SHARP HARDY SPACE ESTIMATES FOR MULTIPLIERS
LOUKAS GRAFAKOS AND BAE JUN PARK

ABSTRACT. We provide an improvement of Calderén and Torchinsky’s version [5] of
the Hérmander multiplier theorem on Hardy spaces H? (0 < p < 00), substituting

the Sobolev space L2(Ap) by the Lorentz-Sobolev space L§<5’p)7min(l’p)(Ao), where
(P = —omm = and Ao is the annulus {£eR”: 1/2 <[] < 2}. Our
theorem also extends that of Grafakos and Slavikova [10] to the range 0 < p < 1.
Our result is sharp in the sense that the preceding Lorentz-Sobolev space cannot be
replaced by a larger Lorentz-Sobolev space L79(Ag) with r < 7(57) or ¢ > min(1, p).

1. INTRODUCTION

Let 8(R™) denote the Schwartz space and 8'(R™) the space of tempered distri-
butions on R". For the Fourier transform of f € 8(R™) we use the definition
f(f) = [rn f(2)e @8 dz and denote by f¥(€) := ]/”\(—5) the inverse Fourier trans-
form of f. We also extend these transforms to the space of tempered distributions.

Given a bounded function ¢ on R", the multiplier operator T, is defined as

~

1.1) = [ o@F©em 0

for f € S(R™), where (z, ) is the dot product of z and £ in R". The classical Mikhlin
multiplier theorem [15] states that if a function o, defined on R", satisfies

|020(8)] Sa I, Jal < [n/2] +1,

then the operator 7, admits a bounded extension in LP(R") for 1 < p < co. In [13]
Hormander sharpened Mikhlin’s result, using the weaker condition

(1.1) jgg HJ(Zj-)\I/HLE(AO) < 00

for s > n/2, where L? denotes the standard L*-based Sobolev space on R™, W is
a Schwartz function on R™ whose Fourier transform is supported in the annulus
Ag ={&: 1/2 < |§] < 2} and satisfies ZjEZ\TJ(TJE) =1, £ # 0. Calderén and
Torchinsky [5] proved that if (1.1) holds for s > n/p — n/2, then ¢ is a Fourier
multiplier of Hardy space HP(R"™) for 0 < p < 1. A different proof was given by
Taibleson and Weiss [22]. It turns out that the condition s > n/min (1,p) —n/2 is
optimal for boundedness to hold and it is natural to ask whether condition (1.1) can be
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weakened. Baernstein and Sawyer [1] obtained endpoint H?(R") estimates by using

Herz space conditions for (o(2/ )\/I})V An endpoint H' — L2 estimate involving Besov
space was given by Seeger [17, 18] and these estimates were improved and extended
to Triebel-Lizorkin spaces by Seeger [19] and Park [16]. Grafakos, He, Honzik, and
Nguyen [11] substituted L?(R"), s > n/2in (1.1) by L"(R"), s > n/r, while Grafakos
and Slavikova [10] recently improved this, replacing (1.1) by

= lo@ ¥l ron gy < 00

where L2*! is a Lorentz-type Sobolev space (defined in (1.2)).

Before stating our results, we recall the definition of Lorentz spaces LP?(R") and
Lorentz-Sobolev spaces LP'?(R™). For any measurable function f defined on R"™, the
decreasing rearrangement of f is defined by

() = inf{s>0:df(s)<t}, t>0

where dy(s) := |{z € R" : |f(z)| > s}|. Here we adopt the convention that the
infimum of the empty set is co. Then for 0 < p, ¢ < co we define

([ errors)” oo

supt'/? f*(¢), q = oo.
t>0

| f || Lpagny :=

The set of all f with ||f||zee@n) < oo is called the Lorentz space and is denoted
by LP4(R™). For s > 0 let (I — A)*? be the inhomogeneous fractional Laplacian
operator, defined by

(T=A)yPf = ((1+47] - ) 27)".
Then for 0 < p,qg < oo and s > 0 let
(1-2) Hﬂ LPY(Rr) = ||(I - A)S/QfHLp,q(Rny
Theorem A. [10] Let 1 < p < oo and 0 < s < n satisfy
(1.3) s > |n/p—n/2|.
Then there exists C' > 0 such that

175 fll oy < Csup o (27D o gy | F ey

Moreover, a counterexample showing that condition (1.3) is optimal can be found in
Slavikové [21]; this means that L? boundedness could fail on the line |n/p—n/2| = s.

The purpose of this paper is to extend Theorem A to Hardy spaces HP(R™) for
0 < p < co. Let ® be a Schwartz function satisfying [, ®(z)dz = 1 and Supp((ﬁ) C
{€ e R : |¢] < 2}, and Py := 2 ®(2F.). We define HP(R") to be the collection of
all tempered distributions f satisfying

ny = P -
Il gy 2= [} 0 19 1] o ey < 00
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Let
n

5= (n/min(Lp) —n)
The first main result of this paper is the following:

F(sp) .

Theorem 1.1. Let 0 < p < 00 and 0 < s < n/min (1,p) satisfy (1.3). Then there
exists C' > 0 such that

(14) HTGf”HP(Rn) < Csug HO—(QJ)\IJ|
J€

L;—('Svp),min (1,p) (R") H fHHp(Rn) .

