CHARACTERIZATION OF MULTILINEAR MULTIPLIERS IN TERMS
OF SOBOLEV SPACE REGULARITY

LOUKAS GRAFAKOS AND BAE JUN PARK

ABSTRACT. We provide necessary and sufficient conditions for multilinear multiplier op-
erators with symbols in L"-based product-type Sobolev spaces uniformly over all annuli
to be bounded from products of Hardy spaces to a Lebesgue space. We consider the case
1 < r <2 and we characterize boundedness in terms of inequalities relating the Lebesgue
indices (or Hardy indices), the dimension, and the regularity and integrability indices of
the Sobolev space. The case r > 2 cannot be handled by known techniques and remains
open. Our result not only extends but also establishes the sharpness of previous results
of Miyachi, Nguyen, Tomita, and the first author [13, 14, 15, 23], who only considered the
case r = 2.

1. INTRODUCTION

Given a bounded function ¢ on R" the linear Fourier multiplier operator T, acting on a
Schwartz function f is given by

7,4 = [ o(©

where f(g) = Jgu f (z)e=2™*&) dy is the Fourier transform of f. The classical Mikhlin
multiplier theorem [22] states that T, admits an LP-bounded extension for 1 < p < oo
whenever

~

(©)e*m =g,

020 (€)] Sa €171, €#0
for all multi-indices a with || < [n/2] + 1. Hérmander [19] refined this result, introducing
the weaker condition
(1.1) sup HU(QJ')W‘L?(R”) < o0
jez 5

for s > n/2, where L2(R") denotes the standard fractional Sobolev space of order s on R™
and 9 is a Schwartz function on R™ whose Fourier transform is supported in the annulus
1/2 < |¢] < 2 and satisfies 3 ;5 J(f /27) =1 for € # 0. Calderén and Torchinsky [2] proved
that if (1.1) holds for s > n/p —n/2, then T, is bounded on HP(R") for 0 < p < 1. They
also showed that L2 in (1.1) can be replaced by L’ for the LP-boundedness, using a complex
interpolation method, and their assumptions were weakened by Grafakos, He, Honzik, and
Nguyen [10].

The multilinear counterparts of the Fourier multiplier theory have analogous formulations
but substantially more complicated proofs. Let m be a positive integer greater than 1; this
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2 LOUKAS GRAFAKOS AND BAE JUN PARK

index will serve as the degree of the multilinearity of a Fourier multiplier. For a bounded
function o on (R™)™ we define the corresponding m-linear multiplier operator T, by

To(froe e fon) (@) ::/n (Hfg (&) e T 6 g

for Schwartz functions f; on R", where E = (&1,...,&n) and dE =d&y - d&y,. As a mul-
tilinear extension of Mikhlin’s result, Coifman and Meyer [3] proved that if L is sufficiently
large and o satisfies

‘3?11 . -'Bgﬁa(fla .. ,fm)| Sanom (|§1| 4ot |§m|) (Jax [+ +|am|)

for multi-indices aj,...,q,, satisfying |a1| + -+ + || < L, then T, is bounded from
LPrx...xLPm to LP foralll < pi,...,pm <ocand1 < p < oo with 1/p1+---+1/p, = 1/p.
This result was extended to p < 1 by Kenig and Stein [21] and Grafakos and Torres [18].

Let (™ be the m-linear counterpart of ¥. That is, (™ is a Schwartz function on
(R™)™ having the properties:

Supp(D0m) © {Ee R 1/2 < § <2}, S UM(E) =1, £+0.

JEZ
N\ V
Let (I — A)s/2 ((1 +AT2 (|1 P+ + |2))5/2F> for a nice function on (R™)™
where FVY(£) := A(—q) is the inverse Fourier transform of F'. For s > 0 and 0 < r < 0o we
define the Sobolev space L[((R™)™) in terms of the finiteness of the norm:
Tomita [27] was the first to obtain an LP! X --- X me to Lp boundedness for 7, in the
range 1 < p1,...,Ppm,p < 00, under a condition analogous to (1.1) for the Sobolev space

L7((R™)™). Grafakos and Si [17] extended this result to p < 1 using L"-based Sobolev
norms of o for 1 < r < 2:

Theorem A. ([17))Let 1 <r <2, r <p1,...,pm < 00,0 <p<oo,and 1/p1+---+1/py, =
1/p. Suppose that

s> mn/r.
If o satisfies
(1.3) sup HO‘ Ly ,23-m)\11(m)} Lr(®mymy < 09

JEZ

then we have

HTO'(flu"'vfm)HLp R™ SSUpHO’(2]1,72‘7 ) LT R™)™) Hf’L”Lpz(]Rn
() ~ SUP ( H
J

for functions fi,..., fm € S(R™).

In the preceding theorem and in the rest of this paper, $(R™) denotes the space of all
Schwartz functions on R".

The standard Sobolev space in (1.3) in many recent multiplier results is replaced by a
product type Sobolev space where the different powers of the Laplacian fall on different
variables & € R™. For sq,..., 8, > 0 and a function F' on (R™)™ let

(L= A2 (I = D) 2F o= (L 4n2] 1 PY7 o (L4 4] )2 F)Y
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and for 0 < r < oo and §:= (s1,..., Sy, ), define
I Lo mymy == ||(T = A2 (1= Ap)

(R)™)
Here A, is the Laplacian acting in the ith variable and s; > 0. For a function o on (R™)™
throughout this work we will use the notation:

oV

ol:=sup|lo(2/,...,27
] jeIZ’ (271, ... 2 ) W T((Rr)™)”
Research work has also focused on boundedness properties of T, under the assumption
E;’\P(m) [0] < oo for given §. Under this assumption with » = 2, Fujita and Tomita [7]
provided weighted estimates for T,,. Miyachi and Tomita [23] obtained boundedness for
bilinear multipliers (i.e., m = 2) in the full range of indices 0 < p,p1,p2 < 0o extending
a result of Calderén and Torchinsky [2] to the bilinear setting; here Lebesgue spaces in
the domain are replaced by Hardy spaces when p; < 1. Multilinear extensions were later
provided by Grafakos, Miyachi, and Tomita [13], Grafakos and Nguyen [15], Grafakos,
Miyachi, Nguyen, and Tomita [14], but all these results were proved only in the case r = 2.
We review most of these results in one formulation:

Theorem B. ([13,14,15,23]) Let 0 < p1,...,pm < 00,0 < p < oo,and 1/p1+---+1/p,, =
1/p. Suppose that

(1.4) 1oy Sm > n/2, Y (sk/n—1/pp) > —1/2
keJ

2,w(m >[ ]

for every nonempty subset J of {1,...,m}. If o satisfies L3 < 00, then we have

(15) HTJ(fla"'vfm)HLp(Rn 5 z‘ H”fZHsz R7)

for Schwartz functions fi,..., f,, € S(R™).

Here and in the sequel, HP(R™) denotes the classical real Hardy space of Fefferman and
Stein [5]. This space is defined for 0 < p < oo and coincides with LP(R™) for 1 < p < oo.

The optimality of (1.4) was also studied in [15, 14, 23] and indeed, if (1.5) holds, then
we must necessarily have

S1yenvySm > N/2, Z(Sk/n_l/pk) —1/2
keJ

for every nonempty subset J of {1,...,m}. However, this does not guarantee the validity
of (1.5) in the critical case

(1.6) min(s1,...,8,) =n/2 or Z (sg/n—1/py) =—1/2 for some J C{l,...,m}
keJ
and recently, it was proved in Park [25] that (1.5) fails in the case (1.6) as well.

Theorem C. ([25]) Let0<p1,...,pm§oo,0<p<oo, and 1/p1 + -+ 1/pm = 1/p.

Suppose that o satisfies ﬁ% e [ | < oo for si,...,8, > 0. Then (1.5) does not hold if

min (s1,...,8m,) <n/2 or Z(sk/n—l/pk) < —-1/2 for some J C {1,...,m}.
keJ
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Therefore (1.4) is a necessary and sufficient condition for (1.5) to hold.

In this paper, we focus on the case 1 < r < 2 and we prove necessary and suffi-
cient conditions for bounded functions o on (R™)™ that satisfy the Hérmander condition

Eg’qj(m) [0] < oo to be bounded multilinear multipliers. The case r < 2 was also considered
in [11] but the results obtained there were non optimal. The characterization we provide is
given in terms of explicit inequalities relating different relevant indices and provides gener-
alizations for Theorems B and C, and an extension of Theorem A. The main result of this
article is the following;:
Theorem 1.1. Let 1 < r < 2, $1,...,87, >0, 0 < p1,...,pm <00, 0 < p < 00, and
1/p1+ -4+ 1/pm = 1/p. Suppose that o satisfies quj(m) [0] < oco. Then the conditions
(1.7) SlyevySm >n/T and Z(sk/n—l/pk) > —1/r

keJ
hold for every nonempty subset J of {1,2,...,m} if and only if

T WL
(1.8) ITo (fro- - Fedle@ey S L5707 [o] Tl ey
=1

for fi,..., fm € S(R™).

The implicit constant in (1.8) depends only on the dimension n, the degree of multilin-
earity m, and the indices pj, s;, and r. Here v’ = r/(r — 1). We remark that, when r = 2,
Theorem 1.1 coincides with Theorem B and C. Moreover, since

Sly.+-ySm >n/r implies Z(sk/n—l/pk) > —1/r" forall J when r<pi,...,Dm,

ked
and
o(m) ~ ST
L™ o] < ?lelg H0(27-1, e 23-m)\11(m)’ Lr((Rn)m) for s> 514+ 5p,
Theorem 1.1 also covers Theorem A and extends its range of indices to 0 < p1,...,pm < 00.

1.1. Necessary condition. In order to prove the direction (1.8) = (1.7) in Theorem 1.1,
two different multipliers will be constructed based on an idea contained in [25]. However,
the methods in [25] essentially rely on Plancherel’s theorem to obtain the upper bound of

3" o] = sup||( ﬁu 472 g P)2) (02, 20 W)
k=1

JEZ L2((R™)™)

and this cannot be applied in the case 1 < r < 2 anymore.

To overcome this difficulty, we benefit from a recent calculation of Grafakos and Park
[16] concerning a variant of the Bessel potentials that involve a logarithmic term. For any
0 < t,v < oo we define

(1.9) Hipo () = L 1

(1 +472|x|2)t/2 (1 + In (1 + 472|z|2))7/2
We first observe that for any ¢,v > 0

(1.10) Hit) (@ = y) = Hit) (@) H ) (9)
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and
(1.11) Hillr@ny < oo ifand only if ¢t >n/p or t=n/p,v>2/p.

Moreover, it was shown in [16] that

"H(m)(ﬁ)‘ Sty e l81/2 for €] > 1

~

and when 0 < t < n,
[ (©)] ~tam 617701+ 2 g ™) 72 for [¢] < 1.
The estimates imply that
(1.12) H%HLNR”) <oo ifandonlyif t>n—n/p or t=n-—n/p,v>2/p.

These properties provide us with tools that allow us to prove the following two proposi-
tions:

Proposition 1.2. Let1 <r < 00,0 <p1,...,pm <00,0<p<oo,andl/pi+--+1/pyn =
1/p. Suppose that
51 < 89,...,5m and s1 <n/r.

(m
Then there exists a function o on (R™)™ such that ngp >[g} < o0, but
HTUHHPI X x Hpm —Lp = OO.

Proposition 1.3. Let1 <r < 00,0 <p1,...,pm <00,0<p<oo,andl/pi+---+1/pym =
1/p. Let 1 <1 < m. Suppose that s1,...,8y, >n/r and

MN

(sk/n—1/py) < =1/

T

1
. _ (m
Then there exists a function o on (R™)™ such that Eg\y >[g} < o0, but
HTOHle X x Hpm —Lp = OO.

The necessity part of Theorem 1.1 is a consequence of the preceding two propositions
along with a rearrangement argument.

1.2. Sufficiency condition. The sufficiency condition part in Theorem 1.1 is a conse-
quence of the following four propositions combined with a rearrangement argument.

Proposition 1.4. Let 1 <r <2, r < p1,...,pm <00, and 1/p = 1/pr+ -+ + 1/pm.
Suppose that

(1.13) SlyenvySm > NJT.
If o satisfies E;’\P(M) [0] < 00, then (1.8) holds.

Proposition 1.5. Let 1 <r <2, 1 <1<m,0<p1,...,; <1, pi41,.-.,pm = 00, and
1/p=1/p1+---+ 1/p;. Suppose that

(1.14) Si41y---y8m > n/r, Z(sk/n—l/pk) > —1/r

keJ

for every nonempty subset J C {1,...,l}. If o satisfies ﬁ;’qj(m) [0] < 00, then (1.8) holds.
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Proposition 1.6. Let 1 <r <2, 1<I<p<m,0<p1,...,p <1, r<ppp1,...,pp <00,
Potls---2Pm = 00, and 1/p = 1/p1 + --- + 1/p,. Suppose that (1.14) holds for every

nonempty subset J C {1,...,1}. If o satisfies quj(m) [0] < 00, then (1.8) holds.

