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Abstract. We study m-linear homogeneous rough singular integral operators LΩ associ-
ated with integrable functions Ω on Smn−1 with mean value zero. We prove boundedness
for LΩ from Lp1 ×· · ·×Lpm to Lp when 1 < p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm
in the largest possible open set of exponents when Ω ∈ Lq(Smn−1) and q ≥ 2. This set
can be described by a convex polyhedron in Rm.

1. Introduction

Let Ω be an integrable function on the unit sphere Sn−1 with mean value 0. The rough
singular integral operator associated with Ω is defined by

LΩf(x) := p.v.

∫
Rn

Ω(y/|y|)
|y|n

f(x− y)dy

initially for f in the Schwartz class S(Rn).
Calderón and Zygmund [2] proved that if Ω ∈ L logL(Sn−1), then LΩ is bounded on

Lp(Rn) for all 1 < p <∞. This result was improved by Coifman and Weiss [9] who replaced
the condition Ω ∈ L logL(Sn−1) by the less restrictive condition Ω ∈ H1(Sn−1). The same
conclusion was also obtained independently by Connett [11]. In the two dimensional case
n = 2, the weak type (1, 1) of LΩ was established by Christ [5] and independently by
Hofmann [26] for Ω ∈ Lq(S1), 1 < q ≤ ∞, and by Christ and Rubio de Francia [6] for
Ω ∈ L logL(S1). These results were extended to all dimensions by Seeger [29].

In this paper we focus on analogous questions for m-linear singular integral operators.
Throughout this paper we fix m to be an integer greater or equal to 2. Let Ω be an
integrable function on Smn−1 with mean value zero, and we introduce a kernel K by setting

K(~y) :=
Ω(~y′)

|~y|mn
, ~y 6= 0,

where ~y′ := ~y/|~y | ∈ Smn−1 and ~y := (y1, . . . , ym) ∈ (Rn)m. Then the multilinear singular
integral operator associated with Ω is defined as follows:

LΩ

(
f1, . . . , fm

)
(x) := p.v.

∫
(Rn)m

K(~y)
m∏
j=1

fj(x− yj) d ~y

for Schwartz functions f1, . . . , fm on Rn, where x ∈ Rn.
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The first important result concerning bilinear (m = 2) rough singular integrals ap-
peared in the work of Coifman and Meyer [7] who obtained an estimate for LΩ when
Ω possesses some smoothness. These authors actually showed that if Ω is a function of
bounded variation on the circle S1, then the corresponding bilinear operator LΩ is bounded
from Lp1(R) × Lp2(R) to Lp(R) when 1 < p1, p2, p < ∞ and 1/p1 + 1/p2 = 1/p. Later,
for general dimensions n ≥ 1 and all m ≥ 2, Grafakos and Torres [23] established the
Lp1(Rn) × · · · × Lpm(Rn) → Lp(Rn) boundedness of LΩ for all 1 < p1, . . . , pm < ∞ with
1/p = 1/p1 + · · ·+ 1/pm when Ω is a Lipschitz function on Smn−1. The case of rough Ω was
not really addressed until the work of Grafakos, He, and Honźık [17] who proved bilinear
estimates in the full range 1 < p1, p2 <∞ under the condition Ω ∈ L∞(S2n−1). These au-
thors also showed that LΩ maps L2(Rn)×L2(Rn) into L1(Rn) if Ω is merely an L2 function
on S2n−1. This initial L2(Rn) × L2(Rn) → L1(Rn) estimate was refined by Grafakos, He,
and Slav́ıková [20] replacing Ω ∈ L2(S2n−1) by Ω ∈ Lq(S2n−1) for q > 4/3. Recently, He
and Park [25] proved more points of boundedness for the bilinear rough singular integral
operators in the range 1 < p1, p2 ≤ ∞ except the endpoint p1 = p2 =∞.

Theorem A. [25] Let 1 < p1, p2 ≤ ∞ and 1/2 < p <∞ with 1/p = 1/p1 + 1/p2. Suppose
that

(1.1) max
(4

3
,

p

2p− 1

)
< q ≤ ∞

and Ω ∈ Lq(S2n−1) with
∫
S2n−1 Ω dσ = 0, where dσ denotes surface measure on S2n−1. Then

the estimate

(1.2)
∥∥LΩ

∥∥
Lp1×Lp2→Lp . ‖Ω‖Lq(S2n−1)

is valid.

In this paper, we will study a multilinear analogue of Theorem A. In order to present
our main results, we first introduce some notation. Let Jm := {1, . . . ,m}. For 0 < s < 1
and any subsets J ⊆ Jm, we let

HmJ (s) :=
{

(t1, . . . , tm) ∈ (0, 1)m :
∑
j∈J

(s− tj) > −(1− s)
}
,

OmJ (s) :=
{

(t1, . . . , tm) ∈ (0, 1)m :
∑
j∈J

(s− tj) < −(1− s)
}

and we define

(1.3) Hm(s) :=
⋂

J⊆Jm

HmJ (s).

See Figure 1 for the shape of H3(s) in the trilinear setting. We observe that

Hm(s1) ⊂ Hm(s2) ⊂ (0, 1)m for s1 < s2

and lims↗1Hm(s) = (0, 1)m. Another useful geometric object is the rectangle

(1.4) Vml (s) := {(t1, . . . , tm) : 0 < tl < 1 and 0 < tj < s for j 6= l},

where l ∈ Jm. As we will see from Lemma 5.4 below, Hm(s) is the convex hull of the
rectangles Vml (s), l = 1, . . . ,m, which reduces the geometric complexity in establishing the
boundedness of LΩ.
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We reserve the letter s to denote s = 1− 1
q = 1

q′ , where q′ the index conjugate to q. It is

easy to check that
H2(s) = {(t1, t2) ∈ (0, 1)2 : t1 + t2 < 1 + s}.

In particular, ( 1
p1
, 1
p2

) ∈ H2( 1
q′ ) means that p

2p−1 < q, which is exactly (1.1) when q ≥ 2. In

this work we generalize Theorem A to the multilinear setting when q ≥ 2.

t1

t2

t3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1, 0, s)

(1, s, s)

(s, 0, 1)

(s, s, 1)(0, 1, s)

(0, s, 1)

(s, 1, 0)

(s, 1, s) (1, s, 0)

Figure 1. The region H3(s)

From this point on, let dσ denote surface measure on Smn−1. The first main result of
this paper as follows:

Theorem 1.1. Let 2 ≤ q ≤ ∞, m ≥ 2, and Ω ∈ Lq(Smn−1) with
∫
Smn−1 Ω dσ = 0. Suppose

that 1 < p1, . . . , pm <∞ and 1/m < p <∞ satisfy 1/p = 1/p1 + · · ·+ 1/pm and

(1.5) (1/p1, . . . , 1/pm) ∈ Hm(s),

where s = 1− 1/q ≥ 1/2. Then we have

(1.6)
∥∥LΩ

∥∥
Lp1×···×Lpm→Lp . ‖Ω‖Lq(S

mn−1).

We point out that Theorem 1.1 does not improve Theorem A when m = 2 as Theorem
1.1 needs a stronger condition that Ω ∈ Lq for q ≥ 2 while q > 4/3 is assumed in Theorem
A. Indeed, we mainly focus on extension of Theorem A to general m ≥ 3 for which
the arguments in the proof of Theorem A cannot be directly applied. Such an extension
is naturally more complicated combinatorially, but also presents additional difficulties as
L2×· · ·×L2 maps into the nonlocally convex space L2/m when m ≥ 3. To be specific, in the
bilinear case, the initial estimate L2×L2 → L1 could be extended to two different end-point
estimates L2 × L∞ → L2 and L∞ × L2 → L2 by duality, and accordingly Lp1 × Lp2 → Lp

for 2 ≤ p1, p2 ≤ ∞ and 1 ≤ p ≤ 2 by interpolation. This approach is difficult to extend to
general m-linear cases for m ≥ 3 as the space L2/m, which is the target space in the initial
estimate in m-linear cases, is no longer a Banach space for m ≥ 3 and this prevents the
duality argument used in the bilinear case. To overcome this obstacle, we will provide a
new Lp1 × · · · × Lpm → Lp estimates for p1, . . . , pm ≥ 2 in Proposition 6.1 below, but this
new one requires the condition q ≥ 2. Then a new remarkably powerful induction technique
of Proposition 6.2 extends the estimate in Proposition 6.1 to arbitrary pj .

Remark 1. It is proved in [18] that if Ω ∈ Lq(Smn−1) for q > 2m
m+1 and

∫
Smn−1 Ωdσ = 0,

then
‖LΩ‖L2×···×L2→L2/m . ‖Ω‖Lq(Smn−1).
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In view of this, one might think that Theorem 1.1 also holds for certain s < 1
2 , and possibly

for all s > m−1
2m or even for all s > 0. To summarize, although the case Ω ∈ Lq(Smn−1)

with q ≥ 2 is resolved in this paper, only partial results are currently known in the case
q < 2 as it presents several challenges. Upon completion of this work we were informed of
the related work of Dosidis and Slav́ıková [13] which considers the case q < 2 based on the
induction technique (Proposition 6.2) introduced by us.

It is surprising that the condition (1.5), which originated from the extension in Propo-
sition 6.2, is optimal. Our second main result (Theorem 1.2) provides the necessity of the
condition (1.5). We note that the intersection in (1.3) can be actually taken over J ⊆ Jm
with |J | ≥ 2 as the inequality

∑
j∈J(s−tj) > −(1−s) is trivial for 0 < tj < 1, j = 1, . . . ,m,

if |J | ≤ 1.

Theorem 1.2. Let 1 < q < ∞ and m ≥ 2. Suppose that 1 < p1, . . . , pm < ∞ and
1/m < p <∞ satisfy 1/p = 1/p1 + · · ·+ 1/pm and

(1.7) (1/p1, . . . , 1/pm) ∈
⋃

J⊂Jm:|J |≥2

OmJ (1/q′).

Then there exists Ω ∈ Lq(Smn−1) with
∫
Smn−1 Ω dσ = 0 such that estimate (1.6) does

not hold. In particular, for q < 2(m−1)
m , there exists a function Ω ∈ Lq(Smn−1) with∫

Smn−1 Ω dσ = 0 such that LΩ is unbounded from L2 × · · · × L2 to L2/m.

Thus, combining Theorems 1.1 and 1.2 we obtain that Hm(1/q′) is the largest open set
of indices (1/p1, . . . , 1/pm) for which boundedness holds for LΩ when Ω ∈ Lq(Smn−1) and
q ≥ 2. (Here q′ is the dual index of q).

Remark 2. When m = 2, condition (1.7) is equivalent to 1/q′+1 < 1/p and this implies that
if ‖LΩ‖Lp1×Lp2→Lp . ‖Ω‖Lq(S2n−1) holds for 1 < p1, p2 < ∞ with 1/p1 + 1/p2 = 1/p, then

we must have p
2p−1 ≤ q. This clearly indicates the necessity of one part of the condition

(1.1) in Theorem A.

Remark 3. It is still unknown whether the bilinear estimate (1.2) holds when q = p
2p−1 in

Theorem A. In general, we have no conclusion in Theorem 1.1 when∑
j∈J0

(s− 1/pj) = −(1− s) for some J0 ⊆ Jm

and

(1/p1, . . . , 1/pm) ∈
( ⋃
J⊂Jm:|J |≥2

OJ(s)
)c
.

