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BILINEAR CASE VIA INTERPOLATION

LOUKAS GRAFAKOS AND HANH VAN NGUYEN

Abstract. We develop a special multilinear complex interpolation theorem that allows
us to prove an optimal version of the bilinear Hörmander multiplier theorem concerning
symbols that lie in the Sobolev space Lr

s(R2n), 2 ≤ r < ∞, rs > 2n, uniformly over all
annuli. More precisely, given a smoothness index s, we find the largest open set of indices
(1/p1, 1/p2) for which we have boundedness for the associated bilinear multiplier operator
from Lp1(Rn)× Lp2(Rn) to Lp(Rn) when 1/p = 1/p1 + 1/p2, 1 < p1, p2 <∞.

1. Introduction

Multipliers are linear operators of the form

Tσ(f)(x) =

∫
Rn
f̂(ξ)σ(ξ)e2πix·ξdξ ,

where f is a Schwartz function on Rn and f̂(ξ) =
∫
Rn f(x)e−2πix·ξdx is its Fourier transform.

Let Ψ be a Schwartz function whose Fourier transform is supported in the annulus of the

form {ξ : 1/2 < |ξ| < 2} which satisfies
∑

j∈Z Ψ̂(2−jξ) = 1 for all ξ 6= 0. We denote by ∆ the

Laplacian and by (I −∆)s/2 the operator given on the Fourier transform by multiplication
by (1 + 4π2|ξ|2)s/2; also for s > 0, and we denote by Lrs the Sobolev space of all functions h
on Rn with norm ‖h‖Lrs := ‖(I−∆)s/2h‖Lr <∞. Extending an earlier result of Mikhlin [15],
the optimal version of the Hörmander multiplier theorem says that if

sup
k∈Z

∥∥Ψ̂σ(2k·)
∥∥
Lrs
<∞ (1)

and ∣∣∣1
p
− 1

2

∣∣∣ < s

n
, (2)

then Tσ is bounded from Lp(Rn) to itself for 1 < p <∞. Hörmander’s [13] original version
of this theorem stated boundedness in the entire interval 1 < p < ∞ provided s > n/2.
A restriction on the indices first appeared in Calderón and Torchinsky [1], while condition
(2) appeared in [5]; this condition is sharp as examples are given in [5] indicating that the
theorem fails in general when

∣∣1
p
− 1

2

∣∣ > s
n
. Moreover, recently Slav́ıková [19] provided an

example showing that boundedness may also fail even on the critical line
∣∣1
p
− 1

2

∣∣ = s
n
.

In this paper we provide bilinear analogues of these results. The study of the Hörmander
multiplier theorem in the multilinear setting was initiated by Tomita [21] and was further
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studied by Fujita, Grafakos, Miyachi, Nguyen, Si, Tomita (see [2], [7] [11], [8], [17], [18])
among others. For a given function σ on R2n we define a bilinear operator

Tσ(f1, f2)(x) =

∫
Rn

∫
Rn
f̂1(ξ1)f̂2(ξ2)σ(ξ1, ξ2)e2πix·(ξ1+ξ2)dξ1dξ2

originally defined on pairs of C∞0 functions f1, f2 on Rn. We fix a Schwartz function Ψ on
R2n whose Fourier transform is supported in the annulus 1/2 ≤ |(ξ1, ξ2)| ≤ 2 and satisfies∑

j∈Z

Ψ̂(2−j(ξ1, ξ2)) = 1, (ξ1, ξ2) 6= 0.

The following theorem is the main result of this paper:

Theorem 1.1. Let 2 ≤ r <∞, s > 2n
r

, 1 < p1, p2 ≤ ∞ and let 1/p = 1/p1 + 1/p2 > 0.
(a) Let n/2 < s ≤ n. Suppose that

1

p1

<
s

n
,

1

p2

<
s

n
, 1− s

n
<

1

p
<
s

n
+

1

2
. (3)

Then for all C∞0 (Rn) functions f1, f2 we have

‖Tσ(f1, f2)‖Lp(Rn) ≤ C sup
j∈Z
‖σ(2j·)Ψ̂‖Lrs(R2n)‖f1‖Lp1 (Rn)‖f2‖Lp2 (Rn). (4)

Moreover, if (4) holds for all f1, f2 ∈ C∞0 and all σ satisfying (1), then we must necessarily
have

1

p1

≤ s

n
,

1

p2

≤ s

n
, 1− s

n
≤ 1

p
≤ s

n
+

1

2
. (5)

(b) Let n < s ≤ 3n/2 and satisfy
1

p
<
s

n
+

1

2
. (6)

Then (4) holds. Moreover, if (4) holds for all f1, f2 ∈ C∞0 and all σ satisfying (1), then we
must necessarily have

1

p
≤ s

n
+

1

2
. (7)

(c) If s > 3n
2

then (4) holds for all 1 < p1, p2 <∞ and 1
2
< p <∞.

This theorem uses two main tools: First, the optimal n/2-derivative result in the local
L2-case contained in [6] and a special type of multilinear interpolation suitable for the
purposes of this problem (see Theorem 3.1 below). Figure 1 (Section 4), plotted on a slanted
(1/p1, 1/p2) plane, shows the regions of boundedness for Tσ in the two cases n/2 < s ≤ n
and n < s ≤ 3n/2. Note also that in the former case, the condition 1− s

n
< 1

p
is only needed

when p > 2.
Finally, we mention that the necessity of conditions (3), (5), and (7) in Theorem 1.1 are

consequences of Theorems 2 and 3 in [6]; these say that if boundedness holds, then we must
necessarily have

1

p1

≤ s

n
,

1

p2

≤ s

n
,

1

p
≤ s

n
+

1

2
.
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Also, if Tσ maps Lp1 × Lp2 to Lp and p > 2, then duality implies that Tσ maps Lp
′ × Lp2 to

Lp
′
1 . Now p′ plays the role of p1 and so constraint 1

p1
≤ s

n
becomes 1 − s

n
≤ 1

p
. This proves

(5). So the main contribution of this work is the sufficiency of the conditions in (3) and (6).

