
completes the proof. □

We are now ready to prove the main results.

Proof of Theorem 4.4. Fix some f ∈ W p⃗
s . By Lemma 4.7, there is some h ∈ L2 such that

f̂(ω) = h(ω)/|ω|s.
Take some function φ such that φ̂ ∈ C∞

c , 0 ≤ φ̂(ω) ≤ 1, φ̂(ω) = 1 for |ω| < 1 and

φ̂(ω) = 0 for |ω| > 2. Set f̂1 = φ̂ · f̂ and f2 = f − f1. Then the decomposition (4.32) is
true.

First, we consider the case s < N/2. In this case, we have

f̂1(ω) =
1

|ω|s
1{|ω|<2}(ω) · φ(ω)h(ω) ∈ L1.

It follows from the dominated convergence theorem that eit(−∆)a/2f1(x) tends to f1(x) as
t tends to 0.

On the other hand, since f̂2(ω) = (1− φ̂(ω))f̂(ω) = 0 for |ω| ≤ 1, we have

∥f̂2∥L2 ≤ ∥|ω|sf̂2(ω)∥L2 ≤ ∥|ω|sf̂(ω)∥L2 <∞.

Hence f2 ∈ Hs. By the hypothesis, we get limt→0 e
it(−∆)a/2f2(x) = f2(x), a.e.

Next we consider the case s ≥ N/2 and a = 2.
Set φ0 = φ. Since 1− φ0(ω/ε) = 0 for |ω| < ε, we rewrite e−it∆f as

e−it∆f(x) = lim
ε→0

1

(2π)N

∫
|ω|>ε

ei(x·ω+t|ω|2)
(
1− φ0

(ω
ε

))
f̂(ω)dω. (4.46)
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Recall that |ω|sf̂(ω) ∈ L2. Hence f̂ · 1{|ω|>ε} ∈ L2. Therefore, the integral in the above
equation is well defined. Let us show that the limit in (4.46) exists almost everywhere.
Observe that∫

|ω|>ε
ei(x·ω+t|ω|2)

(
1− φ0

(ω
ε

))
f̂(ω)dω

=

∫
|ω|>ε

ei(x·ω+t|ω|2)
(
1− φ0

(ω
ε

))
φ̂(ω)f̂(ω)dω +

∫
|ω|>1

ei(x·ω+t|ω|2)f̂2(ω)dω.

By (4.45), we have

e−it∆f1(x) = lim
ε→0

1

(2π)N

∫
|ω|>ε

ei(x·ω+t|ω|2)
(
1− φ0

(ω
ε

))
φ̂(ω)f̂(ω)dω

=
1

(2π)N
⟨f̂ , ei(x·ω+t|ω|2)φ̂(ω)⟩.

That is, the limit in (4.46) exists for almost all x.

Observe that ei(x·ω+t|ω|2)φ̂(ω) tends to eix·ωφ̂(ω) in S as t→ 0. We get

lim
t→0

e−it∆f1(x) = lim
t→0

1

(2π)N
⟨f̂ , ei(x·ω+t|ω|2)φ̂(ω)⟩

=
1

(2π)N
⟨f̂ , eix·ωφ̂(ω)⟩

= ⟨f, φ(x− ·)⟩
= f ∗ φ(x).

As in the previous case, f2 ∈ Hs. By the hypothesis, limt→0 e
it(−∆)a/2f2(x) = f2(x),

a.e. Hence limt→0 e
it(−∆)a/2f(x) = f(x), a.e. This completes the proof. □

Proof of Theorem 4.5. Fix some f ∈ W p⃗
s . By Lemma 4.7, there is some h ∈ L

p′⌈s⌉ such
that f̂(ω) = h(ω)/|ω|s.

As in the proof of Theorem 4.4, we apply the decomposition (4.32) with a = 2 for
e−it∆f .

First, we deal with e−it∆f2(x). Since f̂2(ω) = (1− φ̂(ω))f̂(ω) = 0 for |ω| ≤ 1, we have

∥f̂2∥L2 = ∥|ω|−s · 1{|ω|>1} · |ω|sf̂(ω)∥L2

≤ ∥|ω|−s · 1{|ω|>1}∥Lr · ∥|ω|sf̂(ω)∥
L
p′⌈s⌉

<∞,
(4.47)

where r > 1 satisfying 1/r = 1/2− 1/p′⌈s⌉ = 1/p⌈s⌉ − 1/2 < s/N . More precisely, since

1

p⌈s⌉
− 1

2
+

1

2(N + 1)
=

1

p⌈s⌉
− N

2(N + 1)
<

s

N
.

We have
1

r
<
s−N/(2(N + 1))

N
.

Consequently, there is some τ > N/(2(N + 1)) such that

1

r
<
s− τ

N
.
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Applying Hölder’s inequality yields

∥|ω|τ f̂2(ω)∥L2 ≤
∥∥∥|ω|−(s−τ)1{|ω|>1}

∥∥∥
Lr

·
∥∥∥|ω|sf̂(ω)∥∥∥

L
p′⌈s⌉

<∞.

Thus f2 ∈ Hτ .
Recall that it was proved in [9, 18, 19] that limt→0 e

−it∆f(x) = f(x), a.e., for all
f ∈ Hτ with τ > N/(2(N + 1)). Hence

lim
t→0

e−it∆f2(x) = f2(x), a.e.

Next we deal with e−it∆f1. If s < N/p⌈s⌉, then we have f̂1 ∈ L1. It follows from the

dominated convergence theorem that e−it∆f1(x) tends to f1(x) as t tends to 0.
If s ≥ N/p⌈s⌉, employing the same arguments as in the case s ≥ N/2 in the proof of

Theorem 4.4, we obtain

lim
t→0

e−it∆f1(x) = f ∗ φ(x).

Hence limt→0 e
−it∆f(x) = f(x), a.e. This completes the proof. □
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