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Abstract. We provide an improvement of Calderón and Torchinsky’s version [5] of
the Hörmander multiplier theorem on Hardy spaces Hp (0 < p <∞), substituting

the Sobolev space L2
s(A0) by the Lorentz-Sobolev space L

τ(s,p),min(1,p)
s (A0), where

τ (s,p) = n
s−(n/min (1,p)−n) and A0 is the annulus {ξ ∈ Rn : 1/2 < |ξ| < 2}. Our

theorem also extends that of Grafakos and Slav́ıková [10] to the range 0 < p 6 1.
Our result is sharp in the sense that the preceding Lorentz-Sobolev space cannot be
replaced by a larger Lorentz-Sobolev space Lr,qs (A0) with r < τ (s,p) or q > min(1, p).

1. Introduction

Let S(Rn) denote the Schwartz space and S′(Rn) the space of tempered distri-
butions on Rn. For the Fourier transform of f ∈ S(Rn) we use the definition

f̂(ξ) :=
∫
Rn f(x)e−2πi〈x,ξ〉dx and denote by f∨(ξ) := f̂(−ξ) the inverse Fourier trans-

form of f . We also extend these transforms to the space of tempered distributions.
Given a bounded function σ on Rn, the multiplier operator Tσ is defined as

Tσf(x) :=

∫
Rn
σ(ξ)f̂(ξ)e2πi〈x,ξ〉dξ

for f ∈ S(Rn), where 〈x, ξ〉 is the dot product of x and ξ in Rn. The classical Mikhlin
multiplier theorem [15] states that if a function σ, defined on Rn, satisfies∣∣∂αξ σ(ξ)

∣∣ .α |ξ|−|α|, |α| 6
[
n/2
]

+ 1,

then the operator Tσ admits a bounded extension in Lp(Rn) for 1 < p < ∞. In [13]
Hörmander sharpened Mikhlin’s result, using the weaker condition

sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
L2
s(A0)

<∞(1.1)

for s > n/2, where L2
s denotes the standard L2-based Sobolev space on Rn, Ψ is

a Schwartz function on Rn whose Fourier transform is supported in the annulus

A0 = {ξ : 1/2 < |ξ| < 2} and satisfies
∑

j∈Z Ψ̂(2−jξ) = 1, ξ 6= 0. Calderón and

Torchinsky [5] proved that if (1.1) holds for s > n/p − n/2, then σ is a Fourier
multiplier of Hardy space Hp(Rn) for 0 < p 6 1. A different proof was given by
Taibleson and Weiss [22]. It turns out that the condition s > n/min (1, p) − n/2 is
optimal for boundedness to hold and it is natural to ask whether condition (1.1) can be
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weakened. Baernstein and Sawyer [1] obtained endpoint Hp(Rn) estimates by using

Herz space conditions for
(
σ(2j·)Ψ̂

)∨
. An endpoint H1−L1,2 estimate involving Besov

space was given by Seeger [17, 18] and these estimates were improved and extended
to Triebel-Lizorkin spaces by Seeger [19] and Park [16]. Grafakos, He, Honźık, and
Nguyen [11] substituted L2

s(Rn), s > n/2 in (1.1) by Lrs(Rn), s > n/r, while Grafakos
and Slav́ıková [10] recently improved this, replacing (1.1) by

sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
L
n/s,1
s (A0)

<∞

where L
n/s,1
s is a Lorentz-type Sobolev space (defined in (1.2)).

Before stating our results, we recall the definition of Lorentz spaces Lp,q(Rn) and
Lorentz-Sobolev spaces Lp,qs (Rn). For any measurable function f defined on Rn, the
decreasing rearrangement of f is defined by

f ∗(t) := inf
{
s > 0 : df (s) 6 t

}
, t > 0

where df (s) :=
∣∣{x ∈ Rn : |f(x)| > s}

∣∣. Here we adopt the convention that the
infimum of the empty set is ∞. Then for 0 < p, q 6∞ we define

‖f‖Lp,q(Rn) :=


(∫ ∞

0

(
t1/pf ∗(t)

)q dt
t

)1/q

, q <∞

sup
t>0

t1/pf ∗(t), q =∞.

The set of all f with ‖f‖Lp,q(Rn) < ∞ is called the Lorentz space and is denoted

by Lp,q(Rn). For s > 0 let (I − ∆)s/2 be the inhomogeneous fractional Laplacian
operator, defined by

(I −∆)s/2f :=
(
(1 + 4π2| · |2)s/2f̂

)∨
.

Then for 0 < p, q 6∞ and s > 0 let

(1.2) ‖f‖Lp,qs (Rn) :=
∥∥(I −∆)s/2f

∥∥
Lp,q(Rn)

.

Theorem A. [10] Let 1 < p <∞ and 0 < s < n satisfy

(1.3) s >
∣∣n/p− n/2∣∣.

Then there exists C > 0 such that

‖Tσf‖Lp(Rn) 6 C sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
L
n/s,1
s (Rn)

‖f‖Lp(Rn).

Moreover, a counterexample showing that condition (1.3) is optimal can be found in
Slav́ıková [21]; this means that Lp boundedness could fail on the line

∣∣n/p−n/2∣∣ = s.
The purpose of this paper is to extend Theorem A to Hardy spaces Hp(Rn) for

0 < p <∞. Let Φ be a Schwartz function satisfying
∫
Rn Φ(x)dx = 1 and Supp(Φ̂) ⊂

{ξ ∈ Rn : |ξ| 6 2}, and Φk := 2knΦ(2k·). We define Hp(Rn) to be the collection of
all tempered distributions f satisfying

‖f‖Hp(Rn) :=
∥∥ sup
k∈Z
|Φk ∗ f |

∥∥
Lp(Rn)

<∞.
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Let

τ (s,p) :=
n

s− (n/min (1, p)− n)
.

The first main result of this paper is the following:

Theorem 1.1. Let 0 < p < ∞ and 0 < s < n/min (1, p) satisfy (1.3). Then there
exists C > 0 such that

(1.4) ‖Tσf‖Hp(Rn) 6 C sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
L
τ(s,p),min (1,p)
s (Rn)

‖f‖Hp(Rn).

The above theorem coincides with Theorem A if 1 < p < ∞ because Hp(Rn) =
Lp(Rn) for 1 < p <∞, and so we mainly deal with the case 0 < p 6 1 in the paper.
However, a complex interpolation argument between H1- and L2-boundedness yields
the result for 1 < p < 2; this recovers Theorem A by a duality argument, as our proof
for 0 < p 6 1 is in fact independent of that in Theorem A. We will give a sketch of
this in the appendix. Actually the construction of analytic family of operators and
interpolation techniques are very similar to those used in [10].

Remark. As a result of Baernstein and Sawyer [1, Corollary 1 (Chapter 3)], for
0 < p < 1 and s > n/p− n/2 we have

(1.5) ‖Tσf‖Hp(Rn) . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Bs,p
τ(s,p)

(Rn)
‖f‖Hp(Rn)

where Ψk := 2knΨ(2k·) and Bs,q
p (Rn) is the Besov space with (quasi-)norms

‖g‖Bs,qp (Rn) := ‖Φ ∗ g‖Lp(Rn) +
( ∞∑
k=1

2skq
∥∥Ψk ∗ g

∥∥q
Lp(Rn)

)1/q

.