2. Preliminary material for interpolation

In this section we briefly discuss three lemmas needed in our interpolation.

Lemma 2.1. Let 0 < p0 < p < p1 ≤ ∞ be related as in 1/p = (1 − θ)/p0 + θ/p1 for some
θ ∈ (0, 1). Given f ∈ C∞0 (Rn) and ε > 0, there exist smooth functions hεj, j = 1, . . . , Nε,
supported in cubes with pairwise disjoint interiors, and nonzero complex constants cεj such
that the functions

f z,ε =
Nε∑
j=1

|cεj|
p
p0

(1−z)+ p
p1
z
hεj (8)

satisfy

∥∥f θ,ε − f∥∥
Lp0

< ε and


∥∥f θ,ε − f∥∥

Lp1
< ε if p1 <∞∥∥f θ,ε∥∥

L∞
≤
∥∥f∥∥

L∞
+ ε if p1 =∞

(9)

and

‖f it,ε‖p0Lp0 ≤ ‖f‖
p
Lp + ε′ , ‖f 1+it,ε‖Lp1 ≤

(
‖f‖pLp + ε′

) 1
p1 ,

where ε′ depends on ε, p0, p1, p, ‖f‖Lp and tends to zero as ε→ 0.

Proof. Given f ∈ C∞0 (Rn) and ε > 0, by uniform continuity there are Nε cubes Qε
j (with

disjoint interiors) and nonzero complex constants cεj such that∥∥∥f − Nε∑
j=1

cεjχQεj

∥∥∥min(1,p0)

Lp0
<
εmin(1,p0)

2
,

∥∥∥f − Nε∑
j=1

cεjχQεj

∥∥∥min(1,p1)

Lp1
<
εmin(1,p1)

2
,

and ∥∥∥f − Nε∑
j=1

cεjχQεj

∥∥∥
Lp
< ε. (10)

Find smooth functions gεj satisfying 0 ≤ gεj ≤ χQεj such that∥∥∥f − Nε∑
j=1

cεjg
ε
j

∥∥∥min(1,p0)

Lp0
<
εmin(1,p0)

2
and

∥∥∥f − Nε∑
j=1

cεjg
ε
j

∥∥∥min(1,p1)

Lp1
<
εmin(1,p1)

2
,

where the last estimate is required only when p1 < ∞. We set hεj = eiφ
ε
jgεj , where φεj is the

argument of the complex number cεj . Then hεj is that function claimed in (8). Observe that

f θ,ε =
Nε∑
j=1

|cεj|hεj =
Nε∑
j=1

cεjg
ε
j
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satisfies (9) when p1 <∞; in the case p1 =∞ we have

|f θ,ε| ≤
Nε∑
j=1

|cεj|χQεj =

∣∣∣∣ Nε∑
j=1

cεjχQεj

∣∣∣∣ ≤ ∣∣∣∣ Nε∑
j=1

cεjχQεj − f
∣∣∣∣+ |f | ≤ ε

2
+ |f | ≤ ε+ ‖f‖L∞ .

Now we have∥∥f it,ε∥∥p0
Lp0
≤

Nε∑
j=1

|cεj|p|Qε
j| =

∥∥∥∥ Nε∑
j=1

cεjχQεj

∥∥∥∥p
Lp
≤
(
εmin(1,p) +

∥∥f∥∥min(1,p)

Lp

) p
min(1,p)

,

having made use of (10).
Given a, c > 0 and ε > 0 set ε′ = ε′(ε, a, c) = (εa+ca)1/a−c. Then (εa+ca)1/a ≤ ε′+c and

ε′ → 0 as ε→ 0. Then for a suitable ε′ that only depends on ε, p, p0, p1, ‖f‖Lp , the preceding

estimate gives: ‖f it,ε‖p0Lp0 ≤ ‖f‖
p
Lp + ε′ and analogously ‖f 1+it,ε‖Lp1 ≤

(
‖f‖pLp + ε′

)1/p1 when
p1 <∞; notice that if p1 =∞ then ‖f 1+it,ε‖L∞ ≤ 1 and the right hand side of the inequality
is equal to 1, thus the inequality is still valid. �

Lemma 2.2. Given a domain Ω on the complex plane and (M,µ) a measure space, let
V : Ω×M → C be a function such that V (·, x) is analytic on Ω for almost every x ∈M . If
the function

V ∗(z, x) = sup
w:|w−z|< 1

2
dist(z,∂Ω)

∣∣∣dV
dw

(w, x)
∣∣∣, x ∈M (11)

is integrable over M for each z ∈ Ω, then the mapping z 7−→ V (z, ·) is an analytic function
from Ω to the Banach space L1(M,dµ).

Proof. Fix z ∈ Ω and denote rz = 1
2
dist(z, ∂Ω). It is enough to show that

lim
h→0

∥∥∥V (z + h, ·)− V (z, ·)
h

− dV

dz
(z, ·)

∥∥∥
L1(M,dµ)

= 0. (12)

The assumption yields that for some set M0 with µ(M \M0) = 0, we have

lim
h→0

V (z + h, x)− V (z, x)

h
=
dV

dz
(z, x)

for all x ∈M0. Thus for each x ∈M0 and h ∈ C with |h| < rz we can write∣∣∣V (z + h, x)− V (z, x)

h
− dV

dz
(z, x)

∣∣∣ =
∣∣∣1
h

∫ h

0

dV

dw
(w, x)dw − dV

dz
(z, x)

∣∣∣
≤ 2 sup

w:|w−z|<rz

∣∣∣dV
dw

(w, x)
∣∣∣

= 2V ∗(z, x).

Since V ∗(z, ·) is integrable on M0, the Lebesgue dominated convergence theorem yields

lim
h→0

∫
M0

∣∣∣V (z + h, x)− V (z, x)

h
− dV

dz
(z, x)

∣∣∣dµ(x)

=

∫
M0

lim
h→0

∣∣∣V (z + h, x)− V (z, x)

h
− dV

dz
(z, x)

∣∣∣dµ(x) = 0.