Proposition 1.7. Let 1 <r <2 and 1 <1 < m. Suppose that £ be a subset of {1,...,m}
with |£] =1, and
l<pi<r for 1€ L
and
0<pi<l or r<p <o for ie{l,....m}\ L.
Suppose that (1 7) holds for every nonempty subset J of {1,...,m}. If the function o
satisfies L3 v [ ] < o0, then (1.8) holds.

The statements in the above propositions can be thought of as extensions of Theorems
A and B from r = 2 to 1 < r < 2. However, the ingredients of their proofs are significantly
more involved than in the case r = 2, in view of the lack of Plancherel’s identity. The
proofs we employ depend on the Littlewood-Paley theory for the Hardy space HP, but this
certainly does not work for H* = L* or BMO, and this is the reason the case p; = oo
was excluded in Theorem A. It was addressed in the proof of Theorem B by applying
a modified version of the Carleson measure estimate related to BM O functions, which is
contained in [13]. We provide a new method to deal with this issue, using a generalization of
Peetre’s maximal function, saying 9 5.2 > Introduced by Park [24] As we have an L>((?)
characterization of BMO with this maxmlal function, stated in Lemma 2.2, we may still
utilize the Littlewood-Paley theory to obtain HP? bounds for all 0 < p; < co.

The proof of Proposition 1.4 is based on that of Theorem A for which the pointwise
estimate in Lemma 2.4 below is essential. In Propositions 1.5 and 1.6 at least one index p;
satisfies 0 < p; < 1 and the HP¢ atomic decomposition is very useful. In this case we need
to employ an approximation argument for o as we don’t know that we can interchange
infinite sums of atoms and the action of the operator as in

o (0.9}
Tcr(fla---7fm): Z Z Al,kly' )\lkl (alklv"'7al,k?lafl+17"'>fm)
ki=1  km=1
for functions f; € HPi(R™) with atomic representation f; = 223:1 Ni ey @i ey 1 <4 < 1. This
regularization of the multiplier was also used in [15] but here it is stated in Lemma 2.7.
Afterwards, we apply the method of Grafakos and Kalton [12] and a pointwise estimate of
the form

(115) ‘Tg (al’kl, s ALk fl+17 N 7fm) (.I')‘ < 57;7\1/(7") [O’]bl (1‘) ce bl<1‘)ﬂ+1(l‘) ce Fm(x)

where [|b;]| zps (mrry S 1 and [|Fif|pesmn) S || fill ri (rny- Since the above estimate separates the
left-hand side to m functions of z, we may now apply Hoélder’s inequality with exponents
1/p=1/p1+--++1/pm. The main idea in the proof of Proposition 1.7 is a multilinear ex-
tension of the complex interpolation method of Calderén [1] and Calderén and Torchinsky
[2]. Specifically, we apply the interpolation to Propositions 1.4, 1.5, and 1.6 to obtain (1.8)
in the entire range 0 < p1,...,pm < 00.

Section 2 contains some preliminary facts that are crucial in the proof of the preceding
propositions. The proof of Propositions 1.2 - 1.7 are given in Sections 3 - 8. Some key
lemmas that appear in the proofs of the propositions are contained in the last section.
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Notation. We denote by N and Z the sets of natural numbers and integers, respectively.
We use the symbol A < B to indicate that A < C'B for some constant C' > 0 independent
of the variable quantities A and B, and A ~ B if A < B and B < A hold simultaneously.
The set of all dyadic cubes in R™ is denoted by D, and for each j € Z we designate D;
to be the subset of D consisting of dyadic cubes with side length 277. For each Q € D,
Xq denotes the characteristic function of ). We also use the notation f = (f1,-, fm),
¥ = (v1,...,vm), and (z) := (1 + 4n?|z|>)1/2,

2. PRELIMINARIES

Let ¢ be a Schwartz function on R™ with QZ(O) = 1. For 0 < p < oo the Hardy space
HP(R™) contains all tempered distributions f on R™ which satisfy

1 f e (mny := || sup |5 * f\HLp(Rn) <00
JEZ

where ¢; 1= 2/"¢(27.). Tt is known in [6, 28] that the definition of the Hardy space does
not depend on the choice of the function ¢. In this paper we fix a Schwartz function 1
on R™ whose Fourier transform is supported in the annulus 1/2 < [¢| < 2 and satisfies

> ez (E)29) =1 for € £ 0. Set ¢(-/27) = @ Then we define a function ¢ € S(R™) by

Yo i), €#0

21 3(6) = {1 2o

and let ¢; := 27"¢(27-) so that qz;] = ¢(-/29). Note that HP(R") = LP(R") for all 1 < p < cc.
A nice feature of the Hardy spaces HP for 0 < p < 1 is their atomic decomposition.
More precisely, when N is a positive integer greater or equal to [n/p — n] + 1, every f
in HP(R™), 0 < p < 1, can be written as ), ; Aga, where A are coefficients satisfying
(302 [Awl?) 1/p S I fllgerny and ay are L°-atoms for HP; this means that there exist
cubes Qi such that Supp(ax) C Qk, |lakll Lo @n) < |Qk|~/?, and ka x%ay(z)dx = 0 for all
multi-indices o with |a| < N.

The Hardy space HP can be characterized in terms of Littlewood-Paley theory. For
0 < p < oo we have

(2.2) 1S 1| 11 () = H(Z %) *f|2>1/2‘
JEZL

LP(R™)

where 1); is a Littlewood-Paley function defined above. This property is also independent of
the choice of functions 1); because of the Calderén reproducing formula and the Fefferman-
Stein vector-valued maximal inequality [4] which states that

(2.3) H{Mtfj}jeZHLp(gq) = H{fJ}J'GZHLP(M) for t <p,q<oo

where M f(z) := supg.eq |Q ™ fQ | f(y)|dy is the Hardy-Littlwood maximal functions and
Myf(z) == ( (|f|t))1/t for 0 < t < co. Note that (2.3) also holds for 0 < p < o0, ¢ = c©
or for p = q = oo.

For j€Z,0 >0, and 0 < t < oo we now define

. .— ojn/ M
Mo (@) =2 tH(1+2j!-D"

Lt(Rn)’
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which is a generalization of the Peetre’s maximal function I, 5; f(z) := MM, f(x). It is
easy to verify that if 0 < ¢t < co and o > n/t, then

(2.4) M, f(z) S Mf(z), uniformly in j € Z.
Moreover, for 0 > 0,0 <t < s < oo, and j € Z, we have
(2.5) Z}zjmzvzj f(@) < mg72j f(z).

See [24] for more details.
Elementary considerations reveal that for o > 0 and @ € D;

sup [f(y)| S inf M, 5; f(y)
Q yeQ

ye

and then it follows from (2.5) that for 0 < t < oo

(2.6) sup M, 05 f(y) S inf My 0 Mo f(y) S inf M o5 f ()
Y

In addition, the following maximal inequality holds.

Lemma 2.1 ([24]). Let 0 < p,q,t < o0 and o > n/min (p,q,t). Suppose that the Fourier
transform of f; is supported in a ball of radius A2? for some A > 0.

(1) For 0 < p < oo or p=q = oo, we have

t
H{mo,szj}jezum(eq) S H{fj}jGZHLp(eq)'
(2) Forp=o00,0< q< o0, and jx € Z, we have
1 N ¢, \Va 1 R 1/q
sup (/ M o, fi(x dx) < sup (/ filx qdm)
pep, \|P| P]Zi( 243(7)) pep, \|P| sz; i)
where the constant in the inequality is independent of p.

Using Lemma 2.1 we can prove the following result.

Lemma 2.2 ([24]). Let 0 <p<o00,0<t <00, 0< v <1, and o > n/min(p,2,t). Then
for any dyadic cubes Q € D, there exists a proper measurable subset S of @, depending
on v,0,t, f, such that |Sg| > v|Q| and

e = | { Py (Jnf 950 (035 )0 x5 f |
S

J

Lr(42)
where XP = HP for 0 < p < oo and X*° = BMO.

We observe that if Sg is a measurable subset of @ € D with |Sg| > 7|Q| for some
0 < < 1, then we have

(2.7) XQ(m) Sﬂ',v MT(XSQ)(‘T)7
which is due to the fact that for z € Q
1 |Sql'" 1 1 T —1/7
— — <
(2.8) 1< QI 71/7(!Q| /QXSQ(?/)dy) <M (xsg) ().

Based on the L*°(¢?) characterization of BMO from Lemma 2.2, we have the following
lemma, which will be essential in obtaining L°° bounds in the proof of our main theorem.
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Lemma 2.3. Let 0 < p,t < oo, N > 3, and
s1 > n/min (p, 1), s; >n/min (2,t) 2<i<N.

Let ¢;,9; € S(R"), j € Z, satisfy Supp(@;) C {€ € R™ : |¢] < €29} and Supp(¥;) C {¢ €
R™ : D727 < |¢| < D27} for some C,D > 1. Suppose that T and T? are the bilinear
operators and T® is the N-linear operator, defined by

1/2
T (s fo) (@) o= | 0 (O, 0 (5 % 1) (@) (L, s (0 5 f2) ()]
jez
T2(f1, f2) (= stl o5 (95 * fl)(x)?mig,m‘ (95 % f2) (x),
JEZ
N
T?(fr,... fn)(x stl 5 (05 % f1) (2) Hfm;,gj (95 * fi) (x)
JEZL =2
for fi,..., fnv € 8(R™) and = € R™. Then we have
(2.9) HTl(f17f2)HLp(Rn) Sl ze@ey L f2ll Baro@rny
(2.10) HT2(f17f2)HLP(]RTL) S il zeem |l f2ll Brroen)
N
(2.11) |T3(f1,- - 7fN)HLp(]RTL) Sl e @ey H I fill Baro(mr)-

=2

Proof. We will only be concerned with (2.9) and (2.11) as the proof of (2.10) is very similar
to that of (2.11) with N = 3.

Since dyadic cubes with the same side length are pairwise disjoint, the left-hand side of
(2.9) can be written as

(Z D (M iy f1)" (O 8221(79j*f2))2XQ>1/2’

JEZ QED;

LP(R™)

and the estimate (2.6) implies that the preceding expression is dominated by a constant
multiple of

212 (XX (mf M., (0 * 1) (y ))Q(yiggfmig,zj (ﬂj*fz)(y))%c@)l/g‘

JEZ QED;

Lr(R)

According to Lemma 2.2, for each Q € D we can choose a proper measurable subset Sg of
@ such that |Sg| > 3|Q| and

(2.13) I Fellmaro = | { 30 (imb oL, o (9 = £2)0)) s |
QeD

J

jeZHLoo(ez)'

Here, we may use 15, instead of 1), because of the Calderén reproducing formula and (2.5).
Now, using (2.7) with 7 < min (p,2) and the vector-valued maximal inequality (2.3) of
M with the index set {Q}gep, x@ can be replaced by x5, in (2.12) and then Holder’s
inequality yields that (2.12) is less than a constant times

H sup M, o5 (5 % f1) \ { QE; (yigg M, o (95 * f2)(y))XSQ } jeZHLm(ﬁ)-

J

LP(R™)
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The second term is definitely comparable to || f2||pro due to (2.13) and the first one can
be estimated by

H sup |pj * flep(Rn) = || fill e (rm

in view of Lemma 2.1. This proves (2.9).
Similarly, for each () € D we choose proper measurable subsets SCQQ and Sg’) of () such

that [S3|,[S3| > 3|Q| and

H . k=23
JEZIIL>(£2)

| fxll Baro = H{ > (;Ie%i)ﬁgkm (0 = fk)(y))ng}
Q

i
We note that |Sg2 N S%\ > 1|Q| and thus (2.7) implies
xo(x) Sr MT(XSémS%)(x), for all 0 <7 < 0.

Choose 7 < min (1,p). Then we can prove that the left-hand side of (2.11) is smaller than
a constant times

HZ > (;’&gms 2 ~*f1)(y)> l]_V[ (;gcgfmik,y(ﬁj*fk)(y))xsg)xsg‘

JEZ QED; k=2

3
- H supi)ﬁs 2’( vt fl)‘ Lr(R™) ,};[2 H{ QZ_ (z}gg imz’“’m (054 fk)(y)>ng }jEZHLOO(Zz)

Lr(R™)

X H H{SUI%QJ 79' * fk) }jezumo(eoo)

N
Sl @y [T £llaco
k2

as desired. Here, we used the fact that for 4 < k < N,
0, s (95 % i) Yl oo ooy S K905 5 Fidsel| oo ooy = il e S Uil o2 = L fillaco

where Fg’q is the homogeneous Triebel-Lizorkin space, and Lemma 2.1, the embedding

F&Q — F&“, and the characterization BMO = Foof are applied. We refer to [24] for more
details. O

The following lemma is the main tool used to derive pointwise estimates like (1.15). In
fact, similar results can be found in [13, 14, 15, 17, 23] with the maximal function M, but

here we replace M; by Dﬁik o; in order to apply the arguments in Lemmas 2.2 and 2.3.

