NONUNIFORM SOBOLEV SPACES

TING CHEN, LOUKAS GRAFAKOS, AND WENCHANG SUN

ABSTRACT. We study nonuniform Sobolev spaces, i.e., spaces of functions whose partial
derivatives lie in possibly different Lebesgue spaces. Although standard proofs do not
apply, we show that nonuniform Sobolev spaces share similar properties as the classical
ones. These spaces arise naturally in the study of certain PDEs. For instance, we illus-
trate that nonuniform fractional Sobolev spaces are useful in the study of local estimates
for solutions of heat equations and the convergence of Schrédinger operators. In this
work we extend recent advances on local energy estimates for solutions of heat equations
and the convergence of Schrédinger operators to nonuniform fractional Sobolev spaces.

1. INTRODUCTION

Given a positive integer m, a positive number p € [1,00] and an open set Q C RY,
we denote by

WmP(Q) = {f € LP(Q) : Df € LP(Q), |a| < m},

the classical Sobolev space, where a = (ai,...,ay) is a multi-index, |o| = Zf\il a;,
and D denotes the weak partial derivatives, that is, partial derivatives in the sense of
distributions. The theory of Sobolev spaces plays an import role in the study of par-
tial differential equations and many other fields. We refer to text books by Adams and
Fournier [1], Demengel and Demengel [16], Evans [20], Grafakos [25, 26], Leoni [29], Piskin
and Okutmustur [34] for an overview of Sobolev spaces and applications in PDEs and in
harmonic analysis.

Since a function and its derivatives might have different properties, it is not necessary
for them to lie in the same Lebesgue space. In this paper, we consider nonuniform Sobolev
spaces on RN, i.e., spaces for which a function and its derivatives belong to different
Lebesgue spaces.

Definition 1.1. Let Q C RN be an open set. For k> 1 and = (po,...,p) € [1,00] 1,
the nonuniform Sobolev space W}['(Q) consists of all measurable functions f for which
0°f € LP=(Q), where |a| < k. For f € W[, define its norm by

1 llyp = > 1D fll pran-

la|<k
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These spaces naturally arise in the study of certain PDEs. In particular, some equa-
tions have solutions in nonuniform Sobolev spaces but have no solution in the classical
Sobolev spaces. For example, consider positive solutions of the critical p-Laplace equation

Apu+u? "t =0 (1.1)

in RN, where 1 < p < N, p* = Np/(N —p) and Apu = div(|Vu[P~2Vu).
This equation is well studied in the literature. It was shown by Damascelli, Merchan,
Montoro and Sciunzi [15], Sciunzi [38] and Vétois [43] that if a function u in the class

DYP®Y) = {ue IV (®Y): Vue I(®RV))

is a solution of (1.1), then it is of the form

AV/G-D NI (N = p) /(p — 1)) -0/ P
M/ (p=1) |z — [P/ (P—1) )

w(@) = Unzo(2) = (

where \ is a positive constant and g is a point in RY. Moreover, Catino, Monticelli and
Roncoroni [10] provided the classification of positive solutions to the critical p-Laplace
equation. See also Ciraolo, Figalli and Roncoroni [12] for solutions in convex cones.
Observe that DY itself is the nonuniform Sobolev space Wl(p “P) Since |Un 2o (2)] =
|z|~(V=P)/(P=1) whenever |z| is large enough, it is easy to see that (1.1) has a positive
solution in WP if and only if 1 < p < N'/2. However, we can increase the integrability
index p of the solution if we consider nonuniform Sobolev spaces. Indeed, we obtain that

(1.1) has a positive solution in Wl(po’p) whenever 1 <p < N and pg > N(p—1)/(N —p).
On the other hand, for 1 < p; < N and f in the classical Sobolev space WP, the
Sobolev inequality says that

Ifll v v-p1) < Cngp [V fll o1 (1.2)

This is proved by showing that
—1 (N— N—
AN e VP < Oy [V £ Lo £ RSP (1.3)

LNp1/(N-p1) LNp1/(N=p1)

for compactly supported differentiable functions f. We refer to [16] for details.

For the nonuniform case, that is, for f € C' N W,f with p= (po,p1), both (1.2) and
(1.3) are still true. However, their proofs are quite different from the uniform case. In the
classical uniform case, one first obtains the density of compactly supported differentiable
functions, then derives (1.2) from (1.3) for such functions, and finally extends (1.2) to all
functions in W1 by density. For the nonuniform case, compactly supported differentiable
functions are still dense in W?. However, the embedding inequality is required in the
proof. So we have to prove (1.2) directly for functions which is not compactly supported.
In this case, (1.2) is not a straightforward consequence of (1.3): we have to show first that
f e LNp/(N=p1)

In some applications, only the derivatives are concerned. For example, Fefferman,
Israel and Luli [21, 22] studied Sobolev extension operators for homogeneous Sobolev
spaces. In this case, it is natural to consider nonuniform Sobolev spaces.

Another application we discuss concerns local estimates for solutions of heat equa-
tions. We obtain local energy estimates for initial data in nonuniform Sobolev spaces; this
extends the local estimates by Fefferman, McCormick, Robinson and Rodrigo [23].
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Moreover, nonuniform Sobolev spaces are also useful in the study of the convergence
of Schrodinger operators defined by

; a/2 1 .
eit(=4) / f(z) = (27_[_)N/R ez wtt|w|®) Flw)dw

where a > 1 is a constant. It is well known that for f nice enough, eit(=8)e/? f(z) is the
solution of the fractional Schrodinger equation

10 + (—Ax)“/Qu =0, (x,t)eRYN xR,
u(z,0) = f(x), r € RV,

For the case N = 1 and a = 2, Carleson [9] studied the convergence of e A f(z) as t
tends to 0 for functions f in the Sobolev space

H*(RY) = {f € L*: (1+ |w|*)"?f(w) € L?}.
It was shown [9] that when a = 2,

lim eit(_A)a/2f(x) = f(z), a.e. (1.4)

t—0
for all f € H*(R) if s > 1/4.

Since then, many works have appeared on this topic. Dahlberg and Kenig [14] pro-
vided counterexamples indicating that the range s > 1/4 is sharp for N = 1. And Sjélin
[40] extended this result to the case a > 1.

For a = 2 and higher dimensions N > 2, Sjolin [40] and Vega [42] proved that (1.4) is
true when s > 1/2. For the case N = 2, this result was improved to s > 3/8 by Lee [28].
Bourgain [3, 4] proved that s > 1/2 — 1/(4N) is sufficient and s > 1/2 — 1/(2N + 2) is
necessary for the convergence. Du, Guth and Li [18] proved that s > 1/2 —1/(2N +2) is
sufficient for the dimension N = 2 and Du and Zhang [19] showed that it is also true for
general N > 3.

For the general case a > 1 and N > 2, Sjolin [40] proved that (1.4) is valid when
s > 1/2. Prestini [35] showed that s > 1/4 is necessary and sufficient for radial functions
f and dimensions N > 2. Cho and Ko [11] proved that s > 1/3 is sufficient for the
dimension N = 2.

Related works also include the non-tangential convergence by Shiraki [39], Yuan, Zhao
and Zheng [45], Li, Wang and Yan [32, 33|, the convergence along curves by Cao and Miao
[8] and Zheng [46], the Hausdorff dimension of the divergence set by Li, Li and Xiao [31],
and the convergence rate by Cao, Fan and Wang [7]; see also the works by Cowling [13],
Walther [44], and Rogers and Villarroya [36] for the case a < 1.

Although the range s > 1/4 of the index s is sharp for N = 1, and s > 1/2—1/(2N+2)
is also sharp up to the endpoint for N > 2, we show that the result can be further extended
when nonuniform Sobolev spaces are considered.

Suppose that 0 < s < 1 and 1 < p < oo. Recall that the classical fractional Sobolev
space WY consists of all measurable functions f for which

1fllwz = [[fllze + [Flwz < oo,

1@ = fP N
hw '(//MRN o y)

is the Gagliardo seminorm of f. Fractional Sobolev spaces were introduced by Aronszajn
[2], Gagliardo [24] and Slobodeckii [41]. We refer to the text book by Leoni [30] and papers

where
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by Brezis and Mironescu [5] and Di Nezza [17] for an overview of fractional Sobolev spaces.
See also recent papers by Brezis, Van Schaftingen and Yung [6] and Gu and Yung [27] for
the limit of norms of fractional Sobolev spaces.

We now provide a formal definition of nonuniform fractional Sobolev spaces.

Definition 1.2. Given 0 < s < 1 and p’ = (po,p1) € [1,00)2, the nonuniform fractional
Sobolev space is defined by

WERYN) = {f  1fllys = I lzeo + [flyrr < o0}

For the case s > 1, set vs = s — |s] and p' = (po,...,P[s))- If s is not an integer,
define

]
WIRY) = {1+ Iflyp =D D ID fllum + D (D] e < o0}

1=0 |al=1 jo=L.s]

Here |s] stands for the greatest integer which is less than or equal to s, and [s] stands for
the ceiling, i.e., the least integer which is greater than or equal to s.

Recall that if pg = ... = prg = 2, then {22) (RY) coincides with H*(RYM). We
refer to [16, Proposition 4.17] for a proof.

The introduction and study of these spaces is motivated by the fact that they provide
stronger results than classical Sobolev spaces. As an application we show that if the
convergence of Schrodinger operators holds for all functions in H*® for some s > 0, then
it also holds for all functions in W2 with the same index s if p[s] = 2. Moreover, we also
obtain convergence results in the case 1 < pry < 2.

The paper is organized as follows. In Section 2, we show that compactly supported
infinitely differentiable functions are dense in nonuniform Sobolev spaces. We also obtain
the Sobolev inequality for functions in nonuniform Sobolev spaces. In Section 3, we focus
on nonuniform fractional Sobolev spaces and present an embedding theorem for such
spaces. And in Section 4, we give two applications of nonuniform Sobolev spaces. We give
local energy estimates for solutions of the heat equation with initial data in nonuniform
Sobolev spaces. And we prove the almost everywhere convergence of Schrédinger operators
for a large class of functions, extending known results.

Symbols and Notations. {e;: 1 <i < N} stands for the canonical basis for RY,
that is, e; = (0,...,1,...,0) € RY, where only the i-th component is 1 and all others are
0. For any z = (1,...,2x) € RY, we have z = Zfil xie;. B(0, R) stands for the ball
{x e RV : |z| < R}.

For a tempered distribution f and a function ¢ in the Schwartz class .7, the notation
(f, @) stands for the value of the action of f on ¢.

2. EMBEDDING INEQUALITIES FOR NONUNIFORM SOBOLEV SPACES

Denote by C2°(RY) the function space consisting of all compactly supported infinitely
differentiable functions. In this section we obtain the density of C°(R¥") in nonuniform
Sobolev spaces. We then obtain a Sobolev embedding theorem for nonuniform Sobolev
spaces; and the aforementioned density is a crucial tool in this embedding. Both of these
results seem to require proofs that are quite different from the classical case. For the
nonuniform case, we need first to prove the density for special indices. Then we deduce
an embedding result, with which we finally obtain the density of C°(R¥) for full indices.