The proof of Theorem 1.1 is based on the dyadic decomposition of Duoandikoetxea and
Rubio de Francia [14] and on its m-linear adaptation contained in some of the aforemen-
tioned references. The main idea is as follows: We express the operator LΩ as

∑
µ∈Z Lµ

where ‖Lµ‖Lp1×···×Lpm→Lp . 2δ0µ‖Ω‖Lq for all 1 < q < ∞ and some δ0 > 0, depending
on q. As the series is summable when µ < 0, we focus on obtaining a good decay when
µ → +∞. Such an estimate is stated in (3.4) below. In order to obtain this estimate,

we apply multilinear interpolation between an initial L2 × · · · × L2 → L2/m estimate with

exponential decay 2−δ̃µ for some fixed number δ̃ > 0 and general Lp1 × · · · × Lpm → Lp

estimates with arbitrarily slow growth in Proposition 3.1.
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The arbitrarily slow growth estimate obtained in Proposition 3.1 is actually the main con-
tribution of this paper. Let us explain our strategy in more details. As already mentioned,
unlike in the bilinear case, we are not able to obtain estimates for the local L2 cases (namely
p1, p2, p

′ ∈ [2,∞)) from the initial estimates by duality. To overcome this obstacle, when
q = 2, we refine the column-argument developed in [18] to obtain the estimate in the upper
L2 case (i.e., p1, p2 ∈ [2,∞)). This combined with a modified Calderón-Zygmund argument
developed in [25] yields the desired range for q = 2. For q = 2m

m−1 , based on the estimate for
q = 2, a simple geometric observation about the range of indices leads to the estimates in

the upper L
2m
m+1 case, and hence the full desired range by the modified Calderón-Zygmund

argument. Repeating this process gives Proposition 3.1 for all q ∈ [2,∞). We remark that
this induction argument still holds when q < 2, but the initial case q = 2 stops us from
obtaining Theorem 1.1 for this range of q. As far as the proof of Theorem 1.2 is concerned,
we adapt an idea appearing in [19], whose primordial form can be found in [12].

The sparse domination and weighted inequalities of linear and multilinear rough singular
integrals are natural questions that arise upon establishing their Lp boundedness in (1.6).
These problems in the linear and bilinear settings actually have been studied by [1, 3, 4, 10,
24, 27]. Our goal in this work is not to establish a comprehensive study of these operators,
but to provide boundedness tools that will play a crucial role in their further investigation,
including that of their sparse domination properties and their weighted estimates.

Organization. This paper is organized as follows. We first give the proof of Theorem 1.2
by constructing counterexamples in Section 2. We reduce Theorem 1.1 to Proposition 3.1
in Section 3. Section 4 contains some preliminaries and Section 5 is devoted to providing
several key lemmas which are essential in the proof of Proposition 3.1. In the last section,
we provide a detailed proof of Proposition 3.1.

Notation. Let N and Z be the sets of all natural numbers and all integers, respectively.
Let N0 := N ∪ {0}. We use the symbol A . B to indicate that A ≤ CB for some constant
C > 0 independent of the variable quantities A and B, and A ∼ B if A . B and B . A

hold simultaneously. We adopt the notation ~ξ := (ξ1, . . . , ξm) ∈ (Rn)m to denote m-tuples
of elements of Rn. We denote by χU the characteristic function of a set U . CN (R) consists
of functions on R of continuous derivatives up to order N . S(Rn) is the class of Schwartz
functions on Rn.

Acknowledgement. We want to thank the anonymous referees, whose comments and
suggestions help us to improve the presentation of our paper enormously.

2. Proof of Theorem 1.2

Suppose that there exists a subset J ⊆ {1, . . . ,m} with |J | ≥ 2 such that∑
j∈J

( 1

q′
− 1

pj

)
< −

(
1− 1

q′

)
,

which is equivalent to

(2.1)
1

q
+
|J |
q′

<
∑
j∈J

1

pj
=:

1

pJ
.
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Here, we notice that 0 < pJ < 1 as |J | ≥ 2 and 1
pJ
≥ 1 + |J |−1

q′ , and 1/pJ < |J | since 1 < pj

for all j ∈ J . Then we will show that there exists an Ω ∈ Lq(Smn−1) with mean value zero
such that

‖LΩ‖Lp1×···×Lpm→Lp =∞.
Let vn = |B(0, 1)| be the volume of the unit ball in Rn. For any natural numbers N

greater than 2, we define

fNj (y) :=

{
v
−1/pj
n 2Nn/pjχB(0,2−N )(y), j ∈ J
v
−1/pj
n 22n/pjχB(0,2−2)(y), j ∈ Jm \ J

so that the Lpj norms of fj are equal to 1 for all j ∈ Jm.

For k ≥ 2, we define V J
k to be a tubular neighborhood of radius comparable to 2−k of

the subspace {(x1, . . . , xm) ∈ (Rn)m : xi = xj for i, j ∈ J}. Precisely, we define

V J
k :=

⋃
x0∈Rn

{
(y1, . . . , ym) ∈ (Rn)m : |x0 − yj | <

4

3
√
|J |

2−k for j ∈ J
}
.

Then we define the function

ωk(~z ) := 2kn(|J |−1/pJ )χV Jk ∩Smn−1(~z )

on the sphere. We observe that the spherical measure of V J
k ∩ Smn−1 is proportional to

2−kn(|J |−1) as we have freedom on the variables yj for j ∈ Jm \ J and on only one variable
among yj for j ∈ J . Therefore∫

Smn−1

ωk dσ ∼ 2kn((|J |−1/pJ )−(|J |−1)) = 2−kn(1/pJ−1).

As pJ < 1, this expression tends to 0 like a power of 2−k as k →∞. We set

Ωk := ωk − αkχ(V J2 )c∩Smn−1 ,

where αk is a positive constant chosen so that Ωk has vanishing integral. Note that αk ∼
2−kn(1/pJ−1) and∥∥Ωk

∥∥q
Lq(Smn−1)

≤ 2knq(|J |−1/pJ )σ(V J
k ∩ Smn−1) + αqk

. 2−kn(|J |−1−q(|J |−1/pJ )) + 2−knq(1/pJ−1) . 2−ε
′kn(2.2)

where ε′ := min
{
|J | − 1 − q(|J | − 1/pJ), q(1/pJ − 1)

}
> 0, in view of (2.1), which is

equivalent to |J | − 1− q(|J | − 1/pJ) > 0. We now set

Ω :=
∞∑
k=2

k Ωk

and then the estimate (2.2) clearly yields Ω ∈ Lq(Smn−1).
We now see that for x ∈ Rn satisfying 1 < |x| < 2 we have

LΩ

(
fN1 , . . . , f

N
m

)
(x) =

∞∑
k=2

kLΩk

(
fN1 , . . . , f

N
m

)
(x)

=

∞∑
k=2

kLωk
(
fN1 , . . . , f

N
m

)
(x)−

∞∑
k=2

k αk Lχ
(V J2 )c∩Smn−1

(
fN1 , . . . , f

N
m

)
(x)

=: Ξ1(x)− Ξ2(x)
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The term Ξ2 is an error term for sufficiently large N . Indeed, if

(2.3) 1 < |x| < 2 and |x− yj | ≤

{
2−N , j ∈ J
2−2, j ∈ Jm \ J

,

then

(2.4)
3

4

√
m < (|x| − 2−2)

√
m ≤ |~y| ≤ (|x|+ 2−2)

√
m <

9

4

√
m

and thus,

Lχ
(V J2 )c∩Smn−1

(
fN1 , . . . , f

N
m

)
(x) ≤ LχSmn−1

(
fN1 , . . . , f

N
m

)
(x) . 2−Nn(|J |−1/pJ ),

which yields that

(2.5) Ξ2(x) . 2−Nn(|J |−1/pJ )
∞∑
k=2

k 2−kn(1/pJ−1) . 2−Nn(|J |−1/pJ ) ≤ 1

when N is large.
Moreover, (2.3) and (2.4) imply that∣∣∣∣ x|~y| − yj

|~y|

∣∣∣∣ ≤ 2−N |~y|−1 <
4

3
√
m

2−N ≤ 4

3
√
|J |

2−N for all j ∈ J

and thus ~y/|~y| ∈ V J
N . In other words, ωN (~y/|~y|) = 2Nn(|J |−1/pJ ) for ~y satisfying (2.3). This

combined with the fact that Lωk
(
fN1 , . . . , f

N
m

)
≥ 0 shows that

Ξ1(x) ≥ NLωN
(
fN1 , . . . , f

N
m

)
(x)

& N2Nn(|J |−1/pJ )

∫
(Rn)m

fN1 (y1) · · · fNm (ym)d~y ∼ N.

This, together with (2.5), proves that for sufficiently large N

LΩ

(
fN1 , . . . , f

N
m

)
(x) & N when 1 < |x| < 2

and thus ∥∥LΩ(fN1 , . . . , f
N
m )
∥∥
Lp(Rn)

≥
∥∥LΩ(fN1 , . . . , f

N
m )
∥∥
Lp({x∈Rn:1<|x|<2}) & N.

Since N can be taken arbitrary large, we conclude the proof.

3. Proof of Theorem 1.1

We choose a Schwartz function Φ(m) on (Rn)m such that its Fourier transform Φ̂(m) is

supported in the annulus {~ξ ∈ (Rn)m : 1/2 ≤ |~ξ | ≤ 2} and satisfies
∑

j∈Z Φ̂
(m)
j (~ξ ) = 1 for

~ξ 6= ~0 where Φ̂
(m)
j (~ξ ) := Φ̂(m)(~ξ /2j). Recall that K(~y) := Ω(~y′)

|~y|mn for ~y 6= 0. For γ ∈ Z let

Kγ(~y) := Φ̂(m)(2γ~y)K(~y), ~y ∈ (Rn)m

and then we observe that Kγ(~y) = 2γmnK0(2γ~y). For µ ∈ Z we define

(3.1) Kγ
µ(~y) := Φ

(m)
µ+γ ∗Kγ(~y) = 2γmn[Φ(m)

µ ∗K0](2γ~y) = 2γmnK0
µ(2γ~y)

and
Kµ(~y) :=

∑
γ∈Z

Kγ
µ(~y).
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This decomposition yields

K =
∑
µ∈Z

Kµ, LΩ =
∑
µ∈Z

Lµ,

where Lµ is a multilinear operator associated with the kernel Kµ defined by

Lµ
(
f1, . . . , fm

)
(x) :=

∫
(Rn)m

Kµ(~y)

m∏
j=1

fj(x− yj) d~y, x ∈ Rn.

Then we have ∥∥LΩ(f1, . . . , fm)
∥∥
Lp(Rn)

.
∥∥∥∑
µ<0

Lµ(f1, . . . , fm)
∥∥∥
Lp(Rn)

+
∥∥∥∑
µ≥0

Lµ(f1, . . . , fm)
∥∥∥
Lp(Rn)

.(3.2)

First, we recall the following estimate mentioned in [18, (30)]: for fj ∈ S(Rn)

(3.3)
∥∥Lµ(f1, . . . , fm)

∥∥
Lp(Rn)

. ‖Ω‖Lq(Smn−1)

( m∏
j=1

‖fj‖Lpj (Rn)

){2(mn−δ)µ, µ ≥ 0

2(1−δ)µ, µ < 0

for all 1 < q < ∞ and 0 < δ < 1/q′. For the sake of completeness, we sketch the proof of
(3.3): We first see that Duoandikoetxea and Rubio de Francia [14] proved that if 1 < q <∞
and 0 < δ < 1/q′, then∣∣K̂0(~ξ )

∣∣ . ‖Ω‖Lq(Smn−1) min
{
|~ξ |, |~ξ |−δ

}∣∣∂αK̂0(~ξ )
∣∣ . ‖Ω‖Lq(Smn−1) min

{
1, |~ξ |−δ

}
, α 6= ~0

and this proves that∣∣K̂µ(~ξ )
∣∣ . ‖Ω‖Lq(Smn−1) min

{
2µ, 2−δµ

}∣∣∂αK̂µ(~ξ )
∣∣ . ‖Ω‖Lq(Smn−1) min

{
2µ|α|, 2µ(mn−δ)}, 1 ≤ |α| ≤ mn.