The above theorem coincides with Theorem A if 1 < p < 0o because HP(R") =
LP(R™) for 1 < p < oo, and so we mainly deal with the case 0 < p < 1 in the paper.
However, a complex interpolation argument between H'- and L?-boundedness yields
the result for 1 < p < 2; this recovers Theorem A by a duality argument, as our proof
for 0 < p < 1 is in fact independent of that in Theorem A. We will give a sketch of
this in the appendix. Actually the construction of analytic family of operators and
interpolation techniques are very similar to those used in [10].

Remark. As a result of Baernstein and Sawyer [1, Corollary 1 (Chapter 3)], for
0<p<lands>=n/p—n/2wehave

(1.5) |To f | o ey S sup |o(27) W]
VIS

Bj,(i,p) (Rn) ||f||HP(Rn)

where Wy := 25" ¥(2F.) and B3?(R") is the Besov space with (quasi-)norms

> 1/q
91l B3s ny = 19 * gl Lo en) + <,; 20| W, gﬂimn)) ‘

Then the case 0 < p < 1 in (1.4) could be also obtained as a consequence of (1.5)
and of the embedding

(1.6) Bl (R") = LT P(RY) = BXE (R"), 53 < s <so and 71 > 1,

7(s0,P) 7(s2,p)

which follows from the recent generalization of the Franke-Jawerth embedding theo-
rem for Triebel-Lizorkin-Lorentz spaces of Seeger and Trebels [20]. Conversely, our
result also implies (1.5) for s > n/p — n/2 via the embedding (1.6) as Theorem 1.1
will be proved in a different way, based on the Littlewood-Paley theory for Hardy
spaces and some inequalities in Lorentz spaces. We note that when s = n/p — n/2,
(1.5) holds while (1.4) fails as mentioned below.

On the other hand, a certain weight condition is required in [1] when we extend
(1.5) to H'-boundedness. To be specific, we have

(1.7) 1T fllzr@ry S sup |o(27) 0]
VIS

Bs,/l (w)”fHHl(R")a S 2 n/2

where {w(k) }ren € 2 and

||g| BZ‘/ls(w) = ||(I) * gHL”/S(R") + Zw(k)QSkH\I/k * gHLn/s(Rn)‘

o0
k=1
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However, a sharp endpoint H'- boundedness holds by using Lorentz-Sobolev condi-
tions without weights in Theorem 1.1. This, combined with the embedding (1.6),
improves (1.7) by replacing BZ’/ls(w) by BZ’/IS for s > n/2. When s = n/2, the op-

timality of {w(k)™'}reny € £* for (1.7) remains open, but it is known in Park [16,
Theorem 3.4] that B}*'(w) in (1.7) cannot be substituted by Bj/*".

We now turn our attention to the sharpness of Theorem 1.1. We point out that the
example of Slavikova [21] is still applicable to the case 0 < p < 1 with the dilation
property || f(€)||gr@n) = € P|| f|| o (g, and therefore (1.3) is sharp in Theorem 1.1.
We now consider the optimality of different parameters. Note that for 0 < r; <17y <
oo and 0 < g1, g2 < 00

|o(27) 7] < lo(2) 9]

uniformly in j,

Lglvql (Rn) L:Qv‘ZQ (R”)

which follows from the Holder inequality with even integers s, complex interpola-
tion technique, and a proper embedding theorem. Moreover, if ¢; > ¢o, then the
embedding L7%2(R™) — L7 (R") yields that

|o(27-) 0| LT () < [lo(27)v| uniformly in 7.

Lquz (R”)

Consequently, we may replace L] i (1#) (R™) in Theorem 1.1 by L"%(R"™) for r >
7P and 0 < ¢ < oo, or by LT 4(R") for 0 < ¢ < min (1,p).

The second main result of this paper is the sharpness of the parameters 7(>?) and
min(1, p). That is, Theorem 1.1 is sharp in the sense that 7(>?) cannot be replaced
by any smaller number r, and if 7 = 7(>P)| then min (1, p) cannot be replaced by any
larger number gq.

Theorem 1.2. Let 0 < p < oo and |n/p —n/2| < s <n/min(1,p).
(1) For any 0 <r < 76) and 0 < ¢ < oo, there exists a function o that satisfies

)<OO

sup [l (2 ) ][ g e

such that T, is unbounded on HP(R™).
(2) For any q > min (1,p), there ezists a function o that satisfies

sup H0(2j-)\fl|
JEZ

such that T, is unbounded on HP(R™).

s, < o0
L-Sr( p),q(Rn)

The paper is organized as follows. Section 2 is dedicated to preliminaries, mostly
extensions of inequalities in Lebesgue spaces to Lorentz spaces thanks to a real in-
terpolation technique. We address the case 0 < p < 1 of Theorem 1.1 in Section
3 and the proof of Theorem 1.2 is given in Section 4. In the appendix, a complex
interpolation method is discussed whose purpose is to establish the LP-boundedness
for 1 <p<2.
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2. PRELIMINARIES

The Lorentz spaces are generalization of Lebesgue spaces, which occur as interme-
diate spaces for the real interpolation, so called K-method. For 0 < p,pg,p1 < o0,
0 <r<oo,and 0 < 6 < 1 satisfying pg # p1 and 1/p = (1 —0)/po + 0/p1,

(2.1) (LPo(R™), LP*(R™))g, = LP"(R™).