Lemma 2.4. Let 1 <t <2 and s1,...,8n > n/t. Suppose that o is a bounded function
with a compact support in (R™)™. Then we have

‘Taf(xﬂ < ‘}U(Qj')HLté,((R")m) H m§k72jfk(l‘)7 uniformly in j € Z.
.
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Proof. Using the Holder inequality, we obtain

’Tgf(x)‘ = ’/( o a” (%) ﬁ fk(x—vk)di;"

k=1

< gimnit [ /( . (

where we applied the simple inequality that
Hf(x - ')<2j'>73k HLt(R") S, 27jn/tmgk72jf(x)‘
Then the Hausdorff Young inequality with 1 < ¢ < 2 yields that

m 1/t m

<2jvk>8kt/) ]av(5)|t/dﬁ} H mikﬂjfk(x)
k=1 k=1

[ Lo (T )i @ 3| S0y gy
n\m el 3

and this completes the proof. O

The next lemma is a multi-parameter inequality of Kato-Ponce type.

Lemma 2.5. Let 1 <t < oo and s1,...,sm > 0. Suppose that g is a function in LL((R™)™)
and = € 8((R™)™). Then we have

HE . gHLg((R")m) 5 HgHL%((R")m)

The above lemma is clear when s, ..., s,, are even integers as the derivatives of = are
bounded functions, using the embedding L;(l) — L’;m for % = (352), e sg)) <M .=

(sgl), e s%)), which means s,(f) < SS) for each 1 < k < m. Then a complex interpolation

technique completes the proof for the general s1,...,s,, > 0. We refer to [9, Section 5| for
more details.
We now discuss a regularization of multipliers.

(m)
Lemma 2.6. Let 1 < r <2 and o satisfy L’g’\y [0] < 00 for sy >n/r, 1 <k <m. Then

there exists a family of Schwartz functions {0 }o<cc1/2 sSuch that o€ has a compact support
in (R™M)™,

(2.14) sup £2"" [0 < £V o),
0<e<1/2

and

(2.15) lim |75 f = Toe f| 2 gy = 0

for Schwartz functions fi,..., fm on R™.

The above lemma can be verified with a very similar argument as described in [15,
Theorem 3.1], by using Lemma 2.5 and just replacing L% by L%. Therefore, the proof will
not be pursued here. As shown in [15], the L? convergence in (2.15) implies the existence
of a sequence of positive numbers {¢; }jen, converging to 0 as j — oo, such that

lim T,¢; f(x) = T, f(2) a.e. x €R"
j—o0



12 LOUKAS GRAFAKOS AND BAE JUN PARK

Then Fatou’s lemma and (2.14) yield that

i .. 3 r (m) € .
HTO'fHLp(Rn) < lbﬂi)lorolf HTO'Gj fHLp(Rn) ~ 0<Sllp/ ‘C"\II ] 1] Hszle(]R")

o) T
<2V o] H | fill vi (-
1

In view of this reduction, in the proof of the main theorem we may actually assume that o
is a Schwartz function such that & has a compact support. Our estimates will depend only

n L’g’\p(m [0] and not on other quantities related to o.
With the regularization in Lemma 2.6, we may apply the following lemma in the case
that for at least one 7 with 1 <4 < m we have p; < 1, so that the HPi-atomic decomposition
is applied.

Lemma 2.7 ([14]). Let 1 <1 <m, 0<p1,...,m <1, and 1 < py1,...,pm < 00. Let o
be a Schwartz function on (R™)™ whose Fourier transform has compact support (as o€ does
in Lemma 2.6). Suppose that f; € HPi(R™), 1 < i < I, have atomic representations f; =

> h—1 ik i k;> where ag g, are L-atoms for HP and (Y_27_, \)\i,ki|pi)1/m < |\ fill Eei (meny.-
Suppose f; € S(R™) forl+1<1i<m. Then

o0 o
= ) Mk M To (@1 s fiits s fn) (@)
k=l k=1

for almost all x € R™.

In order to establish an inequality such as (1.15), the vanishing moment condition of a; ,
will be exploited in the following way.

Lemma 2.8. Suppose that a € LF(R") is a bounded function with a compact support and
has vanishing moments in the sense that there is a M € NU {0} such that

(2.16) / z%(x)dr =0, |af <M.
Then for any K € §(R™) and ¢y € R™, we have
1
(217)  |K=xa(z)| / / ly — co)M T Z |0°K (z — co — t(y — co))||a(y)|dydt.
0 JR" la|=M+1
Proof. We recall Taylor’s formula saying that for any x,y € R™ and M € NU {0} we have

fla+y) =Y 8a£,() +(M+1) > — / 1—tM8af(a:—|—ty)dt>

o <M ' laf= a1

Then (2.16) yields that the left-hand side of (2.17) is dominated by a constant times

> / (1-pM \8“K(x—60—t(y—00))Hy—00\M+1!a(y)\dydt
laj=a1+1 @

and this is clearly less than the right-hand side of (2.17). O
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The argument in Lemma 2.8 will help us estimate the L™ norm of the product of
(x1)%1 -+ (xp)®™ and derivatives of (U(Zj-)\ll(m))v to obtain the quantity E;’\P(m) (o], as
the Hausdorff-Young inequality HFVHLT/((Rn)m) S IF |- (rnym) is applicable for 1 < r < 2.
The following lemma will play a significant role in this.

Lemma 2.9 ([14, 23]). Let 1 <p < g < o0, and s > 0 for 1 <k <m. Let o be a function
defined on (R™)™ and K = oV be the inverse Fourier transform of o. Suppose that o is
supported in a ball of a constant radius. Then for 1 <1 < m and any multi-index & in
(Z™)! there exists a constant C'& such that

H o SlaaK( 17"’7'l)yl+la"'aym)HLq((Rn)l)
S C&H '1 "'<'Z>SZK<'17-"7'lvyl+17'"7ym)HLp((]Rn)l)
where 8% denotes & derivatives in the first | variables.

We end this section by reviewing the technique of Grafakos and Kalton [12], which will
be very useful in estimating the LP norm of the sum of functions having a compact support
for 0 <p <1

Lemma 2.10. [12, Lemma 2.1] Let 0 < p < 1 and {fg}ges be a family of nonnegative
integrable functions with Supp(fg) C Q for all Q € J, where J is a finite or countable
family of cubes in R™. Then we have

HZ fQ‘LP(]R" ~ HZ Q| / Joly XQ’

where the constant in the inequality depends only on p.

Lp( R"

3. PROOF OF PROPOSITION 1.2

Let 6 and 6 denote Schwartz functions on R™ having the properties

Supp(6) C {¢ e R": 1083\% €l < 10%)%%}

Supp C{¢eR": 100\F <[l < 10%%}

and 6(¢) = 1 for 1083?/% < < 10%)%%. Then it is clear that 6 x § = 6.
Choose 2/r < 6 < 2 and let N > 0 be a sufficiently large number to be chosen later.

Recall that our fixed Schwartz function ¢; satisfies Supp(¢;) C {£ € R™ : [¢] < 29F1} and
$;(§) =1 for [{] < 27, We define

Hﬁff?s) () == H(ns) (z)pn (), r € R"

and

M) = HY 5 (€)0(6)0(%) - 0(6m), €€ (RM™
where H, 5y is defined in (1.9).
It follows from the support of § that o) is supported in {€ € (R™)™ : 100 <€l < 18(1)

which implies that o(2!€)W (™) (€) vanishes unless —1 < [ < 1. Moreover, in view of Lemma

2.5 we have -
r,pim l l
Lyt e ™ )]S_Illggl\}a 12,20

Lg(Rm)™)?
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which can be estimated, via scaling, by a constant times

< (176,

(N) . < /(-]WQ
(3.1) o \|L§(<R">m>~HH<m6) G‘Lgl(R")N

L, (Rm)?

where we used Lemma 2.5 in the last inequality. We observe that

o —

(1= AP 2 (&) = HN) (€)= b+ Honos(©)

and H(T—S\l)vé € L"(R™), using (1.12) with § > 2/r and s; = n/r. Since {¢n}nen is an
approximate identity, we have

ey ‘ ON * Hns.8) = HW*SL‘”) ey
which proves
. P () < . (s,
(3.2) hﬁf;lopﬁg [a'( )] < ]\}gnoo ‘CZ)N *H(n—s1,5)’ L (R < HH(n—s1,5)’ L7 (R™) < 0.

On the other hand, for 0 < e < 1/100, let
f](e)(a:) = VPif(ex), 1< j < m.

Then it is clear, from the Littlewood-Paley theory for Hardy spaces and scaling arguments
that foreach 1 <57 <m

(3.3) Hf](E)HHp]_ _— Hf](E)Hij(Rn) = 110l s &y S 1, uniformly in e.
Moreover, we observe that

Tyo0 (Ao, £9) (@)] = 2|10+ (0(e)) (@) Bea)| ™!

and this, together with scaling, yields that
o (A1 )|y = 6177 (05 = (BCe) ) 0

Lp(R")
Applying (3.3) and Fatou’s lemma, we obtain that
HTa(N> Hlex_uprmﬁLp pe hmlnf HT (N) f1 ey 7(;))‘ LP(]Rn)
m—1]4. . (N
. > —
(3.4) > H d lim inf . 0(x ey)?—[( yH Loy’
Since
|0(x — ey)?—[gg?;) ()| 2 Hggzs) (y) uniformly in € >0,z € R"
and

H%E’fjx()s)HLl(R”) < Hgg]\\]HLl(Rn) ,S N" < o0,
the Lebesgue dominated convergence theorem yields

(3:4) = 16" | o g /R Ay )y ~ /R Hns)W)on (y)dy
Taking lim inf y_,», we finally obtain that
l}ﬂifof HTUUV) HHm Koo Hom Lo < HH(M)HLl(Rn) =

where we applied the monotone convergence theorem and the fact that H, s) ¢ LY (R™) for
d < 2 because of (1.11).
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This fact combined with (3.2) completes the proof.

4. PROOF OF PROPOSITION 1.3
We first consider the case 1 <1 < m. Let y; := (m_1/2,0, ...,0) € R™. The condition

MN

(sk/n—1/pp) < =1/1"

B
Il

1
is equivalent to
(4.1) si+-spkn/r <n/prtc A n/p=n/p— (n/pa o+ n/pm).
On the other hand, it follows from the condition s; > n/r, 1 < j < m, that
s1+ -+ s +n/r >In/r+n/r,
which further implies, combined with (4.1), that
20/ +2/r" <2/p— (2/py1 + -+ 2/pm).
Now we choose 7,741, ...,Tm > 0 such that
Tit1 > 2/Dig1y -y Tm > 2/Dm
and
(4.2) 2/r<T<2/r+2/r <2/p—(T31+ -+ Tm) <2/p— (2/pix1+ -+ 2/Pm)-
Let ¢, € S(R™) be radial functions havmg the properties that ¢ > 0, ¢(0) # 0,

SUPP( ) C {§ € R": ‘£| 2001m} Supp( ) C {5 € R": |§| > 100m} and 80(5) =1 for
€] < 200m' In what follows, we denote H (g, ...y 5,4n/r ) Dy H for notational convenience.

We define
KO(2) = M plz), @R,
and

1
D(gy,.... &) = (KV) ( Z & —m)) Hgo (72 & — &)
k=1
where M® is defined on (R”)l. Then the multlpher o on (R™)™ is defined by

o(&1y e En) = MO(E, . )P (G — ) - Y (Em — ).

To investigate the support of o we first look at the support of M®. From the support of
", we have

|§1+--'+fl_lﬂllﬁma

and for each 2 < j </

4. e g < —
( 3) ‘fl + +€l é]‘ = 200m
By adding up all of them, we obtain

1
_ < -
(6 = ml < 550
and the sum of (4.3) and (4.4) yields that for each 2 < j <1

(4.4)

1
i+ &4+ & - 18] < Toom
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Let us call the above estimate £(j). Then for 2 < j <[, it follows from

that

C_ < -
‘gj Ml‘ — 100777,7
which proves, together with (4.4), that

1
® . nl: L < _ - < i< '
(45 SuppMY) {618 € ®Y 11— | < g LSS
Since{onis also supported in {£ € R™ : [¢| < 15—}, it is clear that
1
MG ] < ——, 1< <
Supp(@) © {(€1, &) € R)™ 5 [¢ 11_100 1<j<m}
2 nym . 101
c{E=( g e ®Y": <8 < 0

which shows that o(2.€)¥(™)(£) vanishes unless —1 < [ < 1. Furthermore, using Lemma
2.5 and the scaling argument in the derivation of (3.1), we have

"o 5 sup [o(2 )|
—1<i<1

(@) S lloll oy gnym)

and this is clearly less than a constant times

H [

] =Il+1

)

s1/2 s1/2 l
oz ey ST = A1) V2 (1= A EMO -

We observe that

—

MO(zy,...,21)

l

_/( o (K(l))\/(;i (&k — p1) )[ﬁ (;i(gk_gj >]<H —2mi(z; &) )dgl---dgl_
k=1 k=1

Jj=2 Jj=1

Using a change of variables with

! !
1 1 .
L= (& =), and 72&-@ 2<j <l
k=1 k=1
so that
(4.6) S =0+ +q+p, and G =C0—¢+up, 2<j<I,

we see that

—

MO (2, ... 2p) = e~ 2 @) /
(&n)!