Then the case 0 < p < 1 in (1.4) could be also obtained as a consequence of (1.5)
and of the embedding

(1.6) Bs0,p

τ (s0,p)
(Rn) ↪→ Lτ

s1,p,p
s1

(Rn) ↪→ Bs2,p

τ (s2,p)
(Rn), s2 < s1 < s0 and τ (s1,p) > 1,

which follows from the recent generalization of the Franke-Jawerth embedding theo-
rem for Triebel-Lizorkin-Lorentz spaces of Seeger and Trebels [20]. Conversely, our
result also implies (1.5) for s > n/p − n/2 via the embedding (1.6) as Theorem 1.1
will be proved in a different way, based on the Littlewood-Paley theory for Hardy
spaces and some inequalities in Lorentz spaces. We note that when s = n/p − n/2,
(1.5) holds while (1.4) fails as mentioned below.

On the other hand, a certain weight condition is required in [1] when we extend
(1.5) to H1-boundedness. To be specific, we have

(1.7) ‖Tσf‖H1(Rn) . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Bs,1
n/s

(ω)
‖f‖H1(Rn), s > n/2

where {ω(k)−1}k∈N ∈ `2 and

‖g‖Bs,1
n/s

(ω) := ‖Φ ∗ g‖Ln/s(Rn) +
∞∑
k=1

ω(k)2sk
∥∥Ψk ∗ g

∥∥
Ln/s(Rn)

.
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However, a sharp endpoint H1- boundedness holds by using Lorentz-Sobolev condi-
tions without weights in Theorem 1.1. This, combined with the embedding (1.6),
improves (1.7) by replacing Bs,1

n/s(ω) by Bs,1
n/s for s > n/2. When s = n/2, the op-

timality of {ω(k)−1}k∈N ∈ `2 for (1.7) remains open, but it is known in Park [16,

Theorem 3.4] that B
n/2,1
2 (ω) in (1.7) cannot be substituted by B

n/2,1
2 .

We now turn our attention to the sharpness of Theorem 1.1. We point out that the
example of Slav́ıková [21] is still applicable to the case 0 < p 6 1 with the dilation
property ‖f(ε·)‖Hp(Rn) = ε−n/p‖f‖Hp(Rn), and therefore (1.3) is sharp in Theorem 1.1.
We now consider the optimality of different parameters. Note that for 0 < r1 < r2 <
∞ and 0 < q1, q2 6∞∥∥σ(2j·)Ψ̂

∥∥
L
r1,q1
s (Rn)

.
∥∥σ(2j·)Ψ̂

∥∥
L
r2,q2
s (Rn)

uniformly in j,

which follows from the Hölder inequality with even integers s, complex interpola-
tion technique, and a proper embedding theorem. Moreover, if q1 > q2, then the
embedding Lr,q2s (Rn) ↪→ Lr,q1s (Rn) yields that∥∥σ(2j·)Ψ̂

∥∥
L
r,q1
s (Rn)

.
∥∥σ(2j·)Ψ̂

∥∥
L
r,q2
s (Rn)

uniformly in j.

Consequently, we may replace L
τ (s,p),min (1,p)
s (Rn) in Theorem 1.1 by Lr,qs (Rn) for r >

τ (s,p) and 0 < q 6∞, or by Lτ
(s,p),q
s (Rn) for 0 < q < min (1, p).

The second main result of this paper is the sharpness of the parameters τ (s,p) and
min(1, p). That is, Theorem 1.1 is sharp in the sense that τ (s,p) cannot be replaced
by any smaller number r, and if r = τ (s,p), then min (1, p) cannot be replaced by any
larger number q.

Theorem 1.2. Let 0 < p <∞ and |n/p− n/2| < s < n/min (1, p).

(1) For any 0 < r < τ (s,p) and 0 < q 6∞, there exists a function σ that satisfies

sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lr,qs (Rn)

<∞

such that Tσ is unbounded on Hp(Rn).
(2) For any q > min (1, p), there exists a function σ that satisfies

sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),q
s (Rn)

<∞

such that Tσ is unbounded on Hp(Rn).

The paper is organized as follows. Section 2 is dedicated to preliminaries, mostly
extensions of inequalities in Lebesgue spaces to Lorentz spaces thanks to a real in-
terpolation technique. We address the case 0 < p 6 1 of Theorem 1.1 in Section
3 and the proof of Theorem 1.2 is given in Section 4. In the appendix, a complex
interpolation method is discussed whose purpose is to establish the Lp-boundedness
for 1 < p < 2.
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2. Preliminaries

The Lorentz spaces are generalization of Lebesgue spaces, which occur as interme-
diate spaces for the real interpolation, so called K-method. For 0 < p, p0, p1 < ∞,
0 < r 6∞, and 0 < θ < 1 satisfying p0 6= p1 and 1/p = (1− θ)/p0 + θ/p1,

(2.1) (Lp0(Rn), Lp1(Rn))θ,r = Lp,r(Rn).

This remains valid for vector-valued spaces. For 0 < p, p0, p1 < ∞, 0 < q, r 6 ∞,
and 0 < θ < 1 satisfying p0 6= p1 and 1/p = (1− θ)/p0 + θ/p1,

(2.2)
(
Lp0(`q), Lp1(`q)

)
θ,r

= Lp,r(`q),
(
`q(Lp0), `q(Lp1)

)
θ,r

= `q(Lp,r).

We remark that
(
(Lp0(`q0), Lp1(`q1)

)
θ,r
6= Lp,r(`q),

(
`q0(Lp0), `q1(Lp1)

)
θ,r
6= `q(Lp,r) for

q0 6= q1 with 1/q = (1− θ)/q0 + θ/q1. See [2, 3, 6, 7] for more details.
Then many inequalities in Lebesgue spaces can be extended to Lorentz spaces from

the following real interpolation method, which appears in [2, 3, 7, 12].

Proposition B. Let A and B be two topological vector spaces. Suppose (A0, A1)
and (B0, B1) be couples of quasi-normed spaces continuously embedded into A and
B, respectively. Let 0 < θ < 1 and 0 < r 6∞. If T is a linear operator such that

T : A0 → B0, T : A1 → B1,

with the quasi-norms M0 and M1, respectively, then

T : (A0, A1)θ,r → (B0, B1)θ,r

is also continuous, and for its quasi-norm we have

‖T‖(A0,A1)θ,r→(B0,B1)θ,r 6M1−θ
0 M θ

1 .

As applications of Proposition B, we shall extend Young inequality, Hausdorff-
Young inequality, Minkowski inequality, and Kato-Ponce type inequality into Lorentz
spaces.

Lemma 2.1. Let 1 < p 6 r < ∞, 1 6 q < r, and 0 < t 6 ∞ satisfy 1/r + 1 =
1/p+ 1/q. Then

‖f ∗ g‖Lr,t(Rn) 6 ‖f‖Lp,t(Rn)‖g‖Lq(Rn)

for all f, g ∈ S(Rn).