This remains valid for vector-valued spaces. For 0 < p,pg,p1 < 00, 0 < ¢, 7 < 00,
and 0 < 0 < 1 satisfying pg # p1 and 1/p = (1 —0)/po + 6/p1,

(22) (L), L7 (), = LPT(), (L), (L)), = (9(LP).

We remark that ((LFo(¢%), L (6‘11))9 7 LPT(L9), (a0 (Lro), qu(Lpl))er # (1(LP") for
qo # 1 with 1/g=(1-0)/q0 + H/qu See [2, 3, 6, 7] for more details.

Then many inequalities in Lebesgue spaces can be extended to Lorentz spaces from
the following real interpolation method, which appears in [2, 3, 7, 12].

Proposition B. Let A and B be two topological vector spaces. Suppose (Ag, A;)
and (By, By) be couples of quasi-normed spaces continuously embedded into A and
B, respectively. Let 0 <0 <1 and 0 <r < oo. If T is a linear operator such that

T: Ay — By, T:A — By,
with the quasi-norms M, and M, respectively, then
T : (Ao, Av)o, — (Bo, Br)or
is also continuous, and for its quasi-norm we have

HTH (Ao,A1)9,r—(Bo,B1)o,r < M(%_GMZLG'

As applications of Proposition B, we shall extend Young inequality, Hausdorff-
Young inequality, Minkowski inequality, and Kato-Ponce type inequality into Lorentz
spaces.

Lemma 2.1. Let 1l < p<r<oo, 1 <qg<r,and0 <t < oo satisfy 1/r+1 =
1/p+1/q. Then
I1f * gllere@ny < 1 llzoe@m 9l coer)
for all f,g € S(R™).
Proof. For a fixed g € 8§(R"), we define the linear operator 7, by

Tof = f*g.
Choose 11, 6, and p; such that r < r; < 00, 0 < 0 < 1, p < p < o0, 1/r =
(1—6)/q+0/ry,and 1/r;1 +1=1/p; +1/q. Then note that 1/p=1—60+6/p,. By
using Young inequality, we obtain that
1Ty fl Lorny < llgllzall fll L2 n)
and
1 Tof |y < Nlgllzall £l or ey
Then Proposition B with (2.1) completes the proof. O
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Lemma 2.2. Let2 <p <oo and 0 <r < oco. Then
1oy < N1 ovor
where 1/p+1/p = 1.

Proof. 1t follows immediately from Hausdorff-Young inequality and Proposition B
with (2.1). 0

Lemma 2.3. Let 1 <p < oo, 0<r < oo, and s > 0. For any ¥ € $(R"), we have
(2.3) 10 fller@ny Snspao 1122 @n)-

Proof. Pick pg, p1 satisfying 1 < pg < p < p; < oo and let T' be the linear operator
defined by

Tf:=(I—A)y 20 (I—A)f).
Then we apply the Kato-Ponce inequality [14] to obtain
ITfllpes S WS llges for j=0,1.
Then (2.3) follows from Proposition B and (2.1). O

Lemma 2.4. Let 1 <g<p<ooand 0 <r < oco. Then

[(Z1a) "], 5 (Sl )"

Proof. Weselect p; > 0and 0 < 0 < 1sothatp < p; <ooand 1/p=(1-0)/p1+0/q.

Using Minkowski inequality we write H{fk}keZHLpl(Zq) < H{fk}keszq(Lm) and we
interpolate this with H {fk}keZHLq(éq) = H {f’f}kezHeq(Lq) to obtain

H{fk}keZH(Lpl (€9),L2(£9))g, N H{fk}keZH(zq(Lm,eq(Lq)))g,r
Then the proof is completed in view of (2.2). O

The next ingredient we need is Holder’s inequality in Lorentz spaces, which is an
immediate consequence of the Hardy-Littlewood inequality

[ @@z < / 7

and Holder’s inequality for Lebesgue spaces.

Lemma 2.5. Let 1 <p < oo and 1< q<oo. Then

/R () !czx 1 Lol o e

where 1/p+1/p' =1/q+1/¢ = 1.

The following Lorentz space variant of the Sobolev embedding theorem can be
easily obtained from the classical Sobolev embedding theorem combined with the
Marcinkiewicz interpolation theorem; the proof is omitted.
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Lemma 2.6. Let sog,s1 € R, 1 < pg,p1 < o0, and 0 < rg,r; < 0o. Then the
embedding

LB (R = L7 ()
holds if pg = p1, so = 81, 7o < 11, 07 if S — 51 =1n/py —n/p1 > 0.
We remark that a generalization of the preceding lemma can be found in the recent

work of Seeger and Trebels [20].
Finally, we describe the behavior of decreasing rearrangement of radial functions.

Lemma 2.7. Suppose f is a radial function with f(x) = g(|x|) for v € R™. Then
() = g ((t/920)"")
where §2, stands for the volume of the unit ball in R™.
Proof. We observe that
de(s) = |{$ eR": |f(z)] > s}! =[{r0 e R" : [g(r)| > 5,0 € S"_1}|

= [{r>0:1]g(r)| > s}"
=, (dy(s))"

and this proves that

ff @) =inf{s>0:d(s) <t} =inf {s > 0:Q,(dy(s))" <t}

=inf {s > 0: dy(s) < (t/Qn)l/”}
= g"((t/2)"").