(ﬁ ) —2mi( ey Th:C1)

l

% ( H e—%i@l—%(ﬁ)dﬁ e d(

j=2
(4.7) = IKO(z) + - 4 x)o(x) — 22) - - (] — xy)e” i@ Han0)
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since the Jacobian of the system (4.6) is I. Consequently,

(I— A2 (1= A2, 8)
l

- l/(R")l <H SJ>KU)($1 + ot m)e(zr —x2) - p(T1 — 20)

e 2milT et ) 2mizél) 627Ti(3617§z>d$1 coedy

and we perform another change of variables with
y1i=x1 + -+, and yji=z1 —xj, 271,

which is equivalent to

l [
1 1 .
xlzl;ym and lkz yk — ), 2<j<lI,

to obtain that the last expression is controlled by a constant times

: ! ) l
/(Rn)z <};yk> 1(132< kZ_; v = 5) ) J)K(D(yl)(l;[zw(yj))
l

X e 27”<y17 1 (51"" +£l ( H 27 yj ' T (§1++€l)_§]>>dy1 P dyl

In conclusion, using a change of variables, we have

\1,(m> 1 :
(4.8) LY <H/n Zyk ( <l; yk_yj> )
< KO0 (T o) (TLe205 )ayr -

J=1

EN

2

:1~m

||
N

J

For sufficiently large M > 0, let

! Rt l %
<% Zk:l yk> szz <% Zk:1 (yk - yj)>
()t Ty () M |
Then the right-hand side of (4.8) can be written as

(4.9) | T, (K &)” @ (200 @@ (640

N(M)(y17 7yl) =

Lr((R™)!)
where

KD o) = ) kO (), oM(y) = )M e(y).
Now we need the following lemma whose proof will be provided in Section 9.

Lemma 4.1. Let M > sy + -+ s +n+2. Then Ny is an L™ multiplier on (R

L7 (&1 yensbm)

17
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By choosing M > s1 + -+ 4+ s; +n + 2 and using Lemma 4.1 and 2.5, we obtain

(4.9) < |[(K 81+ +8l))v ® (MY e @ (pM)Y] J—
< H I—A) (514 +Sz)/2(K(l)) ‘ — H I—A) (s1+- +sz)/2(fHV V)‘

< H I A (o1 +Sl)/2H(S1+ +si+n/r’ T)‘

LT R") LT (]Rn)

LT (Rm) — HH(n/r’J)|
and this is finite because of (1.12) with 7 > 2/r, which concludes that

E;’\P(m) [o0] < 0.

LT (R™)

To achieve
(410) HTO'HHPIX---XHP'”LA)LP = 00,
let .
fila) =+ = filz) == 2"3(2x) e (4,
Fi(@) = Hingpy ry) * p(2)2 00 141 <j < m.
Clearly, || fjll grj@ny S 1for 1 <j <land
|’fj||Hpj(R") ~ ||fj||LpJ (R") ~5 HH (n/pj,75) Hij (R™) S 1, I+1 <j<m

due to (1.11) with 7; > 2/p;, where the pointwise estimate H(,,/p, ;) * (%) S Hn/p; ) (@)
is applied. On the other hand, using (4.5) and the facts that ¢ * ¢ = ¢ and

~

fi(§) =1 for ¢ — | <

and 1 <5<,
100m

we see that

(&1 ) (&) () = MO (&r, o &) Fron (E41) - Fn(Em),
which implies that

‘Tf ‘—‘( ) o )| frir (@)] | fn (@)
= UK e T Mnsp, ) * 0@
J=l+1

where we applied (4.7) and the fact that K() is a radial function. Now, since
Hisy) * 0() Z Hisyy(z) for any s,v >0,
which follows from the fact that ¢, H ) > 0 and (1.10), we obtain that

17 F @) gy 2 |0 TT Horiny

j=l+1 Lr (R")

~ HH(31+~-~+sz+n/r’,T) ﬁ Hn/py.m))

LP(R"
=141 &)
- "H(SH-'“+Sz+n/pz+1+‘“+n/pm+n/1”’ﬁ+ﬂ+1+‘“+Tm)HLP(RH)'

Since s1 + -+ + s+ n/pip1 + - +n/pm +n/r" < n/p due to (4.1), the last expression is
greater than

“H(”/P77+Tl+1+“‘+7'm)HLP(R") =
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because of (1.11) with 7+ 741 + - -+ + 7y, < p/2, which follows from (4.2). This completes
the proof of (4.10).

When [ = m, exactly the same argument is applicable with 2/r < 7 < 2m/r+2/r" < 2/p,
o = M and fi(x) = 2¢@(2x)e2™ @) for 1 < j < m. Since the proof is just a
repetition, we omit the details.

5. PROOF OoF PROPOSITION 1.4

Let ©(™ be a Schwartz function on (R™)™ such that 0 < O < 1, ©M)(£) = 1 for
272m Y2 < |€] < 22m!/2, and Supp(©(™) C {E e (RM)™ : 273m~1/2 < |€| < 25m1/2}.
Then using the Littlewood-Paley partition of unity {Qjm"\Il(m)(2j )}J 7 the triangle in-
equality, and Lemma 2.5, we first see that Ege(’") 0] < Eg’\y(m) [0]. Thus it suffices to prove

the estimate

[y [p—— £ o TT il o
=1

as LPi = HPi for 1 < p; < co. We adopt the notation L%[o] := Eg’e(m [o] for simplicity.
It follows from (1.13) that there exists 1 < t < r such that
S1y-+s8m >n/t >n/r.

—

Since ¢(27 7)O(™) has a compact support in an annulus of a constant size, independent of
7, we have

(5.1) Lilo] S Lilo]
as 1 <t <r. See [9, Section 5] for more details.
Using the Littlewood-Paley partition of unity {v;};cz, we decompose o (&) as

(5.2) o= > oEvp (&) (Em)

JisesJm €L
- (Z 3 "')+(Z 3 "')+“'+<Z 3 )
NEZL j2,-,Jm <J1 J2€Z  j1<j2 JmEL j1yeesJjm—1<Jm
I3y Jm<J2
(5.3) = oM@ + 0@ E) + -+ ™ (E).

We are only concerned with o!) appealing to symmetry for the other cases. Thus, our goal
is to show that

1700 Fll gy < L5l0) [T 1y
i=1

We write
dDE@ =" > @bi(€)vn(&) Ui (Em)
JEZ j2,....im <J
=Y o@®OE/2) €)Y Tn(€) -ty (Em):
]EZ ]277]m§]

since O (€/27) =1 for 2771 < |¢;| < 27+! and |&] < 27+ for 2 < i < m. Let

0;(€) = a()Om (€/2).
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Then we note that
(5.4) [|oj(27)]

and

< Lglo]

LE((R™)™)

= "0iE)i(E) D (&) i, (Em)-

JEL J2yee0Jm <
We further decompose (1) as

where
Thon(€) =Y 0;(©)¥5(&) > Vi (E2) -+ s (Em),
JEZ 325 dm <J
maxa<i<m (Ji)>j—3—|logy m|
(5.5) onn @ =" 0 (Eus(&) > V5o (€2) Vi (Em)-
JEL J25esdm <j—4—[logy m |

We refer to T L) as the low frequency part and T L) as the high frequency part of T«

Tlow hzgh

(due to the Fourier supports of the summands in T° JeY! f and T e f )

Tlow hzgh

5.1. Low frequency part. To establish the estimate for the operator T L), we first ob-
Tlow

serve that

(1) f( ) Z Z Taj ((fl)jv(fQ)jzv'”7(fm)jm)(x)

Tlow . . .
JEL J250Jm <]
maxg<i<m (ji)>j—3—|logy m|

where (g); := ¢y x g for ¢ € S(R") and | € Z. It suffices to treat only the sum over
J3y ey dm < jo and j — 3 — |logym| < jo < j, and we will actually prove that

66 |X X T (0 Wi Undin) |

JEZ j—3—' \_logz m| §j2§j
J3seeesdm <J2

Let ¢ be a Schwartz function, defined in (2.1) and ¢; := 2/"¢(27.) for j € Z. Let (g)! := ¢yxg
for g € S(R™). Then we can write

Z TO’j ((fl)jv (f2)j27 R (fm)]m) (:L‘) = TO'j ((fl)jv (f2)j27 (f3)j2a R (fm)jz) (x)

J3yesdn<J2

S Lo mew

Since the sum over jo in the left-hand side of (5.6) is a finite sum over js near j, we may
consider only the case jo = j and thus our claim is

6D [T (0 (2)is (o ()|

JEZ

S Lglo H 1 fill Le: ().

LP(R™)

Using Lemma 2.4, (5.4), and (5.1), we obtain the pointwise estimate
(5.8)

T, () ()3, (s () () 5;(H%m MH%w ().
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Since s1,s2 > n/t =n/min (p1,2,t) = n/min (p2, 2,1), it follows from Lemma 2.2 that for
any dyadic cube @ € D there exists measurable proper subsets Ség and Sé of @ such that

551,153] > §1@Q] and

6 el (g 0a) oy 18
J
Note that ]Sb N Sé\ > 1|Q| and thus, for any 7 > 0

using the argument in (2.8). Clearly, the constant in the inequality is independent of Q.
Now we choose 7 < min (1, p), and apply (5.8), (5.10), and (2.3), as in the proof of Lemma
2.3, to obtain

H ZTO'j ((f1)j, (f2)5, (f3)7, - .-, (fm)j)‘

JEZ L
< 5ol 3 3 (T ) D100 CISE I .
keZQeD i=1 =3
< £5l0]| > (12192,% )( 025 0:) Me sy | o
geZQED i=1 i=3
2 m
s sl 22 30 (T10%s) (TL98E sy sy | oy

JEZL QED =1 =

where QQ; g = infyeq ims 5 (9);(y) and QQ; g:= 1nfy€Q zms 5 (9)! () for all Q € D;.

Using Holder’s inequality and the fact that Qsi,t i <ML (fi) (z) for all z € Q € Dy,
the LP norm in the last displayed expression is bounded by a constant times

2 m
<H1 H{ Q%:J ek XSk }jEZ’ Lm(z2)> <11) o, Ui)j}jEZHL”"(fw))
i- ; -

S fallxeen @yl f2ll xcez ey [T 1 ill s ey

1=3

where the inequality follows from Lemma 2.1, 2.2, and the definition of Hardy space HP.
Since HP = LP C XP when 1 < p < oo, we finally obtain (5.7).

5.2. High frequency part. The proof for the high frequency part relies on the fact that
if g; is supported on {£ € R" : C~127 < [¢] < €27} for some C > 1, then

Jj+h

s e (2 a))

l=j—

Lo(¢a) She H{gj}jeZHLP(IZQ)’ 0<p<oo

for h € N. The proof of (5.11) is elementary and standard, so it is omitted here. Just use
the estimate [¢; * gi/(z)| So M, gi(x) for 0 < o < p,qand j —h <1 < j+ h, and apply
Lemma 2.1.
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We note that
Ty F2) = STy ()5 ()™ (™) ()

high
* JEZ

where ¢; is defined as in the previous subsection and (f;)»™ := Pj—4—|logym| * fi for 2 <
i < m. Observe that the Fourier transform of T, ((f1);, (f2)”™, ..., (fm)?™) is supported
in {€€R": 2773 < |¢ < 2773} and thus (5.11) yields that

(5.12) ITy0 Fllioeny S I{To, (G035 G2V )™)Yl gy
Moreover, it follows from Lemma 2.4, (5.4), and (5.1), that

T, ((F1)5 ()™, ()™ (@)] S LE[01ME o5 (f1)j(x Hmﬂmwm>

For Q € D let Sé be a measurable proper subset of () such that |SQ| > 2|Q| and (5.9)
holds for i = 1 as before, and we proceed the similar arguments to obtain that

17 Flie S i {0 T T, 057

jeZ‘

Lr(¢2)
scill{ 3 (oot N0l
ng{ @ﬁ%wmxm%}]mwﬂkwmwu -

Lilo ]HleXPl(]R" HHfz”Hm Rm) ﬁg[a]H”fz'HLPi(Rn)-
i=1

6. PROOF OF PROPOSITION 1.5

We consider only the case I < m as a similar and simpler procedure is applicable to

the case l =m. Let 1 <l <m, 0<p1,....00 <1, ppy1 =+ =pp =00, and 1/p =
1/p1 + -+ + 1/p;. For simplicity we assume that [|fi11|lpecmn) = -+ = [ fmllpeomn) = 1.
Then the aim is to show that
l
r L (m)
(6'1) HTUfHLp(Rn) 5 ﬁ; [U] H ||fiHHPz‘(]Rn)-
i=1

Let f; € HPi(R™) for 1 < < [. Using atomic representations, we write

o0
fl = Z Ai,kia’i,ki7 ]- S Z S l?
ki=1

where a; 1, are L*-atoms for H? satisfying

(62) Supp(ahki) C Qi,kiﬂ Hai,ki”L‘x’(R") < |Qi,k¢|71/piv /Q maa’i,ki (l‘)dflf =0
i,k;
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for |a| < N; with N; large enough, and
> N 1/pi
(6.3) (3 i) ™ S Wfillms -
ki=1