Finally, we have ∣∣∂αK̂µ(~ξ )
∣∣ . ‖Ω‖Lq(Smn−1)

{
2(mn−δ)µ, µ ≥ 0

2(1−δ)µ, µ < 0

for all multi-indices α with |α| ≤ mn. Since Lµ is m-linear multiplier operator associated

with K̂µ, a multi-linear version of Mihlin’s multiplier theory (see [8, 23]) yields (3.3). We
may also refer to [16, Theorems 7.5.3 and 7.5.5] for the multilinear multiplier theories. Then
(3.3) implies that∥∥∥∑

µ<0

Lµ(f1, . . . , fm)
∥∥∥
Lp(Rn)

. ‖Ω‖L2(Smn−1)

m∏
j=1

‖fj‖Lpj (Rn).

It remains to estimate the term (3.2). This can be reduced to proving that for µ ≥ 0, there
exists δ0 > 0, possibly depending on p1, . . . , pm, such that

(3.4)
∥∥Lµ(f1, . . . , fm)

∥∥
Lp(Rn)

. 2−δ0µ‖Ω‖
L

1
1−s (Smn−1)

m∏
j=1

‖fj‖Lpj (Rn),
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which improves (3.3) for µ ≥ 0. It is already proved in [18, (31)] that

(3.5)
∥∥Lµ(f1, . . . , fm)

∥∥
L2/m(Rn)

.
δ̃

2−δ̃µ‖Ω‖L2(Smn−1)

m∏
j=1

‖fj‖L2(Rn)

for some δ̃ > 0. In order to achieve the estimate (3.4), we shall use interpolation methods
between (3.5) and the estimates in the following proposition.

Proposition 3.1. Let 1/2 ≤ s < 1, 1/m < p < ∞, and 1 < pj < ∞ with 1/p =

1/p1 + · · · + 1/pm and (1/p1, . . . , 1/pm) ∈ Hm(s). Suppose that µ ≥ 0, Ω ∈ L
1

1−s (Smn−1),
and

∫
Smn−1 Ω dσ = 0. Then for any 0 < ε < 1, there exists a constant Cε > 0 such that

(3.6)
∥∥Lµ(f1, . . . , fm)

∥∥
Lp(Rn)

≤ Cε2εµ‖Ω‖
L

1
1−s (Smn−1)

m∏
j=1

‖fj‖Lpj (Rn)

for Schwartz functions f1, . . . , fm on Rn.

The proof of the proposition will be provided in the last section.

We present a multilinear version of the Marcinkiewicz interpolation theorem, which is a
straightforward corollary of [21, Theorem 1.1] or [28, Theorem 3].

Lemma 3.2. [21, 28] Let 0 < pi
j ≤ ∞ for each j ∈ Jm and i = 0, 1, . . . ,m, and 0 < pi ≤ ∞

satisfy 1/pi = 1/pi
1 + · · ·+ 1/pi

m for i = 0, 1, . . . ,m. Suppose that T is an m-linear operator
having the mapping properties∥∥T (f1, . . . , fm)

∥∥
Lpi,∞(Rn)

≤Mi

m∏
j=1

‖fj‖
L
pi
j (Rn)

, i = 0, 1, . . . ,m

for Schwartz functions f1, . . . , fm on Rn. Given 0 < θi < 1 with
∑m

i=0 θi = 1, set

1

pj
=

m∑
i=0

θi

pi
j

, j ∈ Jm,
1

p
=

m∑
i=0

θi

pi
.

Then for Schwartz functions f1, . . . , fm on Rn we have∥∥T (f1, . . . , fm)
∥∥
Lp,∞(Rn)

.M θ0
0 · · ·M

θm
m

m∏
j=1

‖fj‖Lpj (Rn).

Also, if the points ( 1
pi

1
, . . . , 1

pi
m

), 0 ≤ i ≤ m, form a non trivial open simplex in Rm, then

∥∥T (f1, . . . , fm)
∥∥
Lp(Rn)

.M θ0
0 · · ·M

θm
m

m∏
j=1

‖fj‖Lpj (Rn).

Now taking Proposition 3.1 temporarily for granted, let us complete the proof of (3.4).
We first fix p1, . . . , pm such that P := (1/p1, . . . , 1/pm) ∈ Hm(s) is not equal to T :=
(1/2, . . . , 1/2). Then there exists the unique point Q := (1/q1, . . . , 1/qm) on the boundary
of Hm(s) such that

(1− θ)T + θQ = P

for some 0 < θ < 1. Now let R := (1/r1, . . . , 1/rm) be the middle point of P and Q. We
note that R is inside Hm(s) because Hm(s) is convex. Since R = 1

2P + 1
2Q, we have

(3.7) (1− θ̃)T + θ̃R = P
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where

0 < θ̃ :=
2

1/θ + 1
< 1.

Here, θ̃ definitely depends on the point P as θ does. Moreover, since R is contained in the
open set Hm(s), we may choose m distinct points R1, . . . , Rm ∈ Hm(s) such that R 6= Ri

for all i ∈ Jm and

R = θ1R
1 + · · ·+ θmR

m

for some 0 < θ1, . . . , θm < 1 with θ1 + · · ·+ θm = 1. This, together with (3.7), clearly yields
that

(3.8) P = (1− θ̃)T + θ̃θ1R
1 + · · ·+ θ̃θmR

m

where 0 < 1 − θ̃ < 1, 0 < θ̃θi < 1, and (1 − θ̃) + θ̃θ1 + · · · + θ̃θm = 1. From the estimate
(3.5), it follows that

(3.9) ‖Lµ‖L2×···×L2→L2/m . 2−δ̃µ‖Ω‖
L

1
1−s (Smn−1)

at T = (1/2, . . . , 1/2)

where the embedding L
1

1−s (Smn−1) ↪→ L2(Smn−1) is applied. On the other hand, letting

εP := (1−θ̃)δ̃
2θ̃

> 0 (which can be made less than 1), Proposition 3.1 implies that for each

i ∈ Jm one has

(3.10) ‖Lµ‖
Lr

i
1×···×Lrim→Lri

. 2εPµ‖Ω‖
L

1
1−s (Smn−1)

at Ri = (1/ri
1, . . . , 1/r

i
m) ∈ H(s)

where 1/ri = 1/ri
1 + · · · + 1/ri

m. Now interpolating, via Lemma 3.2, between (3.9) and m
points Ri satisfying (3.10) yields

‖Lµ‖Lp1×···×Lpm→Lp . 2−µ[(1−θ̃)δ̃−θ̃εP ]‖Ω‖
L

1
1−s (Smn−1)

,

in view of (3.8). Here, a straightforward computation shows that

(1− θ̃)δ̃ − θ̃εP =
(1− θ̃)δ̃

2
.

See Figure 2 for the interpolation.

T = ( 1
2 ,

1
2 ,

1
2 ) Q = ( 1

q1
, 1
q2

, 1
q3

) ∈ ∂H3(s)

P = ( 1
p1

, 1
p2

, 1
p3

) ∈ H3(s)

R = ( 1
r1

, 1
r2

, 1
r3

) ∈ H3(s)

T

P R1 ∈ H3(s)

R2 ∈ H3(s)

R3 ∈ H3(s)

R

Figure 2. (1− θ̃)T + θ̃R = P and θ1R
1 + θ2R

2 + θ3R
3 = R for m = 3

Finally, (3.4) follows from choosing δ0 = (1−θ̃)δ̃
2 and this completes the proof of Theorem

1.1.
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4. Preliminaries for Proposition 3.1

4.1. Maximal inequalities. Let M be the Hardy-Littlewood maximal operator, defined
by

Mf(x) := sup
Q:x∈Q

1

|Q|

∫
Q
|f(y)|dy

where the supremum ranges over all cubes containing x, and for 0 < t < ∞ let Mtf :=(
M(|f |t)

)1/t
. Then the maximal operator Mt is bounded on Lp(Rn) for t < p ≤ ∞ and

more generally, for t < p, q <∞, we have

(4.1)
∥∥∥(∑

γ∈Z
(Mtfγ)q

)1/q∥∥∥
Lp(Rn)

.
∥∥∥(∑

γ∈Z
|fγ |q

)1/q∥∥∥
Lp(Rn)

for any sequence of Schwartz functions {fγ}γ∈Z. See [15, Theorem 5.6.6]. The inequality
(4.1) also holds for 0 < p ≤ ∞ and q =∞.

4.2. Compactly supported wavelets. For any fixed L ∈ N one can construct real-
valued compactly supported functions ψF , ψM in CL(R) satisfying the following properties:
‖ψF ‖L2(R) = ‖ψM‖L2(R) = 1,

∫
R x

αψM (x)dx = 0 for all 0 ≤ α ≤ L, and moreover, if Ψ~G
is

a function on Rmn, defined by

Ψ~G
(~x) := ψg1(x1) · · ·ψgmn(xmn)

for ~x := (x1, . . . , xmn) ∈ Rmn and ~G := (g1, . . . , gmn) in the set

I :=
{
~G := (g1, . . . , gmn) : gi ∈ {F,M}

}
,

then the family of functions⋃
λ∈N0

⋃
~k∈Zmn

{
2λmn/2Ψ~G

(2λ~x− ~k) : ~G ∈ Iλ
}

forms an orthonormal basis of L2(Rmn), where I0 := I and for λ ≥ 1, we set Iλ :=
I \ {(F, . . . , F )}.

It is known in [30, Theorem 1.64] that if L is sufficiently large, then every H ∈ Lq(Rmn)
with 1 < q <∞ can be represented as

(4.2) H(~x) =
∑
λ∈N0

∑
~G∈Iλ

∑
~k∈Zmn

bλ~G,~k2λmn/2Ψ~G
(2λ~x− ~k)

where the right hand side converges in S′(Rmn), and

(4.3)
∥∥∥( ∑

λ∈N0

∑
~G∈Iλ

∑
~k∈Zmn

∣∣bλ~G,~kΨλ
~G,~k

∣∣2)1/2∥∥∥
Lq(Rmn)

. ‖H‖Lq(Rmn)

where Ψλ
~G,~k

(~x) = 2λmn/2Ψ~G
(2λ~x− ~k),

bλ~G,~k :=

∫
Rmn

H(~x)Ψλ
~G,~k

(~x)d~x.