We begin with a simple lemma.
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Lemma 2.1. For any k > 1 and p' € [1,00)**!, the space C> N Wg(RN) is dense in
WE(RN).

Proof. Take some f € Wﬁ and ¢ € C2° such that ¢ is nonnegative and ||¢||;1 = 1. Set

/fAN

We have g, € C*°. For any multi-index o with |a| < k, we have

)dy, A > 0.

@) = [ 50 ey (2.)

= ox 0% f(x — A\y)ep(y)dy.

It follows from Minkowski’s inequality and Lebesgue’s dominated convergence theorem
that

li 0792 = 0% o < Jimy [ 10 (- = ) = 0%l ()il = 0.
This completes the proof. ]

The proof of the density of C¢° in nonuniform Sobolev spaces is split in two cases.
First, we consider special indices.

Lemma 2.2. Suppose thatk > 1 and p'= (po, ..., px) with1/p; < 1/pi—1+1/N, 1 <i < k.

Then the space C°(RYN) is dense in W} (RYN).

Proof. By Lemma 2.1, for any f € W,f and € > 0, there is some g € C*° N Wlf such that
lg = flly <<

Moreover, if follows from (2.1) and Young’s inequality that we may choose the function g
such that

mg e L’ Vr> Dly|- (2.2)
The proof will be complete if we can show that there is some g € C2° such that
lg = gllyyp < C'e. (2.3)

Fix a function ¢ € C2° such that i(zr) = 1 whenever |z| < 1 and set g,(z) =
P(x/n)g(x). It remains to show that the sequence {g, : n > 1} converges to g in W,f.

We see from the choice of ¢ that {g, : n > 1} converges to ¢g in LP°. On the other
hand, fix some multi-index a with 1 < || < k. Then 0%g, () is the sum of ¥ (z/n)0%g(x)
and terms like (1/n/P)8%4¢(x/n)dVg(z), where || + |y| = |a| and |B| > 1.

If pa| = p}y|, we deduce from (2.2) that

O"p(=)0g| N0 2 1979 gy | et = 0

Hnm
as n — oo.

If pjo) < pjy|, there is some r > 1 such that
1 1 1

Pla]  Phl T
Applying Holder’s inequality, we have

P p(-)07g|

LPlal — n‘m

H@%( )HLTngl{|x\>n}||y’w|

Hnlﬁl LPlal — plB
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1
- nlBl-N/r Haﬁd)”“Hawgl{lr\zn}HLP\vl- (2.4)

Since 1/p; < 1/pi—1 + 1/N for all 1 <4 < k, we have
111 _el=hl_ 1l

rope Py NN
Consequently, |3| — N/r > 0. It follows from (2.4) and (2.2) that

[amo* e

Pl 0, as n — oo. (2.5)

Hence the sequence {g,, : n > 1} converges to g in Wlf and (2.3) is valid. O
To prove the density of C2° for full indices, we first establish an embedding theorem.
For classical Sobolev spaces, the embedding inequality
lellprv/ov-n < ClIVe| 11

is first proved for functions in C2°, and then for general functions in W'! by the density
of C° in W, We refer to [16, eq. (2.38)] for details.

In the nonuniform case, we have no such density result at the moment. So we need
to prove it directly for functions in C*° N LP°(RY) for some pg > 0.

Lemma 2.3. Suppose that N > 2.
(i) For any ¢ € C°° N LP*(RN) with 0 < pg < 00,

1
lellpwrn-n < 5 > 10%]l21. (2.6)

la|=1

Moreover, the above inequality is also true for any f € Wlﬁ with = (po, 1) and
1 <pg < oo.

(ii) Suppose that P = (po,p1), where 1 < py < o0 and 1 < p; < N. For any f €
WF(RN), we have

[l awr /v < CONp [V Fllen (2.7)
Hence for all q between po and Npi/(N — p1), we have
1Fze < Cllfllyys- (2.8)

Proof. (i) The proof is similar to that for [16, eq. (2.38)]. Here we only provide a sketch
with emphasis on the difference.

Fix some ¢ € C*° N LPo. If the right-hand side of (2.6) equals infinity, then (2.6) is
certainly valid. So we only need to consider the case ||[0%p||;1 < oo for all multi-indices a
with |a| = 1.

For each index ¢, denote Z; = (x1,...,2—1,Tit1,...,ZN). Since ¢ € LPO we have

/sz_l (/R \90(95)|p°d33i> dz; = [l < oc.

Hence there are measurable sets 4; € RV~1 of measure zero such that

/R|g0(x)|p°dxi < 00, Vi, e RN7I\ A4,
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Consequently, for each Z; there is a sequence {an : n > 1} C R (depending on Z;) such
that lim, o a, = —00 and lim, o ¢(z + (a, — z;)e;) = 0. Since for each x; we have

() — ol + (an — z)ex) /axz (& + (t — w)er)dt,

by the Fundamental Theorem of Calculus, letting n — oo, we obtain
T
= / Op,p(x + (t — xi)ey)dt,  Va; €R, Vi; e RN 71\ 4,
— 0o

Here and henceforth e; = (0,...,1,...,0) with 1 only on the ith entry and 0 elsewhere.
It follows that

D < [lonplat (t-ze)ldi, Vo eR¥\ B, (2.9)
R
where
Bi:{xERN: x; € R, Z; € A}

is of measure zero in RY. Observe that the integral in (2.9) is independent of z;.
For 1 < i < N, define the function F; on RV-1 by

Fi(z;) = / 0z, 0(x 4 (t — x3)e;)| dt.
R
We have
N
()| N/ V= <HF MU vz e RV B

i=1
Now following the same arguments as that in [16, Page 76] we obtain

1
lellprov-n < 5 > 0%l
lal=1
For the general case, i.e., f € Wlﬁ with p; = 1, since C*° N Wf is dense in Wf, there
is a sequence {¢p, : n > 1} C C*° N WY, which is convergent to f in W, as well as on RY

almost everywhere.
For each n, we have

1
lenllpviorn < = 3 10%ullr.
la|=1

Letting n — oo, we apply Fatou’s lemma to finally deduce

1 e}
Il < 5 D 19° Il

la|=1
(ii) We see from the embedding theorem for Sobolev’s spaces (see [16, eq. (2.46)]) that
for any f € C°(RY),
1l xer vy < CIV flLor
If 1/p1 <1/po+ 1/N, then CZ° is dense in Wf, thanks to Lemma 2.2. Similar arguments

as the previous case we get that the above inequality is true for all f € W?.
It remains to consider the case 1/p; > 1/pg + 1/N.

Take f € Wlﬁ. Set p = (Po, p1), where 1/pg = 1/p1 — 1/N. It is easy to see that
1 < pg < po- We conclude that f € Wf , for which we only need to show that f € Lo,
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To this end, set r = po/p} + 1 and h = |f|""1f. We have Vh = r|f|""IVf. Since
ferLr VfeLP and (r—1)/po + 1/p1 = 1, we see from Hoélder’s inequality that
IR < el A pore-n IV Fllzer = 7l o0 IV £l
It follows from (2.6) that
Al v/ ov-1) < ClIVAll L < OF[| fll7ae IV fll e
Denote ¢ = rN/(N — 1). Observe that ||h|| /-1y = || f|[}4. We have

_1/r 1/r
1llzs < 11z (CrIV S llm ) (2.10)
Since 1/p1 > 1/po + 1/N, we have

q N < 1 1

4_ 7+1_7> <1
po N —13\po p1

On the other hand, it follows from 1/py < 1/p; — 1/N that

1 1 1
L<B(-D)
V41 b1 \DP1 N

Hence,

Therefore we have
1 N-1 1 1 1

: <= -
q N  l+po/py p1 N
Set qo = po. For n > 1, define r,, and ¢, recursively by

qn—1 N
= ;,1 +1 and ¢q,= Nn—l'
We see from above arguments that both {g, : n > 1} and {r, : n > 1} are decreasing,
1/p1 > 1/gn +1/N and

Tn

. 1rn
1l < a5 (CrallV fllim ) (2.11)

Since ¢, is bounded from below, the limits 7 := lim, oo 7, and ¢ := lim,_ oo ¢, exist.
Moreover, § = FN/(N —1) > 7 > 1.

Take some constant e small enough such that e - Cr ||V f||zr1 < 1. Since r, < 11, we
have & - Cry ||V f||zr1 < 1 for all n > 1. Set f = ef and substitute f for f in (2.11), we get

r snl—1/rn
I Fllzan < IFILalt,  n>1

Applying the above inequality recursively, we obtain

LIn—2

1 Fllpan < ]| )AL/ )

VAN

s 7-1_ 1-1/r;
< || f| L= 1)

< max{]|f]| oo, 1}.

Hence,
/ 1F(@)|de < mas{|[fl] oo, 1}
RN

Letting n — 0o, we see from Fatou’s lemma that f € L. Consequently f € L9.
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Observe that

7’n]\] N <Qn—1 )
= == 1 .
hEN 1T NIl T
Letting n — oo, we get
__ N <d+1>
TN\ T

Hence 1/p; = 1/G+ 1/N. Therefore, § = po and f € LPo.
Set 7 = po/p} + 1. Then (2.10) turns out to be

“1/r 1/r
1l < 1" (CIVAllm )

Finally, we have
1fllLro < CrlIV fllLe
and this establishes (2.7) since 1/py —1/N =1/G = 1/po.
Moreover, (2.7) implies that || f||  npy/(v-—py) < CHfHWlﬁ- Since || f|zro < C/”fHWlﬁ, by
interpolation, we get that for any g between pg and Npi/(N — p1),

1£llza < ClIF -
This completes the proof. O
The following is an immediate consequence.

Corollary 2.4. Suppose that p'= (po,p1), = (g0, q1), 1 < po,p1,q0,q1 < o0 and p1 < N.
If g1 = p1 and qo lies between po and Npi/(N — p1), then

WP(RYN) — W(RY).

Remark 2.5. The range for ¢ in the inequality (2.8) is the best possible, which can be
shown as that for classical Sobolev spaces.

For example, take some f € T/Vl]7 . Suppose that (2.8) is true for some ¢. Replacing
f(-/A) for f in (2.8), we obtain

1F G o S HFG oo + HVf M o
Thus we have
AN £l Lo S AN £l oo +

~

WHVfHLm

and therefore
1 < A\NV/po—1/q) 4 \N(/p1—1/N-1/q)

First, we assume that pg < Np1/(N —p1). If ¢ > Np1/(N — p1), then both 1/p; —
1/N —1/q and 1/py — 1/q are positive. Letting A\ — 0, we get a contradiction.

If ¢ < pg, then both 1/p; — 1/N — 1/q and 1/py — 1/q are negative. Letting A — oo,
we also get a contradiction.

Next, we assume that pg > Np;/(N — p1). With similar arguments we get a contra-
diction. Hence (2.8) is true if and only if ¢ is between pg and Np; /(N — p1).

With the help of Lemma 2.3, we prove the density of compactly supported infinitely
many differentiable functions in nonuniform Sobolev spaces with general indices.