3. PROOF OF THEOREM 1.1

The set of Schwartz functions whose Fourier transform is compactly supported
away from the origin is dense in HP(R™); this is a consequence of Littlewood-Paley
theory for H? as one can approximate f € H? by

N
fV = 3" @)« f - f in HP(RY) as N — oco.
k=—N
See [24] for more details. Thus we may work with such Schwartz functions. Let f be

a Schwartz function with compact support away from the origin in frequency space
and suppose o € L>(R") satisfies

sup Ha(2j~)\/1;|
jez
Let A € 8(R™) have the properties that Supp(A) € {¢ € R™ : || < 1} and
Jan A(§)d€ = 1. For 0 < e < 1/100, we introduce

0°(€) ==Y (aU(-/2)) x A(€)

jEz

s, < Q.
L§< p),p(Rn)
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where A := (27¢)™"A(-/27¢). Then since f has compact support away from the
origin,

T, f = Z( (o0 (-/27)) *Aj»ﬁ]f)v

JEZL

is a finite sum and thus, using the argument of approximation of identity, for each
keZ

Pi% Dy, % (Tpe f)(x) = Op + (Tnf) ().
This proves that
1T gy < || inf sup [ (Toe N o ey < 1m0 I0E [T f[] 1 e
where we applied Fatou’s lemma in the last inequality. Therefore, it suffices to show
that
(3.1) |

) S sup Ha(?j-)\m
JEZ

Lg<s,p>,p(Rn)||f||Hp(]Rn), uniformly in e.

Now there exist a sequence of L>®-atoms {a;};2, for H?(R"), and a sequence of
scalars {\}7°; so that

= Z )\lal n S/
=1
and

> » 1/p
(3 ) ™ ~ o
=1

where L*™-atom q; for HP(R™) means that there exists a cube @; such that q; is
supported in @, || < |Q;|7Y7, and [, 27a)(x)dz = 0 for all multi-indices v with

vl < [n/p—n].
We note that T, maps 8(R") to itself, which implies that T, is well-defined on
§8'(R™) using duality argument, and actually, T, : 8'(R") — 8'(R"). This yields that

T, f= Z N (Tyeay) in the sense of tempered distribution.

Hence we have

00 1/
iy < (S NP Toeatl )

=1

HTUEf

using subadditive property of || - |5, gn)-
Moreover, due to support assumptions and dilations, for each j € Z, we have

j+2 2

o(PEOUE) = D (0U(/2)) ¥ A@DET(E) = Y (o2 )U(-/2)) * A ()W(&),

I=j—2 1=—2
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from which it follows

sup || (o°(27)¥)|

JEZ

2
P S D SupH (1= )72 ((r(2)B(/21)  A)
s —

o JEL L~ p(Rn)

< ZsupHa 27.) /2 }

1=—2 J€L

L gy S ZClSUPHU 21+ ) 7|

I=—2 JZ

LT(SJ)) P (Rn)

< sup ||0 (27.) \IJ‘
JEZ

L;(Syp),p(Rn)

uniformly in €; here we applied Lemmas 2.3 and 2.1 combined with the fact that
[AY [ 21 rny = [|Afl L1 ).
Therefore, the proof of (3.1) is reduced to the following proposition.

Proposition 3.1. Let 0 < p < 1 and a be a HP-atom, associated with a cube Q) in
R™. Then we have

T, n < 2|
IToalliory S sup [l (2] ey,

where the constant in the inequality is independent of o and a.

Proof. Introducing the function © satisfying O(€) := W(£/2) + V(&) + U(2€) so that

© = 1 on the support of \If let £; and Ee be the Littlewood-Paley operators associ-
ated with ¥ and O, respectlvely Let Q* and Q** denote the concentric dilates of @)
with side length 1OZ(Q) and 100((Q), respectively. Then we write

1/2
1ol = || (D 1£iT0al?) |

JEL Lr®?)
S (Siema) " ., (S 1e7a?) ]
T,a a .
N LP(Q") LP((Q)%)

In view of Holder’s inequality, the first part is controlled by

@)

JEZL

2@ Sn 1QIYP 2| Tal 2 am)

and we see that

HTJCZHLQ(Rn) < HUHLOO(R'IL) a“LQ(Rn) < slelg ||O—(2j.)\IjHLw(Rn)’Q‘*(l/pfl/Q)'
J

Now using Lemma 2.5, 2.2, and 2.6 with 1 < 7(?) < 2, we obtain

o @)Uy < (@@ )0) 7|1
< N1+ 472 - ’2)(8*(71/17*71))/2( (210 HL(T<5 Py )
< flo@)¥ L ) < (2] L7 e ey’
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which finishes the proof of

1/2
£~Taa2> H < sup ||o(2’- T o) )
H(jze;] P) oy 5 10O
To verify
3.2 H( LT, ) H < 2)T| . ,
(3.2) > 1L T,al - jlelchf [ Sp—-

JEZL

we notice that £;T,a(z) can be written as (U\If( /23)) % (LSa)(x). We decompose
the left-hand side of (3.2) to

N ) 1/2
T:= ( > \(U‘P(‘/QJ))V*(E?“)‘Q) L2((@")%)
Q<1
and 1/2
J = ( > @/« (ﬁ?a)f) Lr(@+))’