Moreover, it follows from (4.3) and the disjoint support property of the Ψλ
~G,~k

’s that∥∥{bλ~G,~k}~k∈Zmn∥∥`q ≈(2λmn(1−q/2)

∫
Rmn

(∑
~k

∣∣bλ~G,~kΨλ
~G,~k

(~x)
∣∣2)q/2d~x)1/q
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. 2−λmn(1/2−1/q)‖H‖Lq(Rmn).(4.4)

Throughout, we will consistently use the notation Gj := (g(j−1)n+1, . . . , gjn) for an el-

ement of {F,M}n and ΨGj (ξj) := ψg(j−1)n+1
(ξ1
j ) · · ·ψgjn(ξnj ) for ξj := (ξ1

j , . . . , ξ
n
j ) ∈ Rn

so that ~G = (G1, . . . , Gm) ∈ ({F,M}n)m and Ψ~G
(~ξ ) = ΨG1(ξ1) · · ·ΨGm(ξm). For each

~k := (k1, . . . , km) ∈ (Zn)m and λ ∈ N0, let

Ψλ
Gj ,kj

(ξj) := 2λn/2ΨGj (2
λξj − kj), 1 ≤ j ≤ m

and

Ψλ
~G,~k

(~ξ ) := Ψλ
G1,k1

(ξ1) · · ·Ψλ
Gm,km(ξm).

We also assume that the support of ψgj is contained in {ξ ∈ R : |ξ| ≤ C0} for some C0 > 1,
which implies that

(4.5) supp(Ψλ
Gj ,kj

) ⊂
{
ξj ∈ Rn : |2λξj − kj | ≤ C0

√
n
}
.

In other words, the support of Ψλ
Gj ,kj

is contained in the ball centered at 2−λkj and radius

C0
√
n2−λ.

4.3. Columns and Projections. We now introduce a few notions and related combina-

torial properties. For a fixed ~k ∈ (Zn)m, l ∈ Jm = {1, 2, . . . ,m}, and 1 ≤ j1 < · · · < jl ≤ m
let

~k
j1,...,jl

:= (kj1 , . . . , kjl)

denote the vector in (Zn)l consisting of the j1, . . . , jl components of ~k and ~k
∗j1,j2,...,jl

stand

for the vector in (Zn)m−l, consisting of ~k except for the j1, . . . , jl components (e.g. ~k
∗1,...,j

=
~k
j+1,...,m

= (kj+1, . . . , km) ∈ (Zn)m−j). For any sets U in (Zn)m, j ∈ Jm, and 1 ≤ j1 <
· · · < jl ≤ m let

PjU :=
{
kj ∈ Zn : ~k ∈ U for some ~k

∗j
∈ (Zn)m−1

}
P∗j1,...,jlU :=

{
~k
∗j1,...,jl ∈ (Zn)m−l : ~k ∈ U for some kj1 , . . . , kjl ∈ Zn

}
be the projections of U onto the kj-column and ~k

∗j1,...,jl
-plane, respectively. For a fixed

~k
∗j1,...,jl ∈ P∗j1,...,jlU , we define

ColU
~k
∗j1,...,jl := {~k

j1,...,jl ∈ (Zn)l : ~k = (k1, . . . , km) ∈ U}.

Then we observe that

(4.6)
∑
~k∈U

· · · =
∑

~k
∗j1,...,jl∈P∗j1,...,jlU

( ∑
~k
j1,...,jl∈ColU

~k
∗j1,...,jl

· · ·
)
.

For more details of these notations and their applications, we refer to [18], while similar
ideas go back to [17].
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5. Key Lemmas for the proof of Proposition 3.1

Let φ be a Schwartz function on Rn whose Fourier transform is supported in the annulus

{ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and satisfies
∑

γ∈Z φ̂γ(ξ) = 1 for ξ 6= 0, where φγ := 2γnφ(2γ ·).
For each γ ∈ Z, we define the convolution operator Λγ by Λγf := φγ ∗ f .

Let C0 be the constant that appeared in (4.5). For λ ∈ N0 satisfying C0
√
n ≤ 2λ+1, let

Wλ :=
{
k ∈ Zn : 2C0

√
n ≤ |k| ≤ 2λ+2

}
.

For λ ∈ N0, G ∈ {F,M}n, k ∈ Zn, and γ ∈ Z, we define the operator Lλ,γG,k via the Fourier

transform by

(5.1)
(
Lλ,γG,kf

)∧
(ξ) := Ψλ

G,k(ξ/2
γ)f̂(ξ), γ ∈ Z.

Then we observe that

(5.2)
∣∣Lλ,γG,kf(x)

∣∣ . 2λn/2Mf(x) uniformly in the parameters λ,G, k, γ

and for k ∈ Wλ+µ with C0
√
n ≤ 2λ+µ+1,

(5.3) Lλ,γG,kf = Lλ,γG,kf
λ,γ,µ

due to the support of ΨG, where

fλ,γ,µ :=

µ+3∑
j=−λ+c0

Λγ+jf

for some c0 ∈ N, depending on C0 and n. It is easy to check that for 1 < p <∞∥∥∥(∑
γ∈Z

∣∣fλ,γ,µ∣∣2)1/2∥∥∥
Lp(Rn)

≤
µ+3∑

j=−λ+c0

∥∥∥(∑
γ∈Z

∣∣Λγ+jf
∣∣2)1/2∥∥∥

Lp(Rn)
. (µ+ λ+ 4)‖f‖Lp(Rn),

where the triangle inequality and the Littlewood-Paley theory are applied in the inequalities.

Lemma 5.1. Let 2 ≤ p <∞, 1 < t < 2, u ∈ Zn, and s ≥ 0. Then we have

(5.4)
∥∥∥(∑

γ∈Z

∥∥Λγf(x− 2s−γ ·) Ψ∨G
∥∥2

Lt(u+[0,1)n)

)1/2∥∥∥
Lp(x)

.M
1

(1 + |u|)M
‖f‖Lp(Rn)

uniformly in s ≥ 0.

Proof. Using integration by parts we can show that

sup
y∈u+[0,1)n

|Ψ∨G(y)| .M,t
1

(1 + |u|)M+n/t
for any 0 < M < L− n

t ,

where L is the order of derivatives of compactly supported wavelets. It follows from this
observation that∥∥Λγf(x− 2s−γ ·) Ψ∨G

∥∥
Lt(u+[0,1)n)

=
(∫

u+[0,1)n

∣∣Λγf(x− 2s−γy)
∣∣t|Ψ∨G(y)|tdy

)1/t

.
1

(1 + |u|)M+n/t

(∫
u+[0,1)n

∣∣Λγf(x− 2s−γy)
∣∣tdy)1/t

.

Moreover, using a change of variables, we have(∫
u+[0,1)n

∣∣Λγf(x− 2s−γy)
∣∣tdy)1/t

.
( 1

2(s−γ)n

∫
|y|≤
√
n(1+|u|)2s−γ

∣∣Λγf(x− y)
∣∣tdy)1/t
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. (1 + |u|)n/tMtΛγf(x),

which proves ∥∥Λγf(x− 2s−γ ·) Ψ∨G
∥∥
Lt(u+[0,1)n)

.M,t
1

(1 + |u|)M
MtΛγf(x).

Now the left-hand side of (5.4) is less than a constant times

1

(1 + |u|)M
∥∥{MtΛγf

}
γ∈Z
∥∥
Lp(`2)

.
1

(1 + |u|)M
∥∥{Λγf

}
γ∈Z
∥∥
Lp(`2)

∼ 1

(1 + |u|)M
‖f‖Lp(Rn)

by using the maximal inequality (4.1) and the Littlewood-Paley theory. �

Lemma 5.2. Let 2 ≤ p <∞, 0 < ε < 1 and λ, µ ∈ Z with 2λ+µ+1 ≥ C0
√
n. Suppose that

Eλ+µ is a subset of Wλ+µ. Let {bγk}k∈Zn be a sequence of complex numbers and

B2 := sup
γ∈Z

∥∥{bγk}k∈Zn∥∥`2 and B∞ := sup
γ∈Z

∥∥{bγk}k∈Zn∥∥`∞ .
Then there exists Cε > 0 such that

(5.5)
∥∥∥(∑

γ∈Z

∣∣∣ ∑
k∈Eλ+µ

bγkL
λ,γ
G,kf

∣∣∣2)1/2∥∥∥
Lp(Rn)

≤ Cε2λn/2(λ+ µ+ 4)B1−ε
2 Bε

∞|Eλ+µ|ε‖f‖Lp(Rn)

for f ∈ S(Rn).

Proof. Using (5.3), the left-hand side of (5.5) is less than

µ+3∑
j=−λ+c0

∥∥∥(∑
γ∈Z

∣∣∣ ∑
k∈Eλ+µ

bγkL
λ,γ
G,kΛγ+jf

∣∣∣2)1/2∥∥∥
Lp(Rn)

.

Let t := 2
1+ε so that 1 < t < 2 < t′ = 2

1−ε . Then we apply Hölder’s inequality to obtain∣∣∣ ∑
k∈Eλ+µ

bγkL
λ,γ
G,kΛγ+jf(x)

∣∣∣
≤ 2λn/2

∫
Rn

∣∣Bγ
Eλ+µ(y)

∣∣∣∣Λγ+jf(x− 2λ−γy)
∣∣∣∣Ψ∨G(y)

∣∣dy
= 2λn/2

∑
u∈Zn

∫
u+[0,1)n

∣∣Bγ
Eλ+µ(y)

∣∣∣∣Λγ+jf(x− 2λ−γy)
∣∣∣∣Ψ∨G(y)

∣∣dy
≤ 2λn/2

∑
u∈Zn

∥∥Bγ
Eλ+µ

∥∥
Lt′ (u+[0,1)n)

∥∥Λγ+jf(x− 2λ−γ ·)Ψ∨G
∥∥
Lt(u+[0,1)n)

where
Bγ
Eλ+µ(x) :=

∑
k∈Eλ+µ

bγke
2πi〈x,k〉.

We first observe that∥∥Bγ
Eλ+µ

∥∥
Lt′ (u+[0,1)n)

=
∥∥Bγ

Eλ+µ

∥∥
Lt′ ([0,1)n)

≤
∥∥Bγ

Eλ+µ

∥∥2/t′

L2([0,1)n)

∥∥Bγ
Eλ+µ

∥∥1−2/t′

L∞([0,1]n)
≤ B1−ε

2 Bε
∞|Eλ+µ|ε.(5.6)

Therefore, the left-hand side of (5.5) is dominated by a constant times

2λn/2B1−ε
2 Bε

∞|Eλ+µ|ε
µ+3∑

j=−λ+c0

∥∥∥(∑
γ∈Z

( ∑
u∈Zn

∥∥Λγ+jf(x− 2λ−γ ·)Ψ∨G
∥∥
Lt(u+[0,1)n)

)2)1/2∥∥∥
Lp(Rn)



MULTILINEAR ROUGH SINGULAR INTEGRAL OPERATORS 15

≤ 2λn/2B1−ε
2 Bε

∞|Eλ+µ|ε
∑
u∈Zn

µ+3∑
j=−λ+c0

∥∥∥(∑
γ∈Z

∥∥Λγf(x− 2λ+j−γ ·)Ψ∨G
∥∥2

Lt(u+[0,1)n)

)1/2∥∥∥
Lp(Rn)

.

Now it follows from Lemma 5.1 that the preceding expression is controlled by a constant
multiple of

2λn/2B1−ε
2 Bε

∞|Eλ+µ|ε(λ+ µ+ 4)‖f‖Lp(Rn)

∑
u∈Zn

1

(1 + |u|)M

for M > n. The sum over u ∈ Zn is obviously finite and this completes the proof of Lemma
5.2. �

Lemma 5.3. Let 2 ≤ l ≤ m, 2 ≤ p1, . . . , pl <∞, and 0 < p <∞ with 1/p1 + · · ·+ 1/pl =

1/p. Let 0 < ε < 1 and λ, µ ∈ Z with 2λ+µ+1 ≥ C0
√
n. Suppose that Eλ+µ

l is a subset of

(Wλ+µ)l. Let {bγ~k}~k∈(Zn)l
be a sequence of complex numbers and

D2 := sup
γ∈Z

∥∥{bγ~k}~k∈(Zn)l

∥∥
`2

and D∞ := sup
γ∈Z

∥∥{bγ~k}~k∈(Zn)l

∥∥
`∞
.