Theorem 2.6. For any k > 1 and p' € [1,00)**!, the space C°(RYN) is dense in Wg(RN).
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Proof. By Lemma 2.2, it suffices to consider the case 1/p;, > 1/p;,—1 + 1/N for some iy
with 1 <1 < k.
In this case, we have N > 2. Let ¢ = (qo,...,qn), where g, is defined recursively by

dN = PN,
if 1 >1 —1/N
In = Pr ' /pn‘_ [Gns1 = 1/, n=N-1,...,0.
Ngn+1/(N — gny1), otherwise,

By Lemma 2.3 (ii), we have f € Wg. Since 1/pn, < 1/gn < 1/¢n—1+1/N foralll <n < N,

we have
1 1 1 n—m

i S
Dn Gn  9m * N 7

It suffices to show that (2.5) is also true in this case.
In the sequel we adopt the notation introduced in the proof of Lemma 2.2. Recall
that 07 f € LY. As in the proof of Lemma 2.2, we may assume that 07g € L" for any
T > gy 1 plo) > g}y, then we get (2.5) as in the proof of Lemma 2.2. For the case

Pla| < qJy|, We see from (2.12) that

n>m. (2.12)

<
P~y N
Hence there is some r > N/|3| such that
111
Plo|  dnl T
Applying Hélder’s inequality, we get

[amor e

This completes the proof. O

1 1
G

1
N P 1e} —
s < s 0P 197G g s >

Recall that for an integer n > 0, the space C’gb(RN ) consists of all functions f such
that f is n times continuously differentiable and for any multi-index « with |a| < n,
Def e L*°.

For an integer n > 0 and a positive number v € (0,1), the space C™"(R") consists
of all functions f in C}' such that for any multi-index o with |a| = n,

D f(x) = DYf(y)| < Cpwlz —yl”, Yo,y eRY.
Below is an embedding theorem for higher-order nonuniform Sobolev spaces.

Theorem 2.7. Let k be a positive integer and p= (po, .. .,px) € [1,00)F*1,
(i) If kpr, < N, then for any q between py and Npy/(N — kpy), we have

WP(RYN) — LIRY).
(ii) If kp, = N, then for any q with py < q < 0o, we have
WPRYN) — LIRY).

(iii) If kpx > N, then W,‘f(RN) < L>®(RN). More precisely, if kpy > N and N/py ¢
Z, then there is some integer ko such that (ko — 1)pr < N < kopx and

Wg(RN) N C:_kOak?O_N/pk (RN> .
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If N/pp € Z and k > ko := N/py, + 1, then for any 0 < A < 1,
WPRN) — CF R RN,

Proof. (i) First, we consider the case kpp < N. We see from Lemma 2.3 that the conclu-
sion is true for k£ = 1.
For the case k > 2, applying (2.7) recursively, we get

AN o ov—rm < C1 > 10 Fll g v -e-mg)
loo|=1

< Co Y 0% Fll s v-te-2pmg)

=2

IN

<G Y 10 fllun (2.13)

la|=k
By interpolation, we get that for any g between py and Npg /(N — kpg), W,f — L9,

(ii) Next, we consider the case kp, = N.

First, we assume that k = 1 and N > 1. Take some f € Wlﬁ, where p'= (pg, V). Set
r=po(N—1)/N+1and h = |f|"~'f. We have Vh = r|f|""1Vf. Since (r—1)/po+1/N =
1, we see from Holder’s inequality that

IVAl L < 7l Fll o0 IV flloy < oo

Hence Vh € L'. By Lemma 2.3, h € LN/ (N=1_ Therefore, f € L™N/(N-1) = [po+N/(N-1)
Replacing pg by po + N/(N — 1) in the preceding argument, we obtain that f lies
in LPo+2N/(N=1) " Repeating this procedure yields that f € LPotnN/(N=1) for any n > 1.
Hence f € L9 for any q satisfying pg < ¢ < oc.
For the case k = N = 1, we see from (2.9) that for smooth functions f,

£ 1o S A1 N e

Applying the density of C.(R) in Wf (R), we get that the above inequality is valid for all
fe Wf. Hence f € L? for any ¢ satisfying py < g < oo.

Next we assume that kp, = N for some k > 2. Take some f € 143 , Where p' =
(pos, - -, pk). For any multi-index a with |a| = 1, we have 0%f € Wé]ill’""pk). Note that

(k —1)pr, < N. We see from (i) that 0°f € LNPe/(N=(k=Dpk) — [N Hence f € Wl(pO’N).
Now we see from arguments in the case k = 1 that f € L4 for any ¢ satisfying pg < ¢ < oc.

(iii) Finally, we consider the case kpy > N.

First, we show that Wif C C’l?. We prove it by induction on k. For k£ = 1, the
arguments in [16, pages 80-82] work well for the nonuniform case with minor changes.
Specifically, applying the LP! norm forﬂderivatives and the LP° norm Eor the function
itself, the same arguments yield that W, < C’,? . That is, functions in W? are continuous
and bounded.

Now we assume that the conclusion is true for the cases 1, ..., kK — 1. Consider the
case k. Fix some f € W,f . There are two cases:

(a) (k—1pr >N,
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If (k—1)pr, > N, then we see from the inductive assumption that for any multi-index
a with |a| =1,

0% e SN0 il 1w < [ fllyp

If (k—1)pr = N, then we see from (ii) that for any multi-index o with |a| =1, 0%f € L4
for all ¢ with pg < ¢ < oc.
Hence for (k — 1)pr > N, there is some ¢ > max{N,pg} such that

IV Allzs < 1l

Consequently, f € Wl(p 0:4), Applying the inductive assumption for the case k = 1, we get
that f is continuous and

1z S My wo0 S 1F s

(b) (k—1)py < N.

In this case, we see from (i) that f € Wl(po"h) with ¢1 = Npy/(N — (k — 1)pg). Since
kpr > N, we have ¢ > N. Applying the inductive assumption for the case k = 1 again,
we get that f is continuous and

I llzee S 1y oan S M f s

By induction, the embedding W,f — C(? is valid for all k£ > 1.
Next we prove the Holder continuity.
First, we assume that N/pjy is not an integer. When k = 1, we have p; > N. Take

some f € WP, Let ¢ and gy be defined as in Lemma 2.1. We have
1

1 1

g(@+y)—ga(z) = / Vor(z+ty)-ydt = / - Vi(z+ty—2)-yp(2)dzdt, Va,yeRY.
0 0
It follows from Minkowski’s inequality that

lga(- +y) — gallzer < [yl - [V f]lLe.

Since f is continuous and limy_,q gx(z) = f(z) for all z € R, letting A — 0 in the above
inequality, we see from Fatou’s lemma that

1fC+y) = Fllom < |yl - [V fllpe
On the other hand, it is easy to see that

IV 1) = e <20V f|ze
Applying the fact for classical Sobolev spaces that if u,|Vu| € LP* and p; > N, then
1-N, N,
lullz S llull g [V ul i, (2.14)
we get
1£C+y) = Flloe < Jyl' NP0 |V £][ o

Hence f € C’,?’l*N/pl.
When k > 2, there is some positive integer ko < k such that (ko — 1)pr < N < kopg.

-----

we see from (i) that for any multi-index g with |B] = 1,

Da-i-ﬁf e LNVPe/(N—=(ko—1)py)
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Since Npi/(N — (ko — 1)px) > N, applying the conclusion for & = 1, we deduce that D*f
lies in C}?v1*N/(Npk/(N*(kO*1)pk)) _ CI?JCO*N/PIC‘

Moreover, by the embedding inequality we have proved, D?f € L7 whenever 1 <
18] < k — ko and ¢ is large enough. In particular, D f € L9 for some ¢ > N. Applying
the conclusion for k = 1 again, we get D*f € Cp when |a| < k — ko — 1. Hence f lies in
Céf*ko,kO*N/pk‘

It remains to consider the case N/py € Z. When (kg — 1) = N < kopy, for any

multi-index « with |a| = k — ko, we have D*f € Wliopk_ko""’pk). Now we see from (ii) that
for ¢ large enough and |5| =1,

DA f e LA,
The arguments for the case kK = 1 show that for ¢ large enough, D% f € C’l? AN/ Conse-

quently, D*f € C’g’)‘ whenever |o| =k — kg and 0 < A < 1.
On the other hand, the same arguments as those for the case N/py ¢ 7Z show that
D f e CP when |a| <k —ko— 1. Hence f € C{f_ko”\ for any 0 < A < 1. O

Theorem 2.7 has some interesting consequences. In fact, the following corollary can
be proved with similar arguments as in the proof of Theorem 2.7 (iii), for which we leave
the details to interested readers.

Corollary 2.8. Let k be a positive integer and = (po, ..., pr) € [1,00)FTL. If pp > N,
then

D k—1,1—-N
WP Cy > /Pk.

On the other hand, the following result shows that the Sobolev space Wg with 1 <
qx < N/k and 1/¢; = 1/q;, — (k —4)/N is the largest one among all Sobolev spaces W}y
with pr = qz.

Corollary 2.9. Suppose that 7 = (po,...,px) € [1,00)**1 with 1 < pp < N/k. Let
qd = (qo,---,qx) be such that qx = pr and q; = Npi/(N — (k —i)p) for 0 < i < k — 1.
Then we have

2 q
Wp — W,.
Moreover, set @ = (qo,...,q), 1 <i<k. We have
79 k1) A1)
Wi Wi, = W — LY,

Proof. We see from (2.13) that for any f € w7,

7lys €C 3 10°Flaon < Clfllys
la|=k

Hence W,f — Wg . The second conclusion is obvious. This completes the proof. O

3. NONUNIFORM FRACTIONAL SOBOLEV SPACES

Recall that nonuniform fractional Sobolev spaces are introduced in Definition 1.2. We
point out that for any 0 < s < 1 and ' = (pg,p1) € [1,00)2, WZ(RY) is a Banach space, a
fact that can be proved with almost the same arguments as that used in the proof of [16,
Proposition 4.24].



14 TING CHEN, LOUKAS GRAFAKOS, AND WENCHANG SUN

3.1. Embedding Theorem for Nonuniform Fractional Sobolev Spaces. The main
result in this subsection is the following embedding theorem.

Theorem 3.1. Suppose that p'= (po,p1) with 1 < pg < 00, 1 < p; < oo and 0 < s < 1.
When pg < p1, we have
(i) If sp1 < N, then Wf(RN) — LY(RYN) for all po < ¢ < Np1/(N — sp1).
(ii) If spr = N, then WE(RYN) — LI(RYN) for all py < q < o00.
(i) If sp1 > N, then WE(RN) < Cp* NPy (R,
For the case po > p1, if sp1 < N and pg < Np1/(N — sp1), we also have WE(RN) —
LARN) for all po < ¢ < Np1/(N — sp1).

To prove Theorem 3.1, we need some preliminary results.
We see from [16, Lemma 4.33] that for any f € LP,

// de dy < o0
RN xRN |7 — y[VHPs
is equivalent to

// ffjae])] dzda < o0, vV1<j<N.
RN xR ]a\ P

Checking the arguments in the proof of [16, Lemma 4.33], we find that the hypothesis
f € L? is not used. Moreover, with the same arguments we get the following result.