J2UQ)>1
In view of the embedding 7 < (2

< (X eF2) 5 ()l e)
§:2911(Q)<1
and Bernstein’s inequality, we obtain
(W (-/27))" (ﬁ?a)HLP(Rn) < 2jn(1/p—1)H(o\I/(./zj))VHLP(Rn)||£§T)a||Lp(Rn).
Using dilation, Lemma 2.5 and 2.2, we have

an(l/p—l)H(U@(,/Qa ||LPRH — /‘ 2] |pdx)

/p

1
p||1/P

S H (1 + 477 - |2)5/2 (o(27)9)" -

_ H (14472 - )" (0(27) D) "

Lr(n/(sp))',p(R™)
(3.3) < J|lo(27) 7]

L7 v (gn)

since 2 < p(n/(sp)) < oo and 7P = (p(n/(sp))’)/. Moreover, for any M > 0
2in

(1+ 27|z — co|)M’

using standard arguments in [9, Appendix B] with 2/1(Q) < 1 and the fact that

£a(@)| S QP (271(@) ™!

1
a(2)] Kot 1QI? (ERPSTEIES / a(z)dz = 0 for |a] < [n/p—n,
—_ Q n
0% (270 (27.)) ()| 52]"“'2]'";. for a € Z"

(1 + 2™
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where ¢g denotes the center of (). Selecting M > n/p, we have

1£5allre < (QJZ(Q))[n/p]H_n/p

and thus
PN ; n 1-n 1/p
TS o] e (3 (UQ))
jez ’ §:201(Q)<1
ST
since [n/p] +1—n/p > 0.
To estimate J we further separate into two terms
~ . 1/2
j::H( o0 (/2))" % (x(@-£5a)|*)
=0 16020 e )

7:271(Q)=1

and
gl X ¥ s (orta)f) "

3:291(Q)>1

Lr((@Q))
Using the embedding ¢7 < (2, Bernstein inequality with
~ Y -~ i\ V
(0 (-/2))" % (xi@) L) () = (oW (-/2)) " = [£D (xi@)- L5 )] (),
and the inequality (3.3), we have

1/p
oo 2 19 (e [ey)

7:271(Q)>1

We see that for z € (Q*)¢ and M > n/p

20
£Pa) SwlQ [ s
! o T+ B2 1)

S QITPIUQ) M

i S sup [lo(2)F]
JEZ

1
dy < “tp__ -
oM Y SMm |Q‘ (23|J]—CQ|)M

1
(1 + [z = col/UQ)M

since |z — y| = 5|z — cg|. Then

125 (@)= £7) || o ey

stor @[ [ ([ proete i )]

Standard manipulations with 2/1(Q) > 1 in [9, Appendix B] yield that the last
expression is less than a constant times

~1/p(9j -M !
QI (2'1(Q) (/Rn (1+ [z — col/U(Q))

i) S @UQ)™.
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Accordingly,

J1 S sup “O’(Qj-)\/l}|
jez

1/p o~
g (2 2URNTMT) T S sup (27T
L3 (R™) JEZ
k:2R1(Q)>1

L7 Rny’

We now consider J,. Choose n/p —n/2 < N < s so that n/2 < Np < sp < n and
2 <p(n/(N p))l < 0. For notational convenience we write

; N/2) 20 iV
ENo(x) = (L4 4m*(2|z])?) " (a0 (-/27)) ().
Observe that if v € (Q**)° and y € Q*, then |z — ¢g| S |x — y| and thus
|z — co|"| (oW (-/29))" « (x@-L9a)(x)| S 277N|ENo| * [xo- LT al ().
This proves that 7, is less than a constant times

Hm( > 2 ([e)a] xg-£a]) ) ]

7291(Q)>1

< H( Z 2—2jN<‘ngg| * }XQ*ﬁ?a’)2>p/2

J:291(Q)>1

(X 2 (1eol xercsal) )

7:271(Q)>1

where we made use of Lemma 2.5 with n/(Np) > 1. Now using Lemma 2.4 with
p(n/(Np)) > 2, the preceding expression is dominated by a constant multiple of

—2jN N o 1|I° 2
Z 2 H‘gj ‘7‘ * ’XQ*Ej a" Lp(n/(NP))'vp(R”)>
7:291(Q)>1

and Lemma 2.1 yields that
1eX 0]+ [xa-£2a

Lr((Q**)°)
1/p

L(n/(Np))/,1(Rn)

Lp(n/(Np)Y .p(Rn)

N o
LP(n/(Np)sp (R S &N oo gy 15 210

We see that

\\5fva}|Lp<n/<~p))f,p(Rn) < 2*J’(7L/P*n)2jNHO.(2j.)(I\1|

+(N,p)
Ly (rn)

< 2—j(n/p—n)2jNHU(2j.)@|

L7 e mn)

by applying dilation, Lemma 2.2 with (p(n/(Np))) = 7¥»)| and Lemma 2.6 with
s > N. Combining with the estimate ||£%al|r1o+) S QYL al|r2@n), we finally
obtain

J> S sup [|o(27) 0|
JEL

A 1/2
1/2 —2j(n/p—m O |12
lQre( Y 2 Lfal g )

7:271(Q)>1
)’Q|1/p_l/2H{‘C?a}jEZHLQ(@)