THE HÖRMANDER MULTIPLIER THEOREM, III 5

This yields (12) and completes the proof, as the last integral is over the entire space M . �

Lemma 2.3. Given 0 < a < b < ∞, Ω = {z ∈ C : a < <(z) < b}, and a measure space
(M,µ) of finite measure, let H : Ω×Rd×M → C be a measurable function so that H(·, ξ, x)
be analytic on Ω and continuous on Ω for each (ξ, x) ∈ Rd ×M. Suppose that

sup
w∈Ω

∣∣∣H(w, ξ, x)
∣∣∣+ sup

w∈Ω

∣∣∣dH
dw

(w, ξ, x)
∣∣∣ ≤ C(1 + |ξ|)−d−1 (13)

for all (ξ, x) ∈ Rd ×M . If ϕ be a bounded measurable function on Rd, then the mapping
z 7−→ V (z, ·), defined by

V (z, x) =

∫
Rd
|ϕ(ξ)|zeiArg(ϕ(ξ))H(z, ξ, x)dξ,

is an analytic function from Ω to the Banach space L1(M,dµ) and is continuous on Ω.

Proof. Let K = {ξ ∈ Rd : ϕ(ξ) 6= 0}. By assumption, for each x ∈M we have

dV

dz
(z, x) =

∫
K

|ϕ(ξ)|z ln(|ϕ(ξ)|)eiArg(ϕ(ξ))H(z, ξ, x)dξ

+

∫
K

|ϕ(ξ)|zeiArg(ϕ(ξ))dH

dz
(z, ξ, x)dξ.

As for each z ∈ Ω we have∣∣ |ϕ(ξ)|z ln(|ϕ(ξ)|)
∣∣ ≤ sup

|t|≤1

|t|a log
1

|t|
+ (1 + ‖ϕ‖L∞)b log(1 + ‖ϕ‖L∞) = c <∞

and H satisfies assumption (13), the associated function V ∗(z, ·) defined in (11) is bounded
and thus integrable over M . Therefore, using Lemma 2.2 we deduce that z 7−→ V (z, ·) is
analytic from Ω to L1(M,dµ).

Using Lebesgue’s dominated convergence theorem and the fist part of assumption (13) we
easily deduce that V (z, ·) is continuous up to the boundary of Ω. �

Lemma 2.4 ([3]). Let F be analytic on the open strip S = {z ∈ C : 0 < <(z) < 1} and
continuous on its closure. Assume that for all 0 ≤ τ ≤ 1 there exist functions Aτ on the
real line such that

|F (τ + it)| ≤ Aτ (t) for all t ∈ R,

and suppose that there exist constants A > 0 and 0 < a < π such that for all t ∈ R we have

0 < Aτ (t) ≤ exp
{
Aea|t|

}
.

Then for 0 < θ < 1 we have

|F (θ)| ≤ exp

{
sin(πθ)

2

∫ ∞
−∞

[
log |A0(t)|

cosh(πt)− cos(πθ)
+

log |A1(t)|
cosh(πt) + cos(πθ)

]
dt

}
.

In calculations it is crucial to note that

sin(πθ)

2

∫ ∞
−∞

dt

cosh(πt)− cos(πθ)
= 1− θ , sin(πθ)

2

∫ ∞
−∞

dt

cosh(πt) + cos(πθ)
= θ.



6 GRAFAKOS AND NGUYEN

3. Multilinear interpolation

In this section we prove the main tool needed to derive Theorem 1.1 by interpolation. We

denote by ~ξ = (ξ1, . . . , ξm) elements of Rmn, where ξj ∈ Rn. We fix a Schwartz function Ψ

on Rmn whose Fourier transform is supported in the annulus 1/2 ≤ |~ξ | ≤ 2 and satisfies∑
j

Ψ̂(2−j~ξ ) = 1, 0 6= ~ξ ∈ Rmn.

Theorem 3.1. Let 0 < p0
1, . . . , p

0
m ≤ ∞, 0 < p1

1, . . . , p
1
m ≤ ∞, 0 < q0, q1 ≤ ∞, 0 ≤ s0, s1 <

∞, 1 < r0, r1 <∞, 0 < θ < 1, and let

1

pl
=

1− θ
p0
l

+
θ

p1
l

,
1

q
=

1− θ
q0

+
θ

q1

,
1

r
=

1− θ
r0

+
θ

r1

, s = (1− θ)s0 + θs1

for l = 1, . . . ,m. Assume r0s0 > mn, and r1s1 > mn and that for all fl ∈ C∞0 (Rn),
l = 1, . . . ,m, we have

‖Tσ(f1, . . . , fm)‖Lqk (Rn) ≤ Kk sup
j∈Z

∥∥∥σ(2j·)Ψ̂
∥∥∥
L
rk
sk

(Rmn)

m∏
l=1

‖fl‖
L
pk
l (Rn)

for k = 0, 1 where K0, K1 are positive constants. Then the intermediate estimate holds:

‖Tσ(f1, . . . , fm)‖Lq(Rn) ≤ C∗K
1−θ
0 Kθ

1 sup
j∈Z

∥∥∥σ(2j·)Ψ̂
∥∥∥
Lrs(Rmn)

m∏
l=1

‖fl‖Lpl (Rn) (14)

for all fl ∈ C∞0 (Rn), where C∗ depends on all the indices, on θ, and on the dimension.
Consequently, if pl <∞ for all l ∈ {1, . . . ,m}, then Tσ admits a bounded extension from

Lp1 × · · · × Lpm to Lq that satisfies (14).

Proof. Fix a smooth function Φ̂ on Rmn such that supp(Φ) ⊂
{

1
4
≤ |~ξ | ≤ 4

}
and Φ̂ ≡ 1 on

the support of the function Ψ̂. Denote ϕj = (I −∆)
s
2 [σ(2j·)Ψ̂] and define

σz(~ξ ) =
∑
j∈Z

(I −∆)−
s0(1−z)+s1z

2

[
|ϕj|r(

1−z
r0

+ z
r1

)
eiArg (ϕj)

]
(2−j~ξ )Φ̂(2−j~ξ ). (15)

This sum has only finitely many terms and we now estimate its L∞ norm.