Proposition 3.2. Let 0 < s <1 and 1 < p < oo. Then there exist positive constants C
and Co such that for any measurable function f which is finite almost everywhere,

|f(z) — f(x + aej)|? _
WP<Z//1RN><R |a|1+PS dz da<02[f]wpa V1<j<N.

The following construction is used in the proof of the embedding theorem. Unlike
the classical case, here we need that ¢ equals 1 in a neighborhood of 0 to ensure that its
derivatives vanish near 0.

Lemma 3.3. Suppose that 1 < pg,p1 < o0, 0 < s <1, f € Wf(RN), © € CX(R) with
o(t) =1 for |t| <1 and p(t) =0 for |t| > A, where A is a constant. Let « =1—1/p; —s
forO<s<1landa=—1/p1+n fors=1, where 0 <n<1. Set

t
)= S [ gy 10 (31)
t [O,t]N
9(0,z) = lim g(¢t, ). (3.2)
t—0
We have
144 Vag(t, @) || o1 mvery S I f s (3.3)
Moreover, there are two functions hg and hy such that Opg(t,x) = ho(t,z) + h1(t,z) and
[P0 (t, )| Loy vy S (11l gy (3.4)
1P (8 )| oo vy S 1Nl oo 11,1 (F)- (3.5)

Furthermore, if po < p1, we have
£V gt )l o rovty S [y (3.6)
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Proof. First, we estimate ||0,9(t,z)||Lr1 @n+1y, 1 < i < N. Denote

T, =x—xe; and dz; = Hdmj.

J#i
Observe
(,0 t x;+t . . .
g(t,r) = tN/ / f(&i + 9i + yiei) dgi dy;.
e Jogn-1
We get
t SO SN .
Ouglta) = B [ i+ g+ (oi+ 0ei) = a3+ G-+ aie))
t [O,t]N_l
:M/ (f($+t€i+ﬁi)—f($+.@z‘))dﬁi
tN [O,t]N_l
o(t)

= t/[ol]N—l (f(x—i-tei +t9;) — f(z +tg)i)>dgi_
Hence for 0 < s < 1,
flx +te; +t9:) — fx +tg:)|P |
140kt )2y vy < ll(2) / /R ) /01 )= fa il

t1+sp1
g [f] Wpl

For the case s = 1, we have a = —1/p; + 1. We see from (3.1) that

Veoltr) = 50 [ Vs pan

Thus we obtain
1tV gt )| or @1y < ()| o1 [V e < 00

proving (3.3).
Next we deal with d;g(t,z). A simple computation shows that

dg(t, ) =<P(t)<tj_vj+vl/[0tw fla+y)dy + o5 Z/[

x + yz + tez)dwa)
Ot]N 1

A
GRS |
- [ Gesiste = faen)iyroo [ s
(t) &
:TZ - (f(a:+tyi+tei)_f(x—i-ty))dy—i-so(t)/[o’lw flx +ty)dy

= ho(t ,a:) + hi(t,x).
Next, we prove (3.4). For 0 < s < 1, we have

|f(@ +t9; + te;) — fz +ty) [
€0t ), iy Nl Z L tei) o dy
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By the change of variables x — x + ty, we write

a |f(x+t(1 —yi)e;) — f(x)|P
[0 (t, )25, v, S el Z / /O - /. e dardy dt

=l Z e [y [ IO, gy,

S [f]Wm, (3.7)

having used the change of variables ¢ — (1 — y;)t. And for the case s = 1, we have

N
lehott, @)l < 1€ (0] Y /[0 o7tk e = e+ )],
i=11Y i

a—1 al ! N
= [t“" ()] ; /[0,1}N H /tyi Og, [z + tg; + Tel)dT‘ i dy
S [te@)] - IV fl e
Hence
[t%ho(t, )|l o1 w1y S NV fllzes (3.8)

To prove (3.5), note that ¢'(t) =0for 0 <t < lort > A. For1l <t < A we see
from Minkowski’s inequality that

1P (E, ) Lro vy < W(t)\/[m]N £ ¢+ t)llzrody < | ()] - | £l ro- (3.9)

Hence (3.5) is valid.

Finally, we consider the case pg < p;. To prove (3.6), it suffices to show that
||tah1(t, J})HLpl(RNJrl) S ||f||Lpo, thanks to (3.3) and (3.4).

Recall that ¢/(t) =0 for 0 <t < 1. For t > 1, we have

me.o)] < 60l [

1/po
Po
o T t0)Pd)

1 1/po
Ol [, o)

< 1" @1 1fllzeo-

Hence

po
st vy < [ [ OP I ([ 15 i) deds
< [ ) sz [ e wpe aydrds
N

< 11 zro-

This completes the proof. ]

For the case 1 < pg < p1 < 00, the nonuniform Sobolev space Ws(p 0P is o subspace

of the classical one W¥'. Moreover, the inclusion is in fact an embedding and is also valid
for s = 1.
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Lemma 3.4. Suppose that 0 < s <1 and 1 < pg < p1 < oo. We have
WP < Wt
Moreover, the inclusion is not true if pg > p1.

Proof. Let ¢ and 9 be functions in C2°(R™) and C°(R), respectively, with values between
0 and 1 and equal to 1 in neighborhoods of 0. Set ®(t,z) = p(x)1(t). Take some A > 0
such that supp ® C [—A4, AJVFL.

Fix some f € Wf . Let o and ¢ be defined as in Lemma 3.3, §y be the Dirac measure
at 0, and

CN
N >2
E(t,z) = { (2 + [x)N-D/27 =

cilog(t® +[zf?), N =1,
be the fundamental solution of the Laplacian satisfying AE = dg.

Recall that for a tempered distribution A and a function h € C°, for which the
function itself and all of its derivatives have at most polynomial growth at infinity, the
product hA is the tempered distribution [25, Definition 2.3.15] defined by

(hA,u) = (A, hu), Yu € .S (3.10)
Since ®(t,x) equals 1 in a neighbourhood of 0, we have

DAE = 5y = .

Hence
g=00%*g
= A(BPE)+g—2(V® - VE) x g — (AD)E) x g
=((V®)E)*xVg+ (PVE)xVg—2(VP-VE)xg— (A®)E) * g, (3.11)

where we use the notation
N+1

uU*xv = E U; * Vg
i=1

to denote the convolution of two CV*'-valued functions.
Since ¢(0,x) = f(z) a.e., it suffices to show that ||g(0,-)llLr1 S || fll;;7. We prove it
in the following steps: \

(S1) First, we estimate ||[((V®)E) * Vg(0,-)||Lr1. For N > 2, we have

A Vo) (—t,y) - Vg(t,z —
((V@)E)*Vg(o,x)z/o /RN( zt(uiqu)(ﬂl)ﬂ 9 gy dt.

Applying Minkovski’s inequality, we get

A dy
I(V®)E)  Vg(0, )| < [V /0 IVg(t, )l /[_A,A}N T VT

A
dyd
S [ I0gtoln [ S
0 0,42 t +y1 +y2

A A
t+y + A
~ [ Vgt log T T Ay, at
/OH q( )lle/0 o8, —

dt

A A
1
< [ IV, /d it (0<e<l
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A
< / IVg(t, ) ot
0

St L a (O oy 117V g (8, )| o1 vy
~ [[t*Vg(t, )| Loy mver)y

< £l
where we applied (3.6) in the last step. When N > 3, the first inequality is obtained
by successively integrating the variables yn, yn—1,...,ys over [0,00); the effect of this is

the reduction of the exponent by 1 in each integration, so after N — 2 integrations, the
exponent becomes (N —1) — (N —2) = 1.

For the case N = 1, we have |E(t,y)| = |eny log(t? +y?)| < (|t| + |y|)~¢ for any € > 0.
Hence

A A
(V) « Tg(0.)m S [0t [ it 0 <e <)

< flly

(S2) Next, we estimate ||[(®VE) * Vg(0,-)||zr1. Observe that for (¢,y) € [-A, AN 1,
ot
(Il + Ty

Similar arguments as the previous case show that

IVE(t,y)| <

A dy
OVE)  Vg(0,)|| e 5/ Vol(t, - p/ 7t
I( ) * Vg (0, )| Lr ; Vg(t, )l ze gy E+ DY

A A
d
~ / IVg(t, )]l / N g
0 0

t+ 1

A
4 A
z/ (¢, )l zor log -t
0

A
5/ IVg(t,)||Leitcdt
0

S 167 1 g (Ol g 185V g1, )| s vy
< lhyee

where 0 < e < sfors<land 0 <e<1—mnfor s=1. Again, we apply (3.6) in the last
step.

(S3) We deal with the last two terms. Observe that both V® and A® vanish in a
neighborhood of 0. Hence both (V®-VE) and (A®)E are compactly supported bounded
functions. Hence

A
Fiw) = 292 V) g0, + (OB eg0.0/ S [ [ lott.a—w)layat

For any ¢ > pg, there is some r > 1 such that
1 1 1
-+ — =41
T Po q
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Observe that

lote Mo =@l | [ S+, S el 1Sl 312

We see from Young’s inequality that
[Elza S 1f1Leo-

Setting ¢ = p1, we get | Flln < | flzso.
Combing results in (S1), (S2), and (S3), yields

Wégpoym) SN WS(P17P1) = W,

For the case pg > p1, we provide a counterexample in Example 3.6. This completes
the proof. O

The following is an immediate consequence.

Corollary 3.5. Suppose that p= (po,p1) with 1 < py <p; <oo. Forany0 <s§<s <1,
we have

WP s WP WP, (3.13)

Proof. First, we prove that Wf < WP. Take some fe Wf . As for functions in classical
Sobolev spaces, for almost all z € RV, we have

f(x)—f(ﬁaej)yplz\/o ijf(ac—i-tej)dt’plS\a|p1_1/0 02, £+ te) [P,

Hence
1@ = 1o+ aeplPda < la o, 17
Therefore,
f(x + aej) P |a|Pt
T

On the other hand, since pg < p1, we have Wf < W', thanks to Lemma 3.4. Hence

p1
’f .’IZ’+CL€j)| d.’L’dCL< ||f”LP1 <”f”
la|>1 JRN |a‘1+sp1 ~ la[>1 ’a|1+8p1 L

Consequentl, 17 % Iy #
Next, we show that WY — WP, Fix some f € Wf . Since 5 < s, we have

)P P1
f(x + aej)| drda < |f(z) — f(x + aej) P drda < [f],
laj<1 JRN altps laj<1 JRN altpis Wt
On the other hand, by Lemma 3.4, f € LP'. Hence
f(x + aej) P p1||f|Lp1
1+p18 dzda < 1+p18 as Hf”L”l
la|>1 JRN a laj>1 @

This completes the proof. ]
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We point out that the inclusion in Corollary 3.5 is not true in general for the case
po > p1, which is quite different from the classical case, since for any 1 < p < oo and
0<s<s<l,

WP — WP — WP,

Below is a counterexample.

Example 3.6. Suppose that 0 < s < 1, 1 < pg,p1 < o0 and p16 < N < pgod. Let
flz) = 1+ |22)7%2, 2 € RY and let = (po,p1). We have f € WE(RY) if and only if
p1(0 + s) > N. Consequently, for any 0 < s <1 and pg > p1, wP ¢ Wi,

Moreover, if 0 < § < s <1 and § < N/p1 — N/po, we have w? 7 Wg.

