THE HORMANDER MULTIPLIER THEOREM, III: THE COMPLETE
BILINEAR CASE VIA INTERPOLATION

LOUKAS GRAFAKOS AND HANH VAN NGUYEN

ABSTRACT. We develop a special multilinear complex interpolation theorem that allows
us to prove an optimal version of the bilinear Hérmander multiplier theorem concerning
symbols that lie in the Sobolev space L7(R?"), 2 < r < oo, s > 2n, uniformly over all
annuli. More precisely, given a smoothness index s, we find the largest open set of indices
(1/p1,1/p2) for which we have boundedness for the associated bilinear multiplier operator
from LP1(R™) x LP2(R™) to LP(R™) when 1/p =1/p1 + 1/p2, 1 < p1,pa < 0.

1. INTRODUCTION

Multipliers are linear operators of the form

7)) = [ Fereeac.

where f is a Schwartz function on R” and f(£) = Jen f(@)e 2™ d is its Fourier transform.

Let W be a Schwartz function whose Fourier transform is supported in the annulus of the
form {€ : 1/2 < [¢] < 2} which satisfies ), U(277¢) =1 for all £ # 0. We denote by A the
Laplacian and by (I — A)*/? the operator given on the Fourier transform by multiplication
by (1 + 472|€[2)%/2; also for s > 0, and we denote by L” the Sobolev space of all functions h
on R™ with norm ||h||z; := ||(I — A)*?h||1- < co. Extending an earlier result of Mikhlin [15],
the optimal version of the Hormander multiplier theorem says that if

sup H\IIO'(Qk-)| L < 00 (1)
keZ .
and L
--5]<2, 2)
p 2 n

then T, is bounded from LP(R™) to itself for 1 < p < oco. Hormander’s [13] original version
of this theorem stated boundedness in the entire interval 1 < p < oo provided s > n/2.
A restriction on the indices first appeared in Calderén and Torchinsky [1], while condition
(2) appeared in [5]; this condition is sharp as examples are given in [5] indicating that the

theorem fails in general when }% — %| > 2. Moreover, recently Slavikova [19] provided an
example showing that boundedness may also fail even on the critical line ‘i — % = 2.

In this paper we provide bilinear analogues of these results. The study of the Hormander
multiplier theorem in the multilinear setting was initiated by Tomita [21] and was further
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2 GRAFAKOS AND NGUYEN
studied by Fujita, Grafakos, Miyachi, Nguyen, Si, Tomita (see [2], [7] [11], [8], [17], [18])

among others. For a given function o on R?" we define a bilinear operator

T5(f1, f2)(x) = /n Rn]?1(51)]?2(52)0(51,52)62”:”'(51+52)d§1d§2

originally defined on pairs of C§° functions fi, fo on R". We fix a Schwartz function ¥ on
R?*" whose Fourier transform is supported in the annulus 1/2 < |(£1, &) < 2 and satisfies

SUEIE,L) =1, (&,&) #0.

JEZL

The following theorem is the main result of this paper:

Theorem 1.1. Let 2 <7 <00, s> 22 1 <py,ps <00 andlet 1/p=1/p, +1/py > 0.
(a) Let n/2 < s < n. Suppose that

1 1 1 1
i i << i + = (3)
2
Then for all C3°(R™) functions fi, fo we have

HTa(fla fZ)HLP(Rn) < Csug H0-<23)(I\l
JE€

HLPl (Rn) fZHL;DQ (Rn). (4)

Moreover, if (4) holds for all fi, fo € C§° and all o satisfying (1), then we must necessarily
have

1 s 1 s s 1 s 1
_S_a_g_al _S_S__'__' (5)
P1 n p2 N n—-p-n 2
(b) Let n < s < 3n/2 and satisfy
1 s 1
-<—+4+-. 6
D n+2 (6)

Then (4) holds. Moreover, if (4) holds for all fi, fo € C3° and all o satisfying (1), then we
must necessarily have

1 S 1
Sy, 7
p_n+2 (7)

(c) If s > 37” then (4) holds for all 1 < py,ps < 00 and 5 < p < 00.