Proof. For a fixed g ∈ S(Rn), we define the linear operator Tg by

Tgf := f ∗ g.
Choose r1, θ, and p1 such that r < r1 < ∞, 0 < θ < 1, p < p1 < ∞, 1/r =
(1− θ)/q + θ/r1, and 1/r1 + 1 = 1/p1 + 1/q. Then note that 1/p = 1− θ + θ/p1. By
using Young inequality, we obtain that

‖Tgf‖Lq(Rn) 6 ‖g‖Lq‖f‖L1(Rn)

and
‖Tgf‖Lr1 (Rn) 6 ‖g‖Lq‖f‖Lp1 (Rn).

Then Proposition B with (2.1) completes the proof. �
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Lemma 2.2. Let 2 < p <∞ and 0 < r 6∞. Then

‖f̂‖Lp,r(Rn) 6 ‖f‖Lp′,r(Rn)

where 1/p+ 1/p′ = 1.

Proof. It follows immediately from Hausdorff-Young inequality and Proposition B
with (2.1). �

Lemma 2.3. Let 1 < p <∞, 0 < r 6∞, and s > 0. For any ϑ ∈ S(Rn), we have

(2.3) ‖ϑ · f‖Lp,rs (Rn) .n,s,p,r,ϑ ‖f‖Lp,rs (Rn).

Proof. Pick p0, p1 satisfying 1 < p0 < p < p1 < ∞ and let T be the linear operator
defined by

Tf := (I −∆)s/2
(
ϑ · (I −∆)−s/2f

)
.

Then we apply the Kato-Ponce inequality [14] to obtain

‖Tf‖Lpj . ‖f‖Lpj for j = 0, 1.

Then (2.3) follows from Proposition B and (2.1). �

Lemma 2.4. Let 1 6 q < p <∞ and 0 < r 6∞. Then∥∥∥(∑
k∈Z

|fk|q
)1/q∥∥∥

Lp,r(Rn)
.
(∑
k∈Z

‖fk‖qLp,r(Rn)

)1/q

Proof. We select p1 > 0 and 0 < θ < 1 so that p < p1 <∞ and 1/p = (1−θ)/p1+θ/q.
Using Minkowski inequality we write

∥∥{fk}k∈Z∥∥Lp1 (`q)
.
∥∥{fk}k∈Z∥∥`q(Lp1 )

and we

interpolate this with
∥∥{fk}k∈Z∥∥Lq(`q) =

∥∥{fk}k∈Z∥∥`q(Lq) to obtain∥∥{fk}k∈Z∥∥(Lp1 (`q),Lq(`q))θ,r
.
∥∥{fk}k∈Z∥∥(`q(Lp1 ,`q(Lq)))θ,r

.

Then the proof is completed in view of (2.2). �

The next ingredient we need is Hölder’s inequality in Lorentz spaces, which is an
immediate consequence of the Hardy-Littlewood inequality∫

Rn
|f(x)g(x)|dx 6

∫ ∞
0

f ∗(t)g∗(t)dt

and Hölder’s inequality for Lebesgue spaces.

Lemma 2.5. Let 1 < p <∞ and 1 6 q 6∞. Then∫
Rn

∣∣f(x)g(x)
∣∣dx 6 ‖f‖Lp,q(Rn)‖g‖Lp′,q′ (Rn)

where 1/p+ 1/p′ = 1/q + 1/q′ = 1.

The following Lorentz space variant of the Sobolev embedding theorem can be
easily obtained from the classical Sobolev embedding theorem combined with the
Marcinkiewicz interpolation theorem; the proof is omitted.
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Lemma 2.6. Let s0, s1 ∈ R, 1 < p0, p1 < ∞, and 0 < r0, r1 6 ∞. Then the
embedding

Lp0,r0s0
(Rn) ↪→ Lp1,r1s1

(Rn)

holds if p0 = p1, s0 > s1, r0 6 r1, or if s0 − s1 = n/p0 − n/p1 > 0.

We remark that a generalization of the preceding lemma can be found in the recent
work of Seeger and Trebels [20].

Finally, we describe the behavior of decreasing rearrangement of radial functions.

Lemma 2.7. Suppose f is a radial function with f(x) = g(|x|) for x ∈ Rn. Then

f ∗(t) = g∗
(
(t/Ωn)1/n

)
where Ωn stands for the volume of the unit ball in Rn.

Proof. We observe that

df (s) =
∣∣{x ∈ Rn : |f(x)| > s

}∣∣ =
∣∣{rθ ∈ Rn : |g(r)| > s, θ ∈ Sn−1

}∣∣
= Ωn

∣∣{r > 0 : |g(r)| > s
}∣∣n

= Ωn

(
dg(s)

)n
and this proves that

f ∗(t) = inf
{
s > 0 : df (s) 6 t

}
= inf

{
s > 0 : Ωn

(
dg(s)

)n
6 t
}

= inf
{
s > 0 : dg(s) 6 (t/Ωn)1/n

}
= g∗

(
(t/Ωn)1/n

)
.

�

3. Proof of Theorem 1.1

The set of Schwartz functions whose Fourier transform is compactly supported
away from the origin is dense in Hp(Rn); this is a consequence of Littlewood-Paley
theory for Hp as one can approximate f ∈ Hp by

f (N) :=
N∑

k=−N

2knΨ(2k·) ∗ f → f in Hp(Rn) as N →∞.

See [24] for more details. Thus we may work with such Schwartz functions. Let f be
a Schwartz function with compact support away from the origin in frequency space
and suppose σ ∈ L∞(Rn) satisfies

sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

<∞.

Let Λ ∈ S(Rn) have the properties that Supp(Λ) ⊂ {ξ ∈ Rn : |ξ| 6 1} and∫
Rn Λ(ξ)dξ = 1. For 0 < ε < 1/100, we introduce

σε(ξ) :=
∑
j∈Z

(
σΨ̂(·/2j)

)
∗ Λj,ε(ξ)
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where Λj,ε := (2jε)−nΛ(·/2jε). Then since f̂ has compact support away from the
origin,

Tσεf =
∑
j∈Z

([(
σΨ̂(·/2j)

)
∗ Λj,ε

]
f̂
)∨

is a finite sum and thus, using the argument of approximation of identity, for each
k ∈ Z

lim
ε→0

Φk ∗
(
Tσεf

)
(x) = Φk ∗

(
Tσf

)
(x).

This proves that∥∥Tσf∥∥Hp(Rn)
6
∥∥ lim inf

ε→0
sup
k∈Z

∣∣Φk ∗ (Tσεf)
∣∣∥∥
Lp(Rn)

6 lim inf
ε→0

∥∥Tσεf∥∥Hp(Rn)

where we applied Fatou’s lemma in the last inequality. Therefore, it suffices to show
that

(3.1) ‖Tσεf‖Hp(Rn) . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

‖f‖Hp(Rn), uniformly in ε.