Proof. (i) We show that f € Wf(RN) if and only if p; (0 4+ s) > N, for which we only need
to consider the case 0 < s < 1 since the other case s = 1 is obvious.
First, we assume that p1(d + s) > N. Let us estimate the integral

/ @)~ f(z +ac)lPde, 1<j<N.
RN

Denote #; = x — zje; and d&; = H#j dz;. Observe that

1f(2) = f(x + ae;)Pt = ‘/0 0, (o + te)|” < |ayp11]/0 100, f(x + te;) P1de]. (3.14)

When |a| > 1, |t| < |a| and |z| > 2|a|, we have |z + te;| > |a|. Hence

/ |f(z) — f(x + aej) P dx
|2|>2]al

o .
/0 /|x>2a| (1 + |@]? f]i;ﬂilp)(&“)pl/zdgc dt‘
a
/ /|m>|a| (1+ 242 f]k‘; 2)(@+2) pl/dedt‘
- a’pl</|:c]|>a| /RN ! 1+|$]’2_|ST:|L:1| 2)(@+2)ps 7240 4
P
/ma /|| ety | 1+|:vJ!2f]r|v;\ i)

%|a]p1</ |2 [P da; +/ |z |Prda; >
jagl>laf (14 |25 )@HDP=(V=1 0 o) (1 + [a])0+2p=(V=D)

~ |a|N P19, (3.15)
where we use the fact that (0 + 1)p; > (6 + s)p1 > N. On the other hand,

/ (@) — f(z + ae)Prda
|z|<2]al

< laf ™!

< |a’P1—1

S / ( ! + ! >dx
~ Jizi<ala) N [22)P19/2 0 (14 |2 4 ae;|?)p19/2
1
< dx+/ dz
/|a:<2a| (1+ ’x‘Q)puS/Q |z+ae;|<3|al (1+z+ aej’2)p15/2
< lafN P, (3.16)
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Putting (3.15) and (3.16) together, we get
[ @) = fa -+ acide < a0 fal > 1

For |a| < 1, since [0y, f(x)| < 1/(1 + |=]?) O+D/2 and py(6 4+ 1) > p1(6 +5) > N, we
have 0, f € LPL. It follows from (3.14) that

[ @) = fGo+ acplPde < la o, 1

Combining the preceding estimates we deduce

Pl p1
ALYy TR AT,
RN |a| P la|<1 JRN |a\ P
p1
/ / |f lfta€])| d$ dCL
la|>1 JRN |a| P

da
5 ap1—1—p1sda+/ I
/a|<1‘ | jaf>1 |a[PrOFs)=N+1

< oQ.

Hence f € we.

Next we show that f & Wg whenever p;(0 +s) < N.

When a > 2, a® < |z|? < 5a%/4 and x; > 0, we have 1+ |z|?> < 3a?/2 and 1 + |z +
aej|? =1+ |z|? + 2az; + a® > 2a*. Hence

[ @) = fa+ aepar > ﬁzﬂﬂ%ga? @) = o+ aep)Pds

> dx
~ Ja?<|z|?<5a?/4 P16

173]'>0
gV P18
Therefore,
// f(x + aej) P de da>/ da -~
RN WHMS ™ Jazz apr 0T8N+ .

(ii) Now assume that pg > p;. Take some ¢ > 0 such that ¢ < min{s, N/p1 — N/po}.
Set 6 = N/p1 —e. We have p1d < N < ppd and p1(d +s) = N +pi(s —e) > N. Hence
fewdi\wi.
(iii) When § < N/p1 — N/po, we have pyg > p1. Take some constant § such that
N N N
max{—,——s} <d< — —3.
b1

Then pod > N > p16, p1(§ +s) > N and p1(6 + §) < N. Hence f € WP\ Wg O
Proof of Theorem 8.1. For the case py < p1, the conclusion follows from Lemma 3.4 and
the embedding theorem for classical fractional Sobolev spaces.

Now we assume that pg > p1. It suffices to show that if f € Wsﬁ , then f € L9 with
q=Np1/(N — sp1).



22 TING CHEN, LOUKAS GRAFAKOS, AND WENCHANG SUN

We adopt the notation used in the proof of Lemma 3.4. We rewrite (3.11) as
= ((V4®)E) % Vg + (PVLE) + Vg + (D) E)  ho + (¥, E) * hy
+ ((O®P)E) * hy + (POE) xhy — 2(VP - VE) x g — (AD)E) * g. (3.17)
Checking the proof of [16, Proposition 4.47], we find that

| (V@) E) ¢ Vg + @V B) g+ ((O0) E)sho-+ (@0, E) tho) 0,)]| | S I1flyp- (3.18)

In fact, the only property of g used in the proof of [16, Proposition 4.47] is that t*Vg(t, )
lies in LP'. In our case, O:g is replaced by hg. By Lemma 3.3, t*ho(t,z) € LP'. So (3.18)
is true.

It remains to consider the last four terms in (3.17). Since ® is compactly supported,
we have

1
8V E(t, 2)| < ———
|(t ) ( )’ (‘t’+|$|)N
and )
OO,E(t )| < —
PORE S Wy

Observe that hy(t,z) =0 for t <1 ort > A. We have

‘(((@‘I’) ) * h1 + (PO E )*hl 056 / /AA ‘hlt:—Ty]) )‘d dt.

Take some r > 1 such that 1/pg+1/r = 1/q+ 1. Applying Young’s inequality, we deduce
from (3.5) that

A
1
®VE) « hy + (PO,E h)H </ht,~ 7"
|((@@)E) 5 b+ @0 <k )0, 5 | It Yo v
For the last two terms in (3.17), we show in (S3) of the proof of Lemma 3.4 that

(V@ - VE) xg| + |(AD)E) * g S [z
I( Jo.,

Combining these facts we derive the desired conclusion. O

ALl

3.2. Density of Compactly Supported Infinitely Differentiable Functions. In this
subsection, we show that compactly supported infinitely differentiable functions are dense
in fractional nonuniform Sobolev spaces for certain indices.

First, we show that smooth functions are dense in nonuniform fractional Sobolev
spaces.

Lemma 3.7. For any 0 < s <1 and p'= (po,p1) with 1 < pg,p1 < 0o, C*® N Wf(RN) 18
dense in WE(RY).
Proof. As in the proof of Lemma 2.1, take some ¢ € C2° such that ¢ is nonnegative and
llollpr = 1. Fix some f € W¥ and set
1 Tr—y
= — dy, A>0.
@) = [ )35y

We have gy € C*°. Moreover, since

=/’f@—xw¢@m%
RN
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we have
(@) = 1a) = [ (7= 20) = 1))y,

Now we derive from Minkowski’s inequality and the continuity of translation operators in
Lebesgue spaces that

i g~ Lo < Jim [5G = M) = Sy =0 (319)
A—0 A—=0 JrN
and
li —
/\1_%{9)\ f]Wfl
. flz—=2y) = f(z)) = (f(z = Ay) — f(2)
< /l\lm ( ( ) ( )) N/( s ) ) ¢(y)dy
—0 JrN |$ — Z| p1 Ll(ol )(]RNXRN)
. fla=Xy) — fz— Ay f(@) = f(2)
= lim ( ) ( N/p)1+s _ 1@ N/p(1+5 o(y)dy
A=0 Jry || [( — Ay) — (2 — Ay)| |z — 2| LP1 (RN xRN)
= (),
having applied the fact that (f(z) — f(2))/|z — 2|N/P1ts € LI& ,)- Hence,
)l\li)% ||g)\ - fHWf =0,
and this concludes the proof. ]

As in the classical case, to prove the density of compactly supported smooth functions,
we first approximate a function in fractional nonuniform Sobolev spaces by its truncation,
then approximate the truncation by its regularization. However, since py needs not to be
identical to p1, the technique details are quite different.

Theorem 3.8. Suppose that 0 < s < 1, p = (po,p1) € [1,00)% and s/N > 1/p1 — 1/po.
Then CX(RN) is dense in WE(RYN).

Proof. Take some nonnegative function ¢ € Cg° such that ¢(x) = 1 when |z| < 1 and
¢(z) = 0 when |z| > 2.

Fix some f € WP. First, we show that ©(-/n)f tends to f in WP as n tends to the
infinity. Since ¢(-/n)f tends to f in LP°, thanks to Lebesgue’s dominated convergence
theorem, it suffices to show that limy,co[p(-/n)f — flyr = 0.

If pog < p1, by Lemma 3.4, we have Wsﬁ — WP Now we see from the density result
in the classical fractional Sobolev spaces that lim, ool (-/n) f — flyyr = 0.

It remains to consider the case pg > p1. Observe that

(¢(5) =1) @) = (o(2) = 1) £ ) = (¢(5) 1) (@) = F) + ((5) = () £ ).
We have

(e(2)f =l s | /R Mele/m -DU@ [P,

|:C _ y|N+sp1

|(p(x/n) — @(y/n)) f(y)"
+ //RQN dx dy.

|:L‘ _ y|N+s;D1
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Since f € Wf , we see from Lebesgue’s dominated convergence theorem that

_ o(x/n) —1)(f(x) — f(y))[" _
lim //Rzz\r dzdy = 0.

n—o00 |x — |N+3P1

Now we only need to show that

lim //sz p(z/n) —y/n)f(y)" drdy = 0

n—00 ‘x—y‘N‘f’Spl

We split the integral into two parts,

p(z/n) —(y/n)f(y)[”
//R2N lx —y |N+8p1 dz dy

//yl<4n //y>4n x/@_ ‘(Jyvifﬁff(y)'mdwdy

=1+1I.
We have
o(z/n) = y/n))f(y)”
//y|<4n //y|<4n ‘.’B _ y’N"FSPl dx dy
y|>8n
=1+ -727
where
||W’H // |z —y[Pr| f(y)|" 1 /
o dzdy S —- |f(y) [P dy,
‘mji’g ’(E — y’N‘i’ P1 nsP1 ly|<dn
and
lp(y/n)f(y)[* _ 1 / "
//|y<4n |z — y|Ntspr dedy 5 P |y‘§4n|f(y)| dy.
Hence

1
IS / f(y)[Prdy.
s |y|g4n| ()|

Denote r = pg/p1. For any k > 1, there is some ng such that

1
I1£ - Lisnapllzrn = (1= 2 ) I lzro.

Applying Holder’s inequality, we get

1
1< / F)Pdy + / Fy)P'dy
nept ( ly|<no no<|y|<4n )

1 N/r! ’

S = (76 MFP e+ 0™ P 1y oy o )
N/r 1

S Hf’ LPO 1 Npl(s/N 1/p1+1/po) Hf’ LPO "

sm
Since s/N > 1/p1 — 1/po, letting n — oo and k — oo successively, we get

lim I =0.

n—oo

(3.20)
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Next we deal with I7. Recall that <p(ac) = 0 when |z| > 2. We have
p1
H_// p(z/n) — (Jyv/+7;t)) WP 1rdy
ly|>4n ‘ZL’ - ‘ P

x/n p1
-/ / eI,
|z|<2n J|y|>4n |.%' - y| PL

<[ tedpa [ O
|z|<2n n ly|>4n |y’N+SP1
1
p
A Lgyizany oo - AN

1
— p
= o1y 1 Hiyzany oo

Hence lim,,_,oo I1 = 0. Therefore, (3.20) is true.
The above arguments show that the sequence {¢(-/n)f n > 1} is a subset of W/ and

is convergent to f in Wf .