Fix ~ξ ∈ Rmn. Then there is a j0 such that |~ξ | ≈ 2j0 and there are only two terms in the sum

in (15). For these terms we estimate the L∞ norm of (I−∆)−
s0(1−z)+s1z

2

[
|ϕj|r(

1−z
r0

+ z
r1

)
eiArg (ϕj)

]
.

For z = τ + it with 0 ≤ τ ≤ 1, let sτ = (1 − τ)s0 + τs1 and 1/rτ = (1 − τ)/r0 + τ/r1. By
the Sobolev embedding theorem we have∥∥∥(I −∆)−

s0(1−z)+s1z
2

[
|ϕj|r(

1−z
r0

+ z
r1

)
eiArg (ϕj)

]∥∥∥
L∞(Rmn)

≤ C(rτ , sτ ,mn)
∥∥∥(I −∆)−

s0(1−z)+s1z
2

[
|ϕj|r(

1−z
r0

+ z
r1

)
eiArg (ϕj)

]∥∥∥
Lrτsτ (Rmn)

≤ C(rτ , sτ , n)
∥∥∥(I −∆)it

s0−s1
2

[
|ϕj|r(

1−z
r0

+ z
r1

)
eiArg (ϕj)

]∥∥∥
Lrτ (Rmn)

≤ C ′(rτ , sτ ,mn)(1 + |s0 − s1| |t|)mn/2+1
∥∥∥|ϕj|r( 1−z

r0
+ z
r1

)
eiArg (ϕj)

∥∥∥
Lrτ (Rmn)
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≤ C ′′(r0, r1, s0, s1, τ,mn)(1 + |t|)mn/2+1
∥∥∥|ϕj|r( 1−τ

r0
+ τ
r1

)
∥∥∥
Lrτ (Rmn)

= C ′′(r0, r1, s0, s1, τ,mn)(1 + |t|)mn/2+1
∥∥ϕj∥∥r/rτLr(Rmn)

.

It follows from this that

‖στ+it‖L∞(Rmn) ≤ C ′′(r0, r1, s0, s1, τ,mn)(1 + |t|)mn/2+1
(

sup
j∈Z

∥∥σ(2j·)Ψ̂
∥∥
Lrs(Rmn)

)r/rτ
. (16)

Let Tσz be the family of operators associated to the multipliers σz. Let ε be given.

Suppose first that min(p0
l , p

1
l ) <∞ for all l ∈ {1, . . . ,m}. This forces pl <∞ for all l.

Case I: min(q0, q1) > 1. This assumption implies that q > 1, hence q′, q′0, q
′
1 < ∞. Fix

fl, g ∈ C∞0 (Rn). For given ε > 0, for every l ∈ {1, . . . ,m}, by Lemma 2.1 there exist functions
f z,εl and gz,ε of the form (8) such that

‖f θ,εl − fl‖Lp1l < ε, ‖f θ,εl − fl‖Lp0l < ε, ‖gθ,ε − g‖
Lq
′
0
< ε, ‖gθ,ε − g‖

Lq
′
1
< ε, (17)

when max(p0
l , p

1
l ) < ∞, while one of the first two inequalities is replaced by ‖f θ,εl ‖L∞ ≤

‖fl‖
L
pk
l

+ ε = ‖fl‖L∞ + ε when pkl = max(p0
l , p

1
l ) =∞, and that

‖f it,εl ‖Lp0l ≤
(
‖fl‖plLpl + ε′

) 1

p0
l , ‖f 1+itε

l ‖
L
p1
l
≤
(
‖fl‖plLpl + ε′

) 1

p1
l ,

‖git,ε‖
Lq
′
0
≤
(
‖g‖q

′

Lq′
+ ε′

) 1
q′0 ,

∥∥g1+it,ε
∥∥
Lq
′
1
≤
(
‖g‖q

′

Lq′
+ ε′

) 1
q′1 .

Define

F (z) =

∫
Rn
Tσz(f

z,ε
1 , . . . , f z,εm )gz,ε dx

=

∫
Rmn

σz(~ξ )f̂ z,ε1 (ξ1) · · · f̂ z,εm (ξm)ĝz,ε(−(ξ1 + · · ·+ ξm)) d~ξ

=
∑
j∈Z

∫
Rmn

(I −∆)−
s0(1−z)+s1z

2

[
|ϕj|r(

1−z
r0

+ z
r1

)
eiArg (ϕj)

]
(2−jξ)Φ̂(2−j~ξ )

×
( m∏
l=1

f̂ z,εl (ξl)
)
ĝz,ε(−(ξ1 + · · ·+ ξm)) d~ξ

=
∑
j∈Z

∫
Rmn

[
|ϕj|r(

1−z
r0

+ z
r1

)
eiArg (ϕj)

]
(2−j~ξ )

× (I −∆)−
s0(1−z)+s1z

2

[
Φ̂(2−j~ξ )

( m∏
l=1

f̂ z,εl (ξl)
)
ĝz,ε(−(ξ1 + · · ·+ ξm))

]
(~ξ ) d~ξ.

Notice that

(I −∆)−
s0(1−z)+s1z

2

[
Φ̂(2−j~ξ )

( m∏
l=1

f̂ z,εl (ξl)
)
ĝz,ε(−(ξ1 + · · ·+ ξm))

]
(~ξ )
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is equal to a finite sum (over k1, . . . , km, l) of terms of the form

|cεk1 |
p1
p01

(1−z)+ p1
p11
z
· · · |cεkm|

pm
p0m

(1−z)+ pm
p1m

z|dεl |
q′
q′0

(1−z)+ q′
q′1
z
(I −∆)−

s0(1−z)+s1z
2

[
Φ̂(2−j·)ζk1,...,km,l

]
(~ξ ),

which we call H(z, ~ξ ), where ζk1,...,km,l are Schwartz functions. Thus H(z, ~ξ ) is an analytic

function in z. Moreover H(z, ~ξ ) can be thought of as a function of three variables H(z, ~ξ, x0),
being constant in the variable x0, where {x0} is a measure space of one element equipped

with counting measure. With this interpretation, it is not hard to verify that H(z, ~ξ, x0)
satisfies (13).