This theorem uses two main tools: First, the optimal n/2-derivative result in the local
L?-case contained in [6] and a special type of multilinear interpolation suitable for the
purposes of this problem (see Theorem 3.1 below). Figure 1 (Section 4), plotted on a slanted
(1/p1,1/p2) plane, shows the regions of boundedness for 7, in the two cases n/2 < s < n
and n < s < 3n/2. Note also that in the former case, the condition 1 -2 < % is only needed
when p > 2.

Finally, we mention that the necessity of conditions (3), (5), and (7) in Theorem 1.1 are
consequences of Theorems 2 and 3 in [6]; these say that if boundedness holds, then we must
necessarily have

< < <4

SI%
=
S|w
N | =

1
D2

3lfn

1
b1



THE HORMANDER MULTIPLIER THEOREM, III 3

Also, if T, maps LP* x L??> to L? and p > 2, then duality implies that T, maps L x L”? to
L¥i. Now p' plays the role of p; and so constraint pil < 2 becomes 1 — 2 < ]13. This proves
(5). So the main contribution of this work is the sufficiency of the conditions in (3) and (6).

2. PRELIMINARY MATERIAL FOR INTERPOLATION

In this section we briefly discuss three lemmas needed in our interpolation.

Lemma 2.1. Let 0 < pg < p < p1 < o0 be related as in 1/p = (1 —0)/po + 0/p1 for some
0 € (0,1). Given f € C°(R") and ¢ > 0, there exist smooth functions h5, j = 1,..., N,
supported in cubes with pairwise disjoint interiors, and nonzero complex constants ¢ such
that the functions

Z]fw<% “hs (8)

satisfy

erﬁ_fHLm <e if p; < o0
HfG,E B f”L:vo <e and (9)
£ e < N[ fll e+ i pr =00
and

. 1
I Lote, I < (If15 + )7

where €' depends on €, pg, p1, P, ||f||Lp and tends to zero as € — 0.

Proof. Given f € C5°(R™) and € > 0, by uniform continuity there are N. cubes Q5 (with
disjoint interiors) and nonzero complex constants ¢ such that

min(1,po) Emin(l,po)
Hf CIXQi LPo < 2 ’ Hf OXQ?

7j=1 j=1

min(1,p1) €min(1,p1)
P
LP1 2 ’

and

Hf C-X@;

]7

. 1
L <€ (10)

Find smooth functions g5 satisfying 0 < g5 < XQs such that

min(l,po) 5min(17P0)

S < S

min(l,pl) Emin(l,pl)
S
LP1 2 ’

where the last estimate is required only when p; < co. We set hs = ] g5, where ¢% is the
argument of the complex number ¢;. Then A is that function claimed in (8). Observe that

N¢ Ne
— 3 g __ g _E
= 2 :‘Cj’hj = E :ngj
j=1 j=1
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satisfies (9) when p; < oo; in the case p; = co we have

Ne

€
§ CiXQs
Jj=1

<

N. Ne
19
<3 Ilxg: = S éxr - f‘ PSS 41 < e+l
j=1 j=1

Now we have
ans Lro = Zlc |p|Q6| =

having made use of (10).
Given a,c > 0and e > Oset &/ = £/(g,a,¢) = (¢%+c*)"/*—c. Then (£%+c*)¥/* < ¢'+c and
g’ — 0 as e — 0. Then for a suitable ¢’ that only depends on ¢, p, po, p1, || f||z», the preceding

C XQ?

1 min(1,p
< ( H1111( p H FHmln p)) in(1, )7

estimate gives: || f%<[|7%, < ||f||7, 4+ ¢" and analogously || f*%<|| e < (|| fI|7, + 6')1/p1 when
p1 < 00; notice that if p; = oo then || f17%¢| L« < 1 and the right hand side of the inequality
is equal to 1, thus the inequality is still valid. [l

Lemma 2.2. Given a domain Q on the complex plane and (M, ) a measure space, let
V:Qx M — C be a function such that V (-, x) is analytic on Q for almost every x € M. If
the function

V*(z,x) = sup v

w:\w—z\<%dist(z,8(2) dw

—(w,z)|, €M (11)

is integrable over M for each z € ), then the mapping z — V(z,) is an analytic function
from Q) to the Banach space L*(M, dpu).