To finish the proof, it suffices to show that for any compactly supported function
fe Wf , [ can be approximated by functions in C2°, which can be achieved with the same
arguments as in the proof of Lemma 3.7. O

4. APPLICATIONS

4.1. Local estimates for solutions of heat equations. Consider the classical solution
of the heat equation

Owu(t,x) — Agu(t,z) =0, t>0,
u(0, ) = ug(x).
That is,

1 2
- —lz—y|*/(4t) N
u(t,x) = (Gmt)V /2 /RN e uo(y)dy, t>0,2eR". (4.1)

Fefferman, McCormick, Robinson, and Rodrigo [23] studied local energy estimates for
u(t,z). They proved that if the initial data uy belongs to the Sobolev space H*®, then for
any T > 0, the classical solution of the heat equation satisfies that u € L*(0,T; H®) N
L2(0,T; H*t1) and tY/2u(t,z) € L?(0,T; H**2). As a result, u € L9(0,T; H**?) for any
0<g<l

In this subsection, we show that the local estimates for solutions of heat equations
are also valid when the initial data belong to nonuniform Sobolev spaces.

Theorem 4.1. Suppose that s > 0, T > 0 and p = (po,...,p[s]) with 1 < p; < oo for
0<i<[s]. Seti=(po,..-,p|s)»2) for s ¢ Z and 7= p for s € Z. Let u be the classical
solution of the heat equation with initial data ug € Wsﬁ(RN). Then u € L>(0,T; WE(RN))
with
sup ||u(¢, - 5 < Csznllu 5. 4.2
s [ty < Cug iy (42)

Moreover, if 1 < p|4),prs) < 2, then

(4.3)

T
/o ult, )12, dt < Copn (14 T%) fuol|2

s+1
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T
| (e R, < o1+ Ty (14)
0 s+2 s
where
N 1
— (2 — — mi _
0= (2—ps)o, ps=min{p,prs1}, © QPLSJJFQ’

and 01,02 are constants. Consequently, for any0 < q < 2/(24p), uw € L1(0,T} Wﬁ;z) (RV))
and

T
Mt < Cop T 200 T g (45
s+2 s

Before giving a proof of Theorem 4.1, we discuss a lemma.

Lemma 4.2. Suppose that f € CZ(R) and f, f" € LP(R) for some 1 < p < co. Then
f'1fP2f € LY(R) and

/ f (@) f ()P~ f(z)dz = —(p — 1)/ |/ (@)]?|f () P~ da,
R R

where we apply the convention that | f'(x)|?|f(z)|P~2 = 0 whenever f'(x) = 0.

Proof. Since f, f” € LP, we see from Holder’s inequality that f”|f|P~2f € L'. To prove
the conclusion, it suffices to show the following equations,

/OOO F@)| f(@) P2 f(x)de = = (0)[ f(O) P2 £(0) — (p— 1) /OOO /(@) f () [P~*da,

(4.6)
‘ 2 2 0 2 2
/ fr@)f @)= f(a)da = fO)f(0)Pf(0) — (p - 1)/ /(@)1 f ()P da. (4.7)
We prove only the first equation, and the second one can be proved similarly.
Since f € LP(R), there exists a sequence {x,, : n > 1} C (0,00) such that
lim z, =c0 and lim f(z,)=0. (4.8)
n—oo n—oo

When p > 2, |f(x)|P~2f(z) is continuously differentiable. Integrating by parts we obtain
| r@is@p2 e
—im [ @)@ P R ()

0

n—oo

Tn

= Jim (£l F ) P2 ) = OO0 ~ (0= 1) [ IF @) f)p-do)
0

n—oo

=~ FOUOP )~ (p=1) [ I @PLf@P

Hence (4.6) is valid.

It remains to consider the case 1 < p < 2. Since f is continuous, the set £ := {z > 0:
f(x) # 0} is open in (0,00). Consequently, E is the union of at most countable pairwise
disjoint intervals (a;, b;), i € I. There are three cases:

(i) b; < oo for each i € 1.
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For each interval (a;, b;) and & > 0 small enough, |f(x)|P~2f(z) is continuously differ-
entiable on [a; + €, b; — €]. Integrating by parts again, we write

b;
| @@
b;—e

—tim [ @@ f()da

e—0 aite
' bj—e
ZZiERj(<foWp2f?<b¢-—e>—-<fﬂpr217<ai+—e>——<p-—-1>j£i+€ | @)1 ()P 2az)
b;
= (PN - = 1) [ 1P @PI P, wo)

where f(a;) =0 if a; # 0. Moreover, if 0 & {a; : i € I}, then f(0) = 0. It follows that

00 b;
| r@s@p e =3 [ @i@p-2 e

iel V@

b;
=~ OIFO)F2£(0) = > (- 1)/ |f'(@) | £ ()P~ da.
i€l G
(4.10)
Next we show that the set F' := {z > 0 : f(z) = 0 and f'(z) # 0} is at most
countable.
Take some xg € F. If for any € > 0, ((zg —¢€,z0+€)NF)\{zo} # 0, then there exists
a sequence {y : k> 1} C F\ {zo} such that limy_, . yxr = z¢. Consequently,

o) = i L) = S0
k—o0 Y — X0

which contradicts the fact f'(zg) # 0. Hence for any x € F, there is some € > 0 such
that (z —e,z+¢) N F = {x}. Consequently, there exist rational numbers r, and R, such
that r, < x < Ry and (rz, R;) N F = {x}. Since {(ry, Rz) : € F'} is at most countable,
F = Ugep(ry, Ry) N F is also at most countable.

Using the convention that |f'(z)|?|f(x)|P~2 = 0 whenever f'(x) = 0, we see from
(4.10) that

/

/mwmwww2ﬂmm:—f@umw2ﬂm—@—n/ (@) P (@)P2de
0 {: f(2)#0}
—@—w/ (@)l (@) P-2de
{z: f(x)=f"(x)=0}

= —f(O)IFO)P72f(0) — (p — 1)/0 |f' (@) f(2)P~2da.
Hence (4.6) is valid.
(ii) b;, = oo for some iy € I and a;, > 0.

In this case, b; < a;, for all i € I\ {ip}. Note that (f'|f|P~2f)(a;,) = 0. Similar
arguments as to those in Case (i) yield that

[ s e = 10 - - [ @R P @)
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Recall that there is a sequence {x,, : n > 1} satisfying (4.8). In analogy with (4.9)
we obtain

| r@ir@r2 e

= lim F@) f ()P f(x)dz

n—00 ]
e—0 ig

= Jim (PP ) = FUP 20 +2) = 0 =1) [ 17 @RI @)Pd)

=—0-1) [ @RI (112)
Now (4.6) follows from (4.11) and (4.12).
(i) E = (0, 00).

Similar arguments as in (4.12) yield (4.6). This completes the proof. O

Proof of Theorem 4.1. First, we assume that s ¢ Z. We have the following sequence of
steps.

(S1) We prove that
107 u(t, ) e < [0%uollprar, |l < [s],£>0. (4.13)

Without loss of generality, we assume that v and ug are real functions. Since Oyu =
A, u, we have

/(atu(t,m))]u(t,a;)\po2u(t,x)da::/ (Agu(t, z))|u(t, z)[Po2u(t, z)dz. (4.14)
RN RN

From (4.1) we see that for fixed t > 0 and 0 < ¢ < t/2, all of (u(t + ¢,z) — u(t,z))/e,
u(t + ¢, x) and u(t,z) are bounded by some function F' € LP°(RY), which is independent
of €. Applying the inequality

[lal™ = [bl7°] < Cpola = Bl(Jal ™" + o),

we get

Jut + £, )P — Ju(t, )|
9

< G S WD 1y 4yt e )

< Cpo|F() [

Note that d|u(t, )P0 = po|u(t,x)[Po~2u(t, 2)du(t, ). We see from the Lebesgue domi-
nated convergence theorem that

1 d
/ (Opu(t, x))|u(t, )P u(t, z)de = — - d*IIU(t, Mo -
RN po dt

On the other hand, applying Lemma 4.2 yields that

/ (At =) ut, ) P*~2u(t, )da = —(po — 1) / Vgt ) Plut, )P 2d.
RN RN
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Now we see from (4.14) that
1 d
- .= ) |[Po -1 2 P0—23, —
B+ = 1) [ Vst Pl de =0

Integrating with respect to ¢, we obtain

1
Lt + o= 1) [ [ Vet ) Putr ) 2o dr = ol (0.15)

Note that for any multi-index a with |a| < |s], 0%u(t,x) meets the heat equation with
initial data 0%ug. Replacing dgu for u and pj,| for po in (4.15), respectively, we get when
o] < 5],

HHGO‘ u(t, )HLPM + (Plo — / / |V 0%u(T, 2)|?|0%u(r, z) [Pl —2dz dr

= mnaauonﬂggl. (4.16)

Hence (4.13) is true.
(S2) We prove (4.2).
Set g(t,a,x) := 0Su(t,x + ae;) — 0Su(t,x), where a € R, |a] = |s] and 1 < j < N.
We have
Og(t,a,z) — Agg(t,a,x) = 0.
Replacing g(t, a, x) for u(t,r) and ppy for po in (4.15), respectively, we get

1 . t _
lotta L + = 1) [ [ IVag(ra.)Plg(r.a,a)pre-drds
Prs) 0 JRN

(07 a, )”I;;:[]s} ) |a| = LSJ (4'17)

B Prs)

Recall that v, = s — |s]. Multiplying both sides by 1/|a|*™Ps] and integrating with
respect to a € R yields, for all ¢ > 0,

Prs] Drs]
oz, ')}wfﬁ < Cop|0%uo] e (4.18)

where we applied Proposition 3.2. It follows from (4.13) and (4.18) that

sup. .y = s (3 gt )l + 3 [orutto] ey )

o=t=t jal <L) jal=Ls|
< 32 0wl + O 32 [9%uo] o
|| <[s] |o|=1s]
< Cs,ﬁ,NHuOHWgS'?
which proves (4.2).
(S3) We prove (4.3).
Taking derivatives on both sides of (4.1), we obtain

1
/ e—lr—y\Q/(‘lt)aauO(y)dy, vt > 0,2 € RV, |a| = [s].

Ofu(t,x) = @)V Jon
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It follows from Holder’s inequality that
C
fo' fo' N
Since p|5) < 2, we have
C p\_s] -2
le] Pis|—2 I [ P- 1 N
0%u(t, z)|Ple) 2 > (tN/(szsJ) 19 u0||LpM) ., VzeRY.