Then there exists Cε > 0 such that∥∥∥∥∑
γ∈Z

∣∣∣ ∑
~k∈Eλ+µ

l

bγ~k

l∏
j=1

Lλ,γGj ,kjfj

∣∣∣∥∥∥∥
Lp(Rn)

≤ Cε2λln/2(λ+ µ+ 4)l/min {1,p}D1−ε
2 Dε

∞|Eλ+µ|ε
l∏

j=1

‖fj‖Lpj (Rn)

(5.7)

for f1, . . . , fl ∈ S(Rn).

Proof. Using (5.3), the left-hand side of (5.7) is less than( µ+3∑
i1=−λ+c0

· · ·
µ+3∑

il=−λ+c0

∥∥∥∥∑
γ∈Z

∣∣∣ ∑
~k∈Eλ+µ

l

bγ~k
Lλ,γG1,k1

Λγ+i1f1 · · ·Lλ,γGl,klΛγ+ilfl

∣∣∣∥∥∥∥min {1,p}

Lp(Rn)

)1/min {1,p}
.

Here one uses the convexity of ‖·‖Lp when p ≥ 1 and of ‖·‖pLp when p < 1. Choose t := 2
1+ε

so that 1 < t < 2 < t′ = 2
1−ε as in the proof of Lemma 5.2. Then it follows from Hölder’s

inequality that∣∣∣ ∑
~k∈Eλ+µ

l

bγ~k
Lλ,γG1,k1

Λγ+i1f1(x) · · ·Lλ,γGl,klΛγ+ilfl(x)
∣∣∣

≤ 2λln/2
∫

(Rn)l

∣∣Bγ

Eλ+µ
l

(~y)
∣∣ l∏
j=1

∣∣Λγ+ijf(x− 2λ−γyj)Ψ
∨
Gj (yj)

∣∣d~y
= 2λln/2

∑
~u∈(Zn)l

∫
~u+[0,1)nl

∣∣Bγ

Eλ+µ
l

(~y)
∣∣ l∏
j=1

∣∣Λγ+ijf(x− 2λ−γyj)Ψ
∨
Gj (yj)

∣∣d~y
≤ 2λln/2

∑
~u∈(Zn)l

∥∥Bγ

Eλ+µ
l

∥∥
Lt′ (~u+[0,1)nl)

l∏
j=1

∥∥Λγ+ijf(x− 2λ−γ ·)Ψ∨Gj
∥∥
Lt(uj+[0,1)n)
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where ~y := (y1, . . . , yl) ∈ (Rn)l, ~u := (u1, . . . , ul) ∈ (Zn)l, and

Bγ

Eλ+µ
l

(~y) :=
∑

~k∈Eλ+µ
l

bγ~k
e2πi〈~y,~k〉.

Similar to (5.6), we have∥∥Bγ

Eλ+µ
l

∥∥
Lt′ (~u+[0,1)nl)

. D1−ε
2 Dε

∞|E
λ+µ
l |ε.

Thus, the left-hand side of (5.7) is controlled by a constant times

2λln/2D1−ε
2 Dε

∞
∣∣Eλ+µ

l

∣∣( ∑
~u∈(Zn)l

µ+3∑
i1=−λ+c0

· · ·
µ+3∑

il=−λ+c0∥∥∥∑
γ∈Z

l∏
j=1

∥∥Λγ+ijf(x− 2λ−γ ·)Ψ∨Gj
∥∥
Lt(uj+[0,1)n)

∥∥∥min {1,p}

Lp(dx)

)1/min {1,p}

and, using the inequality
∑

γ |a1
γ · · · alγ | ≤ (

∑
γ |a1

γ · · · alγ |2/l)l/2 ≤
∏l
j=1(

∑
γ |a

j
γ |2)1/2 for

l ≥ 2, the Lp(dx) norm is less than∥∥∥∥ l∏
j=1

(∑
γ∈Z

∥∥Λγf(x− 2λ+ij−γ ·)Ψ∨Gj
∥∥2

Lt(uj+[0,1)n)

)1/2
∥∥∥∥
Lp(dx)

≤
l∏

j=1

∥∥∥(∑
γ∈Z

∥∥Λγf(x− 2λ+ij−γ ·)Ψ∨Gj
∥∥2

Lt(uj+[0,1)n)

)1/2∥∥∥
Lpj (dx)

.
l∏

j=1

1

(1 + |uj |)M
‖fj‖Lpj (Rn)

for M > n, where the Cauchy-Schwarz inequality, Hölder’s inequality, and Lemma 5.1 are
applied in the inequalities. This concludes that the left-hand side of (5.7) is dominated by

2λln/2(λ+ µ+ 4)l/min {1,p}D1−ε
2 Dε

∞
∣∣Eλ+µ

l

∣∣( l∏
j=1

‖fj‖Lpj (Rn)

) ∑
~u∈(Zn)l

l∏
j=1

1

(1 + |uj |)M

. 2λln/2(λ+ µ+ 4)l/min {1,p}D1−ε
2 Dε

∞
∣∣Eλ+µ

l

∣∣ l∏
j=1

‖fj‖Lpj (Rn),

which completes the proof. �

We recall that, for l ∈ Jm,

(5.8) Vml (s) = {(t1, . . . , tm) : 0 < tl < 1 and 0 < tj < s for j 6= l}.

We prove a useful geometric lemma concerning the convex hull of Vml (s) below.

Lemma 5.4. Let 0 < s < 1. Let Hm(s) be the convex hull of Vm1 (s), . . . ,Vmm(s). Then we
have

(5.9) Hm(s) = Hm(s).
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Proof. Clearly, Hm(s) is open and convex as each HJ(s), J ⊆ Jm, is an open convex set.
It is easy to see that Vml (s) ⊂ Hm(s) for all l ∈ Jm and thus we have

Hm(s) ⊇ Hm(s) for all m ≥ 2.

Now let’s us prove the opposite direction by using induction on the degree m of multi-
linearity. We first note that

(5.10) Hm(s) =
{

(t1, . . . , tm) ∈ (0, 1)m :

m∑
j=1

min{s− tj , 0} > s− 1
}
.

To verify (5.10), we denote by Hm(s) the right-hand side of (5.10). Suppose that t =

(t1, . . . , tm) ∈ Hm(s) and let J (t) := {j ∈ Jm : tj > s}. Then by the definition of Hm(s) in
(1.3), we have

s− 1 <
∑
j∈J(t)

(s− tj) =
m∑
j=1

min{s− tj , 0},

which implies Hm(s) ⊂ Hm(s). Moreover, if t = (t1, . . . , tm) ∈ Hm(s), then

s− 1 <
∑
j∈J(t)

(s− tj) ≤
∑

j∈J∩J(t)

(s− tj) ≤
∑

j∈J∩J(t)

(s− tj) +
∑

j∈J\J(t)

(s− tj) =
∑
j∈J

(s− tj)

for any J ⊂ Jm. This gives that Hm(s) ⊂ Hm(s)
(

= ∩JHmJ (s)
)
.

We now return to the proof of Hm(s) ⊆ Hm(s) for m ≥ 2.The case m = 2 is obvious from
a simple geometric observation, but we provide an explicit approach. If (t1, t2) ∈ H2(s),
then we have 0 < t1, t2 < 1 and 0 < t1 + t2 < 1 + s. When either t1 or t2 is less than s,
then (t1, t2) belongs to one of Vm1 (s) or Vm2 (s) by definition. When s ≤ t1, t2 < 1, we choose
0 < ε < 1 such that

0 < ε < 1 + s− (t1 + t2).

Then the point (t1, t2) lies on the segment joining (t1 + t2 − s + ε, s − ε) ∈ V2
1(s) and

(s− ε, t1 + t2 − s+ ε) ∈ V2
2(s) as 0 < s− ε < s and 0 < t1 + t2 − s+ ε < 1. This shows

H2(s) ⊆ H2(s).

Now suppose thatHm(s) ⊆ Hm(s) is true for some m ≥ 2, and let (t1, . . . , tm+1) ∈ Hm+1(s).
If 0 < tm+1 < s, then

m∑
j=1

min{s− tj , 0} =
m+1∑
j=1

min{s− tj , 0} > s− 1

so that (t1, . . . , tm) ∈ Hm(s) ⊆ Hm(s) by applying the induction hypothesis. Therefore,
the point (t1, . . . , tm, tm+1) belongs to the convex hull of the following m sets:

Vml (s)× (0, s) = Vm+1
l (s), l ∈ Jm.

This implies (t1, . . . , tm+1) ∈ Hm+1(s). Similarly, the same conclusion also holds if 0 <
tj < s for some j ∈ Jm. For the remaining cases, we assume that s ≤ t1, . . . , tm+1 < 1.
Since (t1, . . . , tm+1) ∈ Hm+1(s), we see that t1 + · · ·+ tm+1 < 1 +ms, and thus there exists
0 < ε < 1 so that

(5.11) 0 < mε < 1 +ms− (t1 + · · ·+ tm+1).

Then the point (t1, . . . , tm+1) is clearly located on the convex hull of the points

(t1 + · · ·+ tm+1 −ms+mε, s− ε, . . . , s− ε) ∈ Vm+1
1 (s)
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...

(s− ε, . . . , s− ε, t1 + · · ·+ tm+1 −ms+mε) ∈ Vm+1
m+1(s)

as 0 < t1 + · · ·+ tm+1 −ms+mε < 1, because of (5.11). This proves that (t1, . . . , tm+1) ∈
Hm+1(s) and completes that proof of Hm+1(s) ⊆ Hm+1(s).

By induction, we finally have

Hm(s) ⊆ Hm(s) for general m ≥ 2.

�

6. Proof of Proposition 3.1

It suffices to prove (3.6) for µ such that 2µ−10 > C0
√
mn in view of (3.3), which takes care

of µ < 0 and of finitely many µ ≥ 0. The proof will be based on mathematical induction
starting with the estimate in the following proposition.

Proposition 6.1. Let 2 ≤ p1, . . . , pm <∞ and 2/m ≤ p <∞ with 1/p1+· · ·+1/pm = 1/p.
Suppose that 0 < ε < 1 and 2µ−10 > C0

√
mn. Then there exists Cε > 0 such that

(6.1)
∥∥Lµ(f1, . . . , fm)

∥∥
Lp(Rn)

≤ Cε2εµ‖Ω‖L2(Smn−1)

m∏
j=1

‖fj‖Lpj (Rn).

The proof of the above proposition will be presented below.

In order to describe the induction argument, for 0 < s < 1 and l ∈ Jm, we define

Rml (s) := {(t1, . . . , tm) : tl = 1 and 0 ≤ tj < s for j 6= l}.

and let

Cm(s) := {(t1, . . . , tm) : 0 < tj < s, j ∈ Jm}
be the open cube of side length s with the lower left corner (0, . . . , 0).