Now there exist a sequence of L∞-atoms {al}∞l=1 for Hp(Rn), and a sequence of
scalars {λl}∞l=1 so that

f =
∞∑
l=1

λlal in S′

and ( ∞∑
l=1

|λl|p
)1/p

≈ ‖f‖Hp(Rn),

where L∞-atom al for Hp(Rn) means that there exists a cube Ql such that al is
supported in Ql, |al| 6 |Ql|−1/p, and

∫
Rn x

γal(x)dx = 0 for all multi-indices γ with
|γ| 6 [n/p− n].

We note that Tσε maps S(Rn) to itself, which implies that Tσε is well-defined on
S′(Rn) using duality argument, and actually, Tσε : S′(Rn)→ S′(Rn). This yields that

Tσεf =
∞∑
l=1

λl(Tσεal) in the sense of tempered distribution.

Hence we have

‖Tσεf‖Hp(Rn) 6
( ∞∑
l=1

|λl|p
∥∥Tσεal∥∥pHp(Rn)

)1/p

,

using subadditive property of ‖ · ‖pHp(Rn).

Moreover, due to support assumptions and dilations, for each j ∈ Z, we have

σε(2jξ)Ψ̂(ξ) =

j+2∑
l=j−2

(
σΨ̂(·/2l)

)
∗ Λl,ε(2jξ)Ψ̂(ξ) =

2∑
l=−2

(
σ(2j·)Ψ̂(·/2l)

)
∗ Λl,ε(ξ)Ψ̂(ξ),
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from which it follows

sup
j∈Z

∥∥(σε(2j·)Ψ̂)∥∥
Lτ

(s,p),p
s (Rn)

.
2∑

l=−2

sup
j∈Z

∥∥∥(I −∆)s/2
((
σ(2j·)Ψ̂(·/2l)

)
∗ Λl,ε

)∥∥∥
Lτ

(s,p),p(Rn)

.
2∑

l=−2

sup
j∈Z

∥∥σ(2j·)Ψ̂(·/2l)
∥∥
Lτ

(s,p),p
s (Rn)

6
2∑

l=−2

Cl sup
j∈Z

∥∥σ(2j+l·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

. sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

uniformly in ε; here we applied Lemmas 2.3 and 2.1 combined with the fact that
‖Λl,ε‖L1(Rn) = ‖Λ‖L1(Rn).

Therefore, the proof of (3.1) is reduced to the following proposition.

Proposition 3.1. Let 0 < p 6 1 and a be a Hp-atom, associated with a cube Q in
Rn. Then we have

‖Tσa‖Hp(Rn) . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

where the constant in the inequality is independent of σ and a.

Proof. Introducing the function Θ satisfying Θ̂(ξ) := Ψ̂(ξ/2) + Ψ̂(ξ) + Ψ̂(2ξ) so that

Θ̂ = 1 on the support of Ψ̂, let Lj and LΘ
j be the Littlewood-Paley operators associ-

ated with Ψ and Θ, respectively. Let Q∗ and Q∗∗ denote the concentric dilates of Q
with side length 10l(Q) and 100l(Q), respectively. Then we write

‖Tσa‖Hp(Rn) ≈
∥∥∥(∑

j∈Z

|LjTσa|2
)1/2∥∥∥

Lp(Rn)

.p
∥∥∥(∑

j∈Z

|LjTσa|2
)1/2∥∥∥

Lp(Q∗∗)
+
∥∥∥(∑

j∈Z

|LjTσa|2
)1/2∥∥∥

Lp((Q∗∗)c)
.

In view of Hölder’s inequality, the first part is controlled by

|Q∗∗|1/p−1/2
∥∥∥(∑

j∈Z

|LjTσa|2
)1/2∥∥∥

L2(Rn)
.n |Q|1/p−1/2‖Tσa‖L2(Rn)

and we see that

‖Tσa‖L2(Rn) 6 ‖σ‖L∞(Rn)‖a‖L2(Rn) 6 sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
L∞(Rn)

|Q|−(1/p−1/2).

Now using Lemma 2.5, 2.2, and 2.6 with 1 < τ (s,p) < 2, we obtain∥∥σ(2j·)Ψ̂
∥∥
L∞(Rn)

6
∥∥(σ(2j·)Ψ̂

)∨∥∥
L1(Rn)

.
∥∥(1 + 4π2| · |2

)(s−(n/p−n))/2(
σ(2j·)Ψ̂

)∨∥∥
L(τ(s,p))′,1(Rn)

6
∥∥σ(2j·)Ψ̂

∥∥
Lτ

(s,p),1
s−(n/p−n)(R

n)
.
∥∥σ(2j·)Ψ̂

∥∥
Lτ

(s,p),p
s (Rn)

,
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which finishes the proof of∥∥∥(∑
j∈Z

|LjTσa|2
)1/2∥∥∥

Lp(Q∗∗)
. sup

j∈Z
‖σ(2j·)Ψ̂‖

Lτ
(s,p),p
s (Rn)

.

To verify

(3.2)
∥∥∥(∑

j∈Z

|LjTσa|2
)1/2∥∥∥

Lp((Q∗∗)c)
. sup

j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

,

we notice that LjTσa(x) can be written as
(
σΨ̂(·/2j)

)∨ ∗ (LΘ
j a)(x). We decompose

the left-hand side of (3.2) to

I :=
∥∥∥( ∑

j:2j l(Q)<1

∣∣(σΨ̂(·/2j))∨ ∗ (LΘ
j a)
∣∣2)1/2∥∥∥

Lp((Q∗∗)c)

and

J :=
∥∥∥( ∑

j:2j l(Q)>1

∣∣(σΨ̂(·/2j))∨ ∗ (LΘ
j a)
∣∣2)1/2∥∥∥

Lp((Q∗∗)c)
.

In view of the embedding `p ↪→ `2

I 6
( ∑
j:2j l(Q)<1

∥∥(σΨ̂(·/2j))∨ ∗ (LΘ
j a)
∥∥p
Lp(Rn)

)1/p

and Bernstein’s inequality, we obtain∥∥(σΨ̂(·/2j))∨ ∗ (LΘ
j a)
∥∥
Lp(Rn)

. 2jn(1/p−1)
∥∥(σΨ̂(·/2j))∨

∥∥
Lp(Rn)

‖LΘ
j a‖Lp(Rn).

Using dilation, Lemma 2.5 and 2.2, we have

2jn(1/p−1)‖(σΨ̂(·/2j))∨‖Lp(Rn) =
(∫

Rn

∣∣(σ(2j·)Ψ̂
)∨

(x)
∣∣pdx)1/p

.
∥∥∥∣∣(1 + 4π2| · |2

)s/2(
σ(2j·)Ψ̂

)∨∣∣p∥∥∥1/p

L(n/(sp))′,1(Rn)

=
∥∥∥(1 + 4π2| · |2

)s/2(
σ(2j·)Ψ̂

)∨∥∥∥
Lp(n/(sp))

′,p(Rn)

6
∥∥σ(2j·)Ψ̂

∥∥
Lτ

(s,p),p
s (Rn)

(3.3)

since 2 < p(n/(sp))′ <∞ and τ (s,p) =
(
p(n/(sp))′

)′
. Moreover, for any M > 0

|LΘ
j a(x)| .M |Q|1−1/p

(
2jl(Q)