As a consequence of (4.16) we obtain

a C a pLsJ72 1 a Pls)
<
[ [ et (ool ) s < o sporulig,

Hence,

T
/ t(Z—PLsJ)N/(Qpsz)HVmag (t, )||L2dt < Cl”aau(]”LPLSJ’ la) = |s]. (4.20)
0

Therefore,
T e 2 1 2 2
/O tCPLD7| |V 05 u(t, )72 dE < CT P2 0%0| 7oy, lal = |s).
Consequently,
g 2 1 2 2
/0 12\ V20Su(t, )| 72dt < CT®LIPIIT P2 0% 30, |al = |s). (4.21)

Next we estimate [8§‘+Bu(t, lwz . Setting t =T in (4.17), we get

T
| 19eatt.aa)Plgt.a.mp2atar < l9(0.a, )5 ol = Ls):

prs)(prs — 1)

(4.22)
Thus,
_ Prs]
\Vag(t,a,2)|? |g(t,a,z)[Prs1—> 19(0, a, ')HLPM
/ /]RN |a’1+21’5 . |a’(p(s] ) dtdx § CW’ ‘CM‘ = LSJ (423)
If |a| > 1, we see from (4.19) that
lg(t, a, )| C CT'/? N
o = @ 10wl < e rap 10wl e, VO <t<Tox e R

If |a| < 1, we have

t,a,x) o
l9( . — ax]ax u(t,x + rej)dr| < [0y, 0%u(t, || poe.
|al !a\
By (4.1),
o _ 1 —(& ~Y) —a—yP/a0) ga
Oz, 0z u(t, x) = (At V72 /RN 12 € 0%up(y)dy.

Therefore, for |a| < 1,

N
lalvs = ¢N/Cppsy)+1/2 [0%uollpp1sy,  VE>0,2 € RT.
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Consequently
’g(t,a,xﬂpﬂﬂ*Q Cmax{l,Tl/z} o Prs1—2 N
’a’(p(sr2)us = tN/(QpLSJ)+1/2 H@ UOHL”LsJ , VO0<t<T, aceR, zecR".

It follows from (4.23) that

T 2
/ / @-pr (/e +1/2)  Veg(t a, )" 0
0 RN

|(I|1+2VS
Prs]
2_p]'s] ||g(07a7 )H Pls]
< (Cmax{t. VY00l ey ) T lal = L)

Integrating with respect to a € R yields

T 2
/ +(2=p[a)(N/(2p(5))+1/2) [vxaau(t .)} dt
x ) 2

0 W
2—prs Prs
< (Cmax{L, T2} [0%uoll o1y ) |00 s
< max{1,Tlfprs1/2}Hu0||§Vﬁ, laf = |s]. (4.24)

Thus, we obtain

T 2
/ % [vxagu(t,.)} dt < C'T®E=P)7 a1, TP 2} || 5, o] = |s]. (4.25)
0 w2 Wi

Vs

On the other hand, applying (4.13) yields that

T
| #0zutt i de < 700wy, whenlal <[s) (420)
0

Summing up (4.21), (4.25) and (4.26), we get
T
/ tult, )2, 2y dt < O(1 4 THUFOA=PIZHPETPL 17 ) g |2 .
0 WS+‘1 W‘S

Hence (4.3) is valid.
(S4) We prove (4.4).
Set h(t,a,z) = 8?+'3u(t,x+aej) fang’Bu(t,m), where |a| = |s], [B| =1and 1 < j <
N. We have
Oth(t,a,z) — Azh(t,a,z) = 0.
Taking the L2 inner product with t'*2h(t, a, ), we get

/ (Oh(t,a,z))t' TOh(t, a, z)dx — / (Azh(t,a,z))t" Teh(t, a,z)dz = 0.
RN RN
Hence

1 d 1+p

5 ' &<t1+g”h(t7 a, )H%?) + t1+'9||v$h(t, a, )H%Q - 2 tth(tv a, )H%Q

Integrating with respect to t € [0, 7] yields
T1+9
2

1+o

T T
||h(Ta aa')”%ﬂ +/ t1+g||v1h(t7aa')”%2dt = / tg”h(taaa')ui2dt‘ (427)
0 0
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Consequently,

e 2 T 2 140 (T 2
By 140 a+p3 . _ 1+o| gat+pB .

o (’)}ng /O e L0 P, )]Wgsdt : /0 rrefos Pue, )}Wgsdt

< C NT1+(p[sT —ps)o max{l Tl p(ﬂ/z}HUoHWp,

applying (4.25). Hence for |a| = |s] and |3] =1,
T 2
/1t“9[vx@ﬁ5u@,ﬂw,dt<(7 NTHH PR =pe)o HMXG.TlprQHWMF (4.28)
0

On the other hand, substituting &CJFBu(t, x) for h(t,a,x) in (4.27), where |5| = 1 and
ol = |, we get

Tl-‘r@

T
12107 Pu(t, )|t

T
1+
e A e L
0

< OT®Ls) _pS)UTl_pLsJ/2Haau()HipLSJ 7
applying (4.21). Hence
T
/0 tH a0y Put, ) [Tadt < CTOL P TP 2 0% T, . (4.29)
Moreover, we see from (4.21) that when |a| = [s] and |5]| =1,
T
/ 15200 Pu(t, )[|22dt < CTHPLI=PITTIPLL /2] 9o |2, (4.30)
0
When || < [s], we apply (4.13) to obtain
T
| ezt ) B d < 0% w0l (4.31)
Combining (4.28), (4.29), (4.30) and (4.31) we deduce
T
/0 e |ut, -)Hivggmdt < CspN <T(PLsJ —ps)ot1-p(s)/2 | T2+9> Huouivsﬁ.
Hence (4.4) is true.
This completes the proof of (4.2), (4.3) and (4.4) in the case s ¢ Z.
When s € Z, we apply similar arguments; we only provide a sketch. First, (4.2)
follows from (4.13). Then we get (4.3) by (4.13) and (4.20). Finally, (4.4) follows from

(4.3) and (4.29). In both cases, (4.2), (4.3) and (4.4) are valid. It follows that for any
0<q<2/(2+0),

T T
| et = [ OO R e
0 0

s Wi
< (/T t—q(1+g)/(2—q)dt> taf? (/ t+0) ||yt )HW(’" ) 2)dlt) v
0 0 st2
< Copn T4/ 2(1 4 T0)0/2 a1
This completes the proof. O
Remark 4.3.
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(i) Whenever p|,| = pfs) = 2, we have ¢ = 0. In this case, the local estimate (4.5) is
valid for all 0 < ¢ < 1, which coincides with [23, Lemma 2.1].
Moreover, (4.3), (4.4) and (4.5) now turn out to be

T
1t < g (14 T ol

T
/o tlult, )12, o At < o (1+T2) ol |75

s+2

T

[|u(t, ')Hq (5,2 2>dt < ﬁNTliq(l + Tz)q/QHUOHq 5» 0<g<l.

0 WS_A,_’Q’ Wy Ws

(ii) Theorem 4.1 extends the local estimates for initial data in classical Sobolev spaces
H?. For example, consider the initial data

(0) = —
up(x) = ————+.
T (U )

When max{0,N/2—1} <J < N/2and 1 < s <2, ug € w22 for all po > N/§.
Now Theorem 4.1 gives local energy estimates for the heat equation with initial
data wg, while one has no local estimates with classical Sobolev spaces since
ug & L2

4.2. Convergence of Schrodinger Operators. In this subsection, we study the con-
vergence of Schrodinger operators.

Take some function ¢ such that » € C°, 0 < p(w) < 1, p(w) =1 for jw| < 1 and
G(w) =0 for [w| >2. Set f1=¢- fand fo=f— f1.

Note that (f *x ¢)" = of (for a proof, see [37, Theorem 7.19]). Hence f; = f * ¢ and

fo=f— f+*yp. Now we rewrite eit(=8)% o

S
GHA) iDL it(=A) g (4.32)

If f € H® then f is locally integrable. Hence the convergence for

/ ei(x-w—l-t\w\a)fl(w)dw
RN

. it(—A)e/2 _ 1
e A= e

is obvious.

However, for f € Wf with pg > 2, we do not know whether f is locally integrable. So
we have to deal with the term eit(_A)a/Qfl with new method.

For the case pry) = 2, we show that if eit(_A)amf is convergent as t tends to zero for

all functions in H® for some s > 0, then the same is true for all functions in Wgﬁ with the
same index s.

Theorem 4.4. Let s >0, a > 1, p= (po, - .., p[s]) with prs) =2 and 1 < p; < oo for all
0 <1< [s]—1. Suppose that for all functions f € H*(RN),

lim e“(_A)a/2f(x) = f(z), a.e. (4.33)

t—0
We have:
(i) If 0 < s < N/2, then (4.33) is valid for all functions f € w?.
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(ii) If s > N/2 and a = 2, then (4.33) is also true if we interpret the operator e™*4
as

() = iy / ittt (1 — o (4)) flw)dw, (4.34)

where vy € C°(R) satisfies that po(x) = 1 for |x| < 1 and po(x) =0 for |z| > 2,
the limit exists almost everywhere, and the limit is independent of the choice of
o with the aforementioned properties.
For the case 1 < pr,) < 2 and a = 2, we have similar results.
Theorem 4.5. Let s > 0, p'= (po,...,p[s)) with 1 < prg <2 and 1 < p; < oo for all
0<I1I<][s]—1. We have:
(i) If ) N )
S
- < =< , (4.35)
prs) 2(N+1) N - ppg
then for any f € Wf,

lime "2 f(x) = f(z), a.e. (4.36)

t—0

(ii) If s > N/prs), then (4.36) is also true if we interpret the operator e A as in
(4-54)-

Remark 4.6. If0 < s <1, po > N/d > p1 =2 and 2(§ + s) > N, then the function f
defined in Example 3.6 satisfies that f € W§p°’2)\W§2’2). That is, Ws(pO’Q) s not contained
in W% = H.

For the case py > 2, thei Fourier transform of functions in Wf might be distributions.
In this case, we show that f is the distributional limit of a sequence of locally integrable
functions. Moreover, we prove that f is locally integrable if s/N < 1/pfg.
Lemma 4.7. Suppose that s >0 and p'= (po, - .., p[s)) with 1 < P <2and1<p <oo
for0 <1< [s|—1. Forany f € WP, f coincides with a function X in the domain RN\ {0}
such that |x|*A(x) € L1 and f(x) = lim. (1 —o(x/e))\(z) in the distributional sense,
where pg € C(RN) satisfies that po(z) =1 for |x| < 1 and po(z) =0 for |z| > 2.