Lemma 2.3 guarantees that F (z) is analytic on the strip 0 < <(z) < 1 and continuous up
to the boundary. Furthermore, by Hölder’s inequality,

|F (it)| ≤
∥∥Tσit(f it,ε1 , . . . , f it,εm )

∥∥
Lq0
‖gεit‖Lq′0 ,

and noting that only the terms with j = k−1, k, k+1 survive in the sum in (15) for σit(2
k·)Ψ̂,

the Kato-Ponce inequality [10, 14] applied as ‖(I −∆)s/2(F Φ̂)‖Lr0 ≤ C‖(I −∆)s/2(F )‖Lr0
yields

‖Tσit(f
it,ε
1 , . . . , f it,εm )‖Lq0

≤K0 sup
k∈Z

∥∥∥σit(2k·)Ψ̂∥∥∥
L
r0
s0

m∏
l=1

‖f it,εl ‖Lp0l

≤Cn,r0,s0K0 sup
k∈Z

∥∥(I −∆)
s0
2 (I −∆)−

s0(1−it)+s1it
2

[
|ϕk|r(

1−it
r0

+ it
r1

)
eiArg (ϕk)

]∥∥
Lr0

m∏
l=1

‖f it,εl ‖Lp0l

≤ C(m,n, r0, s0)(1 + |s1 − s0| |t|)
mn
2

+1K0 sup
j∈Z
‖ϕj‖

r
r0
Lr

m∏
l=1

(
‖fl‖plLpl + ε′

) 1

p0
l

= C(m,n, r0, s0, s1)(1 + |t|)
mn
2

+1K0 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)Ψ̂]

∥∥∥ r
r0

Lr

m∏
l=1

(
‖fl‖plLpl + ε′

) 1

p0
l .

Thus, for some constant C = C(m,n, r0, s0, s1) we have

|F (it)| ≤ C(1 + |t|)
mn
2

+1K0 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)Ψ̂]

∥∥∥ r
r0

Lr

(
‖g‖q

′

Lq′
+ ε′

) 1
q′0

m∏
l=1

(
‖fl‖plLpl + ε′

) pl
p0
l .

Similarly, we can choose the constant C = C(m,n, r1, s0, s1) above large enough so that

|F (1 + it)| ≤ C(1+|t|)
mn
2

+1K1 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)Ψ̂]

∥∥∥ r
r1

Lr

(
‖g‖q

′

Lq′
+ε′
) 1
q′1

m∏
l=1

(
‖fl‖plLpl +ε

′) 1

p1
l .

Note that F (z) is a combination of finite terms of the form

Λk1,...,km,l(z)

∫
Rmn

σz(~ξ )ĥ1,ε
j1

(ξ1) · · · ĥm,εjm
(ξm)ĝεj (−(ξ1 + · · ·+ ξm)) d~ξ,

where

Λk1,...,km,l(z) = |cεk1|
p1
p01

(1−z)+ p1
p11
z
· · · |cεkm|

pm
p0m

(1−z)+ pm
p1m

z|dεl |
q′
q′0

(1−z)+ q′
q′1
z
,
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and h1,ε
j1

, gεj are smooth functions with compact support. Thus for z = τ + it, t ∈ R and
0 ≤ τ ≤ 1 it follows from (16) and from the definition of F (z) that

|F (z)| ≤ C(τ, ε, f1, . . . , fm, g, rl, pl, q0, q1)(1 + |t|)
mn
2

+1
(

sup
j∈Z

∥∥∥σ(2j·)Ψ̂
∥∥∥
Lrs

) r
rτ

= Aτ (t).

As Aτ (t) ≤ exp(Aea|t|), the admissible growth hypothesis of Lemma 2.4 is satisfied. Applying
Lemma 2.4 we obtain

|F (θ)| ≤ C K1−θ
0 Kθ

1 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)ψ̂ ]

∥∥∥
Lr

(
‖g‖q

′

Lq′
+ ε′

) 1
q′

m∏
l=1

(
‖fl‖plLpl + ε′

) 1
pl . (18)

But

F (θ) =

∫
Rn
Tσ(f θ,ε1 , . . . , f θ,εm ) gθ,ε dx

and then we have∫
Rn
Tσ(f1, . . . , fm) g dx = F (θ) +

∫
Rn

[
Tσ(f1, . . . , fm)− Tσ(f θ,ε1 , . . . , f θ,εm )

]
g dx

+

∫
Rn
Tσ(f θ,ε1 , . . . , f θ,εm )

(
g − gθ,ε

)
dx.

(19)

A telescoping identity yields

|Tσ(f1, . . . , fm)− Tσ(f θ,ε1 , . . . , f θ,εm )| ≤
m∑
l=1

|Tσ(f1, . . . , fl−1, fl − f θ,εl , f θ,εl+1, . . . , f
θ,ε
m )|.

For every fixed l, applying the hypothesis that Tσ is bounded from Lp
k
1 × · · · × Lpkm to Lqk

for k = 0, 1 we obtain∥∥Tσ(f1, . . . , fl−1, fl − f θ,εl , f θ,εl+1, . . . , f
θ,ε
m )
∥∥
Lqk
.
∥∥fl − f θ,εl ∥∥Lpkl ∏

j 6=l

(
‖fj‖

pj

L
pk
j

+ ε′
) 1
pj .

In view of the inequality ‖h‖Lq ≤ ‖h‖1−θ
Lq0 ‖h‖θLq1 these estimates yield∥∥Tσ(f1, . . . , fl−1, fl−f θ,εl , f θ,εl+1, . . . , f

θ,ε
m )
∥∥
Lq
.
∥∥fl−f θ,εl ∥∥1−θ

L
p0
l

∥∥fl−f θ,εl ∥∥θLp1l ∏
j 6=l

(
‖fj‖

pj

L
pk
j

+ε′
) 1
pj .