By the regularization in Lemma 2.6, we can assume that ¢ is a Schwartz function whose
Fourier transform has a compact support in (R™)™. Then Lemma 2.7 yields that

(6.4) Tof@) =Y > M- Mo (@1 @iy, fiets - ) (@)
k1=1 k=1

for a.e. x € R".
For a cube @ we denote by Q* its concentric dilate by a factor 10y/n. Now we can split

Tgf into two parts and estimate
T, F(2)] < Gu(w) + Gala),

where

[e.e] oo
Gri= Y > Pml gl Tolar,, - ,al,k“fz+1,--',fm)‘XQ;hm---mQ;k“

k1=1 k=1
(e} [e.e]

Gy = Z . Z ’)‘1,761| . |)\l,kl | ‘To(al,kly TN T TR fm)‘X(Qiklm.,.mQZkl)C.
ki=1 k=1

The first part G1 can be dealt with via Lemma 2.10. Suppose that Q7 ;, N-- -ﬂszl # 0,
as if this intersection is empty we are done. From these cubes, choose a cube that has the
minimum side length, and denote it by Ry, . . Then

Qlgy N NQLk, C Riyoy C© QT N N Q1
where Q7% = (QF,)" denotes a dilation of Q7 . We shall prove
(6.5)

l
1 gm s
‘TO—(GLkl,...,QlJCl,flJrl,...,fm)(y)‘dy§£§7W( )[U]H’Q’L,’ﬁ’ 1/1)1.
i=1

,,,,,

To verify this, we may assume, without loss of generality, Rk, . = Q7j,- Using the
Cauchy-Schwarz inequality, the left-hand side of (6.5) is majored by

il
Q5 g, 12

and this is less than a constant multiple of

Ta(al,kp . 'aal7k‘l?fl+la .. 7fm)‘ L2(Rn)

l

[

1 @ (m) —~1/p;

g iz el [T ekl < 257 10 T] Qi ™7
1,k =2 i=1

ﬁgqj(m) [O’}

in view of Proposition 1.4. This proves (6.5).
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We now apply Lemma 2.10, the estimate (6.5), and the Holder inequality to obtain

HGIHLP R™) S H Z Z <H‘)\zk |)XRk1 AAAAA K, ]R

ki=1 k=1 i=1 'vkl|

X/ }To(al,klv"'7al7klvfl+17"'7fm ‘dy’
Ry, k

<"l 32 - 3 (TIs 10us )

k=1 k=1 i=1

l [e’e]
p(m) —1/pi
< 2" T || D2 ol @ir P xazs,

i=1 k=1

LP(R™)

LP(R™)

Lri(R7)’

and this clearly implies that

I
oy ()
(6.6) G|l o ny S LZY [U]HHfiHHPi(]R”)

as

1/ps
HZWM@MWZ mw_(zmmﬁpwmwm

To obtam the estimate for G2, we need the followmg lemma whose proof will be given
in Section 9.

Lemma 6.1. Let 1 <l <m and 0 < p1,...,p; < 1. Let a;, 1 < i <, be atoms supported
in the cube Q; such that

(67) ||az‘”Loo(Rn) S |Qi’71/pi, /Q xo‘ai(x)dx =0

for all |a| < N; with N; sufficiently large. Let || fit1llpoo@mny =
Suppose that (1.14) holds for all J C {1,...,1} and o satisfies Erq}

= [lfmllpoe@ny = 1.
)[ | < c0. Then for

any nonempty subset Jy of {1,...,l}, there exist nonnegative functzons bl ,...,b;JO such
that
J .
HbiOHLPi(Rn) ST for 1<i<l,

and

I To(ar, . an, frins o f) (@)] S L5V (01000 () - - b ()
for all w € (Migs, Q7) \ (Uses, @7)-

Let Jy be a nonempty subset of {1,...,l}. Then Lemma 6.1 ensures the existence of
nonnegative functions b1 %y ,b{?ﬂ such that
M) J
’Ta(al,klv"';al,k‘l’fl-f—la"'afm)(x)}S‘Cg‘ [ ]blokl( ) bl(])gl( )

for all x € (mz¢J0 ) \ (UZEJ() ) and ||b |L1’z (R™) S < 1.

Now set
bik; = Z b;](l)s
m;éJOC{l:QV'" }
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Since it is finite sum, we first note that [|b; y, || Lrs (zn) S 1. In addition, we have the pointwise
estimate

r,\I/(m)
’To’ (al,kl) cees Ak fl-l—la B fm) (17) |X(Q’Lklﬂ.‘.ﬂQf’kl)c (17) 5 'Cg [U]bl,kl (l’) U bl,kl (.’1}')7
which yields that

Gala) £ 25771 H(ZIA

i=1 k;=1
Then we apply Holder’s inequality to deduce that

(68)  Gallpony S £5"" 0] HHZIMIm < anzumz(w

i=1

LPi(R™)

because
1/
HZ\MW e <(Z\Alk|pz||bzk|ww) (vaﬂ@) "< il
k;=1

Combining (6.6) and (6.8), we finally obtain (6.1) as desired. This completes the proof.

7. PROOF OF PROPOSITION 1.6
Let 1<r<2,1<I<p<m,and
(7.1) I:={1,...,0}, II:={l+1,...,p}, II:={p+1,...,m}, A:=TUITUIIL

Assume that 0 < p; <1foriel, r <p; <ooforiell, and 1/p1 +---+1/p, =1/p. Let
| fill oo ny = 1 for i € II1. As in (5.2), we write

o€ = > oE)dn(&) by (Em)-

jla-“:jmeZ
If max (j1,...,Jm) = jk, then there are two cases
(Casel) i — 3 — [logym] < max (j;) < jk,
JiF Ik
(Case2) max (j;) < jx — 4 — |loggm].
JiFJk

For (Casel), we utilize the argument in Section 5.1. That is, we need to prove that for
1<K <kKka<<m

H Z }Tﬂj ((fl)j’ RRN) (fm*l)ja (fm)jv (flf1+1)ja

JEZL
(72) 3 (fng—l)ja (fl’iQ)j’ (fng-‘rl)j: R (fm)g) M
S L5lo] TT Willari@ny,s

1€IUIT

Lp(R™)

where (g); :=1; * g and (g)? := ¢; * g as before.
We remark that (Case2) is a high frequency part for which T ) ( fiyeoo, fm) is written

hzgh
as the sum, over j, € Z, of terms whose Fourier transform is supported in an annulus of

(%)

size 27r where o) is defined as in (5.3) and Opign 18 similarly as in (5.5). Thus, the square
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function characterization of HP will be applied to deal with this case as in (5.12). We will
actually prove that for each 1 <k <m

,m j,m . ), m m 1/2
H(E\T@«m% o G P s G P ) L
(7.3) < Lilo] T 15l @y

1€IUIT
where (g)j,m = ¢j—4— llogym]| ¥ 9g-

7.1. Proof of (7.2) for 1 < k1 < ka < m. Let {/ij == 1j_1+j+1;41 so that %*wj =)
and for each 1 < k1 < k9 < m we define

= (98 040U $0 0 O §8 @) 0,
———— ——— ———
(k1—1) times (k2—k1—1) times (m—kz2) times
- - A
o= (9@ ®POY® $® B¢ VY ® ¢;@ - ®))
——— —— ———
(k1—1) times (k2—k1—1) times (m—kz2) times

Then both afll"” and 0;11#2 can be expressed in the form

2(-/27)) - 0;
for some = € §((R™)™) whose support is in a ball of a constant radius in (R™)™. We observe
that, thanks to Lemma 2.5, for any 1 < t < o0

(7.4) |2 o527 < [loj(27)

- HLtg((Rn)m) 7 HLg((Rn)m) < Lglo],

and

T,re f
(7'5) = TUj ((fl)j7 RN (f:‘il—l)ja (fm)jv (fn1+1)j7 cee (f/iz—l)j7 (f:‘iQ)j’ (f@-‘rl)ja ceey (fm)])
(76) = Ta;é’NQ (fla cee 7fl€1—1? (f/‘il)j7 flﬂ—i—la ceey fliz—la (fHQ)jv f52+1a ceey fm)

Furthermore, if 1 < k1 <l+1 < ko < m, Ta"?ll’“Qf can be also written as
Js

(7.7) Tazll,@f = Tprpea (frse s frats (Fua)jo Frasns -
s (Fen ™ frazs oo Froam1y (Faa)js Fratts - s fim)
since ¢j41 * ¢; = ¢;. Similarly, for [ +1 < k1 < ko < m, we have
(78) T f =T (firoo fi (FidVH frvnn o
=1y (Fer)js Frrtts - oo Fro—1s (fra)jo frotts -y fm)-

Now we write, as in (6.4),

(79) T 51 '“vzf Z Z )\1 NIERE Al le *@1 K2 (alykl, ey am, flJr]_’ ey fm) (.’L’)

k=1 k=1

where a; 1, are L>-atoms for HP¢ satisfying (6.2) and (6.3). Then we apply the following
lemma that will be proved in Section 9.
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Lemma 7.1. Let 1 <r <2,1 <1< p<m, and let 1, I, 111, and A be defined as in (7.1).
Suppose that 0 < p; <1 foriel, r <p; <oo foriell, and 1/p=1/p1 +---+1/p,. Let
a;, 1 €1, be atoms supported in the cube Q; such that (6.7) holds for all || < N; with N;
sufficiently large. Suppose that (1.14) holds for all J C 1. Let f; € LPi(R™) for i € II and
| fill Loe rny = 1 for i € IIL. Then there exist nonnegative functions b;, i € I, and F;, i € 11,
on R™ such that

(7.10) S Tyrea (ars s, fisns o fn) (@) S Lo (Hb ) (TTFR@),

Jez iell

10ill Lri (ry S 1, 1 Fill Les rry S I fill Loi gy

Lemma 7.1 proves the existence of functions b;y, for i € I, k; € Z, and F; for i € II,
having the properties that

(7.11) ‘TU;?NQ (al,kl,...,ahkl,fl“,...,fm) S g (Hb’k )(HFZ(:IZ)),

i€l i€ll

(7.12) 106,k | Lri mmy S 1, 1 E5ll Les mry S M fill Los ey
By using (7.5) and (7.9), the left-hand side of (7.2) is less than

[o¢] o0
H ST Al kD }ngllvﬂz (atprs- - Qrkys frats - -,fm)”
jez

ki=1 k=1

LP(R")

Then (7.11) and Hoélder’s inequality yield that the preceding expression is dominated by a
constant times

(HH Z [ Ad e |Di

i€l k=1

) (LT 1)

It is obvious that ||Fi[|zeirr) S || fill #i (rny, and we also have

3 1/pi
Hk; ’Al,kz‘bl,kl LPi(R™) — (Z ’)‘zk ‘p Hb'Lk HLPz ]R")) Pi <Z ‘)\ ki ’pz> S HfZHsz(]Rn)

ki=1
having used (7.12). This proves (7.2).

7.2. Proof of (7.3) for 1 < kx < m. Let {b\; == ;1 +; + ;41 as above, and for each
1 < k < m we define

K N
01 = ((Bjaflogym] © @ Bj_a(logym| DU ® Dj_a(logym| @+ @ Bj_a[logym]) "0

(k—1) times (m—k) times

- AN
0;72 = ( ¢j —|logy m| @ ¢j—4—|_10g2 m| ®'¢j o2y ¢j—4—|_10g2 m] Q- ¢] —|logy mJ) *0y.

(k—1) times (m—k) times

Then the argument in (7.4) yields that for any 1 < t < oo

(7.13) |of1(274)

J. HLtg((Rn)m)’ af 5[’%[0_]

(2‘]) HL%((Rn)m)
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Moreover, we note that

Tﬂilf:TUj((fl)j’ ) (fﬁ 1) (fn)ja(fl-chl) a---,(fm)j7m)
(714) :To’;g(flv"‘?fﬁ*l?(fﬂ)jafli+17"'7fm)

and if [ +1 < kK < m, it can be also written as

(715) TO';J} = TG;Q (fla B afla (fl+1)j+1,m7fl+27 R 7fl€fla (fﬂ)jafHJrla e 7fm)

since ¢j_3_|log, m) * Pj—4—|logy m| = Pj—4—|log,m|- Lherefore, (7.3) is reduced to

(7.16) H(%!quff)” |1 gy 5 €501 TT il ey

i€IUIL
Now we write, as in (6.4),

(7.17) Tor, F(z) Z Z)\l ks A Tor, (ks - aury, fivts s fm) (2)

k=1 k=1

where a; j, are L*-atoms for HP satisfying (6.2) and (6.3). Then we need the following
lemma whose proof will be given in Section 9.