)[n/p−n]+1 2jn

(1 + 2j|x− cQ|)M
,

using standard arguments in [9, Appendix B] with 2jl(Q) < 1 and the fact that

|a(x)| .n,M |Q|−1/p 1(
1 + |x− cQ|/l(Q)

)M , ∫
Rn
xαa(x)dx = 0 for |α| 6 [n/p−n],

∣∣∂α(2jnΨ(2j·)
)
(x)
∣∣ . 2j|α|2jn

1

(1 + 2j|x|)M
for α ∈ Zn
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where cQ denotes the center of Q. Selecting M > n/p, we have

‖Lja‖Lp .
(
2jl(Q)

)[n/p]+1−n/p

and thus

I . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

( ∑
j:2j l(Q)<1

(
2jl(Q)

)p([n/p]+1−n/p)
)1/p

. sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

,

since [n/p] + 1− n/p > 0.
To estimate J we further separate into two terms

J1 :=
∥∥∥( ∑

j:2j l(Q)>1

∣∣(σΨ̂(·/2j)
)∨ ∗ (χ(Q∗)cLΘ

j a
)∣∣2)1/2∥∥∥

Lp((Q∗∗)c)

and

J2 :=
∥∥∥( ∑

j:2j l(Q)>1

∣∣(σΨ̂(·/2j)
)∨ ∗ (χQ∗LΘ

j a
)∣∣2)1/2∥∥∥

Lp((Q∗∗)c)
.

Using the embedding `p ↪→ `2, Bernstein inequality with(
σΨ̂(·/2j)

)∨ ∗ (χ(Q∗)cLΘ
j a
)
(x) =

(
σΨ̂(·/2j)

)∨ ∗ [LΘ
j

(
χ(Q∗)cLΘ

j a
)]

(x),

and the inequality (3.3), we have

J1 . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

( ∑
j:2j l(Q)>1

∥∥LΘ
j

(
χ(Q∗)cLΘ

j a
)∥∥p

Lp(Rn)

)1/p

.

We see that for x ∈ (Q∗)c and M > n/p

|LΘ
j a(x)| .M |Q|−1/p

∫
y∈Q

2jn

(1 + 2j|x− y|)2M
dy .M |Q|−1/p 1

(2j|x− cQ|)M

.M |Q|−1/p(2jl(Q))−M
1

(1 + |x− cQ|/l(Q))M

since |x− y| > 9
10
|x− cQ|. Then∥∥LΘ

j

(
χ(Q∗)cLΘ

j a
)∥∥

Lp(Rn)

. |Q|−1/p(2jl(Q))−M
[ ∫

Rn

(∫
Rn
|2jnΘ(2j(x− y))| 1

(1 + |x− cQ|/l(Q))M
dy
)p
dx

]1/p

.

Standard manipulations with 2jl(Q) > 1 in [9, Appendix B] yield that the last
expression is less than a constant times

|Q|−1/p(2jl(Q))−M
(∫

Rn

1

(1 + |x− cQ|/l(Q))Mp
dx
)1/p

. (2jl(Q))−M .
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Accordingly,

J1 . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

( ∑
k:2kl(Q)>1

(2kl(Q))−Mp
)1/p

. sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

.

We now consider J2. Choose n/p− n/2 < N < s so that n/2 < Np < sp < n and

2 < p
(
n/(Np)

)′
<∞. For notational convenience we write

ENj σ(x) :=
(
1 + 4π2(2j|x|)2

)N/2(
σΨ̂(·/2j)

)∨
(x).

Observe that if x ∈ (Q∗∗)c and y ∈ Q∗, then |x− cQ| . |x− y| and thus

|x− cQ|N
∣∣(σΨ̂(·/2j)

)∨ ∗ (χQ∗LΘ
j a
)
(x)
∣∣ . 2−jN

∣∣ENj σ∣∣ ∗ ∣∣χQ∗LΘ
j a
∣∣(x).

This proves that J2 is less than a constant times∥∥∥ 1

|x− cQ|N
( ∑
j:2j l(Q)>1

2−2jN
(∣∣ENj σ∣∣ ∗ ∣∣χQ∗LΘ

j a
∣∣)2)1/2∥∥∥

Lp((Q∗∗)c)

.
∥∥∥( ∑

j:2j l(Q)>1

2−2jN
(∣∣ENj σ∣∣ ∗ ∣∣χQ∗LΘ

j a
∣∣)2)p/2∥∥∥1/p

L(n/(Np))′,1(Rn)

=
∥∥∥( ∑

j:2j l(Q)>1

2−2jN
(∣∣ENj σ∣∣ ∗ ∣∣χQ∗LΘ

j a
∣∣)2)1/2∥∥∥

Lp(n/(Np))
′,p(Rn)

,

where we made use of Lemma 2.5 with n/(Np) > 1. Now using Lemma 2.4 with
p(n/(Np))′ > 2, the preceding expression is dominated by a constant multiple of( ∑

j:2j l(Q)>1

2−2jN
∥∥∥∣∣ENj σ∣∣ ∗ ∣∣χQ∗LΘ

j a
∣∣∥∥∥2

Lp(n/(Np))
′,p(Rn)

)1/2

and Lemma 2.1 yields that∥∥∥∣∣ENj σ∣∣ ∗ ∣∣χQ∗LΘ
j a
∣∣∥∥∥
Lp(n/(Np))

′,p(Rn)
.
∥∥ENj σ∥∥Lp(n/(Np))′,p(Rn)

‖LΘ
j a‖L1(Q∗).

We see that ∥∥ENj σ∥∥Lp(n/(Np))′,p(Rn)
. 2−j(n/p−n)2jN

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(N,p),p
N (Rn)

. 2−j(n/p−n)2jN
∥∥σ(2j·)Ψ̂

∥∥
Lτ

(s,p),p
s (Rn)

by applying dilation, Lemma 2.2 with (p(n/(Np))′)′ = τ (N,p), and Lemma 2.6 with
s > N . Combining with the estimate ‖LΘ

j a‖L1(Q∗) . |Q|1/2‖LΘ
j a‖L2(Rn), we finally

obtain

J2 . sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

|Q|1/2
( ∑
j:2j l(Q)>1

2−2j(n/p−n)‖LΘ
j a‖2

L2(Rn)

)1/2

. sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)

|Q|1/p−1/2
∥∥{LΘ

j a
}
j∈Z

∥∥
L2(`2)

. sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lτ

(s,p),p
s (Rn)
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because
∥∥{LΘ

j a
}
j∈Z

∥∥
L2(`2)

≈ ‖a‖L2(Rn) 6 |Q|−1/p+1/2.

This concludes the proof of the proposition. �

4. Proof of Theorem 1.2

The construction of our counterexamples is based on the idea in [16] and the
following lemma is crucial in the proof.

Lemma 4.1. Let 0 < s, γ <∞ and define the function on Rn

(4.1) H(s,γ)(x) :=
1

(1 + 4π2|x|2)s/2
1

(1 + ln(1 + 4π2|x|2))γ/2
.