Proof. Fix z € Q and denote r, = 1dist(z, Q). It is enough to show that
(z4+h,-)=V(z-) ﬂz‘

h—>0 H h dz< ’
The assumption yields that for some set My with u(M \ My) = 0, we have
V(z+h,z)—V(z, :1:) av

=0. 12
L} (M.dps) (12)

117,1£>I(1) h dz PSR
for all x € My. Thus for each x € My and h € C with |h| < r, we can write
V(z+h,z)=V(z,z) dV 1 dv dv
h — 2 ‘_)h/ o' x)dw_dz(z’x)‘

dv

<2 sup w, T ‘

w:lw—2z|<r; dw( )

=2V*(z,z).

Since V*(z,-) is integrable on My, the Lebesgue dominated convergence theorem yields

. V(z+h,x) = V(z,x) dV
p ROV O
:/ lim V(z+h,x) = V(z,x) dV
Mo h—0 h dZ
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This yields (12) and completes the proof, as the last integral is over the entire space M. O

Lemma 2.3. Given 0 <a <b<oo, Q={2€C : a < R(z) <b}, and a measure space
(M, i) of finite measure, let H : Q X Hﬁd X M — C be a measurable function so that H(-,§,x)
be analytic on 2 and continuous on Q for each (&,x) € R? x M. Suppose that

sup [H(w,€,)| + sup [ % (w,€,)| < €1+ fe) ! (13)

we weN dw

for all (¢,z) € RY x M. If ¢ be a bounded measurable function on R?, then the mapping
2+ V(z,-), defined by

Viza)= | lp@e Oz g )t

is an analytic function from Q to the Banach space L*(M,du) and is continuous on S.

Proof. Let K = {5 € R?: p(€) # 0}. By assumption, for each x € M we have

(z:2) L/W>IhM¢)Dm””“H@€7)£
/Ww etarote @ UL g yae.

As for each z € Q) we have

| le@©F In(le@)])] < sup |t|“10g + (14 [lpllz<)"log(1 + [l¢flz=) = ¢ < o0

and H satisfies assumption (13), the associated function V*(z, ) defined in (11) is bounded
and thus integrable over M. Therefore, using Lemma 2.2 we deduce that z — V(z,-) is
analytic from 2 to L'(M, du).

Using Lebesgue’s dominated convergence theorem and the fist part of assumption (13) we
easily deduce that V(z,-) is continuous up to the boundary of €. O

Lemma 2.4 ([3]). Let F be analytic on the open strip S = {z € C : 0 < R(z) < 1} and
continuous on its closure. Assume that for all 0 < 7 < 1 there exist functions A, on the
real line such that

|F(T +it)] < A-(t) for all t € R,
and suppose that there exist constants A > 0 and 0 < a < 7 such that for all t € R we have
0< A (t) <exp{Ae’}.
Then for 0 < 6 <1 we have

F(0)] < exp{sin(27r0) /Oo [ log | Ao(t)] N log |A1(t)| }dt} .

_ oo Lcosh(mt) — cos(w#)  cosh(mt) + cos(md)

In calculations it is crucial to note that

sin(70) /OO dt 1y sin(7#) /Oo dt _ 4
2 o cosh(7t) — cos(7h) ’ 2 _ oo cosh(7t) + cos(wf)
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3. MULTILINEAR INTERPOLATION

In this section we prove the main tool needed to derive Theorem 1.1 by interpolation. We
denote by € = (&,...,&y) elements of R™", where &; € R". We fix a Schwartz function W
on R™ whose Fourier transform is supported in the annulus 1/2 < [¢| < 2 and satisfies

Y W) =1, 0£{eR™.