Claim X(s). Let 1/m < p <∞ and (1/p1, . . . , 1/pm) ∈ Cm(s) with 1/p1+· · ·+1/pm = 1/p.
Suppose that 0 < ε < 1 and 2µ−10 > C0

√
mn. Then there exists Cε > 0 such that∥∥Lµ(f1, . . . , fm)

∥∥
Lp(Rn)

≤ Cε‖Ω‖
L

1
1−s (Smn−1)

2εµ
m∏
j=1

‖fj‖Lpj (Rn).

Claim Y (s). Let 1/m < p < 1 and (1/p1, . . . , 1/pm) ∈
⋃m
l=1 R

m
l (s) with 1/p1+· · ·+1/pm =

1/p. Suppose that 0 < ε < 1 and 2µ−10 > C0
√
mn. Then there exists Cε > 0 such that∥∥Lµ(f1, . . . , fm)

∥∥
Lp,∞(Rn)

≤ Cε‖Ω‖
L

1
1−s (Smn−1)

2εµ
m∏
j=1

‖fj‖Lpj (Rn)

Claim Z(s). Let 1/m < p <∞ and (1/p1, . . . , 1/pm) ∈
⋃m
l=1 V

m
l (s), where Vml (s) is defined

in (1.4), with 1/p1 + · · ·+ 1/pm = 1/p. Suppose that 0 < ε < 1 and 2µ−10 > C0
√
mn. Then

there exists Cε > 0 such that∥∥Lµ(f1, . . . , fm)
∥∥
Lp(Rn)

≤ Cε‖Ω‖
L

1
1−s (Smn−1)

2εµ
m∏
j=1

‖fj‖Lpj (Rn)
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Claim Σ(s). Let 1/m < p <∞ and (1/p1, . . . , 1/pm) ∈ Hm(s) with 1/p1+· · ·+1/pm = 1/p.
Suppose that 0 < ε < 1 and 2µ−10 > C0

√
mn. Then there exists Cε > 0 such that∥∥Lµ(f1, . . . , fm)

∥∥
Lp(Rn)

≤ Cε‖Ω‖
L

1
1−s (Smn−1)

2εµ
m∏
j=1

‖fj‖Lpj (Rn)

t1

t2

t3

(s, s, 0)

(s, 0, s)
(0, 0, s)

(0, s, s) (s, s, s)

(s, 0, 0)

(0, s, 0)

C3(s)

in Claim X(s)

t1

t2

t3

R3
1(s)

R3
2(s)

R3
3(s)

(0, 1, 0) (s, 1, 0)

(0, 1, s) (s, 1, s) (1, s, 0)

(1, 0, 0)

(1, 0, s)

(s, 0, 1)
(0, 0, 1)

(0, s, 1)

in Claim Y (s)

t1

t2

t3

(0, 1, 0) (s, 1, 0)

(0, 1, s) (1, s, 0)

(1, 0, 0)

(1, 0, s)

(s, 0, 1)
(0, 0, 1)

(0, s, 1) V3
1(s)

V3
2(s)

V3
3(s)

in Claim Z(s)

t1

t2

t3

(0, 1, 0) (s, 1, 0)

(0, 1, s) (s, 1, s) (1, s, 0)

(1, 0, 0)

(1, 0, s)

(s, 0, 1)
(0, 0, 1)

(0, s, 1)
H3(s)

in Claim Σ(s)

Figure 3. The trilinear case m = 3 : the range of ( 1
p1
, 1
p2
, 1
p3

)

Then the following proposition will play an essential role in the induction steps.

Proposition 6.2. Let 0 < s < 1. Then

Claim X(s)⇒ Claims X(s) and Y (s)⇒ Claim Z(s)⇒ Claim Σ(s).

The proof of Proposition 6.2 will be given below.

We now complete the proof of Proposition 3.1, using Propositions 6.1 and 6.2.

Proof of Proposition 3.1. For ν ∈ N0, let

aν := 1− 1

2

(
1− 1

m

)ν
,
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(aν+1, aν+1, aν+1)

(1, aν , aν)

(aν , 1, aν)

(aν , aν , 1)

Figure 4. (aν+1, aν+1, aν+1) when m = 3

for which (aν+1, . . . , aν+1) ∈ Rm is the center of the (m − 1) simplex with m vertices
(1, aν , aν , . . . , aν), (aν , 1, aν , . . . , aν), . . . , (aν , . . . , aν , 1, aν), and (aν , . . . , aν , aν , 1). We no-

tice that a0 = 1/2, aν+1 = aν(m−1)+1
m , and aν ↗ 1 as ν → ∞. Moreover, by the definition

of Hm(aν) we have

Cm(aν+1) ⊂ Hm(aν) for all ν ∈ N0,

which implies

(6.2) Claim Σ(aν)⇒ Claim X(aν+1) for all ν ∈ N0

as L
1

1−aν+1 (Smn−1) ↪→ L
1

1−aν (Smn−1). Now Proposition 6.1 implies that Claim X(a0)

(1, aν , aν)

(aν , 1, aν)

(aν , aν , 1)

t1

t2

t3 H3(aν)

t1

t2

t3

(aν+1, aν+1, aν+1)

C3(aν+1)

Figure 5. The trilinear case m = 3 : H3(aν) and C3(aν+1)

holds, and consequently, Claim Σ(aν) should be also true for all ν ∈ N0 with the aid of
Proposition 6.2 and (6.2).

When s = 1/2 (= a0), the asserted estimate (3.6) is exactly Claim Σ(a0). If aν < s ≤
aν+1 for some ν ∈ N0, then Cm(s) ⊂ Hm(aν). This yields that Claim X(s) holds since

L
1

1−s (Smn−1) ↪→ L
1

1−aν (Smn−1), and accordingly, Proposition 6.2 shows that Claim Σ(s)
works. This finishes the proof of Proposition 3.1. �

Observing that K̂0
µ ∈ L2((Rn)m), we apply the wavelet decomposition (4.2) to write

(6.3) K̂0
µ(~ξ ) =

∑
λ∈N0

∑
~G∈Iλ

∑
~k∈(Zn)m

bλ,µ~G,~k
Ψλ
G1,k1

(ξ1) · · ·Ψλ
Gm,km(ξm)
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where

(6.4) bλ,µ~G,~k
:=

∫
(Rn)m

K̂0
µ(~ξ )Ψλ

~G,~k
(~ξ )d~ξ .

Concerning the `p norms of {bλ,µ~G,~k}~k∈(Zn)m
, we have the following results playing essential

roles in the sequel.

Lemma 6.3. Let Ω ∈ L2(Smn−1), and {bλ,µ~G,~k}~k∈(Zn)m
be defined in (6.4). Then∥∥{bλ,µ~G,~k}~k∈(Zn)m

∥∥
`2
.
∥∥K̂0

µ

∥∥
L2((Rn)m)

. ‖Ω‖L2(Smn−1),(6.5)

and, for any 0 < δ < 1/2,

(6.6)
∥∥{bλ,µ~G,~k}~k∈(Zn)m

∥∥
`∞
. 2−δµ2−λ(L+1+mn)‖Ω‖L2(Smn−1),

where L is the number of vanishing moments of Ψ~G
; this number L can be chosen sufficiently

large.

Inequality (6.5) follows from (4.4) and Plancherel’s identity. Moreover, (6.6) was proved
in [17, Lemma 7].

Proof of Proposition 6.1. Using (3.1) and (6.3), we can write

Lµ
(
f1, . . . , fm

)
(x) =

∑
γ∈Z

∫
(Rn)m

2γmnK0
µ(2γ~y)

m∏
j=1

fj(x− yj) d~y

=
∑
γ∈Z

∫
(Rn)m

K̂0
µ(~ξ /2γ)e2πi〈x,ξ1+···+ξm〉

m∏
j=1

f̂j(ξj) d~ξ

=
∑
λ∈N0

∑
~G∈Iλ

∑
γ∈Z

∑
~k∈(Zn)m

bλ,µ~G,~k

m∏
j=1

Lλ,γGj ,kjfj(x)(6.7)

where Lλ,γG,k is defined in (5.1).

When 2µ−10 > C0
√
mn, we may replace

∑
~k∈(Zn)m

in (6.7) by
∑

2λ+µ−2≤|~k|≤2λ+µ+2 , due

to the compact supports of K̂0
µ and Ψλ

~G,~k
. In addition, by symmetry, it suffices to focus

only on the case |k1| ≥ · · · ≥ |km|. Therefore the estimate (6.1) can be reduced to the
inequality

(6.8)

∥∥∥∥ ∑
λ∈N0

∑
~G∈Iλ

∑
γ∈Z

∑
~k∈Uλ+µ

bλ,µ~G,~k

m∏
j=1

Lλ,γGj ,kjfj

∥∥∥∥
Lp(Rn)

.ε 2εµ‖Ω‖L2(Smn−1)

m∏
j=1

‖fj‖Lpj (Rn)

where
Uλ+µ :=

{
~k ∈ (Zn)m : 2λ+µ−2 ≤ |~k| ≤ 2λ+µ+2, |k1| ≥ · · · ≥ |km|

}
.

We split Uλ+µ into the following m disjoint subsets:

Uλ+µ
1 := {~k ∈ Uλ+µ : |k1| ≥ 2C0

√
n > |k2| ≥ · · · ≥ |km|}

Uλ+µ
2 := {~k ∈ Uλ+µ : |k1| ≥ |k2| ≥ 2C0

√
n > |k3| ≥ · · · ≥ |km|}

...

Uλ+µ
m := {~k ∈ Uλ+µ : |k1| ≥ · · · ≥ |km| ≥ 2C0

√
n}.
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Then the left-hand side of (6.8) is estimated by( m∑
l=1

∑
λ∈N0

∑
~G∈Iλ

∥∥∥∑
γ∈Z
T λ,γ,µ~G,l

(f1, . . . , fm)
∥∥∥min {1,p}

Lp(Rn)

)1/min {1,p}

where the operator T λ,γ,µ~G,l
is defined by

T λ,γ,µ~G,l

(
f1, . . . , fm

)
:=

∑
~k∈Uλ+µ

l

bλ,µ~G,~k

m∏
j=1

Lλ,γGj ,kjfj .

We claim that for each l ∈ Jm, there exists M0 > 0, depending on p1, . . . , pm, such that

(6.9)
∥∥∥∑
γ∈Z
T λ,γ,µ~G,l

(f1, . . . , fm)
∥∥∥
Lp(Rn)

.ε 2εµ2−λM0‖Ω‖L2(Smn−1)

m∏
j=1

‖fj‖Lpj (Rn),

which clearly concludes (6.8). Therefore it remains to prove (6.9).

The proof of (6.9) for the case l = 1 relies on the fact that if ĝγ is supported in the set
{ξ ∈ Rn : C−12γ+µ ≤ |ξ| ≤ C2γ+µ} for some C > 1 and µ ∈ Z, then

(6.10)

∥∥∥∥{Λj

(∑
γ∈Z

gγ

)}
j∈Z

∥∥∥∥
Lp(`q)

.C
∥∥{gj}j∈Z∥∥Lp(`q)

uniformly in µ

for 0 < p < ∞ and 0 < q ≤ ∞. The proof of (6.10) is elementary and standard, so it is
omitted here. See [22, (3.9)] and [31, Theorem 3.6] for a related argument. Note that if
~k ∈ Uλ+µ

1 and 2µ−10 ≥ C0
√
mn, then

2λ+µ−3 ≤ 2λ+µ−2 − 2C0

√
mn ≤ |~k| − (|k2|2 + · · ·+ |km|2)1/2 ≤ |k1| ≤ 2λ+µ+2,

and this implies that

supp
(
Ψλ
G1,k1

(·/2γ)
)
⊂ {ξ ∈ Rn : 2γ+µ−4 ≤ |ξ| ≤ 2γ+µ+3}.