Then Ĥ(s,γ) is a positive radial function and there exist cs,γ,n, ds,γ,n > 0 such that

(4.2) Ĥ(s,γ)(ξ) 6 cs,γ,ne
−|ξ|/2 when |ξ| > 1

and

1

ds,γ,n
6
Ĥ(s,γ)(ξ)

T(s,γ)(ξ)
6 ds,γ,n when |ξ| 6 1

where

T(s,γ)(ξ) :=

{
|ξ|−(n−s)(1 + 2 ln |ξ|−1)−γ/2 for 0 < s < n

1 for s > n.

Proof. It is known that the Fourier transform of (1 + 4π2|x|2)−s/2 is the Bessel po-
tential Gs(ξ). Recall that Gs is a postive radial function, ‖Gs‖L1(Rn) = 1, and there
exist Cs,n, Ds,n > 0 such that

(4.3) Gs(ξ) 6 C(s,n)e
−|ξ|/2 for |ξ| > 1,

and

(4.4)
1

D(s,n)

6
Gs(ξ)

Ss(ξ)
6 D(s,n) for |ξ| 6 1

where

Ss(ξ) :=


|ξ|−(n−s) for 0 < s < n

ln (2|ξ|−1) for s = n

1 for s > n.

Here we note that for any ε > 0

(4.5) C(s,n), D(s,n) .ε,n e
ε|s−n|.

We refer to [9, Ch. 1.2.2] for more details.
Using the identity

A−γ/2 =
1

Γ(γ/2)

∫ ∞
0

e−tAtγ/2
dt

t
,
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which is valid for A > 0, we write

(
1 + log(1 + 4π2|x|2)

)−γ/2
=

1

Γ(γ/2)

∫ ∞
0

e−te−t log(1+4π2|x|2)tγ/2
dt

t

=
1

Γ(γ/2)

∫ ∞
0

e−t
1

(1 + 4π2|x|2)t
tγ/2

dt

t
.

We obtain from this that the Fourier transform of
(
1 + log(1 + 4π2|x|2)

)−γ/2
is

1

Γ(γ/2)

∫ ∞
0

e−tG2t(ξ)t
γ/2dt

t

and consequently,

Ĥ(s,γ)(ξ) = Gs ∗
( 1

Γ(γ/2)

∫ ∞
0

e−tG2t(·)tγ/2
dt

t

)
(ξ) =

1

Γ(γ/2)

∫ ∞
0

e−tG2t+s(ξ)t
γ/2dt

t
.

Clearly, Ĥ(s,γ) is a positive radial function since so is G2t+s.
Suppose |ξ| > 1. Then using (4.3) and (4.5) with 0 < ε < 1/100,

|Ĥ(s,γ)(ξ)| .ε,n
1

Γ(γ/2)

(∫ ∞
0

e−teε|2t+s−n|tγ/2
dt

t

)
e−|ξ|/2 .s,n,γ e

−|ξ|/2,

which proves (4.2).
Now we assume that |ξ| 6 1. When 0 < s < n

Ĥ(s,γ)(ξ) =
1

Γ(γ/2)

∫ n−s
2

0

e−tG2t+s(ξ)t
γ/2dt

t
+

1

Γ(γ/2)

∫ ∞
n−s
2

e−tG2t+s(ξ)t
γ/2dt

t
.

Then using (4.4), (4.5), and change of variables,

1

Γ(γ/2)

∫ n−s
2

0

e−tG2t+s(ξ)t
γ/2dt

t

.n,ε |ξ|−(n−s) 1

Γ(γ/2)

∫ n−s
2

0

e−t|ξ|2teε(n−2t−s)tγ/2
dt

t

6 eε(n−s)|ξ|−(n−s) 1

Γ(γ/2)

∫ n−s
2

0

e−t(1+2 ln(|ξ|−1))dt

t

6 eε(n−s)|ξ|−(n−s)(1 + 2 ln(|ξ|−1))−γ/2
1

Γ(γ/2)

∫ ∞
0

e−ttγ/2
dt

t

.s,n,γ |ξ|−(n−s)(1 + 2 ln(|ξ|−1))−γ/2
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and

1

Γ(γ/2)

∫ n−s
2

0

e−tG2t+s(ξ)t
γ/2dt

t

&n,ε |ξ|−(n−s) 1

Γ(γ/2)

∫ n−s
2

0

e−t|ξ|2te−ε(n−2t−s)tγ/2
dt

t

> e−ε(n−s)|ξ|−(n−s) 1

Γ(γ/2)

∫ n−s
2

0

e−t(1+2 ln(|ξ|−1))dt

t

> e−ε(n−s)|ξ|−(n−s)(1 + 2 ln(|ξ|−1))−γ/2
1

Γ(γ/2)

∫ n−s
2

0

e−ttγ/2
dt

t

&s,n,γ |ξ|−(n−s)(1 + 2 ln(|ξ|−1))−γ/2.

Similarly, we can also prove that

1

Γ(γ/2)

∫ ∞
n−s
2

e−tG2t+s(ξ)t
γ/2dt

t
≈s,n,γ 1.

A similar computation, together with (4.4) and (4.5), will lead to an estimate for

s > n, in which Ĥ(s,γ) ≈s,γ,n 1 for |ξ| 6 1. We leave this to the reader to avoid
unnecessary repetition. �

In what follows let η, η̃ denote Schwartz functions so that η > 0, η(x) > c on

{x ∈ Rn : |x| 6 1/100} for some c > 0, Supp(η̂) ⊂ {ξ ∈ Rn : |ξ| 6 1/1000}, ̂̃η(ξ) = 1

for |ξ| 6 1/1000, and Supp(̂̃η) ⊂ {ξ ∈ Rn : |ξ| 6 1/100}. Let e1 := (1, 0, . . . , 0) ∈ Zn
and 0 < t, γ <∞. Define H(t,γ) as in (4.1),

K(t,γ)(x) := H(t,γ) ∗ η̃(x)e2πi〈x,e1〉,

and

σ(t,γ)(ξ) := K̂(t,γ)(ξ).

We investigate an upper bound of supj∈Z
∥∥σ(t,γ)(2j·)Ψ̂

∥∥
Lr,qs (Rn)

and a lower bound

of ‖Tσ(t,γ)‖Hp(Rn)→Hp(Rn) when t− n < s.

4.1. Upper bound of supj∈Z
∥∥σ(t,γ)(2j·)Ψ̂

∥∥
Lr,qs (Rn)

. Note that, due to the supports

of σ(t,γ) and Ψ̂, we have

σ(t,γ)(2jξ)Ψ̂(ξ) =

{
K̂(t,γ)(2jξ)Ψ̂(ξ), −2 6 j 6 2

0, otherwise.

For −2 6 j 6 2 and t− n < s,∥∥σ(t,γ)(2j·)Ψ̂
∥∥
Lr,qs (Rn)

.
∥∥σ(t,γ)

∥∥
Lr,qs (Rn)

.
∥∥Ĥ(t,γ)

∥∥
Lr,qs (Rn)

=
∥∥Ĥ(t−s,γ)

∥∥
Lr,q(Rn)

where Lemma 2.3 is applied.
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For u > 0 define

T (t−s,γ)(u) :=

{
u−(n−t+s)(1 + 2 lnu−1)−γ/2 for u 6 1

e−u/2+1/2 for u > 1.