Theorem 3.1. Let 0 < p?,...,p% < oo, 0 < pl,...,pt < o0, 0 < qo,q1 <00, 0< 89,8 <
00, 1 <rg,rp <00, 0< 8 <1, and let
1 1-60 46 1 1—-6 0 1 1-6 6

:—0 NE - = +—, - = +—, S:(l—e>50+951
Di Dy D q 4o q1 r To 1
forl = 1,....m. Assume rosg > mn, and r1$1 > mn and that for all f; € CF(R"™),
l=1,...,m, we have

||T0(f17 cey fm)HLQk(Rn) S Kk sup "0’(2])\11’

JEZ

m
L7k (Rmn) 111 1ol ot e

for k =0,1 where Ky, K1 are positive constants. Then the intermediate estimate holds:

n 14
sy L Wiy (19

for all f; € Cg°(R™), where C. depends on all the indices, on 0, and on the dimension.
Consequently, if pp < oo for alll € {1,...,m}, then T, admits a bounded extension from
LPr X -+ x LP™ to L9 that satisfies (14).

HTO'(f17 e 7fm)||LQ(Rn) S C* K&*@Kf Sup

JEL

ﬂ%ﬁ‘

Proof. Fix a smooth function ® on R™ such that supp(®) C {1 < €] < 4} and d=1on
the support of the function W. Denote ¢; = (I — A)2[0(27-)¥] and define

— o sg(l—z)+s12 r(l=z4 2z iAr ) oD o
Uz(g):Z(I_A) B R [!%! (%% +r1)€Ag(sog)} (277€)D(279¢). (15)

JEZ.

This sum has only finitely many terms and we now estimate its L norm.

Fix £ € R™. Then there is a jy such that |¢ | & 27° and there are only two terms in the sum
. . sg(l—z)+sqz r 11—z | =z . )
in (15). For these terms we estimate the L norm of (I—A)~"™" e (151 (G5 F77) gire (@i)] .
For z=7+it with0 <7 <1, let s, = (1 —7)so+7sy and 1/r, = (1 —7)/ro +7/r1. By
the Sobolev embedding theorem we have

Ji-ar

1

sg(l—z)+sy2
=

TGt JiArg (@) H
|S0J| ’ ve ] Loo(Rmn)
_so(l=2)+s12 (A2 4+2) iAr (@5)
< Crg,spmm)|[(T = 8)7 5558 [, O )it (]|
LT (Rmn)
S C(TT, ST,TL)H([ o A)itsogsl [|gpj|r(1r—oz+ﬁ)6iArg (apj)H ( )
LrT (Rmn

< C(rr, s mn) (1 + |50 — sy [1])™/2H |, o 7 gihne ()

Lrr (Rmn)
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< Cﬂ(rm 1,580,951, 7, mn)(l + ’t‘)mn/2+1 ’gojyr(lr_()T+%)
Lrr (Rmn)
mn r/re
= C"(ro,r1, S0, $1, 7, mn)(1 + |t|) /2+1||S0j| G

It follows from this that

r/re
o7 it || oo @mny < C(ro, 71, S0, 51,7, mn) (1 + |t\)m”/2+1<sup Ha (27-) \If‘ Ly Rmn)> . (16)

Let T,,, be the family of operators associated to the multipliers o,. Let £ be given.
Suppose first that min(pY, pj) < oo for all [ € {1,...,m}. This forces p; < oo for all [.

Case I: min(gg,q1) > 1. This assumption implies that ¢ > 1, hence ¢/, ¢}, q; < oo. Fix
fi,g € COO(R"). For given € > 0, for every [ € {1,...,m}, by Lemma 2.1 there exist functions
% and g*° of the form (8) such that

L= Al <& 1A= fillp <& 19" =gl <& Ng™ —allg <& (A7)

when max(p?, pi) < oo, while one of the first two inequalities is replaced by || fﬁe
||fl||Lpl e = ||fil L~ + & when pf = max(p?, p}) = oo, and that

1 1
|| ZtaHLpl = (||fl|LPl )p?v ||fll+lt6||Lpl = (||fl|LPl ) ll7

i = (gl +2)%, (g™ < (gl +) 7.

g™
Define

FE) = [ T g0 e
= [ R @) T FH (6 4+ €) d
_Z/mn] A~ sU=2)tay s [|¢]| ot ) piArg (¢5) (Q_jf)zl\)(Q_jg)

JEZ

(H (@) 47 (~ (€ + ) dE
_Z/mn [M o T ’Arg(saj)}@_jg)