As 0 < θ < 1 and one of p0
l or p1

l is strictly less than infinity, the expression on the right
above is bounded by a constant multiple of εmin(θ,1−θ) and hence it tends to zero as ε → 0
because of (9). This proves that (in fact for all 0 < q <∞)∥∥Tσ(f1, . . . , fm)− Tσ(f θ,ε1 , . . . , f θ,εm )

∥∥
Lq
≤ Eε, (20)

where Eε → 0 as ε→ 0. Returning to (19) and using (18) and Hölder’s inequality we write∣∣∣∣ ∫ Tσ(f1, . . . ,fm)(x) g(x) dx

∣∣∣∣
≤ CK1−θ

0 Kθ
1 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)ψ̂ ]

∥∥∥
Lr

(
‖g‖q

′

Lq′
+ ε′

) 1
q′

m∏
l=1

(
‖fl‖plLpl + ε′

) 1
pl
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+ Eε
∥∥g∥∥

Lq′
+ C

∥∥g − gθ,ε∥∥
Lq
′
0

m∏
l=1

∥∥f θ,εl ∥∥Lp0l
Recalling (17) and using that each ‖f θ,εl ‖Lp0l remains bounded as ε→ 0 we obtain∣∣∣∣∫ Tσ(f1, . . . , fm) g dx

∣∣∣∣ ≤ CK1−θ
0 Kθ

1 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)ψ̂ ]

∥∥∥
Lr
‖g‖Lq′

m∏
l=1

‖fl‖Lpl

by letting ε → 0. Taking the supremum over all functions g ∈ Lq′ with ‖g‖Lq′ = 1 yields
the sought estimate (14) in Case I.

Case II: min(q0, q1) ≤ 1.

Here we will make use of two following lemmas proved by Stein and Weiss [20].

Lemma 3.2 ([20]). Let U : S −→ R be an upper semi-continuous function of admissible
growth and subharmonic in the unit strip S. Then for z0 = x0 + iy0 ∈ S we have

U(z0) ≤
∫ +∞

−∞
U
(
i(y0 + t)

)
ω(1− x0, t)dt+

∫ +∞

−∞
U
(
1 + i(y0 + t)

)
ω(x0, t)dt,

where

ω(x, y) =
1

2

sin πx

cos πx+ cosh πy
.

Lemma 3.3 ([20]). Let 0 < c ≤ 1 and let (M,µ) be a measure space with finite measure. If
a function V (z, ·) is analytic from the unit strip S to L1(M,µ), then log

∫
M
|V (z, x)|c dµ is

subharmonic on S.

We now continue the proof of the second case. We fix functions fl as in the previous case.
Choose an integer ρ > 1 such that ρ ≥ ρmin(q0, q1) > q. Take an arbitrary positive simple

function g with ‖g‖Lρ′ = 1. Assume that g =
∑N

k=1 ckχEk , where ck > 0 and Ek are pairwise
disjoint measurable sets of finite measure and compact support. For z ∈ C, set

gz =
N∑
k=1

c
λ(z)
k χEk , where λ(z) = ρ′

[
1− q

ρ

(
1− z
q0

+
z

q1

)]
.

Now consider

G(z) =

∫
Rn
|Tσz(f

z,ε
1 , . . . , f z,εm )(x)|

q
ρ |gz(x)| dx =

N∑
k=1

∫
Ek

∣∣∣c ρq λ(z)

k Tσz(f
z,ε
1 , . . . , f z,εm )(x)

∣∣∣ qρ dx.
Let V (z, x) = Tσz(f

z,ε
1 , . . . , f z,εm )(x). Then V (z, x) can be represented as a finite sum of

terms of the form∫
Rmn

eP (z)|ϕj(~ξ )|
r
r0

(1−z)+ r
r1
z
eiArg (ϕj)(I−∆)−

s0(1−z)+s1z
2

[
e2πix2j ·(

∑m
κ=1 ξκ)Φ̂(~ξ )

m∏
κ=1

ĥεκ(2
jξκ)

]
(~ξ )d~ξ,
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where hεκ are the smooth functions with compact support in (8) and P is a polynomial.
Setting

H(z, ~ξ, x) = (I −∆)−
s0
2

(1−z)− s1
2
z
[
e2πi2jx·(ξ1+···+ξn)Φ̂(~ξ )

m∏
κ=1

ĥεκ(2
jξκ)

]
,

we note that H(z, ~ξ, x) is analytic in z, smooth in ξ and bounded in x, as long as x remains
in a compact set. Moreover H satisfies (13). Applying Lemma 2.3 we obtain that for all

(~ξ, x) the mapping H(·, ~ξ, x) is analytic from S to L1(Ek, dx) Then Lemma 3.3 applies and

yields that logG is subharmonic on S. Using Hölder’s inequality with indices ρq0
q

and
(
ρq0
q

)′
and the fact that the Lρ

′
-norm of g is equal to 1, we have

G(it) ≤
{∫

Rn

∣∣Tσit(f it,ε1 , . . . , f it,εm )(x)
∣∣q0 dx} q

ρq0 ∥∥git∥∥
L
(
ρq0
q )′

≤C
(

(1 + |t|)
mn
2

+1
) q
ρ

(
K0 sup

j∈Z

∥∥∥σ(2j·)ψ̂
∥∥∥ r
r0

Lrs

m∏
l=1

(
‖fl‖plLpl + ε′

) 1
pl

) q
ρ

.

Similarly, we can estimate

G(1 + it) ≤
{∫

Rn

∣∣Tσit(f 1+it,ε
1 , . . . , f 1+it,ε

m )(x)
∣∣q1 dx} q

ρq1 ∥∥g1+it
∥∥
L
(
ρq1
q )′

≤C
(

(1 + |t|)
mn
2

+1
) q
ρ

(
K1 sup

j∈Z

∥∥∥σ(2j·)ψ̂
∥∥∥ r
r1

Lrs

m∏
l=1

(
‖fl‖plLpl + ε′

) 1
pl

) q
ρ

.