Then T (t−s,γ) is a positive decreasing function and this implies that

(4.6)
(
T (t−s,γ)

)∗
(u) = T (t−s,γ)(u).

We first assume 0 < q <∞. By using Lemma 4.1, we have

Ĥ(t−s,γ)(ξ) .s,t,γ,n T (t−s,γ)(|ξ|),
from which ∥∥Ĥ(t−s,γ)

∥∥
Lr,q(Rn)

.s,t,γ.n
∥∥T (t−s,γ)

(
| · |
)∥∥

Lr,q(Rn)

=
(∫ ∞

0

(
T (t−s,γ)

(
(u/Ωn)1/n

)
u1/r

)q du
u

)1/q

= Ω1/r
n n1/q

(∫ ∞
0

(
T (t−s,γ)(u)

)q
unq/r

du

u

)1/q

where Lemma 2.7 is applied with (4.6). Furthermore,(∫ 1

0

(
T (t−s,γ)(u)

)q
unq/r

du

u

)1/q

=
(∫ 1

0

1

un−t+s−n/r
1

(1 + 2 lnu−1)γq/2
du

u

)1/q

=
(∫ ∞

1

u(n−t+s−n/r)q 1

(1 + 2 lnu)γq/2
du

u

)1/q

and (∫ ∞
1

(
T (t−s,γ)(u)

)q
unq/r

du

u

)1/q

= e1/2
(∫ ∞

1

e−uq/2unq/r
du

u

)1/q

.q,r,n 1

Finally, we conclude that

(4.7) sup
j∈Z

∥∥σ(t,γ)(2j·)Ψ̂
∥∥
Lr,qs (Rn)

.s,γ,n,q,r 1+
(∫ ∞

1

u(n−t+s−n/r)q 1

(1 + 2 lnu)γq/2
du

u

)1/q

and with the usual modification if q =∞ we may also obtain

(4.8) sup
j∈Z

∥∥σ(t,γ)(2j·)Ψ̂
∥∥
Lr,∞s (Rn)

.s,γ,n,r 1 + sup
u>1

un−t+s−n/r

(1 + 2 lnu)γ/2
.

4.2. Lower bound of ‖Tσ(t,γ)‖Hp(Rn)→Hp(Rn). If 1 6 p <∞, then

‖Tσ(t,γ)‖Hp(Rn)→Hp(Rn) > ‖σ(t,γ)‖L∞(Rn) > |σ(t,γ)(e1)| & ‖H(t,γ)‖L1(Rn).

Moreover, for 0 < p < 1, define f(x) := η(x)e2πi〈x,e1〉. Observe that
∣∣Tσ(t,γ)f(x)

∣∣ =∣∣H(t,γ) ∗ η(x)
∣∣ and thus

‖Tσ(t,γ)‖Hp(Rn)→Hp(Rn) & ‖Tσ(t,γ)f‖Hp(Rn) > ‖Tσ(t,γ)f‖Lp(Rn)

= ‖H(t,γ) ∗ η‖Lp(Rn) & ‖H(t,γ)‖Lp(Rn),
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where the last inequality follows from the fact that H(t,γ), η > 0 and H(t,γ)(x− y) >
H(t,γ)(x)H(t,γ)(y).

Consequently, for any 0 < p <∞,

‖Tσ(t,γ)‖Hp(Rn)→Hp(Rn) & ‖H(t,γ)‖Lmin (1,p)(Rn)

=
(∫

Rn

1

(1 + 4π2|x|2)tmin (1,p)/2

1

(1 + ln(1 + 4π2|x|2))min (1,p)γ/2
dx
)1/min (1,p)

.(4.9)

4.3. Completion of the proof of Theorem 1.2. We are only concerned with
the case 0 < p 6 2 as the other cases follow by a duality argument. Suppose
n/p− n/2 < s < n/min (1, p).

We first assume r < τ (s,p) and 0 < q 6∞. Then we can choose t < n
min (1,p)

so that

r <
n

s− (t− n)
<

n

s− (n/min (1, p)− n)
= τ (s,p).

Note that t− n < s and n− t+ s− n/r < 0, from which

sup
j∈Z

∥∥σ(t,γ)(2j·)Ψ̂
∥∥
Lr,qs (Rn)

.s,γ,n,q,r 1

due to (4.7) and (4.8). Moreover, since tmin (1, p) < n

‖Tσ(t,γ)‖Hp(Rn)→Hp(Rn) =∞,

using (4.9).
Now suppose r = τ (s,p) and min (1, p) < q. Choose

(4.10) 2/q < γ 6 2/min (1, p)

and let t = n
min (1,p)

such that n− t+ s− n/r = 0. Then

sup
j∈Z

∥∥σ(t,γ)(2j·)Ψ̂
∥∥
Lr,qs (Rn)

.s,γ,n,q 1 +
(∫ ∞

1

1

(1 + 2 lnu)γq/2
du

u

)1/q

. 1

because of (4.10) for 0 < q < ∞, and similarly, supj∈Z
∥∥σ(t,γ)(2j·)Ψ̂

∥∥
Lr,∞s (Rn)

.s,γ,n 1

for q =∞. On the other hand, ‖Tσ(t,γ)‖Hp(Rn)→Hp(Rn) is bounded below by(∫
Rn

1

(1 + 4π2|x|2)n/2
1

(1 + ln(1 + 4π2|x|2))min (1,p)γ/2
dx
)1/min (1,p)

,

which diverges for the choice of γ in (4.10).

Appendix A. Complex Interpolation of H1- and L2-boundedness

In this section, we review the complex interpolation method of Calderón-Torchinsky
[5] and Triebel [23], which is a generalization of the well-known method of Calderón
[4] and Fefferman and Stein [8].

Let A := {z ∈ C : 0 < Re(z) < 1} be a strip in the complex plane C and A denote
its closure. We say that the mapping z 7→ fz ∈ S′(Rn) is a S′-analytic function on A
if the following properties are satisfied:
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(1) For any ϕ ∈ S(Rn) with compact support, g(x, z) :=
(
ϕf̂z
)
(x) is a uniformly

continuous and bounded function on Rn × A.
(2) For any ϕ ∈ S(Rn) with compact support and any fixed x ∈ Rn, hx :=

(
ϕf̂z
)∨

is an analytic function on A.

Let 0 < p0, p1 < ∞. Then we define F
(
Hp0(Rn), Hp1(Rn)

)
to be the collection of

all S′-analytic functions fz on A such that

fit ∈ Hp0(Rn), f1+it ∈ Hp1(Rn) for any t ∈ R

and

sup
t∈R
‖fl+it‖Hpl (Rn) <∞ for each l = 1, 2.

Moreover,

‖fz‖F (Hp0 (Rn),Hp1 (Rn)) := max
(

sup
t∈R
‖fit‖Hp0 (Rn), sup

t∈R
‖f1+it‖Hp1 (Rn)

)
.