JEZ

w (I — A)~ 25 {@(

29) (TT 750~ (61-+ -+ )| €) €.
=1
Notice that

m

296) ([T 77076+ + € ©)

(I — A)~ 5 F)(
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is equal to a finite sum (over ki, ..., kn, l) of terms of the form
Py 1—2 ﬂz — 2 Z qT sg(l—z)+sqy2 ~ . —
6, 12T g RO T (- ) B2 G, ] (),

which we call H(z, E ), where (g, .. k1 are Schwartz functions. Thus H(z, 5 ) is an analytic

function in z. Moreover H(z, £ ) can be thought of as a function of three variables H (z, g, xo),
being constant in the variable xy, where {xy} is a measure space of one element equipped

with counting measure. With this interpretation, it is not hard to verify that H(z, 3 o)
satisfies (13).

Lemma 2.3 guarantees that F'(z) is analytic on the strip 0 < R(z) < 1 and continuous up
to the boundary. Furthermore, by Holder’s inequality,

|F Zt | < ||Ta zta’ < 'afrintyg)Hqu ||g§t|’L06 ’

and noting that only the terms with j = k—1, k, k+1 survive in the sum in (15) for o7 (2%) U,
the Kato-Ponce inequality [10, 14] applied as |[(I — A)*2(F®)||pr0 < C||(I — A)*2(F)| 70
yields

1T (£ Far) o

<Kosup o2 || 50
keZ L™
S0 so(1—it)+sqit 7.t it
scn,m,soffoi“g\\u—mfu T [ UOHH 1
€

m

. 1
< C(m,n, 7o, 50)(1+ |51 — sol [t]) 2 T Ky sup el TT AR + &)
Je =1

S 1
” H HleLPz ?-

=1

= C(m,n,7o, 80, 51)(1 + |t]) 2 T K, supH (I —A)2[(20)

JEZ

Thus, for some constant C' = C(m, n, 1o, So, 51) we have

1

F(it)] < OO+ )5 Kosup | (1 = 8)3 o) &| (ol + )% TT (15 +<)F

jez 1=1

Similarly, we can choose the constant C' = C(m,n,ry, o, s1) above large enough so that

1

1 1
(||g||q +e') H il +e) e

=1

|F(1+dt)] < C(1+]t

VEH K sup [(1 - )3 [e(27) ]|

JEZ

Note that F(z) is a combination of finite terms of the form

Mpeotod(?) [ @M€ R EIF ({61 60)

where
C BO-+H: L Ema)

L(1-2)+2
Niyooom i (2) = |Ck1’ 1 1 "'|Cim|pm ’ ’

s | “
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and h}f, g5 are smooth functions with compact support. Thus for z = 7 +it, t € R and
0 <7 <1 it follows from (16) and from the definition of F'(z) that

0(23'.)/\

Lg)”: — A (D).

|F(Z)| S C<T7€7 f17" fm7g7rlapl7QO7q1)<1 + |tD 2 +1(Sup
JEL

As A.(t) < exp(Ael), the admissible growth hypothesis of Lemma 2.4 is satisfied. Applying
Lemma 2.4 we obtain

()] < C R sup |1 = 28] (gl +)7 [T (WAl +€)7. ()
€ 1=1
But

F(e):/nT( S fhe) g% da

and then we have

/n (fise s fm)gde =F ? b (frseeos fm) = To(FY5, o f29)] g da o

0 1) (g - ') da.

A telescoping identity yields

|Tg(f1""’fm)_TO’( f787"'af08 fla--wfl—bfl fl+1a~..>fr€££)"

||M§

For every fixed [, applying the hypothesis that 7, is bounded from LPY X o x [P to L
for k = 0,1 we obtain

e 0, j L
HTo'(fla cee 7fl717fl fl+17 c 7f317 )Hqu 5 ||fl —J1 HLP{C H (Hf]”ijpgc + 5/) Fi
J#l
In view of the inequality ||h]|za < ||h]|}a [|h]|%: these estimates yield
_ a1
HTa(fla"'aflflafl fl+17"'7fgf)Hqu ||fl ||Lpl Hfl 7EHLI[’ll1_[(HfjHin;?—i_‘a:/)pj
A
As 0 < 6 < 1 and one of p) or p} is strictly less than infinity, the expression on the right

above is bounded by a constant multiple of e™™®1=% and hence it tends to zero as e — 0
because of (9). This proves that (in fact for all 0 < ¢ < c0)

|To(frsee fon) = Tl fo) | < B (20)
where E. — 0 as ¢ — 0. Returning to (19) and using (18) and Hélder’s inequality we write