Applying Lemma 3.2 to U = logG (with y0 = 0 and x0 = θ) and using that for 0 < θ < 1
we have

sin(π(1− θ))
2

∫ +∞

−∞

1

cosh(πt) + cos(π(1− θ))
dt = 1− θ ,

sin(πθ)

2

∫ +∞

−∞

1

cosh(πt) + cos(πθ)
dt = θ ,

(see [3, Page 48]) we obtain

G(θ) ≤ C ′∗

(
K1−θ

0 Kθ
1 sup
j∈Z

∥∥∥σ(2j·)ψ̂
∥∥∥
Lrs

m∏
l=1

(
‖fl‖plLpl + ε′

) 1
pl

) q
ρ

. (21)

Notice that as

G(θ) =

∫
Rn

∣∣∣Tσ(f θ,ε1 , . . . , f θ,εm )(x)
∣∣∣ qρ g(x) dx,

inequality (21) implies that∥∥∥Tσ(f θ,ε1 , . . . , f θ,εm )
∥∥∥
Lq

=

∥∥∥∥∣∣∣Tσ(f θ,ε1 , . . . , f θ,εm )
∣∣∣ qρ∥∥∥∥ ρq

Lρ

= sup

{∫ ∣∣∣Tσ(f θ,ε1 , . . . , f θ,εm )(x)
∣∣∣ qρ g(x) dx : g ≥ 0, g simple, ‖g‖Lρ′ = 1

} ρ
q
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≤ (C ′∗)
ρ
q K1−θ

0 Kθ
1 sup
j∈Z

∥∥∥σ(2j·)ψ̂
∥∥∥
Lrs

m∏
l=1

(
‖fl‖plLpl + ε′

) 1
pl . (22)

Finally, we use

‖Tσ(f1, . . . , fm)‖Lq ≤ (1+2
1
q
−1)
[
‖Tσ(f1, . . . , fm)−Tσ(f θ,ε1 , . . . , f θ,εm )‖Lq+‖Tσ(f θ,ε1 , . . . , f θ,εm )‖Lq

]
and we note that for the second term we use (22), while the first term tends to zero, in view
of (20). Letting ε→ 0, we deduce (14).

We now turn to the case where min(p0
l , p

1
l ) = ∞ for some (but not all) l in {1, . . . ,m}.

Then we must have pl = ∞ for these l, and for these l we set f z,εl = f , while for the
remaining l the functions f z,εl are defined as before; we notice that the preceding argument
works with only minor modifications.

Finally we consider the case where p0
l = p1

l = ∞ for all 1 ≤ l ≤ m. Here we also take
f z,εl = fl for all l in {1, . . . ,m}. Now (19) becomes∫

Rn
Tσ(f1, . . . , fm) g dx = F (θ) +

∫
Rn
Tσ(f1, . . . , fm)

(
g − gθ,ε

)
dx. (23)

Hence, in Case I, when min(q0, q1) > 1, we have∣∣∣∣ ∫ Tσ(f1, . . . ,fm)(x) g(x) dx

∣∣∣∣
≤ CK1−θ

0 Kθ
1 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)ψ̂ ]

∥∥∥
Lr

(
‖g‖q

′

Lq′
+ ε′

) 1
q′

m∏
l=1

‖fl‖L∞

+ C
∥∥g − gθ,ε∥∥

Lq
′
0

m∏
l=1

∥∥fl∥∥L∞ .
Passing the limit as ε→ 0 to obtain∣∣∣∣∫ Tσ(f1, . . . , fm) g dx

∣∣∣∣ ≤ CK1−θ
0 Kθ

1 sup
j∈Z

∥∥∥(I −∆)
s
2 [σ(2j·)ψ̂ ]

∥∥∥
Lr
‖g‖Lq′

m∏
l=1

‖fl‖L∞ .

The result in Case II, which is when min(q0, q1) ≤ 1, can be obtained from that in Case I
by choosing ρ > 1 such that ρmin(q0, q1) > q and by arguing as before, replacing each term(
‖fl‖plLpl + ε′

) 1
pl by ‖fl‖L∞ . This concludes the proof of the theorem in all cases. �

Note that the proof of Theorem 3.1 is much simpler in the case r0 = r1 = 2, and this
was proved earlier in [8, Theorem 6.1, Step 1]; see also [9, Theorem 2.3]. In this case,
the domains can be arbitrary Hardy spaces. We state the theorem in this case (without
providing a proof):

Theorem 3.4 ([8]). Let p0
l , p

1
l , pl, q0, q1, q, s0, s1, s and θ ∈ (0, 1) be as in Theorem 3.1 for

l = 1, . . . ,m. Assume that s0, s1 >
mn
2

, p0
l , p

1
l <∞ for all l, and that

‖Tσ(f1, . . . , fm)‖Lqk (Rn) ≤ Kk sup
j∈Z

∥∥∥σ(2j·)Ψ̂
∥∥∥
L2
sk

(Rmn)

m∏
l=1

‖fl‖
H
pk
l (Rn)
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for k = 0, 1 where K0, K1 are positive constants. Then we have the intermediate estimate:

‖Tσ(f1, . . . , fm)‖Lq(Rn) ≤ C∗K
1−θ
0 Kθ

1 sup
j∈Z

∥∥∥σ(2j·)Ψ̂
∥∥∥
L2
s(Rmn)

m∏
l=1

‖fl‖Hpl (Rn)

for all Schwartz functions fl with vanishing moments of all orders, where C∗ depends on all
the indices, θ, and the dimension.

4. The proof of the main result via interpolation

We now turn to the proof of Theorem 1.1.

Proof. (a) Assume n/2 < s ≤ n and let

Γ1 =
{( 1

p1

,
1

p2

)
:

1

p1

<
s

n
,

1

p2

<
s

n
, 1− s

n
<

1

p
=

1

p1

+
1

p2

<
s

n
+

1

2

}
.

We will prove that

‖Tσ(f1, f2)‖Lp(Rn) ≤ C sup
j∈Z
‖σ(2j·)Ψ̂‖Lrs(R2n)‖f1‖Lp1 (Rn)‖f2‖Lp2 (Rn) (24)

for every ( 1
p1
, 1
p2

) ∈ Γ1, which is a convex set with vertices D,K,L,G,H and N (see Figure

1A below). By multilinear real interpolation [4, Corollary 7.2.4], we only need to verify the
boundedness of Tσ at points in Γ1 near its vertices D,K,L,G,H,N which do not lie in Γ1.