Moreover, since |kj | ≤ 2C0
√
n for 2 ≤ j ≤ m and 2µ−10 > C0

√
mn,

supp
(
Ψλ
Gj ,kj

(·/2γ)
)
⊂ {ξ ∈ Rn : |ξ| ≤ m−1/22γ+µ−8}.

Therefore, the Fourier transform of T λ,γ,µ~G,1

(
f1, . . . , fm

)
for 2µ−10 ≥ C0

√
mn is supported in

the set {ξ ∈ Rn : 2γ+µ−5 ≤ |ξ| ≤ 2γ+µ+4}. Now, using the Littlewood-Paley theory for
Hardy spaces, we have∥∥∥∑

γ∈Z
T λ,γ,µ~G,1

(
f1, . . . , fm

)∥∥∥
Lp(Rn)

∼
∥∥∥∥{Λj

(∑
γ∈Z
T λ,γ,µ~G,1

(
f1, . . . , fm

))}
j∈Z

∥∥∥
Lp(`2)

and then (6.10) yields that the above Lp(`2)-norm is dominated by a constant multiple of

(6.11)

∥∥∥∥(∑
γ∈Z

∣∣T λ,γ,µ~G,1

(
f1, . . . , fm

)∣∣2)1/2
∥∥∥∥
Lp(Rn)

.

Using (4.6) and (5.2), we see that∣∣T λ,γ,µ~G,1

(
f1, . . . , fm

)
(x)
∣∣
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≤
∑

~k
∗1∈P∗1Uλ+µ

1

m∏
j=2

∣∣Lλ,γGj ,kjfj(x)
∣∣∣∣∣ ∑
k1∈Col

Uλ+µ
1
~k
∗1

bλ,µ~G,~k
Lλ,γG1,k1

f1(x)
∣∣∣

. 2λn(m−1)/2
m∏
j=2

Mfj(x)
∑

~k
∗1∈P∗1Uλ+µ

1

∣∣∣ ∑
k1∈Col

Uλ+µ
1
~k
∗1

bλ,µ~G,~k
Lλ,γG1,k1

f1(x)
∣∣∣.

Then it follows from Hölder’s inequality and the maximal inequality for M that (6.11) is
bounded by

2λn(m−1)/2

( m∏
j=2

‖fj‖Lpj (Rn)

) ∑
~k
∗1∈P∗1Uλ+µ

1

∥∥∥∥(∑
γ∈Z

∣∣∣ ∑
k1∈Col

Uλ+µ
1
~k
∗1

bλ,µ~G,~k
Lλ,γG1,k1

f1

∣∣∣2)1/2
∥∥∥∥
Lp1 (Rn)

.

Now let 0 < ε0 < 1 be a sufficiently small number to be chosen later. Then, as p1 ∈ [2,∞),
Lemma 5.2, together with (6.6) and (6.5), yields that∥∥∥∥(∑

γ∈Z

∣∣∣ ∑
k1∈Col

Uλ+µ
1
~k
∗1

bλ,µ~G,~k
Lλ,γG1,k1

f1

∣∣∣2)1/2
∥∥∥∥
Lp1 (Rn)

. 2λn/2(λ+ µ+ 4)‖Ω‖L2(Smn−1)2
−δµε02−λ(L+1+mn)ε02(λ+µ)nε0‖f1‖Lp1 (Rn)

. 2λn/22µε0(n−δ)2−λε0(L+1+mn−n)(λ+ µ+ 4)‖Ω‖L2(Smn−1)‖f1‖Lp1 (Rn)

as the cardinality of Col
Uλ+µ

1

~k
∗1 is less than 2(λ+µ)n. Finally, we have

∥∥∥∑
γ∈Z
T λ,γ,µ~G,1

(
f1, . . . , fm

)∥∥∥
Lp(Rn)

.M0 2εµ2−λM0‖Ω‖L2(Smn−1)

m∏
j=1

‖fj‖Lpj (Rn),

by choosing ε0 and L such that

ε = ε0n, M0 < ε0(L+ 1 +mn− n)−mn/2.

This shows (6.9) for the case l = 1.

Now we suppose that 2 ≤ l ≤ m. Using (4.6) and (5.2), we write∣∣T λ,γ,µ~G,l

(
f1, . . . , fm

)
(x)
∣∣

. 2λn(m−l)/2
∑

~k
∗1,...,l∈P∗1,...,lUλ+µ

l

( m∏
j=l+1

∣∣Mfj(x)
∣∣)∣∣∣∣ ∑

~k
1,...,l∈Col

Uλ+µ
l
~k
∗1,...,l

bλ,µ~G,~k

l∏
j=1

Lλ,γGj ,kjfj(x)

∣∣∣∣
and thus it follows from Hölder’s inequality and the maximal inequality for M that the
left-hand side of (6.9) is less than

2λn(m−l)/2
( m∏
j=l+1

∥∥fj∥∥Lpj (Rn)

)
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×
( ∑
~k
∗1,...,l∈P∗1,...,lUλ+µ

l

∥∥∥∥∑
γ∈Z

∣∣∣ ∑
~k

1,...,l∈Col
Uλ+µ
l
~k
∗1,...,l

bλ,µ~G,~k

l∏
j=1

Lλ,γGj ,kjfj

∣∣∣∥∥∥∥min {1,p}

Lql (Rn)

)1/min {1,p}

where 1/ql := 1/p1 + · · ·+ 1/pl. Note that Col
Uλ+µ
l

~k
∗1,...,l is a subset of (Wλ+µ)l and thus

∣∣ColUλ+µ
l

~k
∗1,...,l

∣∣ . 2(λ+µ)nl.

Accordingly, Lemma 5.3, (6.6), and (6.5) yields that∥∥∥∥∑
γ∈Z

∣∣∣ ∑
~k

1,...,l∈Col
Uλ+µ
l
~k
∗1,...,l

bλ,µ~G,~k

l∏
j=1

Lλ,γGj ,kjfj

∣∣∣∥∥∥∥
Lql (Rn)

. ‖Ω‖L2(Smn−1)2
µε0(n−δ)2λnl/2(λ+ µ+ 4)l/min {1,ql}2−λε0(L+1+mn−nl)

l∏
j=1

‖fj‖Lpj (Rn)

. ‖Ω‖L2(Smn−1)2
εµ2−λ(M0+n(m−l)/2)

l∏
j=1

‖fj‖Lpj (Rn)

choosing 0 < ε0 < 1 and L > 0 so that

ε = ε0n and M0 +mn/2 < ε0(L+ 1).

This concludes that (6.9) holds for 2 ≤ l ≤ m. �

Proof of Proposition 6.2. Let 0 < s < 1. We first note that the direction

Claims X(s) and Y (s)⇒ Claim Z(s)

follows from the (linear) Marcinkiewicz interpolation method. Here, we apply the interpo-
lation separately m times and in each interpolation, m − 1 parameters among p1, . . . , pm
are fixed. Moreover, the direction

Claim Z(s)⇒ Claim Σ(s)

also holds due to Lemmas 3.2 and 5.4.
Therefore we need to prove the remaining direction Claim X(s) ⇒ Claim Y (s). The

proof is based on the idea in [25]. We are only concerned with the case (1/p1, . . . , 1/pm) ∈
Rm1 (s) as a symmetric argument is applicable to the other cases. Assume that p1 = 1,
1/s < p2, . . . , pm <∞, and

(6.12) 1 + 1/p2 + · · ·+ 1/pm = 1/p.

Without loss of generality, we may also assume ‖f1‖L1(Rn) = ‖f2‖Lp2 (Rn) = · · · = ‖fm‖Lpm (Rn) =
‖Ω‖

L
1

1−s (Smn−1)
= 1 and then it is enough to prove

(6.13)
∣∣∣{x ∈ Rn :

∣∣Lµ(f1, . . . , fm)(x)
∣∣ > t

}∣∣∣ .ε 2εµpt−p.
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We shall use the Calderón-Zygmund decomposition of f1 at height tp. Then f1 can be
expressed as

f1 = g1 +
∑
Q∈A

b1,Q

whereA is a subset of disjoint dyadic cubes,
∣∣⋃

Q∈AQ
∣∣ . t−p, supp(b1,Q) ⊂ Q,

∫
b1,Q(y)dy =

0, ‖b1,Q‖L1(Rn) . tp|Q|, and ‖g1‖Lr(Rn) . t(1−1/r)p for all 1 ≤ r ≤ ∞. Then the left-hand
side of (6.13) is less than∣∣∣{x ∈ Rn :

∣∣Lµ(g1, f2, . . . , fm)(x)
∣∣ > t/2

}∣∣∣
+

∣∣∣∣{x ∈ Rn :
∣∣∣Lµ( ∑

Q∈A
b1,Q, f2, . . . , fm

)
(x)
∣∣∣ > t/2

}∣∣∣∣ =: Ξµ1 + Ξµ2

For the estimation of the first term, we choose 1/s < p0 <∞ and p̃ > p with

(6.14) 1/p0 + 1/p2 + · · ·+ 1/pm = 1/p̃

and set ε0 := εp/p̃ so that 0 < ε0 < 1. Then the assumption Claim X(s) yields that

(6.15)
∥∥Lµ(g1, f2, . . . , fm)

∥∥
Lp̃(Rn)

.ε0 2ε0µ‖g1‖Lp0 (Rn) . 2ε0µt(1−1/p0)p.

Now, using Chebyshev’s inequality and the estimate (6.15), the first term Ξµ1 is clearly
dominated by

t−p̃
∥∥Lµ(g1, f2, . . . , fm)

∥∥p̃
Lp̃(Rn)

. 2ε0µp̃t−p̃(1−p(1−1/p0)) = 2εµpt−p

since p̃(1− p(1− 1/p0)) = p by (6.12) and (6.14).
Moreover, the remaining term Ξµ2 is estimated by the sum of

∣∣⋃
Q∈AQ

∗∣∣ and

Γµ :=

∣∣∣∣{x ∈ ( ⋃
Q∈A

Q∗
)c

:
∣∣∣Lµ( ∑

Q∈A
b1,Q, f2, . . . , fm

)
(x)
∣∣∣ > t/2

}∣∣∣∣
where Q∗ is the concentric dilate of Q with `(Q∗) = 102√n`(Q). Since

∣∣⋃
Q∈AQ

∗∣∣ . t−p,

the proof of (6.13) can be reduced to the inequality

(6.16) Γµ .ε 2εµpt−p.