/Tg(fl, oo fm)(@) g(z) do

-Q\‘ =

H Hfl LPz +€

=1

< KK sup (1= 2)3 0201 (llgls, +<

JEZ
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+ Eellg]| L + Cllg - QOEHL%HH e

Recalling (17) and using that each || fle’6||Lp? remains bounded as ¢ — 0 we obtain

[ttty o] < CROREsup |- 29810297 sl Tl
=1

JEZ

by letting ¢ — 0. Taking the supremum over all functions g € LY with ||g||,+ = 1 yields
the sought estimate (14) in Case L.

Case II: min(qo,q1) < 1.
Here we will make use of two following lemmas proved by Stein and Weiss [20].

Lemma 3.2 ([20]). Let U : S — R be an upper semi-continuous function of admissible
growth and subharmonic in the unit strip S. Then for zy = xo + iy € S we have

—+00

U(z) < /_+OO U(i(yo +t))w(1 — xo, t)dt + / U(1+i(yo + t))w(wo, t)dt,

[e.9] — 00

where
sin mx

1
wiz,y) = 2 cosTx + coshmy’

Lemma 3.3 ([20]). Let 0 < ¢ <1 and let (M, p) be a measure space with finite measure. If
a function V(z,-) is analytic from the unit strip S to L'(M, p), then log [, |V (z, )| du is
subharmonic on S.

We now continue the proof of the second case. We fix functions f; as in the previous case.
Choose an integer p > 1 such that p > pmin(qo,q1) > g. Take an arbitrary positive simple
function g with ||g||;,» = 1. Assume that g = Zivzl CkXE,, Where ¢, > 0 and Ej, are pairwise
disjoint measurable sets of finite measure and compact support. For z € C, set

N
zZ 1_
QZ:ZCQ( )XEk7 where )x(z):p {1_;< Z+i>} |

—1 do 0

Now consider

aq
p
dx.

Rn

N
G = [ T EO@ @ =3 [ | g 0w
k=1 " Lk

Let V(z,2) = T,.(f{°, ..., f5°)(z). Then V(z,z) can be represented as a finite sum of
terms of the form

2oL (1=2)+ L . o sg(l—2)+s12 . /\ —
/eP(z)!%(ﬁ)!TO(l e ezArg(@J)(]_A) s0l=2)tez |:€27rm:23 o ék) d(¢ H izg@{] de,

RmMn
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where hZ are the smooth functions with compact support in (8) and P is a polynomial.
Setting

H(z,&x) = (I —A)~ 70" z)‘*z[ Gty (¢ i (2°¢5) ]

||’:]S

we note that H(z, 5, x) is analytic in z, smooth in £ and bounded in z, as long as x remains
in a compact set. Moreover H satisfies (13). Applying Lemma 2.3 we obtain that for all
(5’, x) the mapping H (-, g x) is analytic from S to L'(Ey, dz) Then Lemma 3.3 applies and
yields that log G is subharmonic on S. Using Hélder’s inequality with indices % and (%)/
and the fact that the L/ -norm of g is equal to 1, we have

G(Zt) < {/n ’Tgit( lta’. thE)(Qf)‘qO daj}pqo Hgit”L(%l),

q

gc(u+wDT*?p<K““ﬂ\QJA\LI10mu%+f0é>

jez ey

Similarly, we can estimate

G(1+it) < { / T, (FLF5, o fhFe) ()] d:):}

%
3 1
Lr H(Hfl‘Lle +5/)m> ‘

s =1

q

Pa1 HglﬂtHﬂ%)’