Lemma 7.2, Let 1 <r <2,1 <1< p<m,andlet, II, III, and A be defined as in (7.1).
Suppose that 0 < p; <1 foriel, r<p; <oo foriell, and 1/p=1/p1 +---+1/p,. Let
a;, 1 €1, be atoms supported in the cube Q; such that (6.7) holds for all |a| < N; with N;
sufficiently large. Suppose that (1.14) holds for all J C 1. Let f; € LPi(R™) for i € II and
| fill Loomny = 1 for i € II1. Then there exist nonnegative functions b;, i € 1, and F;, i € 11,
on R™ such that

/
(7.18) (Z|T‘7?,1(a1""’al’fl'*‘l""»fm)(aj)’Z)l 2 o (Hb )(HE(HE)),
jez iell
163 Lo (rey < 1, | FillLeigey S N fill Los ey-

According to the above lemma, we can choose nonnegative functions b; ,, ¢« € I, and Fj,
1 € II, such that

(7.19)
1/2
(Z ‘Tgil (@ ders- s Qutys fi41s - - fm)(l’)F) < Lglo] ( H bi k, (l’)) ( H Fi(ﬂf))7
jez icl iell
(7.20) 106k | Lrs mry S 1, 1 E5ll zes vy S | fill s (-

Using (7.17), a triangle inequality in ¢2, (7.19), and the Holder inequality, the left-hand
side of (7.16) is less than

o) o) ) 1/2
H Z Z |A1’k1| |>\l:kl‘<z ‘TU;,I (al’kl,...,al7kl,fl+1,...,fm)’ ) ’

k=1 k=1 jez

< 3ol 32 30 Wasal -l (TT 2o ) (TT )
11l

k1=1 k=1 i€l

5ol (T 35 Mosdtes |, ) (TT 1)
i€l k=1 iell

Lp(R™)

Lp(R)

IN
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This is clearly majored by the right-hand side of (7.16) and in view of (7.20) and the proof
is concluded.

8. PROOF OF PROPOSITION 1.7
The proof will be based on the following interpolation method for multilinear multipliers.

Lemma 8.1. Let 1 <r <2,0<p{,....p) < oo, O<p1,...,pm§oo 1/p° =1/p)+---+
1/p%, and 1/pt = 1/pt +---+1/pL. Let sY,...,8% >0 and si,...,sL > 0. Suppose that

(8.1) o' el 1=o0,1.

HTGHlelx---prgnaLPl ~ T (sh 8k,
Then for any 0 <0 < 1,0 <p,p1,...,Pm < 00, and Si,...,Sm > 0 satisfying
Up=Q-0)/p"+0/p',  1p=0Q0-0)/pp+0/p; for 1<k<m,
sp=(1—0)s) +0s;. for 1<k<m,
we have

(8.2) AN )

HT‘THle XX HPm 5 LP ~ "~ (s1,...,8m)
Proof. Slnce the proof is more or less standard, we only prov1de a sketch of it.

Let U0m) .= 2-mny( = /2) 4 wim) | gmng(m) (o ?) s0 that WO x Wm) — wom) We
construct a family of multilinear Fourier multipliers ¢* as

Z(E _|_9mn+1 s9(1—2)+siz —(s2 (1—2)+sk =z
o (E) = (Hzmwz] Ay~ (S0 tst/2 L (f A ) sha)/2

(1= B2 (1 = A2 (o(2) )W) ) (€/27) W) (€/2).

Note that ¢ = o and it follows from the interpolation theorem for analytic families of
operators that

1-60 (m) ) 9
HTO'Hle X.‘.XHpm_)Lp < (Such [ zt]) (Sup[’rlll ) [ 1+zt]>
teR (81’ 8 ) teR ( 1o+ 7Sm)

by applying (8.1). We refer to [1, 2, 5, 20, 26] for more details.
We now observe that for each [ = 0,1, due to compact support conditions and Lemma
2.5,

‘C?(n,s\ly(mll )[Um’t] — sup Ho_l+it(2j_)\1,(
1rSm JEL

L (@)
-
RGN Dk

(I — Al)s1/2 (I — Am)sm/Q (O'(Qj-)@)‘

SupH (I—Ay)” it(s§—s1)/2 . (I = Ap)” it(s%,—sk))/2

Lr((R™)™)
7w (m)
]

~ (81, 75m)

where we applied the Marcinkiewicz multiplier theorem in the last inequality. This proves
(8.2). O

We now state the following delicate interpolation result whose proof is based on that of
[14, Lemma 3.7].
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Lemma 8.2. Let 1 <r <2, meN and 0 < p1,...,pm < 00. For p:= (p1,...,pm) let
| {s Z (sk/n—1/pr) = =1/r"  for any JC{l,...,m}}
keJ
and for each 1 <u <m
AL (P) :={8:s, >n/pu—n/r, s;>n/p; forall i#u}.

Then Ty, (D) is the convex hull of A (p) for 1 <u < m.
Proof. Let H,,(p) be the convex hull of AY (p) for 1 < u < m and then we need to show
that H,,(p) = I (D).

We first note that I';,,(p) is convex as it is the intersection of 2™ — 1 convex sets. Since
I (D) contains A% (p) for all 1 < u < m, it is clear that H,,(p) C 'y (D).

We now verify I',,,(p) C Hy,,(p). For this one we restrict the size of s;, 1 < i < m. Let
M Dbe a sufficiently large number such that M > mn(1/p; +--- + 1/py,) and let

IY(B) :=Tm@)N{8:s <M 1<i<m},
A%M(f)) = A} (D) ﬂ{s 31§M1<z<m}
HM(p) := H,, B)N{s:s;, <M 1<i<m},
and we actually prove that
(8.3) M (p) c HY (B) forall 0<pi,...,pm < oo,

from which we obtain the desired result by taking M — oo. We use an induction argument
beginning with the case m = 2.

When m = 2, it is trivial because I'}!(p) is the convex hull of the five points (M, M),
(n/pl - n/rlv M)v (n/pl - n/rlv Tl/pQ), (n/pl,n/pg - n/rl)v and (M’ n/p2 - n/r').

Now we fix m > 2 and assume that (8.3) holds with m replaced by m — 1. We denote

%M (g {SGFM( p):n/p—n/r' <s <n/p forall 1<1<m},
FlM —{SEFM() n/p< s <M}, 1<l<m.
It is easy to see that F% P) =U" 0 r'%M () and thus it is enough to show that
(8.4) r9M(p) C Hy (),
(8.5) rbMpy c HM(p) forall 1<1<m.

We note that To;™ (B) is the intersection of the two sets
{§ cn/p—n/r <s <n/p, foral 1<1< m}
and
{S:s14 - +sm=n/pr+-+n/pm—n/r'},
which would be a standard m-simplex with the m + 1 vertices
(/p1s- . sn/pm)s (n/pr—n/r" n/p2,.on/pm), oy (0/P1s. . 0/ P10/ — /1)

Since the vertices of the simplex are contained in the convex set HM (), (8.4) holds.
To achieve (8.5) we consider only the case | = m as the other cases will follow from a
rearrangement. We additionally define

M () = {8 €M (P): sm=n/pm}, F%éw( ={8eM(P):s,=M}

m,1
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and then (8.5) with [ = m follows once we prove

(8.6) Tt (), Ts' (B) € Hy (B)

m,1 m,2
as HM(p) is a convex set. Therefore, let us prove (8.6). For simplicity, we denote p*" :=

(p1y--+yPm—1) and 8§ := (s1,...,8m—1) so that p = (™", pm) and 8§ = (8", s,,). We

observe that
I’%i\/l {s _'*mGF (P, sm:n/pm}.
By using the induction hypothes1s on m — 1, we obtain
FmM c{5:8" e HY \(B"™), sm=n/pn}
where the right-hand side is the convex hull of the sets
{8:8 e AL, _(B™), sm=n/pm} CAL(DB), 1<u<m-—1.
From the definition of H (p), it follows that I M( p) C HM(p). Similarly, we have

7 () c {3:8™ e HM (™), sm =M} C HX(P)

m,2
because M > n/py, is sufficiently large. This proves (8.6). O
Now we prove Proposition 1.7 by induction.
Assume [ = 1 and treat only the case
]-<p1<ra 0<p27"')pp§]-7 Tgpp-i-la"'upmgoo‘
In this case, condition (1.7) is equivalent to
51,8p+1s--+,5m >n/r, and Z(sk/n—l/pk) > —1/r
keJ
for all nonempty subset J C {1,...,p}. Then Lemma 8.2 yields that § satisfying the above
conditions belongs to one of the following sets
Sy :={8:s5, >n/p,—n/r', s;i>n/p; for i#u, 1<i<p}
N{8:51,8041,...,8m >n/r}, 1
0:={8§=0151+ - +0,5,:0,+---+0,=1,0<6;, <1, 5€6;, 1<i<p}.
It suffices to show that for 1 <u < p, § € &, implies (1.8) because the case when § € Sy
can be proved by using Lemma 8.1 at most p — 1 times. If § € &1, then the assumptions
in Lemma 8.1 hold with
(p?)“’?p?n) = (17p27""pm)’ (897"‘789}1) = (Sl""’sm)
and
(p%""’p/}n/) = (T7p27"'?pm)’ (8?7"‘789}1) = (517""Sm)7
due to Proposition 1.4, 1.5, and 1.6, and now (1.8) follows from Lemma 8.1. Note that
s1>n/r=n—n/r.
If se &, for 2 <u < p, then we choose 0 < § < 1 such that
s1>n/pr=(1—-0)n+0n/r
We also select t° > n and t! > n/r satisfying s; = (1 — 0)t° + 0t!. Then we interpolate
between the two cases

(p(l)vvpgn) = (17p27"'apm)7 (8(1)7"'78971) = (t0782>"'78m)
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and

(p%v e Jp}n) = (T7p27 e 7pm)7 (8%7 RS S%n) = (t17 825000,y Sm)
using Lemma 8.1. Here, the assumptions in Lemma 8.1 with the above two cases follow
from Proposition 1.4, 1.5, and 1.6. This finally yields (1.8).

We now consider the cases I > 2 and suppose, by induction, that the claimed assertion
holds for |£| = — 1. Without loss of generality, we may assume that 1 < p1,...,p <,

0<pig1,---s0p <1, and r < pyi1,...,pm < 00, and accordingly, we have
Sy Sl Sptls---y8m > nfr, and Z (sk/n — 1/bpk) > —1/r
keJ
for any nonempty subset J C {1,...,p}. Similarly as in the case [ = 1, we need to handle

only the case that for 1 <u < p

S1y.evySlySptls -y 8m > N1, Sy >n/py —njr’, s >n/p; for i #u, 1<i<p.
Since [ > 2, we may choose 1 < v <[ such that v # u. Clearly,
(8.7) Sy >n/py (>n/r)

since 1 < p, < r, and s, > max (n/pu —n/r, n/r) Let 0 < 6 < 1 be the number satisfying
1/py = (1 — ) + 0/r and then there exist t° > n and t' > n/r so that s, = (1 — )t° + 6!
because of (8.7). We apply the induction hypothesis to obtain the boundedness with

(p(l)a CIEaE Jpgn) = (plv coy Pu—1, 17p’U+17 o 7pm)7 (8(1]7 cee 78971) = (817 .. '7SU—17t07S’U+17 .. .,Sm)
and another one with
(p%v)pin) = (pl)' « oy Pv—1,Ts Po+1y - - - 7pm)7 (8(1]7"‘789n) - (51)' . 'asv—lat178v+17' '-)Sm)'

Since these are the assumptions in Lemma 8.1, (1.8) holds as a result of the lemma. This
completes the proof of Proposition 1.7.