Lg(s,p) P (R0

< sup “O’(Qj-)\/ﬁ|
jez

Lg(swp) P (Rn

< sup Ha(?j-)(ﬂ
jez

LZ(S’p) P (Rn)
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because H{‘Cjea}jeZHLQ(ZZ) ~ [lal| 2@y < |Q|HPY2,

This concludes the proof of the proposition. O

4. PROOF OF THEOREM 1.2

The construction of our counterexamples is based on the idea in [16] and the
following lemma is crucial in the proof.
Lemma 4.1. Let 0 < 5,7 < 0o and define the function on R"

1 1
(1 + 4n2z2)*2 (1 + In(1 + An2[z]2))/2”

(4.1) HED (z) =

—

Then HE) is a positive radial function and there exist Csn,ds~n > 0 such that

—

(4.2) HED(E) < Caqme ¥ when (€] >1
and
LA
d < §(577)(£) < ds,’y,n when ‘5’ < 1
S,Y,m
where

() €71+ 2In ¢ 7) 2 for 0<s<n
= 1 for s >=n.

Proof. Tt is known that the Fourier transform of (1 + 4m%|x|?)~%/? is the Bessel po-
tential G(§). Recall that G, is a postive radial function, |G|/ 1rn) = 1, and there
exist Cs,, Ds, > 0 such that

(43) GS(g) < C((s,n)e_‘g'/2 for |€| = 17
and

1 G4(€)
4.4 < < Dy for € <1
( ) D(s n) 65(5) (51 | |
where

||~ (=) for 0<s<n
Gs(&) =< In(2/¢]7Y)  for s=n
1 for s >n.

Here we note that for any € > 0

(4.5) C(s’n), D(s’n) <E’n ee‘sfn‘.

Y

We refer to [9, Ch. 1.2.2] for more details.

Using the identity
A2 = 1 /OO e—tAtv/Qﬂ’
I'(v/2) Jo t
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which is valid for A > 0, we write

- 1 * dt
(1 +10g(1 +47T2’33‘2)) v/2 _ W/ e —tlog(1+4m?|x|? )t’Y/Z ;
0

1 /wet 1 it
F(v/2) Jo — (A+4r[z]?) o

We obtain from this that the Fourier transform of (1 + log(1 + 47r2|x|2))_7/ ? iy

1 <, yy2dt
mam ), O

and consequently,

) =G (7 [ GO )0 = o [ Gl

—

Clearly, H (7 is a positive radial function since so is Gasps.
Suppose [¢] > 1. Then using (4.3) and (4.5) with 0 < e < 1/100,

HEA(E)] <o _(/ b ol < ki

which proves (4.2).
Now we assume that |{] < 1. When 0 < s <n

n—s

/(5 (£) — 1 Pt 272t 1 - v/2dt
O = oy [ 0@ 4 gy T @0

Then using (4.4), (4.5), and change of variables,

n—s

1 ol dt
Gy s 222
TS, 0
1 =N dt
Sﬂle é— —(n—s) / —t é; 2t e(n—2t— s)t'y/2
’ € I'(v/2) Jo 17 t
1 =N ydt
< ee(nfs) £ —(n—s) / e t(14+21n(|¢| !
G ) 0
< ee(n—s)|£|—(n—s)(1 + 21n(|§|—1>>—w/2; /OO e_tﬂ/gdt
L'(v/2) Jo t

Soae €707 (1 + 2In(lg| 1) 72
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and
1 T, dt
- Gy s /22
T ), GO
1 T dt
Zne |€|—(n—s) / —t|€|2t —e(n—2t—s t'y/?
’ I'(v/2) Jo t

n—s

>e —e(n—s) |£| (n—s)___ ~ 1 / ? e—t(1+2ln(|§\*1))@
I'(v/2) t
dt

1 5
> e—e(n—s)g—(n—s) 1+21In 5—1 —W/Q—/ e—tt'y/2_
170+ 2] ) s [ :
Zamn 1670 (14 2In(jg 7)) 2,

Similarly, we can also prove that

1 o dt
/ e_tG2t+s<§>t 2= 1 s K%t 1.
2

I'(v/2)
A similar computation, together with (4.4) and (4.5), will lead to an estimate for

s = n, in which H6Y ~; ., 1 for [] < 1. We leave this to the reader to avoid
unnecessary repetition. U

In what follows let 7,7 denote Schwartz functions so that n > 0, n(z ) c on
{z € R™: |x| < 1/100} for some ¢ > 0, Supp() C {£ € R™: [¢| < 1/1000}, 77(5) =
for |£] < 1/1000, and Supp(ﬁ) C{¢eR": £ <1/100}. Let g :=(1,0,...,0) € Z
and 0 < t,v < co. Define H*") as in (4.1),

K (1) .= HEY s 3 (z) e ilmer)

and

—

o) = K (g).

We investigate an upper bound of sup;cz ||a(t’7)(2j-)lff‘

L0 (Rn) and a lower bound

of HTO.(t7'y) HHp(Rn)_)Hp(Rn) when t — n < s.

4.1. Upper bound of sup,, Ha(t77)(2j-)\fl| Note that, due to the supports

b Ly (@)”
of e®") and U, we have

ot (2€) T () = {W(ZJ{)‘T’(@; —2<J<2

0, otherwise.