Consequently, if spr) < N, then A is locally integrable and f =\

Proof. First, we show that there is some function A such that |z|*\(z) € L” 71 and
(Foh= [ Modwlalds, o CEEY\ (o)), (4.3
There are three cases:

(Al) 0<s< 1.
In this case, p'= (po,p1). We see from Proposmon 3.2 that

F)” —=—"—dxdy <
RN xRN ’9? - |N+p 1 Y
is equivalent to

p1
// ff+ ) Grda <00, VI<j<N (4.38)
RN xR la|ttPLs
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Applying Fubini’s theorem, we get that for almost all real numbers a, f — f(- +ae;) € LP'.
It is easy to see that f(- —ae;j)"= ¢;j(a-)f in the distributional sense, where

pj(z) = e i,

Hence

(f = F(- +aej)) = (1 = ¢j(a))f-
Since f — f(- + aej) € LP* for almost all a > 0, by the Hausdorfl-Young inequality, there
exist functions g, € LP1 such that

(f = f(- +aej))" = ga-
Hence for any ¢ € C°(B(0,1/a) \ {0}),

(1= é;(a))f o) = /RN g0 (2) () da

Therefore,
(11— ¢5(a)Pfr0) = (1= ¢5(a) f, (1= ¢j(a) ") = /RN(l — ¢;(ax))"ga(z)p(z)dz,

where z* denotes the conjugate of a complex number z. It follows that

N . N
(Sn-o@Pioy= [ 30 -0a) gu(@)pw)is,
j=1 RY 52

Set N
(o) = S0l (0 o) .
Zj:l 11— ¢j(ax)l?
Note that Eévzl |1 — ¢;(a-)|* has no zero in the area 0 < |z| < 1/a. Hence
14 oo (mN
e C(R 0}).
L1 = ¢j(a)]? E Y
It follows that
al ¥
— (a2 f = Aa dz.
(- st s o) [ deladola)da
On the other hand,
N
1- d) : Qfa 4 = f7 .
<;| @I s e~
Hence
(f.e) = /RN Aa(@)p(z)dz, Vo € CF(B(0,1/a) \ {0}). (4.40)

That is, f coincides with a function A, in the domain B(0,1/a)\ {0}. By the uniqueness,
we have

1

Aa(T) = A (), a <a,0<|z| < e

Take a sequence {a, : n > 1} such that a,, — 0. Then the limit
AMz) = nh_}Igo A, (T)

exists for almost all z # 0. Now we see from (4.40) that (4.37) is true.
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Since f — f(- + aej) € LP', we see from the above equation that for all a € R,

(£ £C+ae))) (@) = A@)(1 = 95(aa)), Ve < Ja| < A
Applying the Hausdorff-Young inequality and the Minkowski inequality successively, we

obtain that
// f(z + aej)|”* de da
RN xR |a|1+p18
_ £, VY ) [P p1/p}
Z/ / ‘(f f( +a€‘]))/(1')| 1dx da
|(f = f(- +ae))(x)P Pi/p1 p1/p}
> </RN </ |a|1+p1s da dz
A ) |P1 Ph/p1 p1/P}
579 \Je<lz|<a Ia! PL
. p1 P1/p1 p1/p}
= lim (/ (/ Az Hq—ﬁj(aac))] da) da:)
570 \Jeclel<a |aft 4P
IA(z)P1]2 sin(az; /2) [P pi/pr N\ P1/pPy
_ </sz </ i da)  da
IA(z)[P1[2sin(a/2)[P! s\ PP
RN |a|1tp1s ' |x]| dz

, , p1/p}
- Cs,j( / \A(sc)rpl\:cj\plm) . aa)
RN

Hence

) , 1/p1 p1 1/p1
|A(2)|Pr|x;|Préde < f(z + ac)| dz da < 00.
RN J 1/p1 RN xR |a|1+p13

(4.42)

That is, |;]*A(z) € LPt for all 1 < j < N. Consequently, |z[*A(z) € L.
(A2) s =k >1is an integer.

For all multi-index o with |a] = k, let h, be the Fourier transform of D*f and
Va(x) = (iz)*. Then hy = 1) f is a function in LPk. Consequently,

wllf @)~ Y |ha(w)| € LP.
|lal=k
For any ¢ € C°(RY) with ¢(z) = 0 in a neighbourhood of 0, since hy = Vo f is a

. . /
function in LPk, we have

<7/)a]?7 ) = ho(z)p(x)dz.

RN
Hence

(W, 0) = (af, ap) = / (@) ()0 () d
RN
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Therefore,
2 f = a(2) o (x)o(x)dx.
<I§k%f,<p> /R |azkh (#)ba(@)p(2)d

Note that ),y ¥2(z) has no zero other than x = 0. Substituting ¢/ > lal=k Y2 for ¢ in
the above equation, we get

¢ _ 27 P _
(f? S0> - < |o%::k wafv Z|a‘:]§ 1/}3> RN

Z|a\:k ha(x)wa('r)
2 laj=t Ya(2)?

o(z)dz.

Let
_ Z\M:k ha(fﬂ)lf)a(ﬂf) '

> jaj=k Ya(2)?
We get (4.37) and |z|*|\(z)] <D, [ha(z)| € P11,
(A3) s> 1is not an integer.

M)

For any multi-index a with |a| = [s], set 1o(7) = (iz)¥. Substituting (prs—1,prs]);
s—|s| and D*f for (pg,p1), s and f respectively in (A1), we get |w|*~1*) (D f)(w) € LPMs)

and there exists a function ), such that |w|*~ s\, (w) € IP 71 and for any ¢ € C(RY)
with ¢(z) = 0 in a neighbourhood of 0,

Wof o) = (D) = [ dolehola)d

With similar arguments as in the previous case, we get
Z|a\:[s] /\a(.%')¢a<.1‘)

BY  jal=(s) Yal(2)?

Let
. Z|a\:[s] Aa(»’ﬁ)% (‘T) ‘

A(x) =
2jal=s] Yal(2)?
We get (4.37) and |z[*A(z)| < 32, |21/ Ao (2)| € LPT1.
Recall that C2° is dense in .. For any ¢ € . with ¢(x) = 0 in a neighbourhood of
0, we see from (4.37) that

(o) = [ Nalpla)da. (1.43)

Take some o € C®(RY) such that @g(z) = 1 for |z| < 1 and pg(x) = 0 for |z| > 2.
We conclude that
. VP . /
glirg)wo(e)f 0, in .
It suffices to show that for any ¢ € .7,
lim (o (-) f. ) = 0. (4.44)

e—0

In fact,

~

’<900(é)fa<ﬂ>|:\<f7900( )o)l

3

=|( ((22))]
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N - ~
= (£, po(e) % )

N A
<N fllzeo - le™ Goler) * @1l uy
(e

<[ fllzeo - 1€ @0 oy - 2l
— 0.

Hence (4.44) is true. Consequently,

£ 9. N 7 . /
folim(l-w())f W
It follows that for any ¢ € .7,

(f.0) = gigg)<(1 — wo(é))f,so

~_

= 31_1)% - A(z) (1 - gpo(g))go(x)dx
= gg% . A(z) (1 - goo(g)><p(az)dx. (4.45)

Hence f = lim._,0(1 — @o(z/¢))A(z) in distributional sense.

Recall that |z|*A(z) € LI+, If spry < N, we see from Hélder’s inequality that
AMz) = |z|~%|z|*M(x) € LY(B(0, R)) for any R > 0. Hence A(x) is locally integrable. This
completes the proof. O

We are now ready to prove the main results.

Proof of Theorem 4.4. Fix some f € 1% By Lemma 4.7, there is some h € L? such that
f(w) = h(w)/|w]*.

Take some function ¢ such that ¢ € C, 0 < ¢p(w) < 1, ¢(w) =1 for |w| < 1 and
P(w) =0 for |w| > 2. Set f1 = ¢- f and fo = f — fi. Then the decomposition (4.32) is
true.

First, we consider the case s < N/2. In this case, we have

fi(w) !

el

1<} (@) - p(w)h(w) € L.

It follows from the dominated convergence theorem that e(=2)* f; () tends to fi(x) as
t tends to 0. A .
On the other hand, since fo(w) = (1 — $(w)) f(w) = 0 for |w| < 1, we have

1f2llz2 < ([l fa(@)ll 2 < [llw]”f(w)lz2 < oo

Hence fy € H®. By the hypothesis, we get lim;_,q eit(_A)a/Qfg(a:) = fa(x), a.e.
Next we consider the case s > N/2 and a = 2. ‘
Set o = ¢. Since 1 — @o(w/e) = 0 for |w| < &, we rewrite e "2 f as

1 (1) = lim 1)N /Wsei(x.ww?)(l_m(‘g)) flw)dw. (4.46)
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Recall that |w|®f(w) € L2. Hence f - Ljw|>e} € L?. Therefore, the integral in the above
equation is well defined. Let us show that the limit in (4.46) exists almost everywhere.
Observe that

/M% gitmtof?) (1 900(%)) Flw)dw

_ i(zwttlw?) (1 _ YN 2l N T i(z-wttlw]?) £
- /|| (1= g0 (2)) gl i+ [ et ),

|w|>1
By (4.45), we have
. 1 . 2 w ~
eUA fi(x) = lim / i@ wttw] )<1 — ol = )@ w) f(w)dw
( ) e—0 (27T)N lw|>e (6) ( ) ( )
b erteP)
- (27_[_)]\7<f56 (,0((4]))
That is, the limit in (4.46) exists for almost all z.
Observe that /@) 5(w) tends to e@“@(w) in .7 as t — 0. We get

: 1 2
. —itA T i(z-wtt|w]®)
%g%@ fl(x) %E}% (271_)]\[( € (p(w»
1 £oizw
- (27_[_)]\7 <fa€ (p(w»
= (f, oz —"))
= fxp(z)
As in the previous case, fo € H®. By the hypothesis, lim;_q e"t(*A)amfg(x) = fa(x),
a.e. Hence lim;_, eit(_A)a/zf(:E) = f(x), a.e. This completes the proof. O

Proof of Theorem 4.5. Fix some [ € Wsﬁ. By Lemma 4.7, there is some h € LPTs1 such
that f(w) = h(w)/|wl|®.
As in the proof of Theorem 4.4, we apply the decomposition (4.32) with a = 2 for
efitAf.
First, we deal with e 2 f,(z). Since fa(w) = (1 —@(w))f(w) = 0 for |w| < 1, we have
1 F2llze = el ™ - Lgguysy - |wl*F (@)l 2 (4.47)
<l ™ Ly - N @y, < . |
where 7 > 1 satisfying 1/r =1/2 — 1/p’M = 1/prs) —1/2 < s/N. More precisely, since

1 1 1 1 N s

- -+ — - < —.
p[s] 2 2(N + 1) p[s] 2(N + 1) N

We have
1 < 5= N/(2(N +1))
r N ’
Consequently, there is some 7 > N/(2(N + 1)) such that

1 S—T

<
T N




40 TING CHEN, LOUKAS GRAFAKOS, AND WENCHANG SUN

Applying Holder’s inequality yields

leol Fo(@)llz2 < |l ooy | - ||l F ()]

Thus fo € H™. .
Recall that it was proved in [9, 18, 19] that lim; ,qe ™2 f(z) = f(z), a.e., for all
f € H” with 7 > N/(2(N +1)). Hence

%i_r)r(l) e A fo(z) = fo(x), ae.

Next we deal with e 2 f;. If s < N/prs], then we have fl € L'. Tt follows from the
dominated convergence theorem that e~*A f; () tends to f(x) as ¢ tends to 0.

If s > N/ppq), employing the same arguments as in the case s > N/2 in the proof of
Theorem 4.4, we obtain

< 0
LT

lim e ™2 f1(2) = f * ().

Hence lim;_,0 e "2 f(2) = f(z), a.e. This completes the proof. O
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