9. PROOFS OF THE KEY LEMMAS

9.1. Proof of Lemma 4.1. Let 1 <[ < m. The sufficiently large number M > 0 shall be
chosen later. We utilize an argument of the Marcinkiewicz multiplier theorem. Indeed, we

will actually show that for any multi-indices a(y),..., o) in Z" with |a;)| < n/2 +1 for
1<j<l

(0% (0% — —
(9.1) [0 0 O Nan (- )] Sag e 91 el .y Tlel,

We first observe that

l
(92) |61a<1) "'ala(l)-/\/’(M)(ylv"'ayl ‘ S Z Z

oyt =)

x <H ‘aa{”~-8a{”<1i:(yk fy')>5j )
s 1 l l P J
?‘1(51 N=M|Y)
1:[ ’8] <y]> ’

i <z)
Co <Zyk>

I+1

% ‘a (1) <y > (s1+-+s1)
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Using the argument in [8, p450], we obtain that
! (laky, [++la |
(1) 1)

o (3w () |
k=1

k._

ol o’ 1 S5 1 Sj—(|04%1)|+~“+|06€l>‘)
AR} (”<72(yk—yj)> S <7 (yk—yj)> ,

k=1 =1

ol
a <J1r1< > (s1+-+s7) S<y1>_(81+m+sl+‘al&)l‘)

l+1 I+1

a () (y;)~ -M| < <yj>*(M+|a(j) |)'

~

We choose a positive number N such that M > N +n+2> s+ .-+ s +n+ 2. Since

(F8awe) T (P )"
()it Ty ()N ~

we finally obtain that the right-hand side of (9.2) is dominated by a constant times the
product of

l

1 ~(ady [+-+aly )
Il = <7 Zyk> )

k=1 J

i
SN

l
1 |a(1>\+ +|a<l)|)
<7 Yk — y] > )
DI
k=1

N

Il
N

l+1‘

I3 := <y1>_‘a(”

—

I|
¥

Iy =
J

If |y1| > 21|y;| for all 2 < j <1, then
1 ! i
I S <y1>_|a(1)| and I S H <y1>*|a(1)"
=2
which implies that
I xIp x I3 x Iy < yl \Ot(l)| H —(M~—N) < |y ’ lenyl . ‘yl|_|a(l)‘

for M =N >n+2>n/2+1.
Now assume that |y;| < 2lmax (|yz|, ..., |y;|) and actually, only the case |y1| < 2I|yq| will
be considered. In that case, we see that

l
Il X I2 X 13 X I4 < I4 5 <y1>_‘a(1)‘<y2> (M—-N— ‘O‘(l H

< |y1|—\a<1)| eyl ey

for M =N > M — N — |agy| >n+2—|aq)| > |ag)| for 2 <j <L
This proves (9.1).
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9.2. Proof of Lemma 6.1. Without loss of generality, we assume that Jy = {1,...,v} for
some 1 < v <[, and || fil[peorny = 1 for all [ +1 < i < m. Fix

ve( N Q%‘)\(QQE‘)-

1=v+1
(When v = [, just fix x € R™\ (U§:1 QF).) Now we write
Ta(ala cee,ag, fl+17 cee 7fm)(x) - Zgj(x)7
JEZL

where

l m
©03) o= [ 9K @ -y, 2= ) ([T ( T A0)dg
(Rn)m i1 i=l+1
with K := (J(Qj-)\lf(m))v. Let ¢; be the center of the cube Q; (1 <i <1). For 1 <i <w,
since z ¢ QF, we have |z —¢;| =[x —y;| for all y; € Q;. Fix 1 <k <wand for 1 <u <
w < m denote

K]('U7U))(xvg) = K] (y17 s Yu—1, 2J('CC - yu), ceey 2](‘7; - y’w)vyw-i-la s 7ym)
for convenience of notation. We see that

(T12/ G - eyl

i=1
v

S zjmn(ﬁ laill o e / (TT@ @ —wn~)
i=1

(1,m) — ,
K7 (2, ) |dy
Q13 xQux (Rym=t N 3w g)]

and the integral in the preceding expression is less than

/ (TT@ @ w0 ) [ K™ () | d
Q1 X XQyX(R?)m—v im1

— 9—jn(m—v) 9J z — ;) K(l,v) 2, §)|dg
Q1% XQyp X (RP)m—v <111< ( ) )‘ J ( )l

<o ([T 1) o L 107 0 g
i=1 KECK

(T 9

=1
1#£k

dyk} dyvt1+* AYm-
Lee (yl7“'ayk717yk+17“'7y1))

Using Lemma 2.9, the integral in the last expression is majored by a constant multiple of

2909 (T ) / Qk M2 (& — )
=1

kEQkK
V.

([T .5

i#k

" dyyy1 -+ - dym | dyg
L (yl7"'7yk:717yk:+1a"'7yv)
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and this is further estimated by

gl ( ﬁ i) / |Qkl~H (2 (2 — )™

YLEQK

(I w9

z;ék
by applying Holder’s inequality, as s; > n/r for v +1 <i < m. We finally obtain

(9.4) (f[(?(m _ C@))&)m(x)\ < 2jU"<ﬁ !Q@'\l_l/pi>( H bi( ) B0 (),

=1 =1 1=v+1

W dyk)
L (yla"'7yk—layk+17"'7ym)

where b;(z) := |Q,~]_1/piXQa« (x) forv+1<i<land

m
B E0) / (2 (2 — yp))™ ( ‘si>K('k,k:) .
i (@) = 10d Yr)) 1—[1<yz> i ()
i#k
The functions b;, v + 1 < i < I, obviously satisfy the estimate [|b;| zri®n) S 1, and the
Minkowski inequality with 1 < 7’ < oo gives
1/r'
dx) dy

(kvo) , < 1 J( r'sy,
th ‘LT (R7) = Q] /Qk (/n (27 (z — yr))
S 2*]71/?“,575‘:\1/(7") [0_]

({1

dyk.
LT/ (yly"-vyk—layk-‘—l1“'1ym)

!

' LT’((Rn)mfl)

(9.5) < 9=/’

L™ ((Rm)™)

where we made use of a change of variables and applied the Hausdorff-Young inequality in
the preceding inequalities.
On the other hand, using the vanishing moment condition of a; and Lemma 2.8, we write

lgj(@)| S 2™ Y //Rn)m 2]|yk_ck|)Nk+l(li[|ai(yi))

o] =Nj+1 i=1
X |0F K (27(33 — 1)y 2 (2 — Y1), 2’ ka,yw 2(x — Yps1), ..., 2 (z — Ym)) ‘dﬁdt
where i, =z —cp —t(yr —cx) and OF K;(21,. .., 2m) = 0% Kj(z1,. .., 2m). Notice that

\a:%yk] ~ |z —c| for v € QF, yr € Qp, and 0 < ¢ < 1 Repeatmg the preceding argument
that is used to establish (9.4), we also obtain
v v l
j S; jon —1/pi k,1
96)  (T1@ @ cn)lgs@)l s 2 (TTQa ) (T i) nf (@),
=1 i=1 i=vt1
where b;(z) := |Qi|*1/piXQ; (z) as before, and

. N s
WD () = (271(Qp)) ! / / (@t )
a|= N +1 ‘Qk| Qr
e’ it
H(g )8 K Ly--e 7.k7172jxck7yk’7.k+17“ ' 7m)‘ Lr/((Rn)vn—l)dykdt
i#£k
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Now Minkowski’s inequality and Lemma 2.9 yield that
k.1 —in Ni+1 pp,o(m)
(9.7) 1A ooy S 277 (270Qu) M 5 (o,

which is the counterpart of (9.5) for h§k’1).
Combining (9.4) and (9.6), we obtain

(9.8) |gs(a >|<2f”"(Hrcz|1 Uil (@ — ) ) ( 1 » 2)) min (b (@), 2 (2))

i=v+1
for all x € (ﬂl w1 @)\ (UL, QF) and all 1 <k < w.

Now we will construct nonnegative functions w; ; for 1 <+ < v such that

9:()| sag‘l’(’”)[a](f[ui,m))( I bi(w) )

i=v+1

for all z € (ﬂz w1 @)\ (Ui, Q7) and

(99) HZUZ’J Lri (B = 1.
JEZL
Then the lemma follows by taking
(9.10) bit=> wy; 1<i<w.
JEZ

For this, we choose \;, 1 < i < v, such that

0< N <1/r', si/n>1/pi—1/r' + XN, > Ni=(@-1)/r"
i=1
This is possible since the second condition in (1.14), with J C {1,...,v}, yields

Zmin (O, si/n — l/pi) > —1/7,
i=1
which further implies
Zmin (1/r si/n—1/pi +1/r") > (v —1) /1.
i=1

We set
(9.11) a;:=1/p;—1/r + X and B;:=1-1"\.
Then we have a; > 0, 8; >0, and ) ;_; 8; = 1. Letting

7, (m) —Bigjn =1/pi 195 —5i i 2 b 8
wi(2) = (25" o)) QU P2 (@ — ) x ey (@) min (A (@), 1 (2))

for 1 <i <w, it is easy to see, from (9.8), that

(9.12) g5 (@) S L5 (Hua )( ﬁ bi(m))

i=v+1
for all z € (N}_ wr1@7) \ (U2 Q7).
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It remains to verify (9.9). Since 1/p; = o; + B8;/r', Holder’s inequality yields

(m) —Pigjn —1/p;
[0]) %27 Qq) /P

Bi
L (Rn) )

HuiijLPi(R") < (5" (2( =) "Xy

i,1|Bi
Ol (Rn)).

~ 279 min (1, (291(Q;)) "¢ ™)

LY/ i (Rn)
X min (th’o)

We observe that
[|(27(- — i) "X Qe
since s;/a; > n. In addition, it follows from (9.5) and (9.7) that

min (15 5 oy 15 ey ) 8 2777507 (25 ) i (1, (20(@0) ).

Ll/o‘i (R")

In conclusion, we have

(9.13) s <{(2]’z(Qi))—(n/pi—n)wi(Niﬂ)7 £ 21Q) <1
: 4| Lpi (R) ~

(le(Qi))—(n/pi—n)—(8¢—aiN)’ it 290(Q;) > 1.

We choose N; sufficiently large so that —(n/p; —n) + 8;(N; +1) > 0, and then (9.9) follows
immediately.
The proof of Lemma 6.1 is done.

9.3. Proof of Lemma 7.1. It follows from (1.14) that there exists 1 < t < r such that

(9.14) S1,...,8m >n/t >n/r, Z(Sk/nfl/pk) > =1/t > —1/r
keJ

for every nonempty subset J C {1,...,l}. Then (5.1) holds.

For each Jy C I, let
Ey=( N @)\(Ue)

1€I\Jo 1€Jo

where Ey = (o Q; for Jo = 0, and Ey = (U, Q})° for Jo = I. Then we see that the
left-hand side of (7.10) can be decomposed as

Z (Z \TU;117~2 (a1, an, fists -, fm)(x)DXEJo ().

JoCl  jez

Since it is a finite sum over Jy, it suffices to show that for each Jy C I, there exist functions
b;IO, 1 <4<, and FZ-JO, I +1 < i < p having the properties that for z € Ej,

9.15) S [Tpess (o1, van fronsoo ) (@)] S L3l0] ([T 670 @)) ([T E° ).

JEZ i€l i€ll
(9.16) 167 v rny S 1, for i €1,

(9.17) IF | o zny S I fill oi ey, for i € TL

We first consider the case Jy = () and divide the proof into six cases based on the location
of k1 and kg. Let z € Ey,.
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Casel : k1, k2 € 1. By applying (7.6), Lemma 2.4, (7.4), (5.1), and (2.4), we have
‘To-;g"ﬂ (alv cee,ar, fl+17 sy fm)($)|

< Lilo] Mi(an)j (@) M(a); @) ([T Miaite) ) (T Medit@) ).

iGI\{Hl,Hg} i€ll

since My fi(z) < || fil|poo(rny = 1 for i € IIl. Now we take the sum over j € Z to both sides
and apply the Cauchy-Schwarz inequality. Then (9.15) follows from taking

0o = (3 (Milas@)?) xors i€ frna)
JEZ
bl (x) = Myai(z)xq: (), i €1\ {r1,m2},
FP(z) .= Myfi(x), iell
Moreover, using Holder’s inequality, (2.3) with ¢ < 2, and (2.2), we obtain

1672 sy < QI 2 {Me@); Y e ey S 1QuIYP il gamy S 1, i € {m1, 2},

1671 o1 ey < 1QF P12 Mpas| S1QiMP P laill 2@ry S 1, i €T\ (w1, m2},

L2(Rn)
IE | i gy S 1 fill Lo nys 6 € 10,
which completes the proof of (9.16) and (9.17).
Case2 : k1, ko € II. Similarly, (9.15) holds with

b;lo (z) == Myai(z)xq: (2), 1€,
)= (X (M, @)?) " e ),

JEZ
E(z) := My fi(z), i€ IT\ {k1, Ko}
Obviously, (9.16) and (9.17) are clear as (2.2) is applied when i € {1, Kk2}.
Case3 : K1,k € III. In this case, we cannot use the classical Littlewood-Paley theory

as L® norm is not characterized by L norm of a square function. Instead, we can benefit
from Lemma 2.3, using O not M;. By applying (7.8), Lemma 2.4, (7.4), (5.1), and

(2.4), we obtain
\TU;117~2(G1,---7al,fl+1,---,fm) | < Lio (HMtaz > smga(flﬂ)]ﬂ(x)

i€l

(O TI Mfi@) D (s @, i),

eI\ {I+1}

0,29

Now we take
b/ (2) = Myas(w)xg: (v), i€,
Fo (@) = i (fi) T @) o (Fa )i (@) 50 (fr) (),

JEL
F(z) = Myfi(z), ieIl\{l+1}.

Then (9.15), (9.16), and (9.17) are immediate for ¢ # [ + 1, and the case i = [ + 1 follows
from Lemma 2.3.
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Cased : k1 € 1, ko € II. Using the arguments in Casel and Case2, we are done with
the choices

@) = (X (Mila)s(@)?) xa, @)
jEz
b;fo (z) == Mzai(z)xq: (2), ieI\{k1},
i) = (3 Milf)s@)?)
jez
F(2) := M, fi(z), i€ IT\ {Ka}.

Caseb : k1 €I, kg € III. It follows from (7.7), Lemma 2.4, (7.4), (5.1), and (2.4) that
(9.15) holds with

@) = (3 (Man)s@)?) vz, @)
JEZ
b (x) i= Mya;(z)xq: (x), i€\ {r},
Fy ) = (0 00 o (PP @) 200 () @))
JEZ
Fo(z) = Myfi(x),  ieIl\{l+1},

and it is clear that (9.15), (9.16), and (9.17) hold. Especially, (9.17) for i =1+ 1 is due to
Lemma 2.3.
Caseb : k1 € II, ko € III. The similar arguments can be applied with

b (w >:= Muai(z)xq: (z), i€l
FJO stm (fir)j(x)M

JEL
Fo(z) := Myfi(z), i€\ {m}.
Note that Lemma 2.3 implies

21 (fr2)j (@),

s,i2

IEL N poms @y S M f | poms @ || ol Br1O S | o | w1 (g

Next we consider the case Jy # (). In this case the proof is based on the idea in the proof
of Lemma, 6.1. For notational convenience, let

(9.18) Gj =T (a1,... ap, fis1s - fm)-

Here, the notation G; does not contain two parameters x1 and s as the arguments below
are universal for any 1 < k1 < ko < m. We note that G; plays a similar role as g; in (9.3).