For 0 < θ < 1 the intermediate space (Hp0(Rn), Hp1(Rn))θ is defined by(
Hp0(Rn), Hp1(Rn)

)
θ

:=
{
g : ∃fz ∈ F

(
Hp0(Rn), Hp1(Rn)

)
so that g = fθ

}
and the (quasi-)norm in the space is

‖g‖(Hp0 (Rn),Hp1 (Rn))θ := inf
fz∈F (Hp0 (Rn),Hp1 (Rn)):g=fθ

‖fz‖F (Hp0 (Rn),Hp1 (Rn))

where the infimum is taken over all admissible functions fz in the sense that fz ∈
F
(
Hp0(Rn), Hp1(Rn)

)
and g = fθ. It is known in [5, 23] that for any 0 < p0, p1 <∞

and 0 < θ < 1

(A.1)
(
Hp0(Rn), Hp1(Rn)

)
θ

= Hp(Rn) when 1/p = (1− θ)/p0 + θ/p1.

We now use this method to interpolate H1- and L2-boundedness of the multiplier
operator Tσ to obtain Lp estimates for 1 < p < 2. Note that Hp(Rn) = Lp(Rn) for
1 < p < ∞. Since most arguments are very similar to that used in the proof of [10,
Theorem 3.1], we shall provide only the outline of the proof, omitting the details.

We may consider a Schwartz function f whose Fourier transform is compactly
supported via a density argument. Suppose that 1 < p < 2 and n/p− n/2 < s < n.
Let 0 < θ < 1 satisfy 1/p = (1−θ)/1+θ/2. Then we have s > n/p−n/2 = (1−θ)n/2.
Pick s0 > n/2 so that

s > (1− θ)s0 > (1− θ)n/2

and let s1 := s−(1−θ)s0
θ

> 0 which implies

s = (1− θ)s0 + θs1.

Since f ∈ Lp(Rn) = Hp(Rn) =
(
H1(Rn), H2(Rn)

)
θ
, by definition, for any ε > 0,

there exists f εz ∈ F
(
H1(Rn), H2(Rn)

)
such that f = f εθ and

(A.2) ‖f εz‖F (H1(Rn),H2(Rn)) < ‖f‖(H1(Rn),H2(Rn))θ + ε.
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Now let Θ̂(ξ) := Ψ̂(ξ/2) + Ψ̂(ξ) + Ψ̂(2ξ) as before, and σj,s := (I −∆)s/2
(
σ(2j·)Ψ̂

)
for each j ∈ Z. We define, as in [10, (3.18)],

σz(ξ) :=
(1 + θ)n+1

(1 + z)n+1

∑
j∈Z

(I −∆)−
s0(1−z)+s1z

2

(
σj,sh

s−(1−z)s0−zs1
n

j,s

)
(ξ/2j)Θ̂(ξ/2j)

where hj,s : Rn → (0,∞) is a measure preserving transformation so that |σj,s| =
(σj,s)∗ ◦ hj,s. Then we note that σθ = σ and Fz := Tσzf

ε
z is a S′-analytic function on

A. Moreover,

‖Tσf‖Hp(Rn) ≈
∥∥Tσθf εθ∥∥(H1(Rn),H2(Rn))θ

= ‖Fθ‖(H1(Rn),H2(Rn))θ

6 ‖Fz‖F (H1(Rn),H2(Rn)) = max
(

sup
t∈R
‖Fit‖H1(Rn), sup

t∈R
‖F1+it‖H2(Rn)

)
.

By using Theorem 1.1 for p = 1, we have

‖Fit‖H1(Rn) = ‖Tσitf εit‖H1(Rn) . sup
j∈Z

∥∥σit(2j·)Ψ̂∥∥Ln/s0,1s0
(Rn)
‖f εit‖H1(Rn)

. sup
j∈Z

∥∥σit(2j·)Ψ̂∥∥Ln/s0,1s0
(Rn)

(
‖f‖(H1(Rn),H2(Rn))θ + ε

)
,

where (A.2) is applied in the last inequality. Similarly, with L2-boundedness,

‖F1+it‖H2(Rn) = ‖Tσ1+itf ε1+it‖H2(Rn) . ‖σ1+it‖L∞(Rn)‖f ε1+it‖H2(Rn)

. sup
j∈Z

∥∥σ1+it(2
j·)Ψ̂

∥∥
L∞(Rn)

(
‖f‖(H1(Rn),H2(Rn))θ + ε

)
.

Therefore, once we prove

(A.3)
∥∥σit(2j·)Ψ̂∥∥Ln/s0,1s0

(Rn)
,
∥∥σ1+it(2

j·)Ψ̂
∥∥
L∞(Rn)

.
∥∥σ(2j·)Ψ̂

∥∥
L
n/s,1
s (Rn)

uniformly in j, then we are done by using (A.1) and taking ε→ 0.
Let us prove (A.3). We first observe that

σz(2
jξ)Ψ̂(ξ)

=
(1 + θ)n+1

(1 + z)n+1

∑
k∈Z

(I −∆)−
s0(1−z)+s1z

2

(
σk,sh

s−(1−z)s0−zs1
n

k,s

)
(ξ/2k−j)Θ̂(ξ/2k−j)Ψ̂(ξ)

is actually finite sum over k near j due to the supports of Θ̂ and Ψ̂, and for simplicity,
we may therefore take k = j in the calculation below.

Using Lemma 2.3, we have∥∥σit(2j·)Ψ̂∥∥Ln/s0,1s0
(Rn)
.

1

(1 + |t|2)(n+1)/2

∥∥∥(I−∆)
(s0−s1)it

2

(
σj,sh

s−s0+(s0−s1)it
n

j,s

)∥∥∥
Ln/s0,1(Rn)

.

Then we apply [10, Lemma 3.5, 3.7] to bound this by∥∥∥σj,sh s−s0+(s0−s1)it
n

j,s

∥∥∥
Ln/s0,1(Rn)

.
∥∥(σj,s)∗(r)r(s−s0)/n

∥∥
Ln/s0,1(0,∞)

. ‖(σj,s)∗‖Ln/s,1(0,∞) . ‖σj,s‖Ln/s,1(Rn) =
∥∥σ(2j·)Ψ̂

∥∥
L
n/s,1
s (Rn)

.
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On the other hand, using [10, Lemma 3.4, 3.5, 3.7],∥∥σ1+it(2
j·)Ψ̂

∥∥
L∞(Rn)

.
1

(1 + |t|2)(n+1)/2

∥∥∥(I −∆)−s1/2(I −∆)(s0−s1)it/2
(
σj,sh

s−s1+(s0−s1)it
n

j,s

)∥∥∥
L∞(Rn)

.
1

(1 + |t|2)(n+1)/2

∥∥∥(I −∆)(s0−s1)it/2
(
σj,sh

s−s1+(s0−s1)it
n

j,s

)∥∥∥
Ln/s1,1(Rn)

.
∥∥∥σj,sh s−s1+(s0−s1)it

n
j,s

∥∥∥
Ln/s1,1(Rn)

.
∥∥(σj,s)∗(r)r(s−s1)/n

∥∥
Ln/s1,1(0,∞)

. ‖(σj,s)∗‖Ln/s,1(0,∞) . ‖σj,s‖Ln/s,1(Rn) =
∥∥σ(2j·)Ψ̂

∥∥
L
n/s,1
s (Rn)

,

which finishes the proof of (A.3).
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