<c (415 (s oz

jez

Applying Lemma 3.2 to U = log G (with yo = 0 and xy = #) and using that for 0 < § < 1

we have
sin(m(1 — 6)) /+°° 1 i —1_8
2 _ cosh(mt) +cos(m(l —0)) ’

sin(7) /+°° 1 gt =0
2 o cosh(wt) 4 cos(mf) '

(see [3, Page 48]) we obtain

NS

c=c (Ké_”{f aple@d], Tl +94) . e
S =1

jez
Notice that as

T,(£%, ... 125)(@)|” g(x) d.

inequality (21) implies that

L)

S

5 ) (@)

<@dm:g20gsmmmwmuﬂ=1}
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< (€18 Ky K] sup lo(27)9)

jez

" 1
T A + =)™, (22)
S l=1

Finally, we use

ITo(Frs o Fdllze < (25 [T frsos fon) =T (25 Pt | T (F15, - 0 2]

and we note that for the second term we use (22), while the first term tends to zero, in view
of (20). Letting ¢ — 0, we deduce (14).

We now turn to the case where min(pY, p}) = oo for some (but not all) [ in {1,...,m}.
Then we must have p; = oo for these [, and for these [ we set f° = f, while for the
remaining [ the functions f° are defined as before; we notice that the preceding argument
works with only minor modifications.

Finally we consider the case where p) = pj = oo for all 1 < [ < m. Here we also take

¢ = fiforalllin {1,...,m}. Now (19) becomes

/n To(frr o fo) g dz = F(0) +/ (s o) (g — ¢7) do. (23)

n

Hence, in Case I, when min(qg, q;) > 1, we have

/ To(fr,. . fo)(@) g(c) de

< CKY K swp (1= 2)3 @01 (gl +2)7 Tl
=1

JEZ Lr
m
+Cllg = "l i TLIill
=1
Passing the limit as € — 0 to obtain

< C’KS_QKf sup
JET

’/To(fl,...,fm)gdac

(1= 830201 gl TT il -
=1

The result in Case II, which is when min(qp, ¢;) < 1, can be obtained from that in Case I
by choosing p > 1 such that pmin(qo, ¢1) > ¢ and by arguing as before, replacing each term

(Nl fill7, +€")7 by || fil| o. This concludes the proof of the theorem in all cases. O

Note that the proof of Theorem 3.1 is much simpler in the case ro = r; = 2, and this
was proved earlier in [8, Theorem 6.1, Step 1]; see also [9, Theorem 2.3]. In this case,
the domains can be arbitrary Hardy spaces. We state the theorem in this case (without
providing a proof):

Theorem 3.4 ([8]). Let p?, pi,pi,q0,q1,9, S0, 51,5 and 6 € (0,1) be as in Theorem 3.1 for
l=1,...,m. Assume that so,s1 > =2, p{,p; < oo for alll, and that

1T Fodllowgey < Bisup 0@ L TNt
°k =1

JEZ
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for k =0,1 where Ky, K1 are positive constants. Then we have the intermediate estimate:

s =1

for all Schwartz functions f; with vanishing moments of all orders, where C, depends on all
the indices, 0, and the dimension.

ITo (s Fond Loy < Co K3 KT sup |27

JEZ

4. THE PROOF OF THE MAIN RESULT VIA INTERPOLATION
We now turn to the proof of Theorem 1.1.

Proof. (a) Assume n/2 < s < n and let

1 1 1 s 1 S S 1 1 1 S 1
NPT ESE I SRS RS DS L RS
D1 P2 p1 mopr N n p p1 p2 n 2
We will prove that
|75 (f1, fo)ll oy < CSHIZD lo(27-) W]
je

Lr@2) || f1ll oo @y || fol Loz gy (24)

for every (pil, p%) € I'y, which is a convex set with vertices D, K, L, G, H and N (see Figure

1A below). By multilinear real interpolation [4, Corollary 7.2.4], we only need to verify the
boundedness of T, at points in I'y near its vertices D, K, L, G, H, N which do not lie in I';.

(A)Z<s<n (B)n<s<

FiGUuRrRE 1. Boundedness holds in the shaded regions and unboundedness in
the white regions. The local L? region is shaded in a lighter color.