For -2<j<2andt—n<s,

o @) agany S 10 ey S IO ey = 7]

Lqu(Rn 7“ >4 Rn) Lqu(Rn) Lr,q(Rn)

where Lemma 2.3 is applied.
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For uw > 0 define

T(tfs 'y)( ) Ui(nitJrS)(l + 2In U71>7’Y/2 for u <1
M) =
e~u/2+1/2 for u> 1.

Then 77 is a positive decreasing function and this implies that
(4.6) (T2) (w) = T ).

We first assume 0 < ¢ < co. By using Lemma 4.1, we have

—

HE=5D(E) Serm TV (€D,

from which

)

L™4(Rm) Ss,t,»y,n HT(FSW)(’ ) |)| Lma(Rm)

= ( /0 ) (T“—W(<u/9n)1/n)u1/r>qd_U>l/q

u

= Q}/Tnl/q< / h (T (u)) "u nq/rd“)l/q

0 u

where Lemma 2.7 is applied with (4.6). Furthermore,

1 du 1 1 1 duN1/4
(t—s,7) 4, mnq/r27 ) < _>
(/0 (T (u)) /0 un—tts=n/m (1 4 2Inu=1)79/2 4

U
(/OO u(n—t+s—n/r)q 1 d_u) 1/a
1 (1+2Inu)9/? y

- du o0 du
</ (T () ) "o =2 . ) 61/2</ e~ /2yl — " ) Serm 1
: 1

Finally, we conclude that

and

4 <s nqr 1+ (/Oo U(n_t+s_n/T)q 1 d_U) 1/q
LD9(Rn) ~571, . (1 m 21nu)W/2 -

and with the usual modification if ¢ = co we may also obtain

(4.7) sup Ha(t”)@j-)(l}{
€T

n—t+s—n/r

(4.8) supHa(M 2. \I/|

u
Too 5 n,r 1 T A1 N0
(R) ~I5:7 +ilill) (1 I 21nu)'y/2

4.2. Lower bound of ||T, .|| gr®r)—ar@n. If 1 < p < oo, then

1Ty || oy o @) = |00 |20 @ey = |05 (e1)| 2 [|H || 11 gy

Moreover, for 0 < p < 1, define f(z) := n(z)e*™ @) Observe that |T,u f(z)| =
|H Y s p(2)| and thus

Ty | oy = mr @y 2 (| Tt fllar@ny 2 (| Ty £l oo @ny
= |11 sl o@ny 2 IHE || Lo @ny,
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Where the last inequality follows from the fact that H®" 5 > 0 and H"(z —y) >
HED (@) HED (y).
Consequently, for any 0 < p < oo,

T e l| o @my o eny 2 I HE? || i .00 ey

(49) = (/ 1 1 d )1/mm(1,p)
' — \ Jgn (1 + 472|2|2)tmin(Lp)/2 (1 4 In(1 + 472 |z|2))min (Lp)y/2 L :

4.3. Completion of the proof of Theorem 1.2. We are only concerned with
the case 0 < p < 2 as the other cases follow by a duality argument. Suppose
n/p—n/2 <s<n/min(l,p).

We first assume r < 752 and 0 < q < 0o. Then we can choose t < so that

min (

r< - < - = 7(5P),
—(=n) s—(n/min(l,p) —n)

Note that t —n < s and n —t + s —n/r <0, from which

sup Hcr &) (27 \Il|

1

LT(Rn) Ss,vnqr

due to (4.7) and (4.8). Moreover, since tmin (1,p) <n

Ty e || E1e (7Y HP (RPY = 00,

using (4.9).

Now suppose 7 = 7P) and min (1, p) < ¢. Choose
(4.10) 2/qg <~y <2/min(l,p)
and let t = =t such that n —¢ 4+ s — n/r = 0. Then

R o0 1 du\1/4
&N (27| < 1 (/ —> S
I s S+ (| ) S

because of (4.10) for 0 < g < oo, and similarly, sup; |‘a(t’7)(2j-)\fl| 1

L5 mn) Ssovm

for ¢ = co. On the other hand, ||T,, . || gr@®n)—mr@ny is bounded below by

/ 1 1 1/ min (1,p)
< i dl‘) )
re (14472 2|2)7/2 (1 + In(1 + 472 |z|?))min (Lp)y/2

which diverges for the choice of v in (4.10).

APPENDIX A. COMPLEX INTERPOLATION OF H!'- AND L?-BOUNDEDNESS

In this section, we review the complex interpolation method of Calderén-Torchinsky
[5] and Triebel [23], which is a generalization of the well-known method of Calderén
[4] and Fefferman and Stein [8].