We shall prove that there exist nonnegative functions ule, i e Jo, such that for x € E,

and j € Z, n

019 [g;@)| 5 £5o)( [T ws@) ( IT 1@l 77xg; @) ( [ MelF) @),
i€Jo 1€\ Jo iell

and

(9.20) 3o gy S i ((276(Q0)) ™, (270(@Q0)) ™)
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for some ~;,d; > 0, which are the counterparts of (9.12) and (9.13), respectively.
If we have such functions u/, then (9.15) holds with the functions

4,77
(9.21) blo:=>"uls  for i€ Jp, bl = |Qs| VPixg:  for i €1\ J,
JEZ
(9.22) F = My(f) for i ell

The estimate (9.16) for ¢ € I\ Jp is obvious and when i € Jj it follows from (9.20). In
addition, (9.17) holds via the LPi-boundedness of M.

From now on, let us construct u;f‘; having the properties (9.19) and (9.20). Fix x € Ey,
and write

Gi(z) = /(Rn)m QjmnKj(Qj(SC—yl),...,2j($—ym))(Hal vi) )( I1 /i) )

i€l 1€ITUIIL

where K := (0;11’”2 (27. ))v Let ¢; denote the center of the cube @; and use the notation

K](u:w)(x7g) = K](y17 cee 7yu—172j($ - yu)7 . ,2‘7($ - yw)7le+17 cee 7ym)

for simplicity, as before.
Since |z — ¢;| = | — y;| for x & QF and y; € Q;, we see that

(TT@@—e))™)ig;@)|

i€Jo
< g9 /(Rn)m (g{)wm )" ) [BS (.9) II ()] (iegm i) i
< 2imm /(Rn)m(L[O<2j<x—yi>>5i)\f(§l’m I(ITIe™ a0 (TL1i001) 5.

We now fix k € Jy and estimate the last integral by

j . 85 (1,m) _,
/ykeR" H (iG]J;JL:JII<2 (@ =) >KJ (:E7y))‘Loo(ﬁ(]o\{k})Ll(ﬁI\JO)Lt/(gII)Ll(gIII)

<T@l x|, | TT 1™ e,
i @i\ {x}) iel\Jo (Fnag)
HH 2] x_ fz(yz) . dyk:
icll Lt (gyy)
where we used the notations §; := ®;ecyy; for all J (for example, 41 = (y1,..., %), Yy =
(Y1415 - - -»Yp), and so on), and

1F (21, 22) | ey paza) = [I1F (21 22) L) || o a)-
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Using a change of variables we write

I @)K (e.9)|

ieJoull Lo (g 1o\ (e L1 (ﬂI\JO)Lt/ () L (Frar)
_ 2—anard(I\Jg) 2—(jn/t’)Card(H) 2—anard(III)

<e@—wn( TT )5 )|

oo (47 = 1= — °
i€ JoUIT\{k} Lo (G g\ grp) L (G0 g) LY (1) L (Grn)

Now Holder’s inequality with s; > n/t and Lemma 2.9 yield

2j . Sk ; (k k) ’_,
|/ =0 <i€J0£[I\{k}<y> N 9) £ 1\ E G g 2 (o) 2 i)
< 2] _ Sk isi K(k’,k’) ’—»
- H< ) (ie/HWk}<y> ) ’ (@9) LG g 1) L (W 1)
S (@@ — g ) ) K (g
o= (JL )0 D

Morover, we have

H IT Qi 7ixq:(wi) (H Qi Upl)xcgk(yk)\Qk\ !

i€Jo ( \{k}) i€Jo

| TT e P xaw| . < TT 1@
(?JI\IO

1€\ Jo EI\J()
[ -y fiws)| <2 GnmCaat [T ant ()
‘iGH Lo yu) €Il
< 2—(jn/t)Card(II) H Mt(fz)(x),
i€ll

where the last inequality follows from (2.4) with s; > n/t.
Combining the above inequalities, we obtain that for x € Ej,,

(TT@ @ — ey )1G()| < 2040 g =) (TT feil %)

i€Jo i€Jy

< (T 1) (TTMuf) @)

i€\ Jo iEll
k,0) .
where H J( 0) is defined as

Bw) = oo [ @ - (CTT %) KM (@.9)

;o dyk’7
|Qk| Qk i\ (k) LE (G A\ {k})

which is the counterpart of h§k’0) in the proof of Lemma 6.1. Then the argument that led
0 (9.5), with (5.1), proves that

k,0 —jn/t’ pr
(9.23) 1E SO o gy S 2797 L3o).
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On the other hand, applying the vanishing moment condition of a; and Lemma 2.8, we
write

Gl sz > [ Loy @l =)™ (TT@1 ™ x0,00)

|o|=Ng+1 iel

x |0p K; (23 (z—v1),...,20(x — yp_1), 2jxik7yk, 2(x = ypi1),..., 2 (x — ym))‘
X (H |fi(yi)\)dﬂdt
i€J7
where al, = & —cx — t(yr — cx). Since |z}, | = [z — ] for z & QF, yp € Qk, and
0 <t < 1, arguing as in (9.6), we obtain that for x € Ej,,

(TT/@—c)1g;()]

i€Jo

a5 [

@bt ( T @a—w)™)

la|=Nj,+1 yrER™ i€ JoUIT\{k}
X ak (23(1: - yl) 72j(x - yk—l)’ijik,yk72j(x - yk—i—l)a SRR
72j L= Ym ’
( Y )) Lo (G g\ 1) L (@0 g ) LY (@) L (Grn)
< | IT 1@ xauw] H IT 1@~ xa ], .
cJ LY g\ ) 1. i
1€Jo el\Jo
2] (r—vy i (y; dydt
HL[I ) A
< 2oy (H Q) (TT 1@ ) (T Mets @)
icJo iel\Jo iell
where
k1 ; Nit1 s
HJ( )(x) = (QJZ(QIC)) * Q ’/ / (2 Zlmyk *
laj= N +1 vk Qk

x H H <‘i>8i8]?Kj(‘l7"‘7'k—172jx2k’yk7'k+17"'7'771)‘
ieA\{k}

dydt.
Lt’((Rn)mfl) Yk

Using Minkowski’s inequality, Lemma 2.9 and (5.1), we deduce
k, —in/t (o Nj+1
(9.24) E S oy S 277 (270(Q0)) M L5 0.

So far, we have proved that for x € E;, and k € Jy,

(9.25)  1;(x)] < 2o (T (20 — )~ 1Qul' P ()

i€Jo

< (T 1@ v @) (T M @) ) min (5 @), 1] (@),

1€\ Jo i€ll
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We choose {a;}ier, and {8;}icr, as in (9.11) by replacing {1,...,v} and ' by Jy and ¢/,
respectively, which is possible since

Z min (0, s;/n — 1/p;) > =1/t
i€Jo
by virtue of condition (9.14). Then we have
@i, i >0, si/n>1/pi— B/t =i, Y Bi=1.
i€Jo
Now if we set

ull(@) = (L5lo]) P2 Q P2 (@ ) xgpe (o) (min (H (@), HD (@) ),

(9.19) is immediate from (9.25) since ), ; Bi =1
It remains to verify (9.20). Holder’s inequality with 1/p; = 5;/r' + «; yields that

05 sy < (£5[0]) ™ 20m(Qu) P <2j(-*cz')>_si><( 0)e

X mm(nHzO [

i(R™)

Lt’ Rn || ||Lt’ Rn )

Since s; > a;n, we have
H <2j(. — ci>>_8iX(Qf)c ) < 9—Inei in (17 (le(Qi))*(sram))’

and the estimates (9.23) and (9.24) prove

min (|7 Tasl 23 (o)) min (1, (220(Q)) VD).

HLH Rn)’ Lt Rn))

Thus,
a3l (22(Qu) TR a(@i) <1
(QJZ(Q )) ("/Pi*n)*(sifohtn)7 if QJ(QZ> >1

since 1 — a; — 3;/t' =1 —1/p;. This implies (9.20) with v; = —(n/p; —n) + B;(N; + 1) and
di =n/p; —n+ s; — ayn. We have 7y, 0 > 0 as Ny, is sufficiently large and s; > a;n.
This completes the proof of Lemma 7.1.

9.4. Proof of Lemma 7.2. The proof is similar to that of Lemma 7.1. As in the proof of
Lemma 7.1, we choose 1 <t < r such that

S1y-.vySm > d/t > d/r, Z(sk/n—l/pk) > =1/t > —1/r
keJ

for every nonempty subset J C I, and observe that (5.1) holds.

For each Jy C 1, let
Ey=( N @) (U)

1€I\Jo 1€Jo
and we decompose the left-hand side of (7.18) as

> (Z |Top (a1s-- s an, frsns- - fm)(x)F)l/QXEJO ().

JoCl jEZ
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Since it is a finite sum over Jy, we need to prove that for each Jy C I, there exist nonnegative
functions b{o, 1 €1, and Fi‘](’7 i € II satisfying that for all x € Ej,

(9.26) (Z‘Tazl(al,...,al,fl+1,..,7fm)(x)‘2>1 < Lo (HbJo )(HFiJo(x)>,

JEZ i€l i€ll
(9.27) 167 Lo gy S 1, for d €1,

(9.28) 1E ) Los ey S W fill oi gy, for i € TLL

Let us first assume Jy = (). In this case, the proof consists of three cases.
Casel : k € 1. Using (7.14), Lemma 2.4, (2.4), (7.13) and (5.1), we obtain

‘Toil(aly-'walafl-‘rlv"'7fTVL)(x)}S‘Cr[ ]Mt a” ( H Mtaz )(HMth )
i€\{x} i€ll
where we applied M, fi(x) < || fil| poo(mny = 1 for i € II1. We now take

1/2

b (o) 1= (3 (Milan)s(@)”) vz (@),

jez
bl (x) = Myas(z)xq: (), €T\ {x},
Fo(z) == Myfi(z), i€ll

and then (9.26) holds. Furthermore, (9.27) and (9.28) follow from Holder’s inequality, (2.3)
with t < 2, and (2.2). To be specific, the estimates for i € I\ {s} or for i € II are clear, and

60 < QP2 M)y sy S 1l
Case2 : k € II. It can be proved in a similar way. Indeed, (9.26) holds with
b;fo (x) := Myai(x)xg,(x), 1€1,
i) = (3 (Milh,@)?)
JEZL
F(z) == My fi(z),  iell\{x}.
It is also obvious that (9.27) and (9.28) hold as (2.2) is applied in the case i = k.

Case3 : k € III. We utilize Lemma 2.3 as we did in Case3 that appeared in the proof
of Lemma 7.1. Using (7.15), Lemma 2.4, (2.4), (7.13), and (5.1), we obtain that

‘Taq+1 (a1, ar, firts o fm) (@)]

< el ([T Mea (@), i)™ @) ([T Mefil)) i (f)().

i€l t€I\{l+1}

x|l 2 R7) = S L

Now we take
b (x) := Myai(x)xq,(x), i€l

Ry = (30 0, (a1 @) Oy (15)?)

JEZ
F(z) := Myfi(x), €T\ {l+1}.
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Then (9.26), (9.27), and (9.28) are all true for 7 # [ + 1, and (9.28) for i = [ 4 1 follows
from Lemma 2.3.

Now we consider the case Jy # (. The proof is immediate from the argument in the
proof of Lemma 7.1. We define, like (9.18),

gj = szl(a/lvu . 7a'lafl+17' 7fm)

Then (9.19) still holds in the present case with (9.20). Let b;]‘), i €1, and Fi‘]o, i € 1II,
be defined as in (9.21) and (9.22), and apply the embedding ¢! — ¢? to obtain that the
left-hand side of (9.26) is bounded by

S Il < 5ol (IT#) ( 1T #7)).

JEZ =1 i=l+1

which proves (9.26). In addition, (9.27) and (9.28) are obvious from (9.16) and (9.17),
respectively.
This completes the proof.

10. FINAL REMARKS

We note that the direction (1.8) = (1.7) is valid even for 2 < r < oo, in view of

Propositions 1.2 and 1.3. Thus, under the assumption £g."y(m [0] < oo conditions (1.7)
are necessary for the boundedness of T}, for all r in the range 1 < r < co. However the
sufficiency of (1.7) for the boundedness of Ty, i.e., the direction (1.7) = (1.8) is missing
in the case r > 2. It seems that our techniques are not applicable in this case. We hope
to address this problem in the future but we welcome interested researchers to investigate
this topic as well.

Acknowledgment: We would like to thank Professors M. Mastylo and N. Tomita for
providing us important references related to complex interpolation.
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