As showed in [4, 11], the Hérmander condition sup;c; ||o(2’ DU Lr(r2n) is invariant under
duality. For 1 < p < oo, by duality, if T, maps LP* x LP> — LP then it also maps
L x LP> — [P, Therefore, if T, is bounded near D, then T, is also bounded near N by
duality. By symmetry, if 7, is bounded near N, D and K then it is bounded near H, G and
L as well. From these reductions, it remains to prove (24) at points in I'; near D and K.

With s; > % and 7151 > 2n, we recall the following [6, Theorem 1]:

1o (fas f2) ey < C'sup o (27) 0|
je

o e 1ll 2 L fol 22 ey (25)
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By duality it follows from (25) that when s; > % and r1s; > 2n we have
175 (f1, f2)ll2ny < CsuZp |o(27)W
JE

oo a1 f1l 2@ | foll oo eny- (26)

Theorem 1.1 in [17] (with s; = s5 in [17] being 7 below) implies that
ol X iNT
ITo(f1s fo)llagen) < CsupI(1 = Ag )= (I = Ag,)? [0(27) ] |2 [Lfill 2o oy | fol o2 e
J

for v > 5, where 1 < q1, ¢ §oo,%:ql1+ql2 < 2%+% Given s > n, choose v = % > %
and observing the trivial estimate

sup [|[(1 = Ag,) 2 (I = Ag,)? [0(27) W] || p2ggeny < C'sup |0(27 )W |12 geny,

JEZ JET
we obtain

IT5 (f1, f2)llzacery < C'sup (27 )W | 2, e [ foll s ey ] f2l oo oy (27)
je

foralll<q1,q2§oo,ézqil+qi2<%+%.

We now use Theorem 3.1 to interpolate between (26) and (27) (for ¢ = ¢ near 1 and
g2 = 00). We obtain (24) at points Dl(pil, 0) with pil < 2 which are near the point D(,0).
Similarly, interpolating between (25) and (27) (¢ near 1, go = 2) yields (24) at points
Kl(pil, 1) with pil < 2 near K(£,4). This yields (24) on I'; and completes part (a).

(b) Assume n < s < 2. Since r > 2, the Kato-Poince inequality [10] implies that

up (@) 2y < sup l0(20-)E g ey (28)
jez jez
Combining estimates (28) and (27) yields (24) in the open pentagon OI RSJ union the open
segments O and OJ. This completes the second part of Theorem 1.1.

(c) In the last case when s > 3 notice that condition (7) reduces to p > 1 and since

sup [|o(27 )Wl Ly, weny < sup [|o0(27) 0| Ly (geny,
jEL i jez
the case in part (b) applies and yields (24) for every point in the entire rhombus OITJ

union the open segments O and OJ. The proof of Theorem 1.1 is now complete. O

5. AN APPLICATION

We consider the following multiplier on R?™: my,,(&1,&) = ¥(&1, )| (€1, &)|beilEnel®
where a > 0, a # 1, b > 0, and 1 is a smooth function on R?* which vanishes in a
neighborhood of the origin and is equal to 1 in a neighborhood of infinity. One can verify
that m, satisfies (1) on R?" with s = b/a and any r > 2n/s.

The range of p’s for which m, is a bounded bilinear multiplier on L?(R*") can be com-
pletely described by the equation |% —3| < 172/—7? (see Hirschman [12, comments after Theorem
3c|, Wainger [22, Part II], and Miyachi [16, Theorem 3]); similar examples of multipliers of
limited boundedness are contained in Miyachi and Tomita [17, Section 7].

As a consequence of Theorem 1.1 we obtain that the bilinear multiplier operator associated
with m, is bounded from LP*(R"™) x LP2(R™) to LP(R™) in the following cases:
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(i) when n > b/a > n/2 and
1 b 1 b b 1 b 1

e e — 1l — <<=

pr an’ py  an an p an 2

(ii) when 3n/2 > b/a > n and
1 b 1
—<—t3;
p an 2

(iii) when b/a > 3n/2 in the entire range of exponents 1 < py,ps < 00, 3 < p < 0.

The boundedness of this specific bilinear multiplier is unknown to us outside the above
range of indices.
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