We apply Chebyshev’s ineqaulity to deduce

Γµ . t
−p
∫

(
⋃
Q∈AQ

∗)c

( ∑
Q∈A

∑
γ∈Z

∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣)pdx

≤ t−p
∫

(
⋃
Q∈AQ

∗)c

( ∑
Q∈A

∑
γ:2γ`(Q)≥1

∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣)pdx

+ t−p
∫
Rn

( ∑
Q∈A

∑
γ:2γ`(Q)<1

∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣)pdx

=: Γ1
µ + Γ2

µ

where TKγ
µ

is the multilinear operator associated with the kernel Kγ
µ so that

TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x) =

∫
(Rn)m

Kγ
µ(x− y1, . . . , x− ym)b1,Q(y1)

m∏
j=2

fj(yj) d~y.
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To estimate Γ1
µ, we see that∣∣TKγ

µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣

.
∫

(Rn)m

∫
|~z|∼2−γ

2γmn
∣∣Ω(~z ′)

∣∣∣∣Φµ+γ(x− y1 − z1, . . . , x− ym − zm)
∣∣

× |b1,Q(y1)|
( m∏
j=2

|fj(yj)|
)
d~z d~y

.L

∫
|~z|∼2−γ

2γmn
∣∣Ω(~z ′)

∣∣( ∫
y1∈Q

2(µ+γ)n

(1 + 2µ+γ |x− y1 − z1|)L
|b1,Q(y1)|dy1

)
×

m∏
j=2

(∫
Rn

2(µ+γ)n

(1 + 2µ+γ |x− yj − zj |)L
|fj(yj)|dyj

)
d~z

for all L > n. Clearly, we have

(6.17)

∫
Rn

2(µ+γ)n

(1 + 2µ+γ |x− yj − zj |)L
|fj(yj)|dyj .Mfj(x− zj), j = 2, . . . ,m

and for 2γ`(Q) ≥ 1 and |z1| ≤ 2−γ+1,∫
y1∈Q

2(µ+γ)n

(1 + 2µ+γ |x− y1 − z1|)L
|b1,Q(y1)|dy1 .

2(µ+γ)n

(1 + 2µ+γ |x− cQ|)L
‖b1,Q‖L1(Rn)

because |x− y1 − z1| & |x− cQ|. Therefore, we have∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣

.
2(µ+γ)n

(1 + 2µ+γ |x− cQ|)L
‖b1,Q‖L1(Rn)

∫
|~z|∼2−γ

2γmn
∣∣Ω(~z ′)

∣∣( m∏
j=2

Mfj(x− zj)
)
d~z.

Now Hölder’s inequality yields∫
|~z|∼2−γ

2γmn
∣∣Ω(~z ′)

∣∣( m∏
j=2

Mfj(x− zj)
)
d~z

≤
(∫
|~z|∼2−γ

2γmn
∣∣Ω(~z ′)

∣∣ 1
1−sd~z

)1−s(∫
|~z|∼2−γ

2γmn
( m∏
j=2

Mfj(x− zj)
) 1
s
d~z ′

)s
≤ ‖Ω‖

L
1

1−s (Smn−1)

m∏
j=2

(
2γn

∫
|zj |.2−γ

∣∣Mfj(x− zj)
∣∣ 1
s dzj

)s
.

m∏
j=2

M 1
s
Mfj(x)

and thus∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣ . 2(µ+γ)n

(1 + 2µ+γ |x− cQ|)L
‖b1,Q‖L1(Rn)

m∏
j=2

M 1
s
Mfj(x).

This, together with Hölder’s inequality, deduces that Γ1
µ is dominated by a constant times

t−p
∫

(
⋃
Q∈AQ

∗)c

( m∏
j=2

M 1
s
Mfj(x)

)p( ∑
Q∈A

∑
γ:2γ`(Q)≥1

2(µ+γ)n

(1 + 2µ+γ |x− cQ|)L
‖b1,Q‖L1(Rn)

)p
dx
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≤ t−p
( m∏
j=2

∥∥M 1
s
Mfj

∥∥
Lpj (Rn)

∑
Q∈A

∑
γ:2γ`(Q)≥1

∥∥∥ 2(µ+γ)n

(1 + 2µ+γ | · −cQ|)L
∥∥∥
L1((Q∗)c)

‖b1,Q‖L1(Rn)

)p
.

Since 1/s < p2, . . . , pm <∞, each Lpj norm is controlled by ‖fj‖Lpj (Rn) = 1, using the Lpj

boundedness of both M 1
s

and M. Moreover, using the fact that for 2µ−10 ≥ C0
√
mn,∥∥∥ 2(µ+γ)n

(1 + 2µ+γ | · −cQ|)L
∥∥∥
L1((Q∗)c)

. 2−µ(L−n)
(
2γ`(Q)

)−(L−n) ≤
(
2γ`(Q)

)−(L−n)
,

we have∑
Q∈A

∑
γ:2γ`(Q)≥1

∥∥∥ 2(µ+γ)n

(1 + 2µ+γ | · −cQ|)L
∥∥∥
L1((Q∗)c)

‖b1,Q‖L1(Rn) .
∑
Q∈A
‖b1,Q‖L1(Rn) . 1.

This concludes
Γ1
µ . t

−p.

Next, let us deal with the other term Γ2
µ. By using the vanishing moment condition of

b1,Q, we have∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣

.
∫
|~z|∼2−γ

2γmn
∣∣Ω(~z′)

∣∣( ∫
(Rn)m

∣∣Φµ+γ(x− y1 − z1, . . . , x− ym − zm)

(6.18)

− Φµ+γ(x− cQ − z1, x− y2 − z2, . . . , x− ym − zm)
∣∣∣∣b1,Q(y1)

∣∣( m∏
j=2

|fj(yj)|
)
d~y

)
d~z.

We observe that∣∣Φµ+γ(x− y1 − z1, . . . , x− ym − zm)− Φµ+γ(x− cQ − z1, x− y2 − z2, . . . , x− ym − zm)
∣∣

. 2(µ+γ)`(Q) V L
µ+γ(x− z1, y1, cQ)

( m∏
j=2

2(µ+γ)n

(1 + 2µ+γ |x− yj − zj |)L
)

where

V L
µ+γ(x, y1, cQ) :=

∫ 1

0

2(µ+γ)n

(1 + 2µ+γ |x− ty1 − (1− t)cQ|)L
dt.

Furthermore,∣∣Φµ+γ(x− y1 − z1, . . . , x− ym − zm)− Φµ+γ(x− cQ − z1, x− y2 − z2, . . . , x− ym − zm)
∣∣

.L W
L
µ+γ(x− z1, y1, cQ)

( m∏
j=2

2(µ+γ)n

(1 + 2µ+γ |x− yj − zj |)L
)

where

WL
µ+γ(x, y1, cQ) :=

2(µ+γ)n

(1 + 2µ+γ |x− y1|)L
+

2(µ+γ)n

(1 + 2µ+γ |x− cQ|)L
.

By averaging these two estimates and letting

UL,εµ+γ(x, y1, cQ) :=
(
V L
µ+γ(x, y1, cQ)

)ε(
WL
µ+γ(x, y1, cQ)

)1−ε
,

we obtain∣∣Φµ+γ(x− y1 − z1, . . . , x− ym − zm)− Φµ+γ(x− cQ − z1, x− y2 − z2, . . . , x− ym − zm)
∣∣
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.L,ε 2εµ
(
2γ`(Q)

)ε
UL,εµ+γ(x− z1, y1, cQ)

( m∏
j=2

2(µ+γ)n

(1 + 2µ+γ |x− yj − zj |)L
)
.

(6.19)

Here, we note that∥∥UL,εµ+γ(·, y1, cQ)
∥∥
L1(Rn)

≤
∥∥V L

µ+γ(·, y1, cQ)
∥∥ε
L1(Rn)

∥∥WL
µ+γ(·, y1, cQ)

∥∥1−ε
L1(Rn)

. 1.

By plugging (6.19) into (6.18), we obtain∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣

. 2εµ
(
2γ`(Q)

)ε ∫
|~z|∼2−γ

2γmn
∣∣Ω(~z′)

∣∣( ∫
Rn
UL,εµ+γ(x− z1, y1, cQ)|b1,Q(y1)|dy1

)
×
( m∏
j=2

∫
Rn

2(µ+γ)n

(1 + 2µ+γ |x− yj − zj |)L
|fj(yj)|dyj

)
d~z

. 2εµ
(
2γ`(Q)

)ε ∫
|z1|.2−γ

∫
Rn
UL,εµ+γ(x− z1, y1, cQ)|b1,Q(y1)|dy1

×
(∫
|(z2,...,zm)|.2−γ

2γmn
∣∣Ω(~z′)

∣∣ m∏
j=2

Mfj(x− zj) dz2 · · · dzm
)
dz1

where (6.17) is applied. The innermost integral is, via Hölder’s inequality, bounded by

2γn
(∫
|(z2,...,zm)|.2−γ

2γ(m−1)n
∣∣Ω(~z′)

∣∣ 1
1−sdz2 · · · dzm

)1−s m∏
j=2

M 1
s
Mfj(x)

and thus we have∣∣TKγ
µ

(
b1,Q, f2, . . . , fm

)
(x)
∣∣ . 2εµ

(
2γ`(Q)

)ε m∏
j=2

M 1
s
Mfj(x)

∫
Rn
|b1,Q(y1)|

×
∫
|z1|.2−γ

2γnUL,εµ+γ(x− z1, y1, cQ)
(∫
|(z2,...,zm)|.2−γ

2γ(m−1)n
∣∣Ω(~z′)

∣∣ 1
1−s dz2 · · · dzm

)1−s
dz1dy1

Now, by using Hölder’s inequality and the maximal inequality for M 1
s

and M, we have

Γ2
µ . t

−p2εµp
∥∥∥∥ ∑
Q∈A

∑
γ:2γ`(Q)<1

(
2γ`(Q)

)ε ∫
Rn
|b1,Q(y1)|

∫
|z1|.2−γ

2γnUL,εµ+γ(· − z1, y1, cQ)

×
(∫
|(z2,...,zm)|.2−γ

2γ(m−1)n
∣∣Ω(~z′)

∣∣ 1
1−s dz2 · · · dzm

)1−s
dz1dy1

∥∥∥∥p
L1(Rn)

.

Moreover, the L1 norm in the last displayed expression is bounded by∑
Q∈A

∑
γ:2γ`(Q)<1

(
2γ`(Q)

)ε ∫
Rn
|b1,Q(y1)|

∥∥UL,εµ+γ(·, y1, cQ)
∥∥
L1(Rn)

×
∫
|z1|.2−γ

2γn
(∫
|(z2,...,zm)|.2−γ

2γ(m−1)n
∣∣Ω(~z′)

∣∣ 1
1−s dz2 · · · dzm

)1−s
dz1 dy1

.
∑
Q∈A

∑
γ:2γ`(Q)<1

(
2γ`(Q)

)ε ∫
Rn
|b1,Q(y1)|

(∫
|~z|.2−γ

2γmn
∣∣Ω(~z′)

∣∣ 1
1−sd~z

)1−s
dy1
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.
∑
Q∈A
‖b1,Q‖L1(Rn)

∑
γ:2γ`(Q)<1

(
2γ`(Q)

)ε
. 1

where the first inequality follows from Hölder’s inequality. This proves

Γ2
µ . t

−p2εµp,

which finally completes the proof of (6.16). �

References

[1] A. Barron, Weighted estimates for rough bilinear singular integrals via sparse domination, New York J.
Math. 23 (2017), 779–811.

[2] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.
[3] P. Chen, D. He, L. Song, Weighted inequalities for bilinear rough singular integrals from L2×L2 to L1,

J. Geom. Anal. 29 (2019), no. 1, 402–412.
[4] J. Canto, K. Li, L. Roncal, O. Tapiola, Cp estimates for rough homogeneous singular integrals and

sparse forms Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no.3, 1131–1168.
[5] M. Christ, Weak type (1, 1) bounds for rough operators I, Ann. Math. 128 (1988), 19–42.
[6] M. Christ and J.-L. Rubio de Francia, Weak type (1, 1) bounds for rough operators II, Invent. Math.

93 (1988), 225–237.
[7] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals,

Trans. Amer. Math. Soc. 212 (1975), 315–331.
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