Let A:={z€ C:0 < Re(z) < 1} be a strip in the complex plane C and A denote
its closure. We say that the mapping z — f, € 8'(R") is a 8'-analytic function on A
if the following properties are satisfied:
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(1) For any ¢ € §(R"™) with compact support, g(x, z) := (@ﬁ)(w) is a uniformly
continuous and bounded function on R" x A. R
(2) For any ¢ € 8(R™) with compact support and any fixed x € R", h, := (gpfz)v
is an analytic function on A.
Let 0 < po, p1 < co. Then we define F'(HP(R"™), H?'(R"™)) to be the collection of
all 8’-analytic functions f, on A such that

fi € HP(R"), fiza € HP*(R™)  for any t € R

and

sup || frviel| ge gny < 00 for each [ =1,2.
teR
Moreover,
||fz||F(HP0(]R"),HP1(]R")) ‘= max <SUP ||fit||HP0(]R")7 sup ||f1+it||HP1(R")>-
teR teR

For 0 < 6 < 1 the intermediate space (H?°(R™), HP*(R"))y is defined by
(H™(R"), H"(R")), := {g : 3f. € F(H™(R"), H"*(R")) so that g = fy}
and the (quasi-)norm in the space is

9l (270 &), FP1 (R7))p =

- inf i . .
fzeF(HPO(Rnl)l,all (R™)):9=fo Hf HF(HPO(R )HELR™)

where the infimum is taken over all admissible functions f, in the sense that f, €
F(H?(R™), H(R")) and g = fo. It is known in [5, 23] that for any 0 < py, p1 < o
and 0 <6 <1

(A.1) (H™(R™), H" (R™)), = HP(R")  when 1/p= (1 —0)/po+60/p:.

We now use this method to interpolate H!- and L?-boundedness of the multiplier
operator T, to obtain L” estimates for 1 < p < 2. Note that H?(R") = LP(R"™) for
1 < p < oo. Since most arguments are very similar to that used in the proof of [10,
Theorem 3.1], we shall provide only the outline of the proof, omitting the details.

We may consider a Schwartz function f whose Fourier transform is compactly
supported via a density argument. Suppose that 1 < p <2 and n/p—n/2 < s < n.
Let 0 < 0 < 1satisfy 1/p = (1—0)/1+60/2. Then we have s > n/p—n/2 = (1—0)n/2.
Pick so > n/2 so that

s> (1—=0)sg > (1—0)n/2

and let s; := 220295 - ( which implies

9
s=(1—=0)so+0s;.

Since f € LP(R™) = HP(R™) = (Hl(R”),H2(R”))9, by definition, for any € > 0,
there exists f¢ € F(H*(R"), H*(R"™)) such that f = f§ and

(A.2) I follper @my w2 ey < | f e @), m2@ny), + €
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Now let ©(€) := U(¢/2) + U (€) + U (2€) as before, and o7 := (I — A)*/2 (a(2j-)lff)
for each j € Z. We define, as in [10, (3.18)],

o) = LTS (g

n+1
(2 2

SO<172)+512< s—(1—z)sg—=zs1
2

Bhe o )(6/2)8(/2)

where h; : R" — (0,00) is a measure preserving transformation so that |07 =
(07%)* o hjs. Then we note that oy = o and F, := T,_f¢ is a §'-analytic function on
A. Moreover,

1T @y 2 N Too i | o oy ey, = Il oy sz
< 1B s ey gy = maix ((sup || Bl ey, 5up | Py ).
teR teR
By using Theorem 1.1 for p = 1, we have

| Fitll e gny = [ Tos, fill r my S SUP Hait<2j')\pHL?O/SOv1(Rn)HfietHHl(]R”)

< sup ||0'1t 2J \IfHLn/SO 1 <Hf”(H1 (Rn),H2(R"))y T 6),

where (A.2) is applied in the last inequality. Similarly, with L?-boundedness,
[ Fiitll 2@y = 1Ty fivillmzmny S ol oo e[| il m2@n)
S sup 72436270 | ey (1 i o 2 + ).
j

Therefore, once we prove

(A.3) ot (2

L3y Rn) ||01+it(2j')‘f’HLoo(Rn) < Jlo(2 Ly ®re)

uniformly in j, then we are done by using (A.1) and taking € — 0.
Let us prove (A.3). We first observe that

0.(27€) T (8)
0 ntl so(1=2)+sy2 s=(=2)sg=zs1 PN o~
= —8 - ; ST ) (R, ) (/2B le 2 ()
k€EZ

is actually finite sum over k near j due to the supports of © and \/I\f, and for simplicity,
we may therefore take k = j in the calculation below.
Using Lemma 2.3, we have
< 1
@) % [T+ Ry

Then we apply [10, Lemma 3.5, 3.7] to bound this by

55— so+(so s1)it

([ A) (so— sl)zt< ]’Shwﬂ

HUit(Qj‘)@HL?({SO’I L7501 (Rn)

B (s—s0)/
‘ ]Sh Ln/5051(Rm) 5 ||(0“)*(r)r T nHL"/SU*l(O,OO)
SN*) | pnssoo0) S 07 N pnreany = ||0(27) LY/ (®n)
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On the other hand, using [10, Lemma 3.4, 3.5, 3.7],
o1t (2] o oy

1 . . s—s1+(sg—s1)it
< I —A —s1/2 I —A (so—sl)zt/2< IS n )H
SRENDIGRVE ( ) ( ) o s Loo (&™)
1

. . s—s1+(sg—s1)it
([ . A)(sofsl)zt/Q (O,j,shj’s n ) ‘

<

. sms1H(s0—s1)it , ( y
58 ,8\ * s—s1)/n
5 HO’J hj,s n L/t S, H(O‘J ) (T)’F 1 ||Ln/51’1(07oo)
S M@ ) s 0.00) S 107 pnrsa@ny = (|02 )| ot gony:

which finishes the proof of (A.3).
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