N

H

D

E

F
G

K

L

P

Q

B

A

C

TJ

O I

1
p2

1
p1

(A) n
2 < s ≤ n

R

P

Q

B

A

C

TJ

O I

S

1
p2

1
p1

(B) n < s ≤ 3n
2

Figure 1. Boundedness holds in the shaded regions and unboundedness in
the white regions. The local L2 region is shaded in a lighter color.

As showed in [4, 11], the Hörmander condition supj∈Z ‖σ(2j·)Ψ̂‖Lrs(R2n) is invariant under
duality. For 1 ≤ p < ∞, by duality, if Tσ maps Lp1 × Lp2 → Lp, then it also maps
Lp
′ × Lp2 → Lp

′
1 . Therefore, if Tσ is bounded near D, then Tσ is also bounded near N by

duality. By symmetry, if Tσ is bounded near N,D and K then it is bounded near H,G and
L as well. From these reductions, it remains to prove (24) at points in Γ1 near D and K.

With s1 >
n
2

and r1s1 > 2n, we recall the following [6, Theorem 1]:

‖Tσ(f1, f2)‖L1(Rn) ≤ C sup
j∈Z
‖σ(2j·)Ψ̂‖Lr1s1 (R2n)‖f1‖L2(Rn)‖f2‖L2(Rn). (25)
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By duality it follows from (25) that when s1 >
n
2

and r1s1 > 2n we have

‖Tσ(f1, f2)‖L2(Rn) ≤ C sup
j∈Z
‖σ(2j·)Ψ̂‖Lr1s1 (R2n)‖f1‖L2(Rn)‖f2‖L∞(Rn). (26)

Theorem 1.1 in [17] (with s1 = s2 in [17] being γ below) implies that

‖Tσ(f1, f2)‖Lq(Rn) ≤ C sup
j∈Z
‖(I −∆ξ1)

γ
2 (I −∆ξ2)

γ
2

[
σ(2j·)Ψ̂

]
‖L2(R2n)‖f1‖Lq1 (Rn)‖f2‖Lq2 (Rn)

for γ > n
2
, where 1 < q1, q2 ≤ ∞, 1

q
= 1

q1
+ 1

q2
< 2γ

n
+ 1

2
. Given s2 > n, choose γ = s2

2
> n

2

and observing the trivial estimate

sup
j∈Z
‖(I −∆ξ1)

γ
2 (I −∆ξ2)

γ
2

[
σ(2j·)Ψ̂

]
‖L2(R2n) ≤ C sup

j∈Z
‖σ(2j·)Ψ̂‖L2

s2
(R2n),

we obtain

‖Tσ(f1, f2)‖Lq(Rn) ≤ C sup
j∈Z
‖σ(2j·)Ψ̂‖L2

s2
(R2n)‖f1‖Lq1 (Rn)‖f2‖Lq2 (Rn) (27)

for all 1 < q1, q2 ≤ ∞, 1
q

= 1
q1

+ 1
q2
< s2

n
+ 1

2
.

We now use Theorem 3.1 to interpolate between (26) and (27) (for q1 = q near 1 and
q2 =∞). We obtain (24) at points D1( 1

p1
, 0) with 1

p1
< s

n
which are near the point D( s

n
, 0).

Similarly, interpolating between (25) and (27) (q1 near 1, q2 = 2) yields (24) at points
K1( 1

p1
, 1

2
) with 1

p1
< s

n
near K( s

n
, 1

2
). This yields (24) on Γ1 and completes part (a).

(b) Assume n < s ≤ 3n
2

. Since r ≥ 2, the Kato-Poince inequality [10] implies that

sup
j∈Z
‖σ(2j·)Ψ̂‖L2

s(R2n) . sup
j∈Z
‖σ(2j·)Ψ̂‖Lrs(R2n). (28)

Combining estimates (28) and (27) yields (24) in the open pentagon OIRSJ union the open
segments OI and OJ . This completes the second part of Theorem 1.1.

(c) In the last case when s > 3n
2

, notice that condition (7) reduces to p > 1
2

and since

sup
j∈Z
‖σ(2j·)Ψ̂‖Lr3n

2

(R2n) ≤ sup
j∈Z
‖σ(2j·)Ψ̂‖Lrs(R2n),

the case in part (b) applies and yields (24) for every point in the entire rhombus OITJ
union the open segments OI and OJ . The proof of Theorem 1.1 is now complete. �

5. An application

We consider the following multiplier on R2n: ma,b(ξ1, ξ2) = ψ(ξ1, ξ2)|(ξ1, ξ2)|−bei|(ξ1,ξ2)|a

where a > 0, a 6= 1, b > 0, and ψ is a smooth function on R2n which vanishes in a
neighborhood of the origin and is equal to 1 in a neighborhood of infinity. One can verify
that ma,b satisfies (1) on R2n with s = b/a and any r > 2n/s.

The range of p’s for which ma,b is a bounded bilinear multiplier on Lp(R2n) can be com-

pletely described by the equation |1
p
− 1

2
| ≤ b/a

2n
(see Hirschman [12, comments after Theorem

3c], Wainger [22, Part II], and Miyachi [16, Theorem 3]); similar examples of multipliers of
limited boundedness are contained in Miyachi and Tomita [17, Section 7].

As a consequence of Theorem 1.1 we obtain that the bilinear multiplier operator associated
with ma,b is bounded from Lp1(Rn)× Lp2(Rn) to Lp(Rn) in the following cases:
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(i) when n ≥ b/a > n/2 and

1

p1

<
b

an
,

1

p2

<
b

an
, 1− b

an
<

1

p
<

b

an
+

1

2
.

(ii) when 3n/2 ≥ b/a > n and

1

p
<

b

an
+

1

2
;

(iii) when b/a > 3n/2 in the entire range of exponents 1 < p1, p2 ≤ ∞, 1
2
< p <∞.

The boundedness of this specific bilinear multiplier is unknown to us outside the above
range